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Abstract

In many fields, such as signal processing, control, and graphics, there
is a significant demand for efficient Dense Linear Algebra (DLA) code
for embedded devices. At the same time, code generators have proved
to be useful for generating fast DLA code for general-purpose comput-
ers. An example is LGen, a research compiler designed after Spiral
for basic linear algebra computations of fixed size. In this thesis, we
extend LGen towards four processors that are widely used in the em-
bedded ecosystem: Intel Atom, ARM Cortex-A8, ARM Cortex-A9, and
ARM1176. For this purpose, we introduce into the LGen methodology
a set of optimizations that take into account the specific limitations and
capabilities of these processors, aiming at generating highly optimized
code for them. An extensive set of experiments run on our target plat-
forms shows that the new version of LGen produces code that performs
better than well-established, commercial and non-commercial libraries
(Intel MKL and Intel IPP), software generators (Eigen and ATLAS), and
compilers (icc, gcc, and clang).

The large number of experiments that we conducted on the four in-
vestigated processors were executed using Mediator, a web-based mid-
dleware that was developed as part of this thesis. Mediator offers a
RESTful interface that makes possible the simultaneous execution of ex-
periments on multiple SSH-accessible devices by multiple users. More
specifically, it guarantees mutual exclusion of the experiments running
on a specific core, while at the same time applies load balancing over
the cores of a device. On top of that, it also provides an easy-to-use
mechanism for retrieving performance metrics on a variety of architec-
tures with minimal user involvement.
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Chapter 1

Introduction

1.1 Overview

The optimization of Dense Linear Algebra (DLA) code is one of the most
critical tasks necessary to achieve high performance on modern computers.
DLA is at the heart of many algorithms across a variety of domains, such
as signal processing, computer graphics, control, and scientific computing.
Decades of research have led to mature understanding of the problem, re-
sulting in the performance-oriented design principles adopted by high per-
formance libraries, code generators, and compilers. However, most of these
tools are geared towards large matrix sizes (in the order of hundreds or
more) and fail to support applications that require efficient small scale com-
putations that are ubiquitous in many fields outside high performance com-
puting.

LGen [34] is a research compiler that targets small Basic Linear Algebra
Computations (BLACs) with fixed size on x86 architectures, optionally with
SSE3, SSE4.1 or AVX vectorization extensions. However, LGen currently
lacks support for embedded processors, which are gaining increasing im-
portance due to their use in devices such as smartphones, tablets, nettops,
and media centres.

1.2 Goal of the Thesis

The main goal of this thesis is to extend the backend of LGen with sup-
port for embedded processors. In this direction, we will investigate four
processors that are widely used in embedded and mobile devices, namely
Intel Atom, ARM Cortex-A8, ARM Cortex-A9, and ARM1176. Besides the
extension of LGen’s backend, another goal of this thesis is the development
of a software tool that facilitates cross-compilation in the context of LGen.
LGen is based on autotuning, which requires the execution of generated

3



1. Introduction

code versions on the target device throughout the compilation process. This
tool should make possible the decoupling of the location of LGen from the
location of the target device, allowing the remote execution of experiments
on the latter. On top of that, it should allow the simultaneous execution of
performance experiments on multiple devices by multiple users in a way
that is not tied to LGen.

1.3 Contributions of the Thesis

The main contributions of this thesis can be summarized as follows:

• Modification of the LGen backend for Intel Atom, which supports the
SSSE3 SIMD extension of the x86 ISA.

• Extension of LGen for the ARM Cortex-A8 and Cortex-A9 processors,
which support the NEON SIMD extension of the ARMv7 ISA.

• Addition of a set of optimizations to LGen. More specifically:

1. Generic memory access instructions (relevant for all processors).

2. Detection of alignment of memory accesses (relevant for Intel
Atom).

3. A new matrix-vector multiplication approach that is more effi-
cient than the existing one for most x86 architectures (Intel Atom
included).

4. Implementation of new computational building blocks (called ν-
BLACs) for the NEON-extended ARM architectures that diverge
from the approach followed by the existing building blocks for
x86 in ways that are tailored to the characteristics of the Cortex-
A8 and Cortex-A9 microarchitectures.

• Experimental evaluation of the effectiveness of the aforementioned ex-
tensions and optimizations.

• Development of Mediator, a middleware that facilitates the execution
of performance experiments on multiple devices by multiple users.

1.4 Related Work

We can identify at least three approaches currently considered for the pro-
duction of efficient DLA code. A first approach is the development of hand-
written linear algebra libraries that are highly optimized for specific archi-
tectures. A second approach is the development of software generators for
the automatic production of optimized DLA functions and libraries. Finally,
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1.4. Related Work

a third approach is the use of optimizing compilers that apply a set of code
transformation and optimization techniques in order to translate a (possibly
naive) source code implementation into efficient binary code. In particular,
auto-vectorization and the way it handles memory alignment are often crit-
ical for achieving high performance. Despite the large amount of progress
that has been done in the development of optimizing compilers, [28] and the
results of this thesis show that the auto-vectorization capabilities of general-
purpose compilers are limited compared to what can be achieved through a
domain-specific approach.

Linear algebra libraries. Various commercial and non-commercial libraries
exist that target a wide range of architectures. Intel’s Math Kernel Library
(MKL) [8] and Integrated Performance Primitives (IPP) [7] are two of them,
specific for the Intel x86 architecture. MKL implements the Basic Linear
Algebra Subroutines (BLAS) interface [12] and is optimized for large scale
problems, providing little support for small sizes (see [25] and results of
this thesis). IPP offers functionalities covering a wide spectrum of domains,
among which small-scale linear algebra computations that are not restricted
to a BLAS interface. In the experiments that we conducted, we compete
against both MKL and IPP.

BLIS [39] is a framework for the instantiation of high-performance BLAS-
like libraries. All functionalities supported by BLIS are based on a set of
micro-kernels that must be provided by the user. High performance can by
achieved on a specific platform only if the micro-kernels have been properly
optimized for it. The interface of BLIS is a superset of the BLAS functional-
ity. The studies presented in [38] show the results of using BLIS for a variety
of architectures, including ARM Cortex-A9. Although the presented experi-
ments did not involve vectorized code at all, BLIS appears to be competitive
on this processor, outperforming ATLAS for some of the tested computa-
tions.

Linear algebra generators. Autotuning is a well-established methodology
for automatic code generation [5, 31, 34, 36], that involves the generation and
execution of several code versions. The executions are monitored according
to some predefined metrics (e.g., runtime), which are used to finally select
the best code version. PHiPAC [5] and ATLAS [36] use this approach in
order to select appropriate values for parameters like block sizes, unrolling
factors, and loop order. Both of them focus on BLAS for large-size data.
ATLAS provides support for both Intel and NEON-enabled ARM processors
and it is included in our set of competitors.

Spiral [31, 30] is a software generator that strongly influenced the design of
LGen. Spiral was initially devoted to the generation of high performance
code for the domain of linear transforms. Later, with the introduction of
the Operator Language (OL) [16], the system was extended to support func-
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1. Introduction

tionalities outside the transform domain. OL is a point-free mathematical
language for expressing algorithms, such as matrix-matrix multiplication, at
a high abstraction level. Algorithms expressed using OL are restructured
through the recursive application of a set of rules. This process results in
the creation of a search space of algorithms that are candidates for the im-
plementation of the desired kernel. The role of OL in Spiral is very similar
to the role of LL in LGen, which is described in Section 2.1.2.

FLAME provides a framework for the automatic derivation of DLA algo-
rithms [21, 4]. Code generation with FLAME assumes the existence of an
efficient BLAS library.

Eigen [20] is a linear algebra library based on C++ templates. It uses meta-
programming to apply compile-time code optimizations like loop fusion,
loop peeling, loop unrolling, and vectorization supporting the SSE 2/3/4,
NEON, and AltiVect ISA extensions. Eigen is one of the libraries that LGen
competes against in our experiments. Other libraries following a template-
based approach for linear algebra code generation are MTL [33], uBLAS [35]
(part of the Boost C++ library suite), and Armadillo [32].

Alignment for SIMD instructions. One important issue when vectorizing
code for SIMD architectures is handling memory alignment, since for some
vector architectures unaligned memory accesses are considerably slower
than aligned ones. The authors of [27] present a two-step methodology for
optimizing the performance of a program in terms of memory alignment:
At first they apply a set of transformations (mainly loop peeling) in order
to increase the amount of aligned memory accesses. Then they apply an
abstract interpretation analysis similar to the one described in Section 3.2 of
this thesis, in order to detect as many aligned accesses as possible. However,
the benefit of loop peeling is low when a loop contains various memory
accesses with different alignments.

A more sophisticated approach that handles situations where loop peeling
is inadequate for improving alignment is presented in [14]. The authors
propose a methodology specific for loops containing unit-stride accesses,
based on the representation of memory accesses as streams. The manipu-
lation of these streams is performed using a set of operators, resulting in
what the authors call a data reorganization graph, which can then be trans-
lated into efficient SIMD code that involves aligned-only memory accesses
combined with a limited amount of shuffle operations for reorganizing data
in registers. The approach of [14] is extended in [37] so that it can handle
conversions between datatypes of different size and arrays whose alignment
is unknown at compile time.

The recent work of [26] introduces a SIMD code generation methodology,
which combines the polyhedral compilation approach [29] with the codelet
compiler from Spiral [31, 30]. Part of this methodology is dedicated to the
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elimination of unaligned memory accesses, which is mainly done by loop un-
rolling, followed by the replacement of unaligned accesses with aligned ones
and vector shifts. On top of that, strength reduction and common subexpres-
sion elimination are applied in order to limit the overhead introduced by the
shifts. Finally, whenever alignment is not known at compile time, multiple
code versions are generated depending on different alignment assumptions.
The version that is going to be executed is chosen at runtime using dynamic
alignment checks.

1.5 Organization of the Thesis

The remainder of this document is organised as follows: Chapter 2 presents
the background knowledge that the main contribution of this thesis is based
on. Chapter 3 describes the four optimizations introduced in LGen. In Chap-
ter 4 we present Mediator. In Chapter 5 we show and discuss the results of
the most important experiments that we executed on the four target pro-
cessors. Finally, in Chapter 6 we summarize the main contributions of this
thesis, we discuss its limitations, and we list some possible future extensions.
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Chapter 2

Background

2.1 LGen

This section gives a brief overview of LGen based on the work presented in
[34]. The information contained in this section corresponds to the state of
LGen at the commencement of this thesis and can be used as background
knowledge for Chapter 3.

2.1.1 Overview

LGen is a compiler for small-scale, fixed-size, basic linear algebra computa-
tions (BLACs). By BLACs we refer to computations on matrices, vectors, and
scalars that consist of matrix addition, matrix multiplication, matrix transpo-
sition, and scalar multiplication. For the rest of this thesis, matrices will be
denoted as A, B, ..., vectors as x, y, ..., and scalars as α, β, ... .

The input to LGen is a BLAC expressed as an equation of the form

y = αAx + βy, (2.1)

together with a specification of the sizes of all entities involved in it. For
example, in this case we could have that A is a 10 × 20 matrix, x, y are
vectors of length 20, and α, β are scalars. The output of LGen is a C function
(also referred to as kernel) that implements this computation, optionally
using SIMD instructions.

Before being converted into C code, an input BLAC like the one in (2.1) is
processed at three different levels of abstraction, each one characterized by
a language and a set of transformations. This process is depicted in Fig.
2.1. At first, the input BLAC is translated into a Linear algebra Language
(LL) expression. LL is a domain-specific language (DSL) appropriate for
tiling transformations. At the immediately lower level, the computation is
translated into another DSL called Σ-LL, which is a generalization of Σ-SPL
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2. Background

[17] that has been used in Spiral for signal transforms. Σ-LL is a purely
mathematical DSL that makes access patterns and loops explicit and is ap-
propriate for the application of optimizations such as loop fusion and loop
exchange. Next, the computation is converted into a C-like intermediate
representation (C-IR). At this level, optimizations like loop unrolling, scalar
replacement, and conversion into static single assignment (SSA) form are ap-
plied. Finally, the C-IR code is unparsed to C code that can be executed on
the target platform. The LGen compilation process also includes a feedback
loop over these three levels, which is used for autotuning.

LL!

�-LL!

Tiling decision!
Tiling propagation!

 !
Loop-level optimizations!

Code-level optimizations! C-IR!Pe
rf

or
m

an
ce

 e
va

lu
at

io
n!

an
d 

se
ar

ch
!

for(int i = … ) { !
 …  !
 t = _mm_mul_ps(a, x);!
 …!
}!

Basic linear algebra computation !
(BLAC)! y = (Ax)T

y =
X

i1,j1,j0,i0

Sj1+j0(Gi1+i0 · · · )T

Optimized C function!

...!
Mov (mmMulPs refA[0,0], refx[0,0]), reft[0,0]!
...!

T ile3,1

⇥
y = (Ax)T

⇤

Figure 2.1: LGen architecture (source: [34]).

Although LGen can generate code for any specified sizes of matrices, the
optimizations applied by the LGen methodology are geared towards small-
size BLACs that involve cache-resident matrices.

2.1.2 LL

Let’s consider the following input BLAC:

C = AB, (2.2)

with A having size 4× 16 and B having size 16× 4.

The input is already expressed using LL operators, so the transition to the
LL level is trivial. Then, various tiling transformations are applied. The ap-
plication of these transformations is decided by a predefined set of rules that
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2.1. LGen

take into account the operations involved in the expression (e.g., assignment
and matrix multiplication), the hardware characteristics of the target plat-
form (e.g., number of registers and size of instruction cache), and various
configuration settings (e.g., vectorization) in order to decide on the appro-
priate tiling sizes. For example, a tiled version of (2.2) can be expressed as:

[C]2,4 = [A]2,8[B]8,4, (2.3)

where the subscripts next to a matrix show the tile size that corresponds to
it. For example, after applying this tiling, A consists of two rows of tiles,
each one containing two 2× 8 tiles.

In case the vectorization setting is enabled, the first level of tiling targets
vectorization. Possible tile sizes at this level are ν× ν, ν× 1 and 1× ν, where
ν is the vector register length (e.g., 4 floats for SSE and NEON and 8 floats for
AVX). Tiles of such sizes enable the introduction of predefined handwritten
vector code snippets (called ν-BLACs) during the translation from Σ-LL to C-
IR (see Section 2.1.4). Outer levels of tiling are also allowed and typically aim
at reusing the contents of registers. Moreover, unrolling the innermost loops
may help in exposing more instruction-level parallelism and thus improve
performance. In a possible future extension of LGen that supports BLACs
of larger sizes, outer levels of tiling may be used for reusing blocks of higher
levels of the memory hierarchy (e.g., L1 cache and L2 cache).

An important restriction of LGen regarding multilevel tiling is that we can
introduce leftovers in at most one level of tiling. For example, if we have a
30× 4 matrix A and ν = 4, after applying the first level of tiling we will get
seven 4× 4 tiles and one 2× 4 leftover tile. Since seven is a prime number,
we cannot further tile without introducing more leftovers, which results to
an outer level of (pseudo-)tiling with tile size 1× 1.

2.1.3 Σ-LL

An LL expression, such as (2.3), is translated into Σ-LL by converting oper-
ations on tiled matrices into sums over matrices. A Σ-LL expression makes
access patterns and loops explicit by means of gather and scatter matrices,
and summations, in order to facilitate the application of further transforma-
tions like loop merging and loop exchange.

Gather and scatter matrices are used to extract or embed submatrices from
or to larger matrices, respectively. For example, given a 4× 4 matrix A, we
can extract its upper left 2× 2 submatrix by multiplying A with the gather
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2. Background

matrices GL and GR from left and right, respectively:

A(0 : 1, 0 : 1) = GL AGR, GL =
[

1 0 0 0
0 1 0 0

]
, GR =




1 0
0 1
0 0
0 0


 .

Similarly, we can insert a 2× 2 matrix B into a 4× 4 matrix A by using two
scatter matrices SL = GR, SR = GL as

A = SLBSR.

Using gather and scatter matrices, the LL expression (2.3) can be translated
to Σ-LL as

C =
3

∑
i=0,2

3

∑
j=0,4

15

∑
k=0,8

Si(Gi AGk)SkSk(GkBGj)Sj, (2.4)

where Gx, x ∈ {i, j, k} is a gather matrix targeting the submatrix starting
from row or column x, depending on whether it is multiplied by another
matrix from left or right, respectively. The same holds for the scatter matri-
ces Sx. For the sake of simplicity, the number of rows or columns that such
a matrix extracts or embeds is implied by the step of the corresponding sum-
mation (i.e. the number after the comma in the subscript of the ∑ symbol)
and therefore it is omitted from the notation. Similarly, the number of rows
or columns of the matrix that such a matrix extracts from or embeds to is
implied by the upper bounds of the corresponding summations. Expression
(2.4) is graphically depicted in Fig. 2.2.

= + + +

Figure 2.2: Illustration of the Σ-LL expression (2.4). The white regions con-
tain zeros and were created using scatters.

2.1.4 C-IR

A Σ-LL expression is translated into C-IR code for the application of further
optimizations, such as loop unrolling, scalar replacement, and conversion
to SSA form. The translation from Σ-LL to C-IR is straightforward in the
case of scalar code generation, while it is more complex in the case of vector
code generation. Since all the optimizations introduced by this thesis apply
to vector code generation, we will discuss only this scenario in the remaining
of this section.
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2.1. LGen

Operator Required ν-BLACs

Addition
(3 ν-BLACs) +

+

+

Scalar
Multiplication
(7 ν-BLACs)

Matrix
Multiplication
(5 ν-BLACs)

Transposition
(3 ν-BLACs)

T
T

T

Table 2.1: 18 required ν-BLACs for vectorization (source: [34]).

As it was mentioned in Section 2.1.2, if the vectorization setting is enabled,
the inner level of tiling targets vectorization. During the translation from Σ-
LL to C-IR, the loop that corresponds to the computation within a tile is fully
unrolled and replaced by handwritten C-IR codelets, called ν-BLACs. Each
ν-BLAC contains the implementation of a simple linear algebra operation
for a specific vector ISA. Based on the four linear algebra operations that
are supported by LGen, there are 18 different ν-BLACs, presented in Table
2.1. For each vector ISA that LGen supports, a special version of these 18
ν-BLACs has to be implemented.

Apart from the ν-BLACs, there are two more sets of handwritten codelets,
called Loader and Storer. The Loader is responsible for moving a tile of a
matrix into a ν-sized matrix that can be given as input to a ν-BLAC. Simi-
larly, the Storer is responsible for embedding the result of a ν-BLAC into a
tile of a matrix. In case the size of a matrix dimension is not divisible by ν,
after applying tiling there will be some leftover tiles, with size smaller than
ν, along the edges of the matrix. Operations on these tiles do not conform to
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any ν-BLAC. In order to generate vectorized code for these smaller BLACs,
the leftover tiles are packed into appropriate ν-sized matrices by the Loader
before being processed by the corresponding ν-BLAC. After the ν-BLAC
computation is finished, the results are unpacked into a tile with the appro-
priate size by the Storer. In other words, the Loader and Storer codelets can
be regarded as wrappers of ν-BLACs in the case of computations involving
leftover tiles.

