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Abstract

Empirical search is a strategy used during the installation of
library generators such as ATLAS, FFTW, and SPIRAL to iden-
tify the algorithm or the version of an algorithm that delivers the
best performance. In the past, empirical search has been applied
almost exclusively to scientific problems. In this paper, we dis-
cuss the application of empirical search to sorting, which is one
of the best understood symbolic computing problems. When con-
trasted with the dense numerical computations of ATLAS, FFTW,
and SPIRAL, sorting presents a new challenge, namely that the rel-
ative performance of the algorithms depend not only on the char-
acteristics of the target machine and the size of the input data but
also on the distribution of values in the input data set.

Empirical search is applied in the study reported here as part
of a sorting library generator. The resulting routines dynamically
adapt to the characteristics of the input data by selecting the best
sorting algorithm from a small set of alternatives. To generate the
run time selection mechanism our generator makes use of machine
learning to predict the best algorithm as a function of the charac-
teristics of the input data set and the performance of the different
algorithms on the target machine. This prediction is based on the
data obtained through empirical search at installation time.

Our results show that our approach is quite effective. When
sorting data inputs of 12M keys with various standard deviations,
our adaptive approach selected the best algorithm for all the input
data sets and all platforms that we tried in our experiments. The
wrong decision could have introduced a performance degradation
of up to 133%, with an average value of 44%.

1 Introduction

One of the most serious difficulties in the implementation of
effective code generators is the lack of a comprehensive method-
ology to drive optimization transformations. There is still much to
be learned about how to identify the program transformations that
should be applied to obtain the best performance on a particular
target machine. The difficulty increases when runtime adaptation
techniques are applied to improve performance by taking into ac-
count the characteristics of the input data set.
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In this paper, we present and evaluate a strategy for the auto-
matic generation of sorting libraries that involves static and dy-
namic tuning to obtain the best possible performance. Our library
generator, like most other experimental library generators has an
installation phase which uses empirical search [5, 12] to identify
from a set of algorithms and versions of algorithms the one that
that performs best on the machine where the library is being in-
stalled. Typically, empirical search generates different versions of
one or more algorithms and executes them on the target machine.
By measuring execution time, empirical search identifies the best
version.

Three well known library generators are ATLAS [12],
FFTW [3], and SPIRAL [13]. SPIRAL and FFTW generate signal
processing libraries. They use empirical search to select an opti-
mal FFT formula. ATLAS generates linear algebra routines. The
kernel of ATLAS is matrix multiplication. During the installation
phase, ATLAS uses empirical search to identify the best version of
a tiled matrix multiplication algorithm. These versions are deter-
mined by the parameters of a few transformations, including tiling
and unrolling. For the numerical algorithms implemented by the
three generators just mentioned, the best shape is usually deter-
mined by the characteristics of the target machine and the size of
the input data, and not by the characteristics of the input. In con-
trast, the performance of many sorting algorithms is influenced by
the distribution of the values to be sorted. Therefore, code that dy-
namically adapts to the characteristics of the input has a significant
advantage.

In this project, we faced two main difficulties. One was the
lack of a precise formulation of the impact of memory hierarchy
on the performance of the different sorting algorithms. The perfor-
mance of sorting algorithms has usually been studied assuming a
flat memory although in today’s computers the memory hierarchy
has a significant impact on performance. The second difficulty, al-
ready mentioned, was that the characteristics of the input data set
impacts the performance of the sorting algorithm. Most sorting
algorithms do not adjust to the input data set and pure algorithms
such as radix sort and quicksort are not optimal for all possible in-
puts. For example, as will be shown below, multiway merge sort
performs very well on some data sets where radix sort performs
poorly and vice versa.

We take into account the first one of these difficulties by in-
cluding in the set of algorithms that can be selected at run time
a memory-hierarchy-conscious sorting algorithm based on multi-
way merge sort. Using empirical search, this algorithm is adjusted
by our library generator to the memory hierarchy of the target ma-
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chine from the register level to the L2 cache. To deal with the effect
of the input data set, we propose a runtime adaptation mechanism
that selects a sorting algorithm from a set that includes quicksort,
our version of multiway merge sort, and a radix-based sorting al-
gorithm [4]. For this runtime adaptation we use a machine learn-
ing strategy applied in combination with empirical search which,
as will be seen below, is quite effective in the identification of the
best strategy in each case. The techniques developed for the auto-
matic generation of a non-numerical algorithm and the application
of machine learning for runtime selection are the two most im-
portant contributions of this work. No previous study has tried
to dynamically identify which is the best sorting algorithm based
on the characteristics of the input data and the architecture of the
machine.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce several sorting algorithms including a fast
radix-based sorting algorithm and our memory hierarchy con-
scious sorting algorithm. Section 3 presents the factors that affect
the performance of several of the sorting algorithms discussed in
Section 2. In Section 4, we discuss the installation phase of our
library generator and the runtime mechanism we use to select one
of the algorithm candidates. In Section 5, we present our experi-
mental results. Finally, concluding remarks are given in Section 6.

2 Sorting Algorithms

Sorting is one of the topics that has been studied most exten-
sively in Computer Science. A large number of sorting algorithms
have been proposed and their asymptotic complexity, in terms of
the number of comparisons or number of iterations, has been care-
fully analyzed [6]. In the recent past, there has been a growing
interest on improvements to sorting algorithms that do not affect
their asymptotic complexity but nevertheless improve performance
by enhancing data locality [4, 7, 8]. The algorithms resulting from
these improvements have been called cache-conscious.

As mentioned in the introduction, the main focus of this paper
is the study of strategies for the optimization of sorting algorithms:
empirical search to determine the best form of the algorithm and
the use of characteristics of the input data to select the best algo-
rithm at run time. Our runtime selection process makes use of the
number of records to sort and a characteristic of the distribution of
the keys, called entropy, that we define in Section 4.

Figure 1 illustrates the type of studies conducted in the past
to compare sorting algorithms. Figure 1 shows the execution
time of three sorting algorithms: quicksort (Quicksort), multi-
way merge sort (Multiway merge), and a cache-conscious radix
sort(CC-radix) when applied to data with three different distribu-
tions (Uniform, Normal and Exponential). In the figure, the num-
ber of keys to sort increases from 128K to 16M keys and the stan-
dard deviation remains constant to a value of 512K. The keys are
32 bit integers. Results are shown for an Intel Pentium III Xeon
platform. The figure shows that the relative behavior of the algo-
rithms does not change with the number of keys or the distribution.
A different perspective is obtained from Figure 2, where the exe-
cution time is plotted against the standard deviation. Results are
shown for two platforms:Intel Pentium III Xeon and Sun Ultra-
Sparc III. For each platform, 2M (figures on the left column) and

16M (figures on the right column) keys are sorted. As Figure 2
shows, the standard deviation and the number of keys to sort has a
significant impact on the relative performance of the different sort-
ing algorithms. As Figure 1 shows, evaluating the performance of
the different algorithm as a function only of the number of keys
usually leads to the conclusion that a particular algorithm is the
best across the board. This approach does not take into account
that, as Figure 2 shows, the relative performance of the different
sorting algorithms also depends on the standard deviation of the
input data. As it will be shown later, the general trend of each
algorithm is the same for all the platforms we considered. For
example, as shown in Figure 2, the execution time of CC-radix
sort decreases as the standard deviation increases. However, the
cross-point is different in each platform. Before we explain our
approach, we present some of the implementation details of the
baseline algorithms that we have selected to include in our library.
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Figure 1. Effect of the distribution and number of keys
on the performance of sorting algorithms

In this work, we use versions of quicksort, radix sort, and mul-
tiway merge sort as the main alternatives from where the runtime
selection will be made. We also considered heap sort and merge
sort, but we found that in none of the cases we evaluated either of
these two algorithms performs better than the best of the first three
algorithm. Quicksort and multiway merge sort are comparison-
based algorithms, while radix sort is a radix-based algorithm. Our
experiments also show that insertion sort and sorting networks can
sort small amounts of data very efficiently because they can exploit
the locality in the cache or at the register level. These two algo-
rithms are used in conjunction with the other three algorithms as
will be described below. Throughout the remainder of this section,
we will assume that the records to be sorted contain only the key
and that these keys are of fixed length.

2.1 Quicksort

Quicksort is an in-place divide-and-conquer algorithm. The al-
gorithm is based on a partition procedure which, given a set of
records stored in consecutive locations, chooses a key as a pivot
and rearranges the records in such a way that the record contain-
ing the pivot is placed in its final position, the records with keys
smaller than or equal to the pivot are placed before the pivot, and
the records with larger keys are placed after the pivot. The algo-
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Figure 2. The effect of the standard deviation on the performance of the sorting algorithms. Plots on the left column
correspond to 2M keys, while plots on the right column correspond to 16M keys.

rithm recursively works on the region to the left of the pivot and
on the region to its right.