All codelets of the Loader, Storer, and ν-BLACs are implemented following a
load-compute-store approach, meaning that they first load data from memory
into registers, then they process the data, and finally they store the results
back to memory. The computation consists of chains of codelets, where each
codelet within a chain loads data from the memory location that the previ-
ous codelet in that chain stored its results. At the one end of a chain there are
the codelets that load data from the input arrays passed as arguments to the
generated kernel and at the other end of a chain there are the codelets that
store data to the output arrays of the kernel. Data between two consecutive
codelets of a chain are stored in a local array that has been allocated from
within the kernel. Fig. 2.3 shows one of the computation chains that are part
of the computation D = (A + B) + C, with A, B, C, D being 8× 6 matrices and
ν = 4. More specifically, this computation chain adds three leftover tiles of
the matrices A, B, C and stores the result in the corresponding tile of matrix
D.

In the example shown in Fig. 2.3 the use of the temporary arrays t0, .., t4 is
superfluous, since the results of each codelet could be passed directly to the
next codelet through registers. Additionally, memory accesses are much
slower than moves between registers and, therefore, should be avoided
whenever possible. In order to eliminate such unnecessary memory accesses,
scalar replacement was introduced. Scalar replacement is a C-IR optimiza-
tion that aims at substituting store-load sequences within a codelet chain
with assignments of local variables. Such assignments will later be compiled
to register moves, which are much more efficient than memory accesses. Fig.
2.4 shows the computation chain depicted in Fig. 2.3 after the application of
scalar replacement. The load-compute-store approach followed at every step
of the LGen methodology renders scalar replacement a crucial optimization,
due to the great impact it has on the performance of the generated code.

2.2 Target microarchitectures

The main goal of this thesis was extending LGen towards four processors
that are widely used in mobile and embedded devices: Intel Atom, ARM
Cortex-A8, ARM Cortex-A9, and ARM1176. In the next sections we present
each one of these processors listing their most important technical character-

14



2.2. Target microarchitectures

+ ν-BLAC

t2[]

+ ν-BLAC

t0[]

Loader

A

t1[]

Loader

B

t3[]

Loader

C

t4[]

Storer

D

Figure 2.3: Computation chain handling leftovers for D = (A + B) + C.
A, B, C, D are 8× 6 matrices and ν = 4.

+ ν-BLAC + ν-BLAC

Loader

A

Loader

B

Loader

C

Storer

D

Figure 2.4: Computation chain of Fig. 2.3 after scalar replacement.

istics and limitations.
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2.2.1 Intel Atom

Intel Atom (released in 2011) is a low-power processor used in a variety of
devices, such as netbooks, mini PCs, mobile internet devices (MIDs), and
tablets. The device that we used was a Zotac ZBox ID86 Plus containing an
Intel Atom D2550 processor, whose main technical characteristics are listed
in Table 2.2.

Attribute Value
Number of CPUs 2
CPU frequency 1.86 GHz
L1 data cache 24 KB
L1 instruction cache 32 KB
ISA x86-64
SIMD extension SSSE3
Performance peak 6 flops/cycle

Table 2.2: Intel Atom specifications.

Atom implements the SSSE3 SIMD extension of the x86-64 ISA. SSSE3, like
all the other extensions of the SSE family, supports 128-bit vectors that may
contain four 32-bit floats or two 64-bit doubles. SSSE3 and its preceding
SSE extensions that it extends, offer a large variety of load/store, data pro-
cessing, and shuffling instructions that are extensively used from within the
ν-BLAC, Loader, and Storer codelets of LGen. A detailed description of
these instructions can be found in [23].

The Atom pipeline is capable of processing at most two instructions per
cycle, given that they are issued in different ports. According to the SSE
instructions specifications for Atom [22], the maximum number of data pro-
cessing instructions (i.e. vector additions and multiplications) that can be
processed per cycle is 1.5, under the assumption that there is a ratio of addi-
tions over multiplications equal to 2:1. Since a single SSE instruction applies
to four single-precision elements at once, this leads to a performance peak of
6 flops/cycle. Of course this is a loose peak, mainly due to the fact that loads
and stores share the same issue ports with additions and multiplications.

Another important characteristic of Atom that has a critical impact on per-
formance is the fact that its pipeline is in-order. LGen does not apply any
instruction scheduling optimizations on the generated code. Instead, it relies
completely on the instruction reordering done by the underlying compiler.
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2.2. Target microarchitectures

2.2.2 ARM Cortex-A8

Cortex-A8 (released in 2006) is a very popular ARM processor, designed for
power-optimized mobile devices and mainly used in smartphones, tablets,
netbooks, digital TV, and printers. The device that we used was a Beagle-
Bone Black, which includes a Sitara AM335x System on Chip (SoC). The
main technical characteristics of Cortex-A8 are summarized in Table 2.3.

Attribute Value
Number of CPUs 1
CPU frequency 1 GHz
L1 data cache 32 KB
L1 instruction cache 32 KB
ISA ARMv7-A
SIMD extension NEON
Performance peak 4 flops/cycle

Table 2.3: ARM Cortex-A8 specifications.

Cortex-A8 implements the NEON SIMD extension of the ARMv7-A ISA.
The data types that NEON uses are 64-bit or 128-bit vectors. A 64-bit vector
can contain two 32-bit floats and an 128-bit vector can contain four 32-bit
floats. NEON offers a wide range of vector instructions for loads/stores,
data-processing, and shuffling, applied on either 64-bit vectors (doubleword
instructions) or 128-bit vectors (quadword instructions). Regarding data-
processing, apart from the functionalities that are commonly found in other
vector ISA extensions, NEON additionally offers a set of fused multiply-
accumulate (FMA) instructions that are efficiently implemented in hardware
and can be very useful in matrix multiplication implementations. Moreover,
NEON offers a set of instructions that apply an arithmetic operation (e.g.,
multiplication) between all elements of a vector and a scalar coming from
an arbitrary position of another vector. These instructions are very useful in
matrix multiplication and by using them we can avoid unnecessary shuffling.
A thorough description of all NEON instructions can be found in [3].

Cortex-A8 has two co-processors capable of executing floating point opera-
tions, the VFP and the NEON unit. The first is an IEEE-compliant execution
engine that can run scalar floating point instructions. A serious limitation
of the VFP unit is that it is non-pipelined, meaning that each instruction
has to run to completion before the next instruction can be issued. Scalar
floating point instructions can also run in the non-IEEE-compliant NEON
unit, which is pipelined and performs a lot better than VFP for these instruc-
tions, although it requires a minimum amount of 7 cycles per instruction.
SIMD instructions can run only on the NEON unit, which is capable of is-
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suing one load/store and one data-processing instruction in parallel. A spe-
cial microarchitectural characteristic of Cortex-A8 (as well as of Cortex-A9)
that should be considered when designing a high performance implementa-
tion is that doubleword data processing instructions perform two times bet-
ter than quadword instructions (in terms of both latency and throughput),
while quadword memory access instructions perform roughly the same as
doubleword ones.

Cortex-A8 can execute one doubleword FMA per cycle [2], so under the
assumption that the computation consists of FMAs only and loads/stores
are always issued in parallel with them, the peak performance for Cortex-
A8 is 2 · 2 = 4 flops/cycle. Like Intel Atom, Cortex-A8 is also an in-order
processor.

2.2.3 ARM Cortex-A9

Cortex-A9 (released in 2008) is a widely used, high-end processor of the
ARM family that combines power efficiency and high performance. It is
used in numerous mobile devices, such as smartphones and tablets, and it
is available either as a single core processor or as a multicore processor that
combines up to four cores. The latter is known as Cortex-A9 MPCore. The
device we used was a Kayla Development Kit containing an NVIDIA Tegra 3
SoC, which is based on a quad core Cortex-A9 MPCore. The main technical
specifications of a single Cortex-A9 core are presented in Table 2.4.

Attribute Value
CPU frequency 1.4 GHz
L1 data cache 32 KB
L1 instruction cache 32 KB
ISA ARMv7-A
SIMD extension NEON
Performance peak 4 flops/cycle

Table 2.4: ARM Cortex-A9 core specifications.

Cortex-A9 implements the NEON vector extension of the ARMv7-A ISA, a
short description of which can be found in Section 2.2.2.

Both the VFP and the NEON unit coexist in the part of the Cortex-A9 proces-
sor that is called NEON Media Processing Engine. The improvements over
its predecessor Cortex-A8 include a pipelined VFP unit and out-of-order ex-
ecution of instructions. A drawback compared to Cortex-A8 is the fact that
the NEON pipeline of Cortex-A9 can issue only one instruction per cycle,
while the corresponding pipeline of Cortex-A8 can issue a load/store and a
data processing instruction at the same cycle. Again, the doubleword data-
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processing NEON instructions on this processor are twice as fast as their
quadword equivalents. Similarly to Cortex-A8, the peak performance for
Cortex-A9 is 2× 2 = 4 flops/cycle, if we assume that there are only FMA
instructions and we ignore memory accesses (memory access instructions
are issued through the same port as data processing instructions).

2.2.4 ARM1176

ARM1176 is an older processor of the ARM family that has been used in
a broad variety of devices, ranging from smartphones and game consoles
to eReaders and digital picture frames. For the purpose of this thesis we
worked on the ARM1176JZF-S variant of it that is included in the Raspberry
Pi (Broadcom BCM2835 SoC). The main specifications of this processor are
shown in Table 2.5.

Attribute Value
Number of CPUs 1
CPU frequency 700 MHz
L1 data cache 16 KB
L1 instruction cache 16 KB
ISA ARMv6
SIMD extension -
Performance peak 1 flop/cycle

Table 2.5: ARM1176JZF-S specifications.

Unlike the Cortex-A processors, ARM1176 implements an older ARM ISA
(ARMv6), which supports no SIMD extensions. Scalar floating point oper-
ations are executed by a VFP coprocessor that has three different in-order
pipelines: FMAC for mainstream arithmetic operations, DS for division and
square root operations and LS for loads and stores. All three pipelines share
their first two stages, resulting to a peak performance of 1 flop/cycle, under
the unrealistic assumption that there are only arithmetic operations in the
code and no loads/stores.

2.3 Abstract Interpretation

In this section we present a brief overview of the abstract interpretation
framework, as it was proposed by Patrick and Radhia Cousot [9, 10]. A
thorough formal description of abstract interpretation is out of the scope of
this thesis and the interested reader is redirected to the related literature
[9, 10, 24]. Moreover, we assume that the reader has some basic knowledge
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of set theory, number theory, abstract algebra, and related mathematical
concepts.

2.3.1 Motivation

The obvious way of reasoning about the behavior of a program is by consid-
ering all the possible executions of it. This kind of analysis would be both
sound (correct) and complete (precise), but its increased complexity makes
it intractable in practice. However, in most cases we are not interested in
all properties of a program, but in a small subset of them. For example, if
we have a square root calculation in our program, we are only interested in
whether the radicand is non-negative or not. Correspondingly, if we access
an element of an array we are concerned only about whether the expres-
sion that gives us the offset from the array’s base address lies within the
array bounds. In both of these cases tracking a specific abstract property,
i.e. the sign of expressions or the interval within which their values lie, is
enough to reason about some interesting aspects of the program execution,
i.e. absence of divisions by zero and absence of out-of-bounds array accesses,
respectively.

Abstract interpretation is a static analysis technique focused on tracking ab-
stract properties like the ones mentioned above. It aims at overapproximat-
ing the semantics of a program in a way that is coarse enough to make
the analysis computable and at the same time precise enough to retain the
information that is needed to reason about some interesting aspects of the
program.

2.3.2 The Abstract Interpretation Framework

This section presents the main components of the abstract interpretation
framework from a high-level perspective, starting from introducing the no-
tion of concrete and abstract domains, then moving on to giving abstract
semantics to operators and statements, and finally explaining the way that
the abstract interpretation analysis is applied on a program.

Concrete and abstract domains

The formalization of abstract interpretation is based on two complete lattices,
one representing the real values that expressions can take and one represent-
ing the abstract values of them. The first lattice is defined as LL := < L;vL
,uL,tL >, where L is a partially ordered set (poset) called the concrete do-
main, vL is the partial order relation over L, uL is the greatest lower bound
(meet) operator for L, and tl is the least upper bound (join) operator for L.
The second lattice is similarly defined as LL′ := < L′;vL′ ,uL′ ,tL′ > and L′

is called the abstract domain. For example, for integer variables, the concrete
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domain is the power set of the set of integers P (Z) corresponding to the
lattice LP(Z) :=< P (Z) ;⊆,∩,∪ > and the abstract domain represents the
property that we are interested in, such as sign, parity, or interval within
which the value of an expression ranges. The elements of the concrete and
the abstract domain are connected by two functions: the abstraction func-
tion α: L 7→ L′ and the concretization function γ: L′ 7→ L. We say that L’ is a
sound abstraction of L if and only if the pair of functions α, γ forms a Galois
connection, which is equivalent to the following set of conditions:

1. α and γ are monotone

2. α ◦ γ(v) vL′ v, ∀v ∈ L′

3. s vL γ ◦ α(s), ∀s ∈ L

The conditions listed above are necessary for the soundness of an abstract
interpretation analysis.

For example, in Fig. 2.5 we can see the lattice LP(Z), corresponding to the
concrete domain for integers, and the lattice LSign :=< Sign,vSign,uSign,tSign >,
corresponding to the Sign abstract domain, where Sign := {>Sign,⊥Sign, +,−, 0}

Z

{−1, 0, 1}

{−1, 0} {−1, 1} {0, 1}

{−1} {0} {1}

∅

(a)

>Sign

0− +

⊥Sign

(b)

Figure 2.5: (a) The concrete domain lattice LP(Z) and (b) the abstract domain
lattice LSign.
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The functions α and γ that connect these two domains are defined as follows:

α(s) =





⊥Sign if s = ∅
− if ∀n ∈ s: n < 0
0 if s = {0}
+ if ∀n ∈ s: n > 0
>Sign otherwise

γ(v) =





∅ if v = ⊥Sign

{−1,−2,−3, ...} if v = −
{0} if v = 0
{1, 2, 3, ...} if v = +
Z if v = >Sign

Abstract semantics of operators

When analyzing a program using the abstract interpretation technique, we
often need to combine the abstract values of variables in order to calculate
the abstract values of expressions. For example, when we assign an expres-
sion to a variable, we have to evaluate the expression in the abstract domain
and then assign the resulting abstract value to the variable. The result of an
expression in the abstract domain is calculated based on the semantics of the
involved abstract operators in a similar way as the result of this expression
in the concrete domain would be computed based on the semantics of the
involved concrete operators. For example, evaluating (0 + 1) according to the
semantics of the concrete operator + gives us 1, while evaluating (0 +Sign +)
according to the semantics of the abstract operator +Sign gives us +.

The semantics of the abstract operators have to be defined in a way that over-
approximates the semantics of the corresponding concrete operators, and
this is a necessary condition for the soundness of an abstract interpretation
analysis. For example, the semantics of the addition operator +Sign in the
Sign domain is shown in Table 2.6.

+Sign ⊥Sign - 0 + >Sign
⊥Sign ⊥Sign ⊥Sign ⊥Sign ⊥Sign ⊥Sign

- ⊥Sign - - >Sign >Sign
0 ⊥Sign - 0 + >Sign
+ ⊥Sign >Sign + + >Sign
>Sign ⊥Sign >Sign >Sign >Sign >Sign

Table 2.6: Semantics of the +Sign operator.

Abstract semantics of statements

The abstract interpretation framework specifies the way that abstract inter-
pretation is applied on a program represented by its control flow graph
(CFG). Each edge of the CFG is related to an environment defined as a func-
tion env: Var 7→ L′ that maps program variables to abstract values. The
environment associated with an edge of the CFG represents the execution
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state at this point of the program. The abstract semantics of a statement is
defined as a function S: Env 7→ Env that specifies the environment related
to the outgoing edge of the corresponding CFG node, given the combined
environments of the ingoing edges of this node. If a node has more than
one predecessors, the environments of its ingoing edges are combined by
applying pointwise the tL′ operator on them.

The abstract semantics of statements have to be defined in a way that over-
approximates their concrete semantics and this is a necessary condition for
the soundness of the analysis. For example, the semantics of the assign
statement in the Sign domain is defined as follows:

assignSign(x, e, env) = env[x 7→ ESignJe, envK],

where x is the variable that is assigned, e is the expression that is assigned
to x, env is the environment before the assignment, and ESignJe, envK is the
evaluation of expression e in the Sign domain using the environment env.
The notation env[x 7→ v] represents an environment that is identical to env
with the only difference that the variable x is mapped to the value v.

Applying abstract interpretation on the control flow graph

Initially the environment of all edges of the CFG is set to a mapping from
the program variables to the bottom element of the abstract domain, since
we have no information at this point. Then we start applying the seman-
tics of statements and information starts propagating throughout the pro-
gram. This process goes on, iteratively in the case of loops, until a fixpoint
is reached. A fixpoint is reached when the application of the statement
semantics on all statements of the program leaves the environments of all
edges of the control flow graph unchanged. The existence of a fixpoint is
guaranteed by the Knaster-Tarski theorem.

2.3.3 Combining Abstract Domains

Different abstract domains are often combined into composite domains that
lead to more accurate information. One way of combining abstract domains
is the reduced product [11]. The resulting composite domain is a cartesian
product of the individual domains and each operator on this domain is de-
fined as its pointwise application on the individual domains. The main idea
behind the reduced product is that information from some of the individ-
ual domains can be used to make more precise the information in other
domains, whenever this is possible during the analysis. This refinement of
information is done by the reduction function, which takes as input a value
of the reduced product domain and returns a new value in the same domain
that is equally or more precise, while at the same time abstracts the same
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concrete values. More formally, the reduction function is defined as:

red: A 7→ A,

where A is the reduced product abstract domain. For a valid reduction
function, the following properties must hold:

red(a) vA a, ∀a ∈ A
γ(red(a)) = γ(a), ∀a ∈ A.

The first property guarantees that the reduction function has a positive effect
on the analysis by making it more precise. The second property guarantees
that there is no loss of information after applying the reduction function on
an element of the abstract domain.

An example of reduction function is presented in Section 2.3.4.

2.3.4 Abstract Domains

In this section we present the Interval and the Congruence abstract domains,
as well as the reduced product of them using an appropriate reduction func-
tion. The latter is the abstract domain used by the alignment detection opti-
mization described in Section 3.2.

Interval domain

The Interval domain [10] I is used to approximate a set of integer values by
an interval that contains them. The lower bound of the interval takes values
from Z ∪ {−∞} and the upper bound takes values from Z ∪ {+∞}. The
values −∞, +∞ are used in cases of uncertainty about the lower or upper
bound of a set of values, respectively. The lattice of the Interval domain is
shown in Fig. 2.6 and the most important operators are defined in Table 2.7.