Sedgewick [11] suggested several optimizations to Quicksort
that we implemented for this study: 1) place a value bigger than
the pivot on the rightmost position of the vector and a value smaller
than the pivot on the leftmost position to avoid having to check the
vector index at each step; 2) proceed iteratively rather than recur-
sively; 3) use the median of the first, the middle and the last keys
as the pivot; 4) use insertion sort for small partitions. Sedgewick
suggests not to sort immediately ”small” unsorted partitions gen-
erated by quicksort, but to do it at a final pass that applies insertion
sort to the whole vector of records. We implemented this last op-
timization as one of the alternatives to be evaluated by empirical
search.

One of the advantages of Quicksort is that it does not require
additional data structures for sorting, since the sorting is done in-
place on the input vector of records. The number of comparisons
executed by Quicksort is on the average O(N log,(IN)), where
N is the number of keys to sort. Quicksort has the best average
execution time although its worst case can be O(N?).

2.2 A Cache-Conscious Radix Sort

Radix sort is the most important non-comparison algorithm [4].
If the keys to be sorted are b-bit integers and the radix sort al-
gorithm uses radix 2", the b bits representing an element can be
viewed as a set of [b/r] digits of r bits each. The algorithm pro-
ceeds in [b/r] phases. The ith phase sorts the key on the value of
the ith radix 2" digit of the keys. The keys are totally sorted after
[b/r] phases.

For radix sort we use the implementation of Jiménez et al [4].
To sort the keys in each phase, their implementation relies on a
counting algorithm [6] that proceeds in three steps for each phase.
First, a vector containing the histogram of the number of records
with each value of the digit is computed. Thus, during phase i, the
first step computes vector element v () which contains the number
of keys whose ith digit s equal to j with 0 < 57 < 2" — 1. Next,
an accumulation step computes the partial sum E?:o v(g) with
0 < k < 2" — 1. Finally, a movement step reads the records from
the original vector S and moves them to a destination vector. The
position where a key is written in the destination vector is indicated
in the partial sums for each value of the digit to be sorted. Once a
key is moved from the original vector to the destination vector, the
corresponding counter is incremented. The original vector and the
destination vector interchange their roles in consecutive phases.

The complexity of radix sort is only O(N), where N is the
number of keys to sort. Thus, the main advantage of radix is in
the number of instructions it executes. It has, however, the disad-
vantage that its data locality is not very good. To overcome this
problem, Jiménez et al [4] have proposed a cache-conscious radix
sort (CC-radix sort) algorithm shown in Figure 3.

CC-radix sort recursively checks if the data structures to sort
the keys (the original vector of records, the destination vector, and
the counters) fit in the cache. If they do, the simple radix sort
algorithm is used. If, however, the data structures do not fit in the
cache, the algorithm partitions the bucket into sub-buckets using
reverse sorting. In reverse sorting, a bucket is partitioned using
the highest order digit of the key that has not been used yet to
partition the data. Keys in each sub-bucket are later sorted using a
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CC-radix(bucket)

if fits_in_cache (bucket) then
Radix_sort (bucket)
else
sub-buckets = Reverse_sorting(bucket)
for each sub-bucket in sub-buckets
CC-radix(sub-buckets)
endfor
endif

Figure 3. Pseudocode for CC-radix

simple radix sort by all the lower order digits, but the sub-buckets
are already sorted with each other by the higher order digits that
were used to create them.

Other implementation details of Jiménez’s implementation of
CC-radix sort (which is the one that we use in our experiments)
are: 1) proceed iteratively instead of recursively; 2) compute the
histogram of all the digits of a bucket the first time that radix sort
is applied. This reduces the amount of reads of the bucket al-
though it requires as many vectors of counters as digits remain
to sort in the corresponding bucket; 3) set the number of bits ,r,
that determine the radix 2" for all reverse sorting instances so that
r < log, St — 1, where St p is the number of the TLB en-
tries. The reason for this constraint is as follows. Assume that the
number of keys to be sorted is larger than the memory that can be
represented at a given time in the TLB, and that the values of the
digits are uniformly distributed. Then, if » > log, StrB — 1, the
addresses of the 2" buckets could not be represented in the TLB at
the same time. Since locality in the values of a digit is not to be
expected, the number of TLB misses could be high.

2.3 Multiway Merge Sort

In multiway merge sort the keys are partitioned into p subsets,
which are sequences that are sorted during a first phase. In our ex-
periments, the subsets were sorted using CC-radix sort. The sub-
sets are merged using a heap or priority queue [6]. At the begin-
ning, the leaves in the heap are the first elements of all the subsets.
Then, during a second phase, pairs of leaves are compared and the
larger/smaller is promoted to the parent node, and a new element
from the subset of the promoted element becomes a leave. This is
done recursively until the heap is full. After that, the element in
the top of the heap is extracted, placed in the destination vector,
a new element from the corresponding subset is promoted and the
process is repeated. Figure 4 shows a picture of the heap.

The heap contains (2 % p — 1) nodes. Each node contains a key,
and a pointer to the subset where the key comes from. In addition
to the heap, this algorithm requires a source vector and a destina-
tion vector. This algorithm exploits data locality very efficiently.
Notice that during the first phase the only elements that need to be
in cache are the records in each subset. During the second phase,
only the nodes in the heap (2 * p — 1) need to be in memory. Once
an element has been sorted using the heap and moved to the des-
tination vector, it will not be accessed again. The total number of
operations is proportional to N * log2 (2 * p — 1).

Heap

vt [ ][]
i P s
Sorted| |Sorted Sorted| |Sorted
Subset| |Subset| Subset| |Subset|

Figure 4. Multiway merge sort.

2.4 Insertion Sort

When the number of keys to sort is small, an algorithm that is
known to be very efficient is insertion sorting. For each key K (%)
in the vector to be sorted from left to right, the algorithm scans
through the keys to the left of K (¢) and inserts the key into place
by successively moving keys that are bigger than K (z) up to make
room.

This algorithm was used in our experiments after the recursive
partitions of quicksort or CC-radix sort have produced unsorted
sequences with a small number of elements. This algorithm can be
very fast for small number of elements. The number of operations
in the best case (when keys are in the right order) is proportional
to O(N), the worst case (when keys are in the reverse order) is
proportional to O(N?)

2.5 Sorting Networks

Sorting networks can also be used to sort small amount of data
in the small partitions left by quicksort o CC-radix sort. The net-
work is implemented in software by performing in sequence each
layer of the network on processor registers. This algorithm can
perform better than insertion sort since sorting networks have a
fixed complexity of O(N log, V), as opposed to the worst case of
O(N?) for insertion sort. There are other sorting algorithms that
also have a complexity of O (N log, V), but sorting networks are
more appropiate to handle small partitions. Figure 5-(a) shows a
diagram of a sorting networks similar to those used by Knuth [6],
and Figure 5-(b) shows the corresponding code to sort eight ele-
ments.

3 Factors

The performance of a sorting algorithm depends on architec-
tural factors such as cache size, cache line size, and number of
registers. Performance also depends on characteristics of the in-
put data that are only known at run time like the number of keys
to be sorted, the degree to which the keys are already sorted, and
the distribution of the values of the keys. The relation between
architectural and input data factors and the values of an algorithm
parameters (e.g. height of the heap in multiway merge sort) is
usually complex. As discussed in the next section, in this study
we used empirical search to determine the value of the algorithm
parameters. In other words, our system tries during installation
different shapes of the sorting algorithms on the machine where
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Figure 5. Sorting Network.(a)-Diagram of a sorting net-
work. (b)-Code corresponding to (a). (c)-Code equiva-
lent to (b), but with a different scheduling.

the library is to execute using input data sets with different charac-
teristics. By measuring execution time it identifies the best values
for the parameters that determine the shape of the algorithms. The
values of some of these parameters are only a function of the target
machine, while other parameters depend on the characteristics of
the input data set and therefore the value of these parameters can
only be decided at runtime, once the data to be sorted is known. It
is not always obvious which parameters can be decided statically
and which are a function of the input data.

The architectural and input data characteristics influence the
parameters through empirical search. Much of this search could be
avoided if we could express the values of the algorithm parameters
as expressions of values of the architectural features as we did for
the ATLAS system [14], but this has not been accomplished and
remains an open problem.

3.1 Architectural Factors

In this section we discuss three architectural factors: cache size,
the number of registers, and the size of the cache line.

3.1.1 Cache Size

A well-known transformation that has been used to enhance
data locality of numerical computations is loop tiling. This
transformation divides the (multi-dimensional) iteration space into
smaller blocks or tiles with the goal of maximizing data reuse by
ensuring that each tile fits in the data cache and by reordering the
computation so that several accesses to the same tile are executed
consecutively [2].

Tiling can also be applied to sorting algorithms by partitioning
the data in such a way that the subset of data to sort fits in the
cache. We discuss next how tiling can be incorporated into each
sorting algorithm considered by our library generator. Notice that,

to simplify the discussion, what we call the data includes the keys
plus the auxiliary data structures that each algorithm requires.
Quicksort. Lamarca et al [7] evaluate a memory-optimized ver-
sion of quicksort that they call multi-quicksort. When the num-
ber of keys to sort is larger than the cache size, multi-quicksort
uses several pivots to divide the set of keys into subsets which are
likely to fit in the cache. The main challenge in this algorithm is
to choose the pivots to maximize the probability that most subsets
would fit in the cache. A drawback is that multi-quicksort cannot
be done efficiently in-place and executes more instructions that the
base quicksort. The results in [7] show that the execution times
of multi-quicksort and our implementation of quicksort, which is
based on Sedgewick’s proposed optimizations, are very close even
for large data sets. Thus, we did not implement multi-quicksort.