Operator Definition
vI [a1, a2] vI [b1, b2]⇔ a1 ≥ b1 ∧ a2 ≤ b2

tI [a1, a2]tI [b1, b2] = [min(a1, b1), max(a2, b2)]
[a1, a2]uI [b1, b2] =

uI [max(a1, b1), min(a2, b2)], if max(a1, b1) ≤ min(a2, b2)
⊥I , otherwise

+I [a1, a2] +I [b1, b2] = [a1 + b1, a2 + b2]
∗I [a1, a2] ∗I [b1, b2] = [min(a1 ∗ b1, a1 ∗ b2, a2 ∗ b1, a2 ∗ b2), max(a1 ∗

b1, a1 ∗ b2, a2 ∗ b1, a2 ∗ b2)]

Table 2.7: Operators in the Interval domain.
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[−∞, ∞]

[−1, 1]

[−1, 0] [0, 1]

[−1,−1] [0, 0] [1, 1]

⊥I

Figure 2.6: The lattice of the Interval domain.

Congruence domain

The Congruence domain [19] C is used to approximate a set of integer values
by their congruence class. A congruence class is represented as c + mZ :=
{v ∈ Z | ∃k ∈ Z: v = c + km}. An equivalent notation of v ∈ c + mZ is v ≡
c[m]. A congruence class v + 0Z is equal to the singleton {v}. A congruence
class c + mZ is normalized if 0 ≤ c < m. For the rest of this thesis, we can
assume that whenever a congruence class is not normalized, it is substituted
by its normalized equivalent one. The lattice of the Congruence domain is
shown in Fig. 2.7 and the most important operators are defined in Table 2.8.

0 + 1Z

0 + 2Z 1 + 2Z

0 + 4Z 2 + 4Z 1 + 4Z 3 + 4Z

0 + 0Z 1 + 0Z 2 + 0Z 3 + 0Z

⊥C

...

Figure 2.7: The lattice of the Congruence domain.
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Operator Definition
vC (c1 + m1Z) vC (c2 + m2Z)⇔ m2 | c1 − c2 ∧ m2 | m1
tC (c1 + m1Z)tC (c2 + m2Z) = c1 + gcd(m1, m2, c1 − c2)Z

(c1 + m1Z)uC (c2 + m2Z) =
uC ⊥C, if gcd(m1, m2) - (c1 − c2)

x + lcm(m1, m2)Z, where x ∈ c1 + m1Z∩ c2 + m2Z, otherwise
+C (c1 + m1Z) +C (c2 + m2Z) = (c1 + c2) + gcd(m1, m2)Z
∗C (c1 + m1Z) ∗C (c2 + m2Z) = c1c2 + gcd(c1m2, m1c2, m1m2)Z

Table 2.8: Operators in the Congruence domain. The function gcd returns
the greatest common divisor of its arguments and the function lcm returns
the least common multiplier of its arguments.

Reduced product of the Interval and Congruence domain

A common combination of abstract domains is the reduced product of the
Interval and Congruence domain. This domain is capable of tracking the
bounds of a set of integer values together with its density (the greater the
congruence class in the Congruence lattice, the greater the density). A reduc-
tion function for this domain that was proposed in [19] is defined as follows
(we assume that the conditions of the different cases are evaluated top-down
and the result of red(i, con) is determined by the first condition that is found
to hold):

red(i, con) =





(⊥I ,⊥C) if i = ⊥I or con = ⊥C

(⊥I ,⊥C) if con = c + 0Z and c /∈ i
([c, c], c + 0Z) if con = c + 0Z

(⊥I ,⊥C) if i = [a, b]
and R(con, a) > L(con, b)

([R(con, a), R(con, a)], R(con, a) + 0Z) if i = [a, b]
and R(con, a) = L(con, b)

([R(con, a), L(con, b)], con) if i = [a, b]
([R(con, a), +∞], con) if i = [a, +∞]
([−∞, L(con, b)], con) if i = [−∞, b]
(i, con) otherwise

,

where the functions R: C \ {⊥C} ×Z 7→ Z and L: C \ {⊥C} ×Z 7→ Z are
defined as:

R(c + mZ, a) = a + ((c− a) mod |m|))
L(c + mZ, a) = a− ((a− c) mod |m|)).
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The result of R(c + mZ, a) is the smallest integer n, such that n ≥ a ∧ n ∈
c + mZ. Correspondingly, the result of L(c + mZ, a) is the greatest integer
n, such that n ≤ a ∧ n ∈ c + mZ. These two functions are used in order to
tighten the bounds of i, in case they do not belong in con.

Some examples of the application of the reduction function are the follow-
ing:

red([0, 3], 4 + 0Z) = (⊥I ,⊥C) (information combined from both domains)
red([0, 3], 4 + 5Z) = (⊥I ,⊥C) (information combined from both domains)
red([0, 0], 0 + 8Z) = ([0, 0], 0 + 0Z) (information passed from the Interval do-
main to the Congruence domain)
red([−1, 1], 0 + 0Z) = ([0, 0], 0 + 0Z) (information passed from the Congru-
ence domain to the Interval domain)
red([1, 5], 0 + 2Z) = ([2, 4], 0 + 2Z) (information passed from the Congruence
domain to the Interval domain)
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Chapter 3

Optimizations

In this chapter we present the optimizations that were introduced in LGen
in the context of this thesis. Each of the sections that follow is devoted to a
single optimization, presenting the problem that it addresses, the intuition
behind it, and the necessary details about the way it works. The effectiveness
of the optimizations is evaluated through appropriate experiments, which
we present and discuss in Chapter 5.

3.1 Generic Load/Store C-IR Instructions

In Section 2.1 we described how LGen applies scalar replacement to blocks
of C-IR instructions when they appear in a load-compute-store sequence.
The application of scalar replacement results in replacing store-load sequen-
ces within these blocks with assignments of local variables. In this way,
unnecessary memory accesses are avoided, which has a significant positive
impact on performance, as memory accesses are typically much more ex-
pensive than register moves. Scalar replacement is applied at the C-IR level
and can be used for both scalar code (variables of type float or double) and
vector code (variables of type vector).

Scalar replacement in LGen works in the following way: Whenever a store
instruction is found that has the same memory footprint with a subsequent
load instruction, both instructions are replaced by a single assignment which
sets the variable that the load was loading to the value that the store was
storing. Loads that don’t follow any store with the same memory footprint
are left in the code and their results are stored in local variables, so that
they can be reused by subsequent instructions. Similarly, stores that are not
followed by loads with the same footprint are left intact, as well.

The memory footprint of a load/store instruction is specified using a struc-
ture named memory map, which maps memory locations to positions within
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3. Optimizations

a vector. More specifically, each load/store instruction is associated with a
position within a matrix and a memory map that relates horizontal offsets
from this position to elements of the vector to be loaded/stored. Checking
the matrix position and the memory map of a store and of a subsequent
load is enough to determine whether these two instructions can be replaced
by an assignment during scalar replacement. Fig. 3.1 shows an example of
scalar replacement applied to a 4-way SSE store-load sequence.
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Figure 3.1: Simple case of scalar replacement.

However, data is not always stored/loaded in such a straightforward way.
For example, let’s consider the case where we want to store the first three
elements of a vector into memory and then load them again into another
vector. Since storing the first three elements of a vector is not possible with
a single SSE instruction, we have to break this operation into two steps,
one for storing the first two elements and another one for storing the third
element, as it is shown in Fig. 3.2. The same holds for the load. As we can
see in Fig. 3.2, apart from load/store instructions, we also have to use two
shuffle instructions, one for moving the third element of the source vector v0
into the first element of the auxiliary vector v1 and one for moving the first
element of the auxiliary vector v3 into the third element of the target vector
v4. If we apply scalar replacement on this code, we will manage to eliminate
the memory accesses, but the shuffle instructions will remain, although they
are redundant. The compiler will most probably not eliminate the shuffles
either (at least this is the case for Intel’s icc), so we will finally have to
pay the overhead of these unnecessary instructions. The accumulated effect
of many redundant shuffle instructions may deteriorate the performance of
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3.1. Generic Load/Store C-IR Instructions

our generated code significantly, especially in computations that have a high
percentage of leftover code.
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Figure 3.2: Scalar replacement with normal loads/stores.

As a solution to this problem, we introduce the generic load and store C-IR
instructions, which are not tied to specific C instructions, but instead they
are generic enough to represent all possible interactions between vectors and
memory. These instructions are translated to normal C-IR instructions (shuf-
fles and normal loads/stores) according to their associated memory maps
only one step before unparsing the C-IR code into C code. One generic load-
/store can be translated into one or more normal instructions, depending
on its memory map.

If we come back to our motivating example, the store of the first three el-
ements of the source vector can now be represented by a single generic
store with the corresponding memory map, as it is shown in Fig. 3.3. The
same holds for loading these three elements to the destination vector. When
scalar replacement is applied, the matching of these two instructions will be
revealed, resulting in triggering their replacement by a single assignment of
the source vector to the destination vector.
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Figure 3.3: Scalar replacement with generic loads/stores.

In linear algebra computations like matrix multiplication or matrix trans-
position, we often want to access a part of a column of a matrix, which
corresponds to a strided access of the physical layout of the matrix in mem-
ory (we always store matrices in row-major order). Up to now, the concept
of memory map allowed us to match elements within a row of a matrix to
elements of a vector. The introduction of generic loads/stores offered an
opportunity to extend the concept of the memory map, in order to support
the representation of vertical segments of a matrix as well. Using this ex-
tended version of memory map, we can now represent the load of vertically
consecutive elements of a matrix into a vector using a single generic load in-
struction that is associated with a vertical memory map. The same can also
be done for the equivalent store operations. This extension allows for easy
and effective scalar replacement without any redundant shuffle operations,
no matter whether we are accessing a horizontal or a vertical segment of a
matrix.

Another benefit of using generic load/store instructions comes from the fact
that they decouple (possibly complicated) memory accesses from their ac-
tual implementation. The normal instructions that a generic load/store is
translated to, have no effect on scalar replacement, as they appear only at
the last step before unparsing to C code. This allows us to implement a
generic load in a different way than its equivalent generic store and still be
confident that the matching of these two memory accesses will be deduced
during scalar replacement. The absence of the restriction for implement-
ing a non-trivial load in the same way as its equivalent store can make a
difference in cases that the most performant implementation of the load is
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different than the most performant implementation of the store. An example
of this, taken from our NEON ν-BLACs, can be seen in Fig. 3.4. Although
we would like to store the first three elements of a vector by first storing the
first two elements (vst1 f32) and then the third one (vst1q lane f32), while
at the same time we would like to load three elements from memory into a
vector by loading all four elements (vld1q f32) and then setting the fourth el-
ement to zero (setq lane f32), scalar replacement would not be able to match
and replace these memory accesses. Instead, the use of one generic store for
storing and one generic load for loading provides scalar replacement with
all the necessary information to match the memory accesses, while at the
same time we will get the desired C code implementation when we unparse
the C-IR code.
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Figure 3.4: Mismatched implementations of generic load-store for NEON.

A last point worth mentioning about the generic load/store instructions is
the fact that we can easily try different implementations of any of these
instructions, e.g., trying to find the one that leads to the highest performance,
without having to worry about how our changes affect their interaction with
other instructions during our C-IR code processing. The representation of
these instructions during the application of the various optimizations at the
C-IR level is independent of the way we choose to translate them into C
code.

Although we did not evaluate the positive effects of introducing generic
memory access instructions through experiments, because the newly added
ν-BLACs (i.e. the ones for SSSE3 and NEON) were implemented directly
using these instructions and the already existent ν-BLACs (i.e. the ones
for SSE3, SSE4.1, and AVX) were left unchanged, we could strongly argue
that LGen benefited from this optimization, since the removal of redundant
instructions from the generated code can only have a positive effect on per-
formance.
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3.2 Alignment Detection

Alignment detection is one of the most beneficial optimizations introduced
for Intel Atom, due to the great performance difference between aligned and
unaligned memory accesses for this processor. This section presents this op-
timization by first giving an overview of the problem and the solution, then
providing the details of the applied methodology, next arguing about the
soundness and preciseness of the analysis, and finally explaining how we
handle arbitrary alignment of the array arguments of the generated kernels.

3.2.1 Overview

A vector load or store instruction involves moving long chunks of data be-
tween memory and a vector register. Such a memory access is characterized
as aligned or unaligned, depending on whether the corresponding memory
address is a multiple of a specific number of bytes, which we will refer to as
alignment length. The alignment length is typically equal to the vector size.
Aligned memory accesses perform better than unaligned ones, due to the
fact that in most cases the hardware is designed to handle more efficiently
memory segments that lie on specific boundaries. Memory is typically ac-
cessed in blocks and if the data chunk to be accessed spans two blocks (i.e.
the data chunk is unaligned), the hardware has to read or write both of them
during a load or store, respectively.

Although in many modern microarchitectures unaligned memory accesses
have roughly the same performance as aligned ones [22], this is not the case
for Intel Atom, one of the processors that were investigated in the context
of this thesis. After adapting the already existent SSE4.1 ν-BLACs to the
SSSE3 instruction set that Atom supports, experiments showed that the per-
formance of our generated code was significantly inferior to the one of the
competitor libraries and compilers, especially for memory-intensive com-
putations like matrix addition or matrix-vector multiplication. The reason
behind this issue was the fact that LGen was generating unaligned instruc-
tions only, while the competitors were using aligned instructions in cases
that this was applicable. An aligned memory access is much more efficient
on Atom, in terms of both latency and throughput, than its unaligned equiv-
alent, therefore the generation of high performance code for this processor
renders the use of aligned instructions a necessity.

Aligned SSE instructions can be used only in cases where the referenced
memory address is 16-byte aligned, while the use of an aligned SSE instruc-
tion to access unaligned data produces a runtime error. In other words, we
can use aligned instructions only if we are sure that the referenced data are
aligned and for all the other cases we have to use unaligned instructions.
Based on this observation, an additional optimization was introduced to
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LGen, named alignment detection. Alignment detection is applied at the
C-IR level and is divided in two steps: At the first step, the C-IR code is an-
alyzed using the well-established technique of abstract interpretation [9, 10]
combined with an abstract domain that is appropriate for tracking alignment
(see Section 3.2.2). At the second step, the results of the analysis are used
in order to reason about the alignment of all memory accesses contained in
the C-IR code and those that are found to be certainly aligned are replaced
by their aligned equivalents.

3.2.2 Details of the Analysis

The abstract domain that is used for the abstract interpretation analysis ap-
plied during alignment detection is a reduced product of the Interval and
Congruence domains, the details of which can be found in Section 2.3.4. The
Interval domain tracks the intervals within which the values of variables
range. The Congruence domain tracks the congruence classes that variables
belong to. The reduction function uses information from the one domain to
make the information in the other domain more precise, which in our case
is useful mainly in cases of loops that are taken only once, as we will see
later on.

The format of the code generated by LGen with respect to memory accesses
is shown in Listing 3.1, where starti, endi, stepi, a, ai, L ∈ N, i ∈ [0, L− 1].
The address of any memory access has the format a0ind0 + a1ind1 + ... +
aL−1indL−1 + a, where indi is the index of the i-th nested for-loop that en-
closes the corresponding load or store. Therefore, we apply our analysis
only on the indexes introduced by the for-loops, since these are the only
variables that may participate in the calculation of the memory address that
a memory access refers to.

1 f o r ( s i z e t ind0 = s t a r t 0 ; ind0 < end0 ; ind0 += step 0 ) {
2 f o r ( s i z e t ind1 = s t a r t 1 ; ind1 < end1 ; ind1 += step 1 ) {
3 . . .
4 f o r ( s i z e t ind L−1= s t a r t L−1 ; ind L−1<endL−1 ; ind L−1+=step L−1 ) {
5 . . .
6 mem access ( a0 ind0 + a1 ind1 + . . . + aL−1 ind L−1 + a ) ;
7 . . .
8 }
9 . . .

10 }
11 }

Listing 3.1: Format of generated code with respect to memory accesses.

After applying the analysis, we go through all memory accesses that exist
in the C-IR code and for each one we decide whether it refers to aligned
data or not by evaluating the abstract value of the corresponding memory
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address using the abstract environment associated with this instruction. If
the Congruence part of the abstract value of the memory address is vC
0 + NZ, where N is the alignment length, the access is aligned and it is safe
to replace this instruction with its aligned equivalent. Otherwise, we leave
the instruction as is (unaligned).

In practice, since the offset of an array access in the generated code is ex-
pressed in number of elements (floats or doubles) and not in number of
bytes, the criterion for characterizing a memory access as aligned is that
the abstract value of the corresponding memory address is vC 0 + (N/l)Z,
where l is the size of an array element, in bytes. For example, in x86 l = 4
for floats or 8 for doubles.

The intuition behind using the Interval domain originates from the fact that
it is capable of detecting loops that are taken only once. Propagating this
information from the Interval domain to the Congruence domain through
the reduction function can potentially make the value in the Congruence
domain more precise and help us detect more cases of aligned memory ac-
cesses. Listing 3.2 shows an example where the use of the Interval domain
makes the analysis more precise. In this example, if we considered only
the Congruence domain, the abstract value of index k after reaching the fix-
point would be 0 + 13Z and the memory access mm load ps(A + k) would
be decided to be unaligned, although in reality the loop is taken only for
k = 0 and, therefore, mm load ps(A + k) is aligned (we assume that the
base address of A is aligned). The reduced product that we use as the ab-
stract domain of our analysis handles this special case as follows: At the
first iteration, the value of k is ([0, 0], 0 + 0Z). At the second iteration, right
after we apply the semantics of the for-instruction, this value will become
([0, 0], 0 + 13Z). The value in the Interval domain remains [0, 0], due to the
fact that [0, 0] tI ([13, 13] uI [0, 7]) = [0, 0] tI ⊥I = [0, 0] (the uI comes from
the semantics of the implicit assume statement that is associated with the true
branch of the for-loop). Applying the reduction function on ([0, 0], 0 + 13Z)
will give us ([0, 0], 0 + 0Z), the fixpoint will thus be reached already at the
end of the second iteration and the memory access will eventually be char-
acterized as aligned, since 0 + 0Z vC 0 + 4Z.

1 f o r ( s i z e t k = 0 ; k < 8 ; k += 13 ) {
2 . . .
3 v = mm load ps (A + k ) ;
4 . . .
5 }

Listing 3.2: Case where the Interval domain makes the analysis more
precise.

36



3.2. Alignment Detection

3.2.3 Soundness and Preciseness

Theorem 3.1 Our analysis overapproximates all real executions (soundness).

The soundness of our analysis is a direct result of the soundness of the
Interval and Congruence analyses separately, combined with the correctness
of the reduction function. Hints for the corresponding proofs can be found
in the related literature [10, 19] and, therefore, these proofs are omitted from
this thesis.

Next we present three lemmas expressing some basic properties of the
mod operator and the greatest common divisor (gcd) that will be used in
the proof of Theorem 3.5. The proofs for these lemmas can be found in any
major number theory textbook and, therefore, are omitted from this thesis.

Lemma 3.2 Let a, n ∈ Z, n 6= 0.
Then: (a mod n) mod n = a mod n

Lemma 3.3 Let a, b, n ∈ Z, n 6= 0.
Then: (a + b) mod n = ((a mod n) + (b mod n)) mod n

Lemma 3.4 Let a, b ∈ Z, such that not both of a and b are zero.
Then: c | a ∧ c | b⇒ c | gcd(a, b)

Theorem 3.5 Our analysis detects every aligned memory access that is contained
in any kernel generated by LGen (preciseness).

Proof Equivalently, we have to prove that:
Let indi be the index variable introduced in the i-th nested loop that encloses an
access of the memory address A = a0ind0 + ... + aL−1indL−1 + a, where a, ai ∈ Z.
∀N ∈ Z: A mod N = 0 every time the execution reaches A⇒ ECJAK vC 0 + NZ,
where EC is the evaluation function of our analysis for the Congruence domain.

Let us assume that there exists N ∈ Z, such that:

A mod N = 0 every time the execution reaches A (3.1)

Let S = {i | starti + stepi < endi} = {i | the i-th loop is taken more than once}
a. At the first iteration of the analysis on the i-th loop:

env0
C(indi) = ECJstartiK = starti + 0Z

env0
I (indi) = EIJstartiK = [starti, starti]

b. At the second iteration of the analysis on the i-th loop:

env1
C(indi) = env0

C(indi)tC (env0
C(indi) +C ECJstepiK)

= (starti + 0Z)tC ((starti + 0Z) +C (stepi + 0Z))
= starti + stepiZ
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• if i /∈ S:

starti + stepi ≥ endi (3.2)

env1
I (indi) = env0

I (indi)tI ((env0
I (indi) +I EIJstepiK)uI [starti, endi − 1])

= [starti, starti]tI (([starti, starti] +I [stepi, stepi])uI [starti, endi − 1])
= [starti, starti]tI ([starti + stepi, starti + stepi]uI [starti, endi − 1])
(3.2)
= [starti, starti]tI ⊥I = [starti, starti]

Applying the reduction function on env1
C(indi), env1

I (indi) will refine
the value of env1

C(indi), giving us:

env1
C(indi) = R(env1

C(indi), starti) + 0Z = starti + 0Z

Thus, the fixpoint is reached.

• if i ∈ S:

starti + stepi < endi (3.3)

env1
I (indi) = env0

I (indi)tI ((env0
I (indi) +I EIJstepiK)uI [starti, endi − 1])

= [starti, starti]tI (([starti, starti] +I [stepi, stepi])uI [starti, endi − 1])
= [starti, starti]tI ([starti + stepi, starti + stepi]uI [starti, endi − 1])
(3.3)
= [starti, starti]tI [starti + stepi, starti + stepi]

= [starti, starti + stepi]

Applying the reduction function on env1
C(indi), env1

I (indi) will leave
both values unchanged. No matter what the relation among starti,
stepi, endi is, in the next iterations only envI(indi) may change, while
envC(indi) will retain the value starti + stepiZ until the fixpoint is reached.

After reaching the fixpoint we will have:

ECJAK = ECJa0K ∗C envC(ind0) +C ... +C ECJaL−1K ∗C envC(indL−1) +C ECJaK

=
L−1

∑
i=0

aistarti + a + gcd(aistepi | i ∈ S)Z (3.4)

When the execution reaches A in the first iteration of all loops:

(3.1)⇒ N | (
L−1

∑
i=0

aistarti + a) (3.5)
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3.2. Alignment Detection

When the execution reaches A in the second iteration of loop k ∈ S and the
first iteration of all other loops:

(3.1)⇒ (
L−1

∑
i=0

aistarti + akstepk + a) mod N = 0

Lemma 3.3⇒ ((
L−1

∑
i=0

aistarti + a) mod N + (akstepk) mod N) mod N = 0

(3.5)⇒ ((akstepk) mod N) mod N = 0
Lemma 3.2⇒ (akstepk) mod N = 0
Lemma 3.4⇒ N | gcd({aistepi | i ∈ S}) (3.6)

By definition of vC (Table 2.8), we have:

(3.4), (3.5), (3.6)⇒ ECJAK vC 0 + NZ

�

As it was mentioned in Section 3.2.1, aligned instructions can only be used
if we are certain that the accessed data are aligned. Theorem 3.1 guarantees
that this is the case for all memory accesses that our analysis detects as
aligned. At the same time, Theorem 3.5 guarantees that our analysis is most
precise for the code that LGen generates, meaning that each aligned memory
access in the generated code is detected by our analysis and is handled by
the appropriate aligned instruction. In other words, our analysis can be
characterized as optimal or complete [18] with respect to the type of code
that LGen generates.

3.2.4 Handling Arbitrary Alignment

In all the examples of the previous sections, our analysis was applied based
on the assumption that the base addresses of all arrays involved were aligned.
However, this assumption is not always valid, since in the general case the
caller of our generated kernels may pass as arguments arbitrarily aligned
arrays. In order to handle the various argument alignment combinations,
we generate a different version of C-IR code for each one of them, with the
corresponding load/store instructions turned into aligned ones. The code
version that will be executed is chosen at runtime, according to the result of
appropriate alignment checks.

More specifically, the process of handing arbitrary alignment is the follow-
ing: First we generate the C-IR code with unaligned instructions only. Then
we generate the various alignment combinations for the array parameters of
the kernel and for each combination: a) we make a copy of the C-IR code, b)
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we apply abstract interpretation on it based on the corresponding alignment
assumptions, c) we detect the accesses that are always aligned, and d) we
replace them with their aligned equivalents. Finally, when we finish with
all combinations, we combine the resulting C-IR code versions using condi-
tional statements, where the conditions correspond to runtime checks of all
possible alignment combinations.

If we consider a byte-addressable memory, each array argument of a kernel
can be aligned in as many ways as the alignment length N, resulting to a
total number of possible alignment combinations equal to Na, where a is the
number of parameters of the kernel that are arrays. Since an array containing
elements of a specific datatype is accessed in offsets that are multiples of this
datatype’s length l, if its base address is not l-byte aligned, all accesses of
this array will inevitably be unaligned. In this respect, all alignment cases
that are not multiples of l can be grouped together and handled in the same
way, reducing the number of combinations to (N/l + 1)a. In order to simplify
things even more, we group all cases where at least one array is not l-byte
aligned into one and we handle all memory accesses as unaligned for this
case. After this simplification, the total number of alignment combinations
is further reduced to (N/l)a + 1.

An example of a matrix multiplication kernel that was generated in order to
handle arbitrary alignment is presented in Listing 3.3.

1 /∗
2 ∗ mmm kernel . h
3 ∗ T i l e ( ( 1 , 2 ) , T i l e ( ( 4 , 4 ) , C[ 1 8 , 8 1 ] ) ) =
4 ∗ T i l e ( ( 1 , 4 ) , T i l e ( ( 4 , 4 ) , A[ 1 8 , 3 5 ] ) ) ∗
5 ∗ T i l e ( ( 4 , 2 ) , T i l e ( ( 4 , 4 ) , B [ 3 5 , 8 1 ] ) )
6 ∗/
7
8 s t a t i c a t t r i b u t e ( ( n o i n l i n e ) ) void kernel ( f l o a t const ∗ A, f l o a t

const ∗ B , f l o a t ∗ C)
9 {

10 i f ( ( ( u i n t p t r t ) C) % (4 ∗ s i z e o f ( f l o a t ) ) == 0 ∗ s i z e o f ( f l o a t )
11 && ( ( u i n t p t r t ) A) % (4 ∗ s i z e o f ( f l o a t ) ) == 0 ∗ s i z e o f ( f l o a t )
12 && ( ( u i n t p t r t ) B ) % (4 ∗ s i z e o f ( f l o a t ) ) == 0 ∗ s i z e o f ( f l o a t ) )
13 {
14 /∗ Code vers ion 1 ∗/
15 }
16 e l s e i f ( ( ( u i n t p t r t ) C) % (4 ∗ s i z e o f ( f l o a t ) ) == 0 ∗ s i z e o f ( f l o a t )
17 && ( ( u i n t p t r t ) A) % (4 ∗ s i z e o f ( f l o a t ) ) == 0 ∗ s i z e o f ( f l o a t )
18 && ( ( u i n t p t r t ) B ) % (4 ∗ s i z e o f ( f l o a t ) ) == 1 ∗ s i z e o f ( f l o a t ) )
19 {
20 /∗ Code vers ion 2 ∗/
21 }
22
23 . . .
24
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3.3. Matrix-Vector Multiplication

25 e l s e i f ( ( ( u i n t p t r t ) C) % (4 ∗ s i z e o f ( f l o a t ) ) == 3 ∗ s i z e o f ( f l o a t )
26 && ( ( u i n t p t r t ) A) % (4 ∗ s i z e o f ( f l o a t ) ) == 3 ∗ s i z e o f ( f l o a t )
27 && ( ( u i n t p t r t ) B ) % (4 ∗ s i z e o f ( f l o a t ) ) == 3 ∗ s i z e o f ( f l o a t ) )
28 {
29 /∗ Code vers ion 4ˆ3 ∗/
30 }
31 e l s e
32 {
33 /∗ Unaligned code vers ion ∗/
34 }
35 }

Listing 3.3: Matrix multiplication kernel that handles arbitrary alignment.

3.3 Matrix-Vector Multiplication

Matrix-vector multiplication is a very common linear algebra operation and
consists the main building block of most level-2 BLAS, as well as several
more complicated BLACs. Therefore, an efficient implementation of it is crit-
ical for a high-performance linear algebra code generator, like LGen. How-
ever, matrix-vector multiplication experiments that we initially executed on
x86 machines ranked LGen lower than most competitors. The investigation
of this issue revealed that its source was that LGen had been treating matrix-
vector multiplication as a special case of matrix-matrix multiplication and,
as it will be shown later in this section, such an approach is suboptimal
for most x86 microarchitectures. As part of this thesis we present a new
matrix-vector multiplication approach that takes into consideration the x86
microarchitectural characteristics and limitations aiming at the generation
of code that performs better on these machines. As it is shown in the experi-
mental results section for Atom (Section 5.2), the new approach ranks LGen
higher than the competitors.

Let’s consider the matrix-vector multiplication y = Ax, where A is a M× N
matrix and x, y are vectors of length N. Following the original approach
of LGen for matrix-vector multiplication with tiles of size ν, the result is
calculated according to the Σ-LL expression:

y =
M−1

∑
i=0,ν

Si

N−1

∑
j=0,ν

(Gi AGj)(Gjx) (3.7)

For x86, the matrix-vector ν-BLAC, which is the main component of (3.7),
is implemented using horizontal addition instructions (_mm_hadd_ps and
_mm_hadd_pd for SSE, _mm256_hadd_ps and _mm256_hadd_pd for AVX), which
are considerably less efficient than normal vector addition instructions (
_mm_add_ps and _mm_add_pd for SSE, _mm256_add_ps and _mm256_add_pd
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for AVX) for most x86 microarchitectures [22]. Listing 3.4 shows the C-IR
implementation of this ν-BLAC for SSSE3 and floats (ν = 4), while Table
3.1 shows the performance of _mm_add_ps and _mm_hadd_ps for some com-
mon x86 microarchitectures. The difference between normal and horizontal
vector addition is particularly large for Atom, an observation that is further
amplified by the fact that horizontal addition occupies both of the issue
ports of Atom, while normal addition occupies only one of them.

Microarchitecture mm add ps mm hadd ps
Haswell 3 / 1 5 / 2
Ivy Bridge 3 / 1 5 / 2
Sandy Bridge 3 / 1 5 / 2
Westmere 3 / 1 5 / 2
Nehalem 3 / 1 5 / 2
Atom 5 / 1 8 / 7

Table 3.1: Performance of vector addition for x86 microarchitectures. The
numbers are in the form latency / throughput, where latency is the number of
cycles that are required by the execution core to complete the execution of
the instruction and throughput is the number of clock cycles required to wait
before the issue ports are free to accept the same instruction again.

The inner summation of equation (3.7) consists of dN/νe matrix-vector mul-
tiplications and dN/νe − 1 vector additions. Due to the outer summation,
the whole computation involves in total dM/νedN/νe matrix-vector multi-
plications and dM/νe(dN/νe − 1) vector additions. Since the matrices that
participate in these multiplications and additions are ν-sized, these computa-
tions are implemented by the respective ν-BLACs for the corresponding tar-
get architecture. The implementation of these ν-BLACs for x86 with SSSE3
is shown in Listings 3.4 and 3.5.

1 blac nu4 mvm ( B , refA , refx , out ) :
2 B ← Mov (mmLoaduPs refA [ 0 , 0 ] ) , va0
3 B ← Mov (mmLoaduPs refA [ 1 , 0 ] ) , va1
4 B ← Mov (mmLoaduPs refA [ 2 , 0 ] ) , va2
5 B ← Mov (mmLoaduPs refA [ 3 , 0 ] ) , va3
6 B ← Mov (mmLoaduPs r e f x [ 0 , 0 ] ) , vx
7 B ← Mov (mmMulPs va0 , vx ) , mul0
8 B ← Mov (mmMulPs va1 , vx ) , mul1
9 B ← Mov (mmMulPs va2 , vx ) , mul2

10 B ← Mov (mmMulPs va3 , vx ) , mul3
11 B ← Mov (mmHaddPs mul0 , mul1 ) , hadd0
12 B ← Mov (mmHaddPs mul2 , mul3 ) , hadd1
13 B ← mmStoreuPs (mmHaddPs hadd0 , hadd1 ) , out [ 0 , 0 ]

Listing 3.4: SSSE3 ν-BLAC for Ax.
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3.3. Matrix-Vector Multiplication

1 blac nu4 vadd ( B , refx , refy , out ) :
2 B ← Mov (mmLoaduPs r e f x [ 0 , 0 ] ) , vx
3 B ← Mov (mmLoaduPs r e f y [ 0 , 0 ] ) , vy
4 B ← mmStoreuPs (mmAddPs vx , vy ) , out [ 0 , 0 ]

Listing 3.5: SSSE3 ν-BLAC for x + y.

In order to overcome this limitation resulting from the weak performance
of horizontal add for x86, a new approach for matrix-vector multiplication
was introduced that involves only a limited number of horizontal vector
additions. This new approach is based on two new operators that were in-
troduced into LL and Σ-LL: �, called matrix-vector Hadamard product (MVH),
and �, called Row Reduction (RR).

MVH takes as operands a M× N matrix A and a vector x of length N and
returns a M× N matrix C, each row of which is the result of the Hadamard
product between the corresponding row of A and xT. More formally:

C = A � x ⇔ Cij = Aijxj

RR is a unary operator that transforms a M× N matrix A into a vector x of
length M by applying addition reduction to each row of A. More formally:

x = �A⇔ xi =
N−1

∑
j=0

Aij

The semantics of these two operators are the same in the two DSLs and for
translating them from Σ-LL into IR-code, two new types of ν-BLACs were
introduced.

If we revisit the implementation of the matrix-vector multiplication ν-BLAC
in Listing 3.4, we can easily see that the computation can be split into two
parts, one involving a MVH between A and x (lines 7-10) and one involving
a RR of the result of the MVH (lines 11-13), which is the main source of
inefficiency due to the horizontal additions that it consists of. Based on this
observation, the problem of having too many horizontal additions can be al-
leviated by splitting the ν-BLAC into these two parts and moving the inner
summation of equation 3.7 one level deeper, between these two parts. Since
both the RR and the summation aim at adding the results of the MVHs
per row, applying such a transformation leaves the result of the computa-
tion unaffected, due to the commutative property of addition. Therefore,
using the two newly introduced operators, matrix-vector multiplication can
be computed according to the following Σ-LL expression:

y =
M−1

∑
i=0,ν

Si

[
�

N−1

∑
j=0,ν

(Gi AGj) � (Gjx)

]
(3.8)
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Equation (3.8) is equivalent to equation (3.7), but its main computation
block is the MVH (Gi AGj) � (Gjx) instead of the matrix-vector multipli-
cation (Gi AGj)(Gjx). The inner summation involves dN/νe ν × ν MVHs
and (dN/νe − 1) ν × ν matrix additions, while the outer summation in-
volves dM/νe ν × ν RRs. In total, the computation as a whole consists of
dM/νedN/νe MVHs, dM/νed(N/νe − 1) matrix additions and dM/νe RRs.
The implementation of the corresponding ν-BLACs for x86 with SSSE3 is
shown in Listings 3.6, 3.7 and 3.8.

1 blac nu4 pmul ( B , refA , refx , out ) :
2 B ← Mov (mmLoaduPs refA [ 0 , 0 ] ) , va0
3 B ← Mov (mmLoaduPs refA [ 1 , 0 ] ) , va1
4 B ← Mov (mmLoaduPs refA [ 2 , 0 ] ) , va2
5 B ← Mov (mmLoaduPs refA [ 3 , 0 ] ) , va3
6 B ← Mov (mmLoaduPs r e f x [ 0 , 0 ] ) , vx
7 B ← mmStoreuPs (mmMulPs va0 , vx ) , out [ 0 , 0 ]
8 B ← mmStoreuPs (mmMulPs va1 , vx ) , out [ 1 , 0 ]
9 B ← mmStoreuPs (mmMulPs va2 , vx ) , out [ 2 , 0 ]

10 B ← mmStoreuPs (mmMulPs va3 , vx ) , out [ 3 , 0 ]

Listing 3.6: SSSE3 ν-BLAC for A � x.

1 blac nu4 hred ( B , refA , out ) :
2 B ← Mov (mmLoaduPs refA [ 0 , 0 ] ) , va0
3 B ← Mov (mmLoaduPs refA [ 1 , 0 ] ) , va1
4 B ← Mov (mmLoaduPs refA [ 2 , 0 ] ) , va2
5 B ← Mov (mmLoaduPs refA [ 3 , 0 ] ) , va3
6 B ← Mov (mmHaddPs va0 , va1 ) , hadd0
7 B ← Mov (mmHaddPs va2 , va3 ) , hadd1
8 B ← mmStoreuPs (mmHaddPs hadd0 , hadd1 ) , out [ 0 , 0 ]

Listing 3.7: SSSE3 ν-BLAC for �A.

1 blac nu4 madd ( B , refA , refB , out ) :
2 B ← Mov (mmLoaduPs refA [ 0 , 0 ] ) , va0
3 B ← Mov (mmLoaduPs refA [ 1 , 0 ] ) , va1
4 B ← Mov (mmLoaduPs refA [ 2 , 0 ] ) , va2
5 B ← Mov (mmLoaduPs refA [ 3 , 0 ] ) , va3
6 B ← Mov (mmLoaduPs refB [ 0 , 0 ] ) , vb0
7 B ← Mov (mmLoaduPs refB [ 1 , 0 ] ) , vb1
8 B ← Mov (mmLoaduPs refB [ 2 , 0 ] ) , vb2
9 B ← Mov (mmLoaduPs refB [ 3 , 0 ] ) , vb3

10 B ← mmStoreuPs (mmAddPs va0 , vb0 ) , out [ 0 , 0 ]
11 B ← mmStoreuPs (mmAddPs va1 , vb1 ) , out [ 1 , 0 ]
12 B ← mmStoreuPs (mmAddPs va2 , vb2 ) , out [ 2 , 0 ]
13 B ← mmStoreuPs (mmAddPs va3 , vb3 ) , out [ 3 , 0 ]

Listing 3.8: SSSE3 ν-BLAC for A + B.

In the analysis that follows, we assume for the sake of simplification that
both M and N are multiples of ν. The amount of the different types of
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arithmetic operations required by the old and the new MVM approach for
x86 with SSSE3 and ν = 4 is shown in Table 3.2.

Operation Old MVM New MVM
mmMulPs MN/4 MN/4
mmAddPs (M/4)(N/4− 1) M(N/4− 1)
mmHaddPs 3MN/16 3M/4
Total (M/4)(2N − 1) (M/4)(2N − 1)

Table 3.2: Number of arithmetic operations involved in the old (equation
3.7) and the new (equation 3.8) matrix-vector multiplication approach for
x86 with SSSE3 and ν = 4.

As expected, the two approaches result to the same total number of arith-
metic operations, since their only difference is the order in which the addi-
tions are performed. However, the new approach involves less mmHaddPs
and more mmAddPs operations than the old one. Since mmAddPs is much
more efficient than mmHaddPs, we expect that the new approach leads to
considerably more performant generated code than the old one. Our expec-
tations are confirmed by the related experiments of Section 5.2.

3.4 Specialized ν-BLACs

According to the basic approach of LGen, a BLAC is split into smaller com-
putations, which are implemented by handwritten ν-BLACs for the corre-
sponding architecture. These computations are applied on submatrices of
the original matrices with possible sizes 1× ν, ν× 1 and ν× ν. In case we
need to apply a computation on submatrices with sizes smaller than ν (i.e.
leftover tiles), these small submatrices are embedded into ν-sized matrices
before being processed by the appropriate ν-BLACs. Handling leftovers like
this typically involves generating additional code compared to a straight-
forward handwritten implementation that computes the same result. This
additional code mainly consists of two parts:

1. Loads of zeros: The parts of the involved vectors that do not contain
useful data have to explicitly be filled with zeros, so that they do not
affect the result of the computation.

2. Unnecessary arithmetic operations: Since a ν-BLAC has no knowledge
of which parts of the matrices contain useful data, some of the exe-
cuted operations are applied on zero elements, although they have no
effect in the computation.

According to the existing LGen approach, the elimination of the redundant
part of the ν-BLAC code is left to the compiler. However, in most cases the
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compiler can eliminate only a part of the redundant code, while the rest of
it remains, having a negative impact on the performance of the generated
kernel (ν-BLACs usually exist inside tight loops).

For example, let’s consider the case of a 2× 2× 2 matrix-matrix multiplica-
tion with ν = 4, depicted in Fig. 3.5. The two 2× 2 operands are embedded
into two 4 × 4 matrices A and B, then these two matrices are multiplied
through the corresponding ν-BLAC and finally the upper left 2× 2 subma-
trix of the result C is extracted and written to the 2× 2 result matrix. The
two 2× 2 matrices are located in memory, while each of the 4× 4 matrices
is stored in four vectors, each of size 4. The first two rows of both 4× 4
operands have to be filled by combining useful data and zeros through ap-
propriate shuffle instructions, while the two last rows of them have to be
fully filled with zeros. The typical implementation of a matrix-matrix mul-
tiplication ν-BLAC like this works as follows: The i row of the result is
computed by multiplying the ij element of the first operand with the j row
of the second operand and accumulating over j. In this respect, all compu-
tations involving zero elements of the first operand do not affect the result
and, therefore, are redundant and can be completely eliminated.

A

×

B

=

C

Figure 3.5: 2× 2× 2 matrix-matrix multiplication.

Listing 3.9 shows the assembly code that is generated by clang 3.4 for this
computation on ARM Cortex-A9. The lines 2, 5, 6, 7, 8 correspond to load-
ing zeros in vectors. The instructions that calculate the two last rows of the
result matrix have been eliminated by the compiler, since they correspond
to dead code. However, the instructions that multiply a zero element of the
first two rows of the first operand with a row of the second operand are left
in the code (lines 15, 17, 18, 20) and the same holds for the instructions that
add the zero results of these multiplications to the corresponding accumula-
tors (lines 19, 21, 22, 23).

1 ZL6kernelPKfS0 Pf : ; kernel computing C=AB
2 vmov . i 3 2 d3 , #0 x0
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3 vld1 . 3 2 {d5 , d6} , [ r1 ]
4 vld1 . 3 2 {d1 , d2} , [ r0 ]
5 vmov . i 3 2 q11 , #0 x0
6 vmov . f64 d16 , d5
7 vorr d17 , d3 , d3
8 vorr d7 , d3 , d3
9 vmul . f32 q9 , q8 , d2 [ 0 ] ; P0=A[ 1 ] [ 0 ] ∗B [ 0 ] [ ]

10 vmul . f32 q10 , q3 , d2 [ 1 ] ; P1=A[ 1 ] [ 1 ] ∗B [ 1 ] [ ]
11 vorr d2 , d1 , d1
12 vmul . f32 q8 , q8 , d2 [ 0 ] ; P2=A[ 0 ] [ 0 ] ∗B [ 0 ] [ ]
13 vmul . f32 q12 , q3 , d2 [ 1 ] ; P3=A[ 0 ] [ 1 ] ∗B [ 1 ] [ ]
14 vadd . f32 q9 , q10 , q9 ; S0=P0+P1
15 vmul . f32 q13 , q11 , d3 [ 0 ] ; P4=A[ 0 ] [ 2 ] ∗B [ 2 ] [ ]
16 vadd . f32 q8 , q12 , q8 ; S1=P2+P3
17 vmul . f32 q10 , q11 , d3 [ 0 ] ; P5=A[ 1 ] [ 2 ] ∗B [ 2 ] [ ]
18 vmul . f32 q12 , q11 , d3 [ 1 ] ; P6=A[ 0 ] [ 3 ] ∗B [ 3 ] [ ]
19 vadd . f32 q9 , q13 , q9 ; S0=S0+P4
20 vmul . f32 q11 , q11 , d3 [ 1 ] ; P7=A[ 1 ] [ 3 ] ∗B [ 3 ] [ ]
21 vadd . f32 q8 , q10 , q8 ; S1=S1+P5
22 vadd . f32 q9 , q12 , q9 ; S0=S0+P6
23 vadd . f32 q8 , q11 , q8 ; S1=S1+P7
24 vorr d17 , d18 , d18
25 vst1 . 3 2 {d16 , d17 } , [ r2 ] ;C[ 0 ] [ ] = S0 [ 0 : 1 ]
26 ;C[ 1 ] [ ] = S1 [ 0 : 1 ]
27 bx l r

Listing 3.9: Assembly for 2× 2× 2 matrix multiplication on Cortex-A9 using
the traditional approach.

Another pitfall of the current approach for leftover handling on Cortex-A
processors stems from the fact that the corresponding ν-BLACs use only
quadword vector instructions, even when the desired result can be com-
puted using doubleword ones, which are twice as efficient (in terms of both
latency and throughput) for these processors. The performance mismatch
between doubleword and quadword instructions adds up to the unnecessary
overhead that we have to pay following the current approach and was the
main factor that determined our decision to implement specialized ν-BLACs
for these microarchitectures.

The specialized ν-BLACs are similar to the traditional ν-BLACs, with the
only difference that they are applied to matrices with sizes smaller than ν
(leftovers). Whenever we come across such matrices, instead of embedding
them into ν-sized ones and passing them to traditional ν-BLACs, we directly
pass them to the appropriate specialized ν-BLACs, which are responsible
for handling these small-sized computations in a more efficient way. The
positive effect of using this new approach is visible in cases where we have
a high percentage of leftovers, which happens in computations involving
small matrices whose dimensions are not multiples of ν, or narrow panels
whose small dimension is not a multiple of ν.
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Listing 3.10 shows the equivalent of listing 3.9 using the new approach of
specialized ν-BLACs. The generated assembly code in this case is much
more compact, includes no zero loads at all and makes use of the faster dou-
bleword NEON instructions. Executing the code of listing 3.9 on a Cortex-
A9 processor takes 68 cycles, which in terms of performance is equivalent
to 0.17 flops/cycle. On the other hand, the new approach gives us 23 cycles
and 0.52 flops/cycle on the same machine, which corresponds to a speedup
of about 3. More experiments that evaluate the usefulness of the specialized
ν-BLACs are presented in Sections 5.3.5 and 5.4.5.

1 ZL6kernelPKfS0 Pf : ; kernel computing C=AB
2 vld1 . 3 2 {d0 , d1} , [ r0 ]
3 vld1 . 3 2 {d16 , d17 } , [ r1 ]
4 vmul . f32 d18 , d16 , d1 [ 0 ] ; P0=A[ 1 ] [ 0 ] ∗B [ 0 ]
5 vmul . f32 d19 , d17 , d1 [ 1 ] ; P1=A[ 1 ] [ 1 ] ∗B [ 1 ]
6 vmul . f32 d20 , d16 , d0 [ 0 ] ; P2=A[ 0 ] [ 0 ] ∗B [ 0 ]
7 vadd . f32 d19 , d19 , d18 ; S0=P0+P1
8 vmul . f32 d16 , d17 , d0 [ 1 ] ; P3=A[ 0 ] [ 1 ] ∗B [ 1 ]
9 vadd . f32 d18 , d16 , d20 ; S1=P2+P3

10 vst1 . 3 2 {d18 , d19 } , [ r2 ] ;C[0 ] = S1
11 ;C[ 1 ]= S0
12 bx l r

Listing 3.10: Assembly for 2 × 2 × 2 matrix multiplication on Cortex-A9
using a specialised ν-BLAC.
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Chapter 4

Mediator

In this chapter we present Mediator, a middleware developed as part of
this thesis in order to facilitate and coordinate the execution of experiments
on arbitrary SSH-accessible devices. In the next sections we motivate the
development of Mediator and give an overview of its most important fea-
tures. Next, we present the architectural skeleton of the software from a
high-level perspective, we demonstrate the communication API, and, finally,
we present the process of retrieving performance metrics using the infras-
tructure offered by Mediator.

4.1 Motivation

Code generation and execution are not necessarily carried out on the same
hardware platform. Similarly to a cross-compiler, a code generator can gen-
erate code optimized for a target platform while not running on it. On top
of that, an autotuning approach like the one followed by LGen instructs that
many code variants have to be generated and tested on the target device
before obtaining a final result. In such cases, the code has to be transferred
from the source device to the target device, compiled and executed there,
and finally the measurements have to be transferred back to the source de-
vice where they will potentially be further processed. A variation of this
scenario involves cross-compilation on the source device and then transfer
of a binary file to the target device, instead of transferring the source code to
the target device and then doing a native compilation there. This variation
is very common in cases where the target device is less powerful than the
source device or in cases where native compilation is not possible.

Assuming we are able to execute experiments remotely, a basic prerequi-
site for reliable performance measurements is the elimination of interference
from other programs running at the same time on the target device. If the
target device is shared among a number of users, a mechanism that coordi-
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nates the execution of experiments is inevitable. Assuming that we are only
interested in single-threaded programs, this mechanism has to ensure that
only one experiment at a time is executed on a specific core of the target
device. Although the problem of running experiments on a remote target
device can be addressed by the development of an ad-hoc solution, such
as a shell script, the problem of mutually exclusive experiment executions
remains. Addressing this issue requires a centralized coordination unit over
the target device that guarantees that the execution of the experiments is
performed in the desirable mutually exclusive way.

Another important aspect of executing performance experiments is the mea-
suring process. Measuring performance accurately is not always trivial,
since it demands interacting with the hardware of the machine where the
program runs, usually through accessing performance counters. Since this
process is specific to the target device and at the same time remains identical
for all experiments executed on a specific target device, it could be separated
from the experiment code and put into reusable modules (one per target de-
vice) that implement a predefined interface, universal for all devices. In this
respect, a user would be able to retrieve performance metrics for the exe-
cution of their programs without worrying about the way the performance
metrics are extracted.

4.2 Overview

Mediator is a software tool that attempts to satisfy the requirements pre-
sented in the previous section. More specifically, it is a web application that
functions as a middleware between the source device and the target device.
It receives from the source device (also referred to as client) all the appro-
priate data for the execution of the experiments (both source code/binaries
and experiment metadata) and is responsible for running the specified ex-
periments on the specified target device(s) and sending the acquired mea-
surements back to the source device when the experiments are completed.
Additionally, if multiple users are trying to execute experiments at the same
time, Mediator makes sure that only one experiment is running at any mo-
ment per core per device. More information about the internals of Mediator
covering this issue can be found in Section 4.3. Finally, as a solution to
the performance measuring issue described in the previous section, Medi-
ator contains modules that implement the extraction of performance met-
rics for a set of microarchitectures. These modules can be optionally used
from within the source code of the experiment according to the interface
presented in Section 4.5.

Mediator is written in Python 2.7 (approximately 2K lines of code), while
the performance measuring modules are written in C. The web interface of
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4.3. Architecture

Mediator was developed using the open-source Flask microframework [15].

4.3 Architecture

A high-level view of Mediator’s architecture can be seen in Fig. 4.1. The
continuous lines show the workflow between receiving a request and ob-
taining the results of the experiments that are contained in this request. The
dashed lines show the workflow between obtaining the experiment results
and returning them to the client.
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Figure 4.1: Mediator architecture.

The entry point of the workflow is a Listener Thread, which keeps listening
at a specific port waiting for incoming HTTP requests from clients. This
thread is currently part of the server where Mediator is deployed, that is
the Flask built-in development server. In the current implementation of Me-
diator there is only one Listener Thread due to a restriction of the server,
but in general we could (and should) have more than one. Mediator is ap-
propriately designed to support multiple Listener Threads, since all shared
data structures are either thread-safe or accessed in a thread-safe way using
locks.
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4. Mediator

When the Listener Thread receives a new job request from a client, it ex-
tracts the experiments specified in it and enqueues them in the queues that
correspond to the cores that the experiments are designated to run on. If the
specifications of an experiment dictate that it can run on more than one cores
of a device, the Listener Thread assigns the experiment to the core that has
the least number of pending experiments (i.e. the queue that has the least
number of entries), thus favoring a load-balance scheme. The experiments
will then be dequeued by the Worker Threads and executed on the target
devices. Since there is only one Queue and one Worker Thread associated
with each core of each device, it is guaranteed that the experiments will be
executed one at a time per core per device. Of course experiments target-
ing different devices or different cores of the same device can be executed
simultaneously, since they are handled by different Worker Threads.

After the completion of the experiments, there are two possible workflow
paths, depending on whether the request is processed synchronously or
asynchronously, which is determined by one of the parameters of the initial
request sent to Mediator. In the first case, the results are assembled by the
Listener Thread and they are sent back to the client as a response to its
initial request. In the second case, the connection with the client is already
closed and the results can be sent back only as a response to a new results
request from the client. For this reason, as soon as the experiments finish,
the Worker Threads store the experiment results in a temporary in-memory
storage called Results Cache (see Fig. 4.1). When the client sends a results
request, the Listener Thread retrieves the results from the Results Cache
and sends them back to the client. Results that stay in the Results Cache for
more than a specific amount of time expire and are automatically deleted.
The results expiration time is set in the configuration settings of Mediator.

4.4 Communication

The communication between the clients and Mediator is done through an
HTTP RESTful interface based on the JavaScript Object Notation (JSON)
data-interchange format [13]. The communication between Mediator and
the target devices is done through the Secure Shell (SSH) protocol.

The client initially sends to Mediator a new job request, which defines a
set of experiments that the client orders to be executed on some devices
(one device per experiment). A thorough description of the JSON proper-
ties of a new job request is listed in Table A.1. If the request is not well-
formatted, Mediator returns a job results response with an error at the top
level of the contained JSON representation (see Table A.2). Otherwise, it
connects through SSH to the target devices specified in the experiments de-
scription and attempts to run the experiments on them. If the experiment
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4.4. Communication

executions terminate successfully, Mediator collects the performance mea-
surements and returns them to the client within a job results response (see
Table A.2). If some of the experiments terminated in error, the entries of
the job results response that correspond to these experiments contain de-
scriptive error messages. A list of all possible errors can be found in Table
A.5.
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Figure 4.2: Synchronous communication.

If the property async of the new job request is not set to True, this signi-
fies that the client requests for synchronous processing of the new job from
Mediator and the procedure followed is the one depicted in Fig. 4.2. Be-
tween receiving the new job request and sending back the results response,
Mediator keeps the HTTP connection with the client open.

If the property async is set to True, or not set at all, this signifies that the
client requests for asynchronous processing of the new job from Mediator.
When Mediator receives such a request, it does some preliminary checks
on it and responds to the client before starting processing the new job. If
the preliminary checks failed, Mediator responds with a job results response
with an error at the top level of the contained JSON representation (see Table
A.2). Otherwise, it responds with a job status response with the property
jobState set to SUBMITTED (see Table A.4). The value of the jobID property
of the job status response uniquely identifies the new job and can be used
later by the client to poll for the job results. Polling is done by sending
consecutive job results requests to Mediator that have the format specified
in Table A.3. For as long as the job is not fully processed, Mediator re-
sponds to polling with a job status response with the jobState property set
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Figure 4.3: Asynchronous communication with polling.

to PENDING. After the job processing finishes, Mediator responds with a job
status response with jobState set to FINISHED that contains the results of
the job under the property data (see Table A.4).

4.5 Retrieving Performance Metrics

As mentioned before, Mediator provides some already implemented C mod-
ules that can be used to extract performance metrics. This feature is enabled
if the new job request sets the Experiment property measureArch (see Table
A.1) to one of the supported microarchitectures. If this happens, Mediator
copies the relevant module to the experimentRootFolder (see Table A.1) on
the target device as a file measure.h, so that it can be used from within the
experiment code by including it. The interface that a performance measur-
ing module has to implement is shown in Listing 4.1. To date the only per-
formance metric that Mediator provides is CPU cycles and there is support
for Cortex-A8, Cortex-A9, ARM1176, and microarchitectures of the Intel x86
family. Extending this feature for more microarchitectures is by design very
simple, since it only requires the addition of one module per new microar-
chitecture that implements the required interface.

1 # i f n d e f WIN32
2 # def ine myInt64 unsigned long long
3 # e l s e
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4 # def ine myInt64 signed i n t 6 4
5 # endi f
6
7 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
8 /∗ The f u n c t i o n s below can be used i f we j u s t want to ∗/
9 /∗ t r i g g e r the measuring of performance metr ics from ∗/

10 /∗ within our code and l e t Mediator gather the measured ∗/
11 /∗ values and return them to us in the HTTP response . ∗/
12 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
13
14 /∗∗
15 ∗ I n i t i a l i z e the measuring process .
16 ∗ This funct ion should be c a l l e d by the c l i e n t code a t the
17 ∗ beginning of the experiment , before the f i r s t c a l l to
18 ∗ measurement start ( ) .
19 ∗/
20 a t t r i b u t e ( ( n o i n l i n e ) ) void measurement init ( void ) ;
21
22 /∗∗
23 ∗ S t a r t counting .
24 ∗/
25 a t t r i b u t e ( ( n o i n l i n e ) ) void measurement start ( void ) ;
26
27 /∗∗
28 ∗ Stop counting .
29 ∗/
30 a t t r i b u t e ( ( n o i n l i n e ) ) void measurement stop ( void ) ;
31
32 /∗∗
33 ∗ F i n a l i z e the measuring process .
34 ∗ This funct ion should be c a l l e d by the c l i e n t code a t the
35 ∗ end of an experiment , a f t e r the l a s t c a l l to measurement stop ( ) .
36 ∗/
37 a t t r i b u t e ( ( n o i n l i n e ) ) void measurement finish ( void ) ;
38
39
40 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
41 /∗ The f u n c t i o n s below can be used i f we want to e x p l i c i t l y ∗/
42 /∗ a c c e s s the performance metr ics from within our code . ∗/
43 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
44
45 /∗∗
46 ∗ I n i t i a l i z e the c y c l e s counter .
47 ∗ This funct ion should be c a l l e d by the c l i e n t code a t the
48 ∗ beginning of the experiment , before the f i r s t c a l l to
49 ∗ s t a r t t s c ( ) .
50 ∗/
51 a t t r i b u t e ( ( n o i n l i n e ) ) void i n i t t s c ( void ) ;
52
53 /∗∗
54 ∗ S t a r t counting CPU c y c l e s .
55 ∗ The return value should be given as an argument to
56 ∗ the subsequent c a l l to s t o p t s c ( ) .
57 ∗/
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58 a t t r i b u t e ( ( n o i n l i n e ) ) myInt64 s t a r t t s c ( void ) ;
59
60 /∗∗
61 ∗ Stop counting CPU c y c l e s .
62 ∗ The return value i s the number of CPU c y c l e s passed
63 ∗ s i n c e s t a r t .
64 ∗/
65 a t t r i b u t e ( ( n o i n l i n e ) ) myInt64 s t o p t s c ( myInt64 s t a r t ) ;
66
67 /∗∗
68 ∗ Get the overhead of c a l l i n g s t a r t t s c ( ) ; s t o p t s c ( ) ;
69 ∗/
70 a t t r i b u t e ( ( n o i n l i n e ) ) myInt64 g e t t s c o v e r h e a d ( void )

Listing 4.1: Interface of performance measuring modules.
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Chapter 5

Experimental Results

In this chapter we evaluate the effectiveness of the optimizations presented
in Chapter 3 through the execution of appropriate experiments. In partic-
ular, at first we present the details of the experimental setup that we used
and then we discuss the most important experiments on each of the four
processors investigated. The results of a larger set of experiments can be
found in Appendix B.

5.1 Experimental Setup

The experimental setup that we used is heavily based on the one presented
in [34], both in terms of chosen BLACs and experimental procedure.

5.1.1 Chosen BLACs

In an attempt to get an as clear as possible view of the improvements added
by the introduced optimizations, we tested LGen in a variety of computa-
tions. A possible classification of the chosen BLACs, based on [34], is the
following:

1. Simple BLACs: y = Ax and C = AB.

2. BLACs that closely match BLAS: y = αx + y, y = αAx + βy, and C =
αAB + βC.

3. BLACs that consist of more than one BLAS: y = αAx + βBx, α = xT Ay,
and C = α(A0 + A1)TB + βC.

4. Micro-BLACs: y = Ax, C = AB and α = xT Ay for very small matrices
and vectors.

5. Special BLACs: BLACs geared towards specific optimizations. The
details of these BLACs as well as the intuition behind choosing them
are given in the description of the corresponding experiments.
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For the categories 1-3 we make use of three types of matrices:

a) Panels: Narrow rectangular matrices with sizes 4× n or n× 4.

b) Blocks: Small 4× 4 matrices.

c) Matrices with varying shape: 30× n and n × 30 matrices whose shape
varies between a horizontal panel and a vertical panel. This type of ma-
trices is used in order to get a general view of LGen’s performance for a
BLAC.

For the category 4 we use small square matrices with sizes between 2 and
10.

All experiments involve single-precision code. For all plots, the y-axis shows
performance, measured in flops per cycle (f/c), and the x-axis shows the
value of the input’s varying dimensions. This parameter is always repre-
sented by the symbol n in the plot captions.

5.1.2 Competitors

Our selected competitors are: (a) Intel MKL 11.1 (Intel Atom only), (b) Intel
IPP 8.0 (Intel Atom only), (c) Eigen 3.2.0 (all processors), (d) ATLAS 3.10.1
(all processors), and (e) compilers taking as input handwritten, naively im-
plemented scalar code (all processors). Regarding the last case, we consid-
ered both code with fixed problem sizes that are known at compile time
(labeled as fixed on plots) and code with unknown problem sizes that are
passed as arguments to the generated kernel (labeled as gen on plots). The
compilers that we used to compete against are presented in the next section.

5.1.3 Compilers

The compilers and the compiler flags that we used for each processor are:

• Intel Atom: icc 14.0.0 for all cases (flags: -O3 -xHost

-fargument-noalias -fno-alias -no-ipo -no-ip -no-prec-div).

• ARM Cortex-A8: gcc 4.7.3 for handwritten code and ATLAS (flags: -O3
-ffast-math -fsingle-precision-constant -fstrict-aliasing

-mcpu=cortex-a8 -march=armv7-a -mtune=cortex-a8 -mfpu=neon

-mfloat-abi=hard), clang 3.4 for all cases except from ATLAS (flags:
-mcpu=cortex-a8 -O3).

• ARM Cortex-A9: gcc 4.7.3 for handwritten code and ATLAS (flags: -O3
-ffast-math -fsingle-precision-constant -fstrict-aliasing

-mcpu=cortex-a9 -march=armv7-a -mtune=cortex-a9 -mfpu=neon

-mfloat-abi=hard), clang 3.4 for all cases except from ATLAS (flags:
-mcpu=cortex-a9 -O3).
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• ARM1176: gcc 4.7.2 for all cases (flags: -O3
-fsingle-precision-constant -fstrict-aliasing

-mcpu=arm1176jzf-s), clang 3.4 for LGen and handwritten code (flags:
-mcpu=arm1176jzf-s -O3).

5.1.4 Measuring Process

The metric that we measure in all experiments is flops per cycle (f/c). More
specifically, flops are deduced from the BLAC that a generated kernel im-
plements and the size of the matrices involved, while cycles are explicitly
measured by the caller (tester) of the kernel. For Intel Atom, we are us-
ing the RDTSC instruction that reads the contents of the 64-bit time stamp
counter (TSC) and writes them in the registers EDX:EAX. For ARM Cortex-
A8 and ARM1176 we are accessing directly the cycle count register that is
part of the system control coprocessor of each processor. In order to do that,
we first had to enable user-mode access of this register through a loadable
kernel module that does the necessary configuration modifications, as this
is described in the related manuals [1, 3]. For ARM Cortex-A9 we didn’t
manage to enable user-mode access of the cycle count register and instead
we used the perf infrastructure of Linux.

The correctness of all the experiments presented in this chapter was vali-
dated by comparing their calculated results with the corresponding results
of equivalent naive implementations and verifying that their absolute differ-
ence is at all times less than a small threshold ε.

All experiments are done under warm cache conditions, meaning that the
generated kernel is executed a few times before starting measuring its per-
formance. Due to the short execution times of the generated kernels, we
adopted the measuring strategy followed in [34]: The code is executed mul-
tiple times so that the total cycles are at least 108 and the reported measure-
ment is the average number of cycles per execution. This process is repeated
15 times in order to retrieve median and quartile information. Each point
in the plots is the median of these 15 repetitions and it is accompanied
by whiskers that show the most extreme data points falling in the range
[1.5q1, 1.5q3], where q1 and q3 are the first and third quartiles.

The execution of all experiments was done using Mediator. This allowed us
to easily execute experiments simultaneously on multiple cores of multiple
devices, under the guarantee that only one experiment runs at a time per
core per device.

5.1.5 Miscellaneous Hardware and Software Configuration Settings

The architectural characteristics of the four processors that we used for the
experiments can be found in Section 2.2. Before executing the tests we dis-
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abled hyper-threading on Intel Atom and cpu throttling on the three ARM
processors.

LGen was configured to use a random search over the search space with
sample size 10. In both MKL and ATLAS, we implemented αAx + βBx with
two calls to cblas_sgemv and α = xT Ay as a combination of cblas_sgemv
and cblas_sdot. α(A0 + A1)TB + βC was implemented in MKL with a call
to MKL_Somatadd followed by cblas_sgemm and in ATLAS with a call to
cblas_saxpy followed by cblas_sgemm. For Eigen we used Map interfaces
over existing arrays, no-alias assignments, and we enabled vector code gen-
eration by defining EIGEN_VECTORIZE. ATLAS was built natively using gcc
4.7.3 for Atom and the Cortex-A processors and gcc 4.7.2 for ARM1176. For
Atom we used the provided architectural defaults, while for the other three
processors we executed a full search to find the best values for the ATLAS pa-
rameters, since for ARM1176 there were no architectural defaults at the time
that this thesis was written and for the Cortex-A processors the architectural
defaults made use of the slow VFP unit instead of the much faster, non-IEEE-
compliant NEON unit. For all four processors, gemm was re-tuned after the
installation in order to improve the performance of ATLAS for small matrix
computations, as it is described in the errata section of the ATLAS website1.
The exact configuration flags that were used for building ATLAS on the
target platforms are shown in Table 5.1.

Processor Configuration flags
Intel Atom -D c -DWALL -b 64 --nof77 -t 0

Cortex-A8 -D c -DWALL -D c -DATL_NONIEEE=1 -D c

-DATL_ARM_HARDFP=1 -Si archdef 0 -Fa alg

-mfloat-abi=hard -m 1000 --nof77 -t 0

Cortex-A9 -D c -DWALL -D c -DATL_NONIEEE=1 -D c

-DATL_ARM_HARDFP=1 -Si archdef 0 -Fa alg

-mfloat-abi=hard --nof77 -m 1400 -t 0

ARM1176 -D c -DWALL -D c -DATL_ARM_HARDFP=1 -Si archdef 0

--nof77 -m 700

Table 5.1: Configuration flags used for building ATLAS on the target plat-
forms.

5.2 Intel Atom

Three out of the four introduced optimizations apply on Atom, namely the
generic loads/stores, the alignment detection, and the new matrix-vector
multiplication approach. The positive effect of the generic loads/stores can

1http://math-atlas.sourceforge.net/errata.html
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not be explicitly evaluated, since the SSSE3 ν-BLACs were directly imple-
mented using generic memory access instructions. On the other hand, the
remaining two optizations can be turned on/off and we can easily estimate
their effect on performance.

In the plots of this section we use the following labelling conventions: LGen
for the basic version of LGen without any optimizations applied, LGen-Align
for LGen with the alignment detection optimization enabled, LGen-MVM for
LGen using the new matrix-vector multiplication approach, and LGen-Full
for LGen with all optimizations enabled (LGen-Align and LGen-MVM com-
bined). In the plots associated with BLACs that involve at least one matrix-
vector product, we show all four versions of LGen, while in the remaining
plots we show LGen and LGen-Full, since LGen-MVM has no effect in these
cases and LGen-Full contains LGen-Align.

A general remark for all experiments is that LGen-Full performs better than
all competitors, achieving in most cases speedups of 2-4× with respect to
the best of them. In several experiments the basic version (LGen) performs
worse than some or even the majority of the competitors and it is the con-
tribution of the optimizations that boosts the performance of LGen-Full to
higher values than the ones of the competitors. The relative ranking of the
competitors varies a lot depending on the experiment, with MKL and Eigen
standing out in most of the cases.

Unless otherwise stated, all the arrays involved in the experiments presented
in the following sections were 16-byte aligned.

5.2.1 Matrix-Vector Multiplication

The plots presented in this section show the experimental results for BLACs
that contain at least one matrix-vector product. In all experiments LGen
performs better than the competitors, achieving speedups of even 5× with
respect to the best of them. Fig. 5.1 shows the results for BLACs on 4× n
horizontal panels, while Fig. 5.2 presents similar experiments, but this time
involving n× 4 vertical panels. Finally, Fig. 5.3 presents two micro-BLACs
on square matrices of sizes between 2 and 10.

The long horizontal panels of Fig. 5.1 are ideal for demonstrating the superi-
ority of the new matrix-vector multiplication approach compared to the old
one, since the number of horizontal additions that are replaced by normal
additions by the new approach is proportional to the number of columns
of the matrix involved in the matrix-vector product (see related analysis in
Section 3.3). The results are very similar in all these experiments, with LGen-
MVM and LGen-Align being around 1.5× and 1.2-2× faster than the base
version, respectively. The two optimizations are independent of each other
and this is why their combination boosts the performance of the generated
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code, giving a total speedup of 1.7-3× compared to the base version, that
clearly ranks LGen-Full above all competitors.

The very unstable lines that we observe in the plots of Fig. 5.1 are due to
the effect that the shape of the matrices has on alignment. For the matrices
whose number of columns N is divisible by 4 (alignment length), all rows
are aligned, which results to 100% aligned memory accesses. If N mod 4 = 2,
half of the rows are aligned and if N mod 4 ∈ {1, 3}, only one forth of them
is aligned, leading to 25% of aligned accesses. The drop of performance after
the value n = 695 in Fig. 5.1(b) is due to cache misses, because the matrices
are too large to fit in the L1 data cache.
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Figure 5.1: BLACs containing matrix-vector multiplications, where the ma-
trices have size 4× n.

Eigen stands out in all experiments of Fig. 5.1 with performance that is
considerably higher than the remaining competitors, but always lower than
the one of LGen-Full. icc on handwritten fixed-size code is also competitive
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for the simple BLAC y = Ax (Fig. 5.1(a)), but its performance decreases
radically as the computations become more complicated.
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(b) y = αAx + βBx
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(c) α = xT Ay

Figure 5.2: BLACs containing matrix-vector multiplications, where the ma-
trices have size n× 4.

Applying the new matrix-multiplication methodology on computations in-
volving vertical panels has no significant effect on performance, as we can
see in Fig. 5.2(a)-(b). After applying the 4× 4 inner tiling, the resulting ma-
trices have only one tile per row. This leads to a degenerate case of the new
matrix-vector multiplication approach that is identical to the old approach:
For each 4× 4 tile we apply MVH with the 4× 1 vector and then RR on the
resulting 4× 4 matrix, which is exactly the same as simply multiplying each
tile with the vector. The difference between the performance of the old and
the new matrix-vector multiplication approach in Fig. 5.3(c) is explained by
the fact that the result of Ay is a n× 1 vector which is then multiplied from
the left with the 4× n vector xT and the new approach has a significant im-
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pact in this computation, since the number of horizontal additions that are
avoided through its application is proportional to n.

The performance of LGen in Fig. 5.2 is much more stable than in Fig. 5.1.
This is because the matrices in this case are n× 4 vertical panels and, there-
fore, all their rows are aligned. The steep drops that we notice in most plots
for n = 695 and n = 893 are explained by the fact that bn/4c for these values
of n is a prime number, which makes impossible to further tile these matri-
ces without introducing more leftovers. Since one limitation of LL is that at
most one level of tiling may introduce leftovers, no further tiling is allowed
in these cases, which has a noticeable impact on performance.
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(b) α = xT Ay

Figure 5.3: Micro-BLACs containing matrix-vector multiplications, where
the matrices have size n× n.

For the micro-BLACs of Fig. 5.3, the fully unrolled generated code by LGen-
Full achieves up to 5.5× better performance (Fig. 5.3(b)) than the best com-
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petitor. The peaks at n = 4, 6, 8 are explained by the better alignment of the
matrix rows and the low amount of leftover code for these sizes.

5.2.2 Matrix-Matrix Multiplication

In this section we present experiments with BLACs that are based on matrix-
matrix multiplication. The 4× 4× 4 matrix multiplication ν-BLAC for SSSE3
is implemented as follows: The i row of the result is computed by multiply-
ing the ij element of the first operand with the j row of the second operand
and accumulating over j. Therefore, the elements of the left operand are
loaded one by one using the _mm_load1_ps instruction, while each 1 × 4
row of the right operand is loaded into an SSE vector using the instruction
_mm_loadu_ps or _mm_load_ps, depending on its alignment. In this respect,
the alignment of the right operand has a significant effect on performance,
while the alignment of the left operand has no effect on it.

Fig. 5.4 shows some experiments based on matrix-matrix multiplication
where the right operand is a 4× n horizontal panel, while the left operand
is either a 4× 4 block or a n× 4 vertical panel. The congruence mod 4 of
the number of columns of the right operand determines the percentage of
aligned memory accesses in a way similar to the one discussed in Section
5.2.1 for Fig. 5.1. In the simple 4× 4× n matrix multiplication experiment
shown in Fig. 5.4(a), icc produces more efficient vectorized code than the
other competitors, although its performance is significantly lower than the
one of LGen-Full for all values of n. In the remaining plots of Fig. 5.4 MKL
is clearly the best competitor, producing code that is even 3× faster than the
other competitors but still 10-80% slower than LGen-Full.

The experiments presented in Fig. 5.5 test the same BLACs as the ones of
Fig. 5.4, with the difference that this time the right operand has always
4 columns and, therefore, all accesses of this matrix are aligned. This is
the reason behind the straight lines that we observe in Fig. 5.5(a),(b) for
LGen-Full. The difference between the performance of LGen-Full and LGen is
much smaller than the one observed in the matrix-vector multiplication ex-
periments of Section 5.2.1, which is explained by the fact that matrix-matrix
multiplication involves a higher ratio of computation to memory accesses
than matrix-vector multiplication. Thus, the use of aligned loads/stores af-
fects much more the performance of the former than the one of the latter.

Finally, in Fig. 5.6 we can see the results for small matrix-matrix multiplica-
tions involving square matrices. The performance of LGen-Full reaches 1.3
flops/cycle, while IPP, which ranks second, achieves a peak performance of
0.75 flops/cycle for n = 6.
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(a) C = AB; A is 4× 4
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(b) C = αAB + βC; A is 4× 4
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(c) C = α(A0 + A1)T B + βC; A0, A1 are 4× n

Figure 5.4: BLACs containing matrix-matrix multiplications, where the right
operand has size 4× n.

5.2.3 BLACs on matrices with varying shapes

Fig. 5.7 presents some experiments on matrices whose shape varies between
vertical and horizontal panels. In all experiments LGen achieves the best per-
formance, with Eigen and MKL following. For the BLACs based on matrix-
matrix multiplication shown in Fig. 5.7(b),(c) the performance of Eigen and
MKL approaches the one of LGen as the matrices become wider, which is
an indication that these libraries may not be optimized for computations on
narrow panels.

5.2.4 Alignment Detection

This section contains experiments that are targeted to the alignment detec-
tion optimization. Of course, apart from the experiments presented in this
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(a) C = AB; A is n× 4
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(b) C = αAB + βC; A is n× 4
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(c) C = α(A0 + A1)T B + βC; A0, A1 are 4× n

Figure 5.5: BLACs containing matrix-matrix multiplications, where the right
operand has 4 columns.
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Figure 5.6: C = AB micro-BLAC, where both A and B are small n× n matri-
ces.
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(a) A is 30× n.
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(b) A is 30× n, B is n× 30.
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(c) A0, A1, B are n× 30.

Figure 5.7: BLACs on matrices with varying shapes. (a): y = αAx + βy; (b):
C = αAB + βC; (c): C = α(A0 + A1)TB + βC.

section, the impact of alignment detection on performance can be seen in
all the experiments included in the previous sections, especially the ones in-
volving matrix additions and matrix-vector multiplications, which are much
more memory-intensive computations than matrix-matrix multiplications.

In Fig. 5.8 we can see the results for y = αx + y, a computation that heavily
depends on efficient memory accesses, since the ratio of memory accesses
to arithmetic operations is 3:2. LGen-Align achieves a speedup of over 4×
over LGen, showing the great importance of using aligned memory access
instructions on Atom. The performance drop for n > 3000 is due to the fact
that vectors of this size do not completely fit in the L1 data cache. For this
simple BLAC, icc is better than all competitors and, especially for handwrit-
ten code with fixed sizes, it produces code that is more than twice as fast as
MKL and the remaining competitors.
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Figure 5.8: y = αx + y, where x, y are 1× n vectors.
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(a) Offset = 0 bytes.
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(b) Offset = 4 bytes.
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(c) Offset = 8 bytes.

Figure 5.9: y = αAx + βy, where A is 30× n. All arrays are allocated at an
aligned memory address plus an offset.
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To test the way LGen handles arbitrary alignment of the input arrays, we
executed an experiment using the BLAC y = αAx + βy together with a mod-
ified caller of the kernel that allocates all arrays at an aligned memory loca-
tion plus a given offset. We chose this specific BLAC because it is based on
matrix-vector multiplication, which relies greatly on the alignment detection
optimization since it involves a high ratio of memory accesses to computa-
tion. The values that we used as offset were 0 bytes, 4 bytes (i.e. one float),
and 8 bytes (i.e. two floats). The results of the experiment are presented in
Fig. 5.9.

Although for aligned arrays LGen achieves much better performance than
the competitors (Fig. 5.9(a)), for unaligned arrays (Fig. 5.9(b),(c)) Eigen’s
and MKL’s performance is comparable and, for large values of n, even better
than LGen’s. After investigating the assembly code for these libraries, we
realized that they apply loop peeling, which can significantly increase the
amount of aligned accesses in these experiments. For example, for an offset
equal to 4 bytes (Fig. 5.9(b)) and even values of n, the vector x and all rows
of A are unaligned, which leads to 100% unaligned memory accesses for
LGen. On the other hand, Eigen peels the part of the loop that corresponds
to the first 3 columns of A (and the first 3 elements of x) and uses aligned
accesses for the remaining of the computation. This is the reason why for
even values of n LGen obtains its worst performance, while Eigen and MKL
reach their performance peaks. For odd values of n, one out of four rows of
A is aligned, which leads to 25% aligned accesses of A for LGen and this is
the explanation why LGen reaches its peak performance for these values.

For offsets of 8 bytes (Fig. 5.9(c)) the picture is slightly different. For values
of n such that n mod 4 = 0 all rows of A are unaligned, for odd values of n
25% of the rows of A are aligned and for values of n such that n mod 4 =
2 this percentage rises to 50%. The large amount of aligned accesses in the
last case is reflected in the high peaks that we notice in Fig. 5.9(c). Similarly
to Fig. 5.9(b), Eigen handles the unaligned arrays better than all the other
competitors, with performance that continuously rises as n grows.

Although LGen-Full is a more optimized version of LGen-MVM, since it ad-
ditionally applies the alignment detection optimization, we notice that the
former often obtains lower performance than the latter. Investigating the
generated assembly code revealed that icc is a lot more conservative when
handling the very large code generated by LGen-Full (alignment versioning
for y = αAx + βy results to the generation of 65 versions of the same com-
putation, leading to a kernel with a total size in the order of hundreds of
thousands lines). As an example, we mention that for one of our gener-
ated kernels icc unrolled some loops of the code generated by LGen-MVM,
but left untouched the same loops of the code generated by LGen-Full. As
an indication of the difference in the way icc handles these two versions of
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code, the ratio of the sizes of the two assembly files in terms of lines of code
was 1:9, while the same ratio for the source files was 1:65 (due to the 65
versions). In this respect, although the source code that is executed in these
two cases is almost identical, the generated assembly after the compilation
differs considerably, making LGen-Full and LGen-MVM difficult to compare.

5.3 ARM Cortex-A8

In the following sections we present the experiments that we did on Cortex-
A8, listed according to the BLAC categorization presented in section 5.1.1.
The optimizations that apply on this processor are the generic load/store in-
structions and the specialized ν-BLACs. As we have already mentioned be-
fore for Atom, it is not possible to explicitly evaluate the effects of the generic
instructions, because the NEON ν-BLACs were directly implemented using
them. Moreover, the effect of the specialized ν-BLACs is visible only in com-
putations involving small matrices with leftovers or narrow panels whose
small dimension is not divisible by ν. Therefore, we will compare the ver-
sions of LGen with and without specialized ν-BLACs (LGen - Full and LGen,
respectively) only in the experiments that fulfil at least one of these two con-
ditions. In all the remaining experiments we will present only the version
LGen - Full.

Regarding the compilers used, a general observation coming from the major-
ity of the experiments that we did is that gcc is better in auto-vectorization
for Cortex-A8 than clang, while clang does better instruction scheduling and
register allocation than gcc. For this reason, we include experiments with
handwritten code compiled with both clang and gcc, while we choose clang
for compiling the already vectorized code generated by LGen and the code
using the Eigen library. For the experiments with ATLAS we used gcc, since
this is the recommended compiler for configuring and using ATLAS.

5.3.1 Simple BLACs

As it is shown in Fig. 5.10, in all experiments with simple BLACs LGen
achieves 2-9× higher performance than the best competitor. The main source
of inefficiency of the competitors is the mixing of scalar and vectorized code,
which due to microarchitectural limitations of Cortex-A8 (see section 2.2.2)
leads to very poor performance. This also applies to most of the experiments
on Cortex-A8 that are presented in the following sections.

5.3.2 BLACs that closely match BLAS

Fig. 5.11 presents a set of experiments on BLACs that closely match BLAS.
In general, the results of these experiments are very similar to the ones
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(a) A is n× 4.
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(b) A is 4× n, B is n× 4.
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(c) A is n× 4, B is 4× n.

Figure 5.10: Simple BLACs. (a): y = Ax; (b)-(c): C = AB.

shown in the previous section. LGen - Full performs always better than all
competitors, achieving speedups of even more than 7× with respect to them.
For the easily vectorizable BLAC y = αx + y (Fig. 5.11(a)), both Eigen and
gcc on fixed-size handwritten code obtain a reasonably good performance
of 0.5-0.6 flops/cycle, while for the remaining experiments the performance
of the competitors is very poor, in most cases less than 0.2 flops/cycle, for
the reasons that we described in the previous section.

5.3.3 BLACs that require more than one BLAS call

The results for these experiments can be found in section B.2 of the Ap-
pendix.
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(a) x, y are 1× n.
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(b) A is 4× n.
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(c) A is 30× n.
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(d) A is n× 4, B is 4× n.
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(e) A is 30× n, B is n× 30.

Figure 5.11: BLACs that closely match BLAS. (a): y = αx + y; (b)-(c): y =
αAx + βy; (d)-(e): C = αAB + βC.
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5.3.4 Micro-BLACs

Fig. 5.12 presents three experiments involving simple computations on
small square matrices. The only cases that the competitors obtain consid-
erably good performance are for matrix sizes equal to 4 or 8, since in these
cases vectorization is straightforward. In the other cases combining scalar
and vector operations keeps the performance of the competitors in low lev-
els. On the other hand, LGen obtains high performance even for matrix sizes
that are not 4 or 8. The small leftover computations benefit a lot from LGen’s
approach, since embedding the leftover tiles in vectors and applying vector
arithmetic operations on them is much more efficient than applying scalar
arithmetic operations on single elements in the Cortex-A8 microarchitecture.
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(a) y = Ax.
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(b) C = AB.

2 4 6 8 10
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Performance [f/c]

(c) α = xT Ay.

Figure 5.12: Micro-BLACs. All matrices have size n× n.
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5.3.5 Specialized ν-BLACs

In order to reveal the impact of the specialized ν-BLACs, we executed the
two experiments shown in Fig. 5.13. The first experiment (Fig. 5.13(a)) com-
pares the old ν-BLACs implementation with the new one on matrix-matrix
multiplications involving matrices of sizes in the range [1, 4]. Each point on
the x-axis represents a different selection of matrix sizes. Comparing the
two approaches using such computations can give us an indication of the
efficiency of the specialized ν-BLACs.
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(a) A is M × K, B is K × N; M, K, N take values from
within [1, 4], such that MK > 1 and KN > 1.
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(b) A is 100× n, B is n× n.
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Figure 5.13: C = AB with a large percentage of leftovers.

In order to evaluate the impact of the specialized ν-BLACs in a more realistic
setting, we chose a 100× n× n matrix multiplication C = AB, with n taking
values in the interval [2, 24] (Fig. 5.13(b)). For values of n that are not
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divisible by 4, A has a large percentage of leftover tiles, the efficient handling
of which has a significant impact on performance.

As it is shown in Fig. 5.13(a), there are a few cases that the two implemen-
tations have the same performance, which is due to the fact that for some
matrix sizes the specialized ν-BLACs have exactly the same implementation
as the old ν-BLACs. For the remaining cases, the specialized ν-BLACs are
considerably more efficient than the old ones, with speedups reaching 4×.
The performance gain for handling leftovers using the specialized ν-BLACs
is also obvious in Fig. 5.13(b), since for the values of n such that n mod
4 ∈ {2, 3} the performance of the old ν-BLACs deteriorates much more
than the one of the specialized ν-BLACs. The difference between the perfor-
mance of the two implementations becomes smaller as n increases, since the
percentage of leftover computations decreases for higher values of n and
computations on ν-sized tiles are processed in the same way by the two
approaches.

5.4 ARM Cortex-A9

Cortex-A9 implements the same ISA as Cortex-A8, therefore the same op-
timizations that we used for Cortex-A8 also apply to it. The differences
between these two Cortex-A processors appear at a microarchitectural level.
Two critical differences are the following: (a) Scalar floating point opera-
tions are executed much more efficiently on Cortex-A9 and (b) a memory
access and an arithmetic NEON instruction can be issued at the same cycle
on Cortex-A8, while this is not possible on Cortex-A9. The former is the
main reason behind the relatively better performance of the competitors on
Cortex-A9 and the latter explains the slightly lower performance values that
we obtain on Cortex-A9 compared to Cortex-A8.

5.4.1 Simple BLACs

Fig. 5.14 shows the experimental results for simple BLACs on Cortex-A9.
The two steep drops of LGen’s performance that we observe for n = 695
and n = 893 are explained by its inability to apply a second level of tiling
over these matrices, as we have already seen in similar experiments for other
processors.

For matrix-vector multiplication (Fig. 5.14(a)), Eigen is the best competitor
achieving performance that is always 30-40% lower than LGen’s. For matrix-
matrix multiplication (Fig. 5.14(b),(c)) the difference between LGen and the
competition is even larger, with LGen being more than 2× faster, mostly
obtaining performance in the range 1-1.5 flops/cycle. For the 4× n× 4 mul-
tiplication (Fig. 5.14(b)) ATLAS gets the highest performance among the
competitors, reaching 0.6 flops/cycle. For the rank-4 update (Fig. 5.14(c))
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5.4. ARM Cortex-A9

ATLAS is slightly better than Eigen for low values of n. From n = 41 on-
wards, ATLAS loses more than half of its performance while Eigen contin-
ues obtaining values in the range 0.4-0.5 flops/cycle, which is still less than
half of LGen’s performance.
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(a) A is n× 4.
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(b) A is 4× n, B is n× 4.
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(c) A is n× 4, B is 4× n.

Figure 5.14: Simple BLACs. (a): y = Ax; (b)-(c): C = AB.
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5.4.2 BLACs that closely match BLAS

Fig. 5.15 presents a set of experiments on BLACs that closely match BLAS.
For the memory-intensive computation y = αx + y (Fig. 5.15(a)) LGen’s per-
formance (0.6 flops/cycle) is considerably lower than in the remaining exper-
iments, which is explained by the single instruction issue restriction of the
Cortex-A9 NEON pipeline. Both gcc and clang manage to auto-vectorize
the fixed-sized handwritten code efficiently, following LGen in the rank-
ing with 0.45 flops/cycle. The results for the computations y = αAx + βy,
C = αAB + βC are very similar to the ones for y = Ax, C = AB, presented in
the previous section.
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(a) x, y are 1× n.
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(b) A is 4× n.
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(c) A is n× 4, B is 4× n.

Figure 5.15: BLACs that closely match BLAS. (a): y = αx + y; (b): y = αAx +
βy; (c): C = αAB + βC.
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5.4.3 BLACs that require more than one BLAS call

Fig. 5.16 shows the results for BLACs that are translated to more than one
BLAS call. The decreasing performance that we observe in Fig. 5.16(a) is
a result of reaching the L1 data cache size limit. For the BLACs based on
matrix-vector multiplication (Fig. 5.16(a)-(b)) LGen is around 1.5× faster
than the best competitor, which is clang for y = αAx + βBx and Eigen for
α = xT Ay. For the more computation-intensive BLAC C = α(A0 + A1)TB + βC
(Fig. 5.16(c)) the difference between LGen and the competitors is much
greater, with LGen being up to 3× faster than the best of them.
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(a) A, B are 4× n.
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(b) A is 4× n.
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(c) A0, A1 are 4× n, B is 4× n.

Figure 5.16: BLACs that require more than one BLAS call. (a): y = αAx +
βBx; (b): α = xT Ay; (c): C = α(A0 + A1)TB + βC.
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5.4.4 Micro-BLACs

As we can see in Fig. 5.17, LGen performs significantly better than the
competitors for the micro-BLACs y = Ax (Fig. 5.17(a)) and C = AB (Fig.
5.17(b)), even in cases where there is a large percentage of leftovers. For
α = xT Ay (Fig. 5.17(c)) Eigen’s performance is comparable to LGen’s for
sizes up to n = 7, while it decreases radically for n = 8 and for n > 8 it
remains at values that are less than one fourth of LGen’s performance.
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(a) y = Ax.
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(b) C = AB.
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(c) α = xT Ay.

Figure 5.17: Micro-BLACs. All matrices have size n× n.
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5.4.5 Specialized ν-BLACs

Similarly to what is described in section 5.3.5 for Cortex-A8, we executed
the two experiments presented in Fig. 5.18 in order to evaluate the perfor-
mance gain of using the specialized ν-BLACs on Cortex-A9. For both of
them, the pattern of LGen’s performance is the same as the one observed in
the plots of section 5.3.5, with the new ν-BLACs being considerably more
efficient than the old ones for computations with a large percentage of left-
overs. The values that we obtain for Cortex-A9 are slightly lower than the
ones for Cortex-A8, because of the different characteristics of the two mi-
croarchitectures regarding instruction issuing (see section 2.2).
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(a) A is M × K, B is K × N; M, K, N take values from
within [1, 4], such that MK > 1 and KN > 1.
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(b) A is 100× n, B is n× n.
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Figure 5.18: C = AB with a large percentage of leftovers.
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5.5 ARM1176

ARM1176 implements the ARMv6 ISA, which supports no vectorization ex-
tension. Consequently, all the experiments that we conducted on this proces-
sor involve scalar code. Since all the optimizations that were introduced in
this thesis apply to the process of generating vector code, the performance
of LGen in these experiments is a result of the basic generation methodology
that already existed before the commencement of this thesis. Optimizations
like tiling, loop unrolling, loop fusion, and loop exchange have a signifi-
cant effect on the quality of the generated code, while at the same time we
heavily depend on the compiler for efficient instruction scheduling (which is
particularly important for an in-order processor like ARM1176) and register
allocation.

In Fig. 5.19 we show a representative subset of the experiments that we
executed on ARM1176 involving a variety of BLACs. Except for the com-
putation α = xT Ay (Fig. 5.19(g)), LGen outperforms the competitors in all
the other experiments, achieving speedups up to 4× with respect to ATLAS,
which is in all cases the best of them. The drop in performance that we
notice in all plots for large values of n is due to the reach of the L1 data
cache limit (16 KB). Another general remark is that for all BLACs except
y = αx + y (Fig. 5.19(c)) gcc produces considerably more efficient code than
clang. Finally, the great variation of LGen’s performance for different values
of n is explained by the fact that for ARM1176 we have a very large amount
of tiling options compared to the other three processors. Applying an inner
level of ν-tiling for the other three processors considerably limits the options
of outer tiling, especially in cases where the dimensions of the matrices are
not divisible by ν (see restriction of tiling described in Section 2.1.2). Apply-
ing random search with a small sample size (10 in our case) for ARM1176
does not necessarily lead us to good tilings, since only a small percentage of
the space of tiling choices is visited.
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(b) A is 4× n, B is n× 4.
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(c) x, y are 1× n.
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(e) A is 4× n, B is n× 4.
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(f) A, B are 4× n.
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(g) A is 4× n.
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(h) A0, A1 are n× 4, B is n× 4.

Figure 5.19: Various BLACs. (a): y = Ax; (b): C = AB; (c): y = αx + y; (d):
y = αAx + βy; (e): C = αAB + βC; (f): y = αAx + βBx; (g): α = xT Ay; (h):
C = α(A0 + A1)TB + βC.

84



Chapter 6

Conclusion

Contribution. The work presented in this thesis aims at the automatic gener-
ation of efficient, fixed-size, basic linear algebra code for mobile and embed-
ded processors, starting from a high level mathematical specification of the
computations. For this purpose, we extended the backend of the LGen linear
algebra compiler to support code generation for four additional processors,
namely Intel Atom, ARM Cortex-A8, ARM Cortex-A9, and ARM1176. To
take full advantage of these processors, we added a set of optimizations to
the existent LGen methodology: generic loads/stores, alignment detection,
a new matrix-vector multiplication approach, and specialized codelets (ν-
BLACs) for the NEON-extended ARM processors. The performance impact
of such optimizations was assessed through an extensive set of experiments,
which showed that the code generated by LGen performs better than com-
mercial and non-commercial linear algebra libraries (i.e. Intel MKL and Intel
IPP), linear algebra code generators (i.e. Eigen and ATLAS) and compilers
(i.e. icc, gcc, and clang).

A second contribution of this thesis was the implementation of a web-based
middleware, Mediator, in order to facilitate the simultaneous execution of
experiments on multiple devices by multiple users, under the guarantee that
only one experiment runs at a time per core per device. The features that
Mediator offers include load-balancing over the cores of a device and a mech-
anism for retrieving performance metrics with minimal user involvement.

Limitations and Possible Extensions. An important limitation of the cur-
rent version of LGen is that we can introduce leftovers in at most one level
of tiling (see Section 2.1.3). As we saw in a number of experiments (e.g., Fig.
5.2(a)), this restriction has a direct impact on performance when handling
matrices whose dimensions are of the form aν + b, where a is a prime num-
ber and 0 < b < ν. After applying a first level of ν-tiling on such a matrix,
we cannot apply additional outer levels of tiling, since the choice of any
tile sizes larger than one would require the introduction of further leftovers.
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6. Conclusion

Since LGen typically unrolls inner loops, the absence of such an outer level
of tiling potentially deteriorates the performance of the code generated by
LGen. Our expectation is that the removal of this inherent limitation of LGen
will smoothen the performance curves that we obtain for these experiments.

As we noticed in the experimental results for ARM1176 (see Section 5.5),
applying random search over the tile sizes is not optimal when the search
space is large compared to the sample size. Especially for processors that
do not support any vectorization extension (like ARM1176), the tile sizes
that may possibly be chosen are many and it is highly probable that random
search will not visit the ones that give the best performance. In order to
overcome this issue, LGen could possibly make use of heuristics in order to
prune the search space and/or direct the search towards better choices.

An additional limitation of the current version of the LGen generation ap-
proach is that it tiles under the assumption that all data reside in the L1
cache. In this respect, it applies only two levels of tiling, with the inner
one targeting vectorization and the outer one mainly targeting the reuse of
the contents of registers. This methodology could be extended for larger
matrices by adding more levels of tiling, with sizes that are appropriate for
the higher cache levels. Such an optimization would also require the intro-
duction of intermediate temporary arrays at the boundaries of the different
levels of cache, which could be done by means of the gather and scatter
matrices.

The current approach of LGen for handling memory alignment is the follow-
ing: Code is generated using only unaligned instructions, and only when the
code has taken its final form the alignment detection mechanism is applied
and replaces unaligned instructions with their aligned equivalents. The side-
effects of such an approach are visible in the experiments presented in Fig.
5.9 (see also related discussion in Section 5.2.4). A possible way to face
this limitation would be the introduction of a loop peeling optimization,
similar to the one used by Eigen, aiming at exposing a larger amount of
aligned accesses. Taking arbitrary alignment handling one step further, we
could additionally use a technique similar to the one described in [14], in
order to combine the instructions of consecutive loop iterations and replace
unaligned accesses with aligned ones together with a minimal number of
shuffle operations.

Due to the importance of energy efficiency for embedded processors, an-
other possible extension of LGen could be the introduction of energy-related
metrics in the autotuning feedback loop. Such an endeavour is not trivial,
since it would require the use of additional hardware for measuring these
metrics. Additionally, a methodology similar to the one used in [6] would
be required for isolating the processor power from the power consumed by
the remaining parts of the board (e.g., memory).
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Appendix A

Mediator API

Property Name Property Value Required Default Value Description

Top-level properties
apiVersion string No "1.0" The API version number according to which

the request is expected to be handled.
async string No "True" If "True" then the request will be processed

asynchronously and the client will have to
poll Mediator to get the job results. Oth-
erwise, the request will be processed syn-
chronously (the HTTP connection will be kept
open until the results are readily available)
and Mediator’s response will have the format
specified in Table A.2.

experiments array: Experiment Yes - The list of experiments to be executed.

Experiment properties
compileCommands array: string No [] The list of compilation commands. They will

be executed in a single session in the experi-
mentRootFolder folder of the target device.

device Device Yes - The target device that corresponds to this ex-
periment.

execCommands array: string No [] The list of execution commands. They will
be executed each one in a separate session af-
ter the successful execution of the compilation
commands.

files array: File No [] The list of files that have to be copied to the
target device.

measureArch string No - The microarchitecture code of the target
device, in case the client intends to use
the Mediator’s performance measuring mod-
ules from within the experiment code. If
this property is specified, Mediator will
copy the needed "measure.h" header file
in experimentRootFolder. For more de-
tails about this functionality, see section
4.5. Presently, the possible values for
this property are: "x86", "cortex a8",
"cortex a9", and "arm1176".

measureMetrics array: string No - The list of performance metrics that Media-
tor should measure and return to the client
(see section 4.5 for more details). measureArch
should also be defined containing a valid
value.

outputFiles array: string No [] The list of files (full relative path with respect
to experimentRootFolder required) the contents
of which have to be sent back to the client
after the successful execution of the experi-
ments.
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A. Mediator API

repetitions number No 1 The number of times that each command in
execCommands will be executed. The contents
of outputFiles will be collected for each rep-
etition separately and finally returned to the
client.

Device properties
affinity array: number No [0] A list of cpu affinities that could be used for

the execution of the experiments on the tar-
get device. In case more than one affinities
are specified, Mediator selects the affinity that
has the least number of pending experiments
associated to it (load balancing). For more de-
tails, see section 4.3.

experimentRootFolder string No "/home/<username>/
performance"

The location in the filesystem of the target de-
vice where the experiment will take place.

hostname string Yes - The hostname of the target device.
os string No "LINUX" The operating system of the target device.

Presently the only supported value for this
property is "LINUX".

password string No - The password related to username that will be
used by Mediator to establish the SSH connec-
tion with the target device. If neither rsaKey
nor password is defined, Mediator will try to
connect to the target device using its own pri-
vate RSA key. If both rsaKey and password are
defined, Mediator will try to connect using
rsaKey.

port number No 22 The port of the target device that will be used
for the SSH connection.

rsaKey string No - The private RSA key of the client, that will be
used by Mediator to establish the SSH connec-
tion with the target device. If neither rsaKey
nor password is defined, Mediator will try to
connect to the target device using its own pri-
vate RSA key. If both rsaKey and password are
defined, Mediator will try to connect using
rsaKey.

rsaKeyPass string No "" The passphrase that is needed to decrypt the
RSA key.

type string No "SSH DEVICE" The type of the target device (only the value
"SSH DEVICE" is presently supported).

username string No spirals The username that Mediator will use to con-
nect to the target device through SSH.

File properties
binary string No "False" Signifies whether the file is binary or not.
contents string Yes - The contents of the file to be created on the

target device.
encoding string No "utf8" The encoding of contents. Presently the sup-

ported encodings are "utf8" for text files
(e.g., source code) and "base64" for binary
files (e.g., executables).

executable string No "False" Signifies whether the file is executable or not.
path string Yes - The path of the file that is going to be cre-

ated on the target device, relative to experi-
mentRootFolder (filename included).

Table A.1: Format of a new job request sent to Mediator.
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Property Name Property Value Description

Top-level properties
apiVersion string The API version number according to which the corresponding new job re-

quest was processed.
data array: ExperimentResults The list of experiment results. Each element of the list corresponds to a

specific experiment. The order of experiments in the corresponding new job
request is preserved here. The existence of this property signifies that there
was no error related to the request as a whole (e.g., parsing errors due to a
badly formatted request). The existence of this property is mutually exclusive
with the existence of the property error.

error Error The existence of this property signifies that there was an error processing the
request as a whole. The existence of this property is mutually exclusive with
the existence of the property data.

ExperimentResults properties
deviceHostname string The value of this property is the same as the value of the homonymous prop-

erty in the corresponding new job request.
error Error The existence of this property signifies that there was some error during the

execution of this experiment. More information about the error can be found
by inspecting the values of the subproperties of this property. The existence of
this property is mutually exclusive with the existence of the property results.

output string The output of compilation and execution of this experiment (useful for de-
bugging in case of errors).

repetitions number The value of this property is the same as the value of the homonymous prop-
erty in the corresponding new job request.

results array: execCommandResults The list of results for each execution command specified for this experiment.
The existence of this property implies that there was no error during the exe-
cution of this experiment. The existence of this property is mutually exclusive
with the existence of the property error.

execCommandResults properties
execCommand string The command that this execCommandResults entity is associated with.
execResults array: FileResults The list of output file contents for this experiment and execution command.

Each element in this list corresponds to a single repetition.
exitCodes number The list of exit codes for this experiment and execution command. Each

element of this list corresponds to a single repetition.

FileResults properties
fileContents array: string The contents of outputFile for each repetition of this execution command of

this experiment.
outputFile string The name of the output file.

Error properties
code number The error code. A list of all error codes can be found in Table A.5.
message string A textual description of the error, possibly providing information about how

to solve the related issue.
reason string The name of the error. A list of all error reasons can be found in Table A.5.

Table A.2: Format of a job results response received from Mediator.

Property Name Property Value Required Default Value Description

Top-level properties
apiVersion string No "1.0" The API version number according to which the re-

quest is expected to be handled.
jobID string Yes - The id of the job, whose results the client is querying

for.

Table A.3: Format of a job results request sent to Mediator.
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Property Name Property Value Description

Top-level properties
apiVersion string The API version number.
data array: ExperimentResults Same as in Table A.2. This property exists only if the value of jobState is

FINISHED.
jobID string The unique identifier of the job. Currently it is a long hexadecimal number

that Mediator generates after receiving an asynchronous new job request, by
applying the SHA-1 hash function on a randomly generated 256-bit number.

jobState string The current state of the job. Possible values for this property are: SUBMITTED,
NOT FOUND, PENDING, and FINISHED, each with the obvious semantics.

Table A.4: Format of job status response received from Mediator.

Code Reason Description
400 BadRequest Badly formatted request.
401 SSHAuthenticationError Invalid SSH credentials.
405 InstructionExecutionError The execution of an instruction through SSH produced an error (see accompanying message

for more details).
406 SSHError General SSH Error (see accompanying message for more details).
408 InstructionTimeoutError The execution of an instruction over SSH took a very long time.
500 InternalError A server error that the user shouldn’t know anything specific about.

Table A.5: List of Mediator’s API errors.
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Appendix B

Complete Set of Experimental Results

In the following sections we present the results of the complete set of exper-
iments that we executed on each of the four processors investigated for the
purpose of this thesis. Some of them have already been presented in chapter
5, but they are also included here for the sake of completeness.

B.1 Intel Atom
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B. Complete Set of Experimental Results
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(b) A is 4× n.
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(c) A is n× 4, B is 4× 4.
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(d) A is 4× 4, B is 4× n.
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(e) A is 4× n, B is n× 4.
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(f) A is n× 4, B is 4× n.

Figure B.1: Simple BLACs. (a)-(b): y = Ax; (c)-(f): C = AB.
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B.1. Intel Atom
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(a) x, y are 1× n.
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(b) A is n× 4.
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(c) A is 4× n.
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(d) A is 30× n.
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(e) A is n× 4, B is 4× 4.
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B. Complete Set of Experimental Results
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(f) A is 4× 4, B is 4× n.

2 120 238 356 474 592 710 828 946
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Performance [f/c]

(g) A is 4× n, B is n× 4.
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(h) A is n× 4, B is 4× n.
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(i) A is 30× n, B is n× 30.

Figure B.2: BLACs that closely match BLAS. (a): y = αx + y; (b)-(d): y =
αAx + βy; (e)-(h): C = αAB + βC.
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(a) A, B are n× 4.
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B.1. Intel Atom
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(b) A, B are 4× n.

2 200 398 596 794 992 1190
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Performance [f/c]

(c) A is n× 4.
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(d) A is 4× n.
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(e) A0, A1 are 4× n, B is 4× 4.
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(f) A0, A1 are 4× 4, B is 4× n.
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(g) A0, A1 are n× 4, B is n× 4.
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B. Complete Set of Experimental Results
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(h) A0, A1 are 4× n, B is 4× n.
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(i) A0, A1 are n× 30, B is n× 30.

Figure B.3: BLACs that require more than one BLAS call. (a)-(b): y = αAx +
βBx; (c)-(d): α = xT Ay; (e)-(i): C = α(A0 + A1)TB + βC.
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(a) y = Ax.
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(b) C = AB.
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(c) α = xT Ay.

Figure B.4: Micro-BLACs. All matrices have size n× n.
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B.2 ARM Cortex-A8
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(a) A is n× 4.
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(b) A is 4× n.
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(c) A is n× 4, B is 4× 4.
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(d) A is 4× 4, B is 4× n.
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(e) A is 4× n, B is n× 4.

97



B. Complete Set of Experimental Results

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Performance [f/c]

(f) A is n× 4, B is 4× n.

Figure B.5: Simple BLACs. (a)-(b): y = Ax; (c)-(f): C = AB.
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(a) x, y are 1× n.
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(b) A is n× 4.
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(c) A is 4× n.
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B.2. ARM Cortex-A8
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(d) A is 30× n.
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(e) A is n× 4, B is 4× 4.
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(f) A is 4× 4, B is 4× n.
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(g) A is 4× n, B is n× 4.
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(h) A is n× 4, B is 4× n.
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(i) A is 30× n, B is n× 30.

Figure B.6: BLACs that closely match BLAS. (a): y = αx + y; (b)-(d): y =
αAx + βy; (e)-(h): C = αAB + βC.
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B. Complete Set of Experimental Results
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(a) A, B are n× 4.
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(b) A, B are 4× n.
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(c) A is n× 4.
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(d) A is 4× n.

2 120 238 356 474 592 710 828 946
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Performance [f/c]

(e) A0, A1 are 4× n, B is 4× 4.
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B.2. ARM Cortex-A8
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(f) A0, A1 are 4× 4, B is 4× n.
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(g) A0, A1 are n× 4, B is n× 4.
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(h) A0, A1 are 4× n, B is 4× n.
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(i) A0, A1 are n× 30, B is n× 30.

Figure B.7: BLACs that require more than one BLAS call. (a)-(b): y = αAx +
βBx; (c)-(d): α = xT Ay; (e)-(i): C = α(A0 + A1)TB + βC.
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(a) y = Ax.
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B. Complete Set of Experimental Results
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(b) C = AB.
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(c) α = xT Ay.

Figure B.8: Micro-BLACs. All matrices have size n× n.
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(a) A is M× K, B is K× N; M, K, N take values
from within [1, 4], such that MK > 1 and KN >
1.
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(b) A is 100× n, B is n× n.
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Figure B.9: C = AB with a large percentage of leftovers.
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B.3 ARM Cortex-A9
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(a) A is n× 4.
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(b) A is 4× n.
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(c) A is n× 4, B is 4× 4.
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(d) A is 4× 4, B is 4× n.
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(e) A is 4× n, B is n× 4.
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B. Complete Set of Experimental Results
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(f) A is n× 4, B is 4× n.

Figure B.10: Simple BLACs. (a)-(b): y = Ax; (c)-(f): C = AB.
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(a) x, y are 1× n.
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(b) A is n× 4.
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(c) A is 4× n.
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B.3. ARM Cortex-A9

2 16 30 44 58 72 86 100
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

Performance [f/c]

(d) A is 30× n.
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(e) A is n× 4, B is 4× 4.
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(f) A is 4× 4, B is 4× n.
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(g) A is 4× n, B is n× 4.
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(h) A is n× 4, B is 4× n.
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(i) A is 30× n, B is n× 30.

Figure B.11: BLACs that closely match BLAS. (a): y = αx + y; (b)-(d): y =
αAx + βy; (e)-(h): C = αAB + βC.
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B. Complete Set of Experimental Results
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(a) A, B are n× 4.

2 200 398 596 794 992 1190
n [Float]

0.0

0.5

1.0

1.5

2.0

2.5

Performance [f/c]
LGen - Full
Handwritten fixed (gcc)
Handwritten gen (gcc)
Handwritten fixed (clang)
Handwritten gen (clang)
Eigen-3.2.0
Atlas-3.10.1

2 200 398 596 794 992 1190
n [Float]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Performance [f/c]

(b) A, B are 4× n.
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(c) A is n× 4.
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(d) A is 4× n.
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(e) A0, A1 are 4× n, B is 4× 4.
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(f) A0, A1 are 4× 4, B is 4× n.
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(g) A0, A1 are n× 4, B is n× 4.
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(h) A0, A1 are 4× n, B is 4× n.
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(i) A0, A1 are n× 30, B is n× 30.

Figure B.12: BLACs that require more than one BLAS call. (a)-(b): y =
αAx + βBx; (c)-(d): α = xT Ay; (e)-(i): C = α(A0 + A1)TB + βC.
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(a) y = Ax.
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B. Complete Set of Experimental Results
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(b) C = AB.
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(c) α = xT Ay.

Figure B.13: Micro-BLACs. All matrices have size n× n.
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(a) A is M× K, B is K× N; M, K, N take values
from within [1, 4], such that MK > 1 and KN >
1.
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(b) A is 100× n, B is n× n.
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Figure B.14: C = AB with a large percentage of leftovers.
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B.4 ARM1176
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(a) A is n× 4.
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(b) A is 4× n.
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(c) A is n× 4, B is 4× 4.
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(d) A is 4× 4, B is 4× n.
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(e) A is 4× n, B is n× 4.
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B. Complete Set of Experimental Results
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(f) A is n× 4, B is 4× n.

Figure B.15: Simple BLACs. (a)-(b): y = Ax; (c)-(f): C = AB.
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(a) x, y are 1× n.
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(b) A is n× 4.
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(c) A is 4× n.
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(d) A is n× 4, B is 4× 4.
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(e) A is 4× 4, B is 4× n.
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(f) A is 4× n, B is n× 4.
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(g) A is n× 4, B is 4× n.

Figure B.16: BLACs that closely match BLAS. (a): y = αx + y; (b)-(c): y =
αAx + βy; (d)-(g): C = αAB + βC.
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(a) A, B are n× 4.
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(b) A, B are 4× n.
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(c) A is n× 4.
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(d) A is 4× n.
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(e) A0, A1 are 4× n, B is 4× 4.
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(f) A0, A1 are 4× 4, B is 4× n.
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(g) A0, A1 are n× 4, B is n× 4.
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(h) A0, A1 are 4× n, B is 4× n.

Figure B.17: BLACs that require more than one BLAS call. (a)-(b): y =
αAx + βBx; (c)-(d): α = xT Ay; (e)-(h): C = α(A0 + A1)TB + βC.

2 4 6 8 10
n [Float]

0.0

0.1

0.2

0.3

0.4

0.5

Performance [f/c]

(a) y = Ax.
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(b) C = AB.
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(c) α = xT Ay.

Figure B.18: Micro-BLACs. All matrices have size n× n.
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