One of the optimizations proposed by Sedgewick has a nega-
tive effect on cache locality and therefore it could be better not
to apply it in some cases. This optimization consists in ignoring
small partitions while executing quicksort and applying insertion
sort over the whole set of the elements at the very end. This opti-
mization eliminates the overhead of calling the insertion sort pro-
cedure during the recursion, and as a result, it reduces the number
of executed instructions. However, sorting these small partitions
as they appear during the recursion procedure, reduces the number
of cache misses because the elements to be sorted are already in
the cache [7]. Since it is not clear which of these two strategies
results in a lower execution time, we try both optimizations when
installing our library and choose the one that results in best perfor-
mance. By empirical search the installation phase determines the
size of the partitions to which insertion sort should be applied.
CC-radix. The CC-radix algorithm exploits data locality by par-
titioning the data into subsets that fit in the cache. When the set
of data to sort is larger than the cache size, CC-radix partitions the
data until the bucket fits into the cache. This reduces the number
of cache misses, although it requires the execution of more instruc-
tions.

Remember that the radix for the partitioning (or reverse sorting)

is chosen so that r < log, Stz — 1, where St B is the number
of the TLB entries. While this solves the TLB problem, it may
force CC-radix to perform a large number of partitions or reverse
sorting steps for large data sets, if log, ST p is small.
Multiway merge. The multiway merge sort algorithm exploits
data locality in a very natural way. It partitions the IV keys to sort
into p subsets, each containing N/p keys. These subsets are sorted
using CC-radix. Then a heap of size (2 * p — 1) is used to sort the
keys across subsets. When the number of keys to sort is too large,
the algorithm could be applied recursively, but we did not do this
in the experiments reported in this paper.

To exploit data locality the value of p should be chosen in such
a way that the data sets of size N/p and (2 * p — 1) in the cor-
responding phases fit in the cache. Choosing a value for p that
meets the above conditions would reduce the miss ratio. However,
we know that the number of operations executed by the heap sort,
the CC-radix and quicksort algorithms used in the multiway merge
depends on the characteristics of the data to sort. Our final goal is
to improve performance not just to minimize cache misses. Our
experiments have shown that the best value of p does not only de-
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pend on the size of the cache but also on the characteristics of the
input data.

Finally, notice that there have been many studies by the com-
piler community on estimating good tile sizes in the context of
general purpose compilers, especially for numerical computing.
However, the tile size is in general easier to determine for numer-
ical computations than for sorting. For example, in the case of
matrix multiplication the total number of arithmetic operations is
practically not affected by the size of the tile. Therefore, the tile
size can be chosen just by taking into account the number of cache
misses, and as a result, the tile size can be obtained by empirical
search when a library is being installed [12] or just by evaluating
an expression involving the cache size [14]. However, as we have
just outlined,this cannot be done for sorting algorithms because
their performance depends on the characteristics of the input data.

3.1.2 Number of Registers

The registers are the highest level of the memory hierarchy.
When the number of keys to sort is very small, the sorting opera-
tion could be partitioned into tiles that are sorted in place using the
processor registers. Figure 5-(b) shows the resulting code when
register tiling is applied to a sorting network algorithm that sorts
eight elements. Figure 5-(c) shows the same example, but in this
case the code has been scheduled so that instructions accessing the
same element have at least one independent instruction in between.

The code implementing register tiling should be called when
a partition is smaller than a certain threshold. This threshold de-
pends on the number of registers that are available to the program-
mer. If this program is written in high-level language, this number
could be further restricted by the compiler. This number is dif-
ficult to determine and therefore we use empirical search when
installing the library to obtain this threshold parameter. Further-
more, for each threshold value, we search for the schedule that ob-
tains the best performance by varying the number of independent
instructions that are placed between two dependent instructions.

Finally, notice that some architectures have special devices that
can be used for sorting. This is the case of some Intel machines,
which have a stack of processor registers and the corresponding
instructions to handle the stack. In this case, the compiler may
translate the compare and exchange instructions into the stack in-
structions. In this case, the performance of the stack, instead of the
number of registers, will determine the performance.

3.1.3 Cache Line Size

When several data elements fit in the same cache line, we may
reduce cache misses if, when we access an element, we subse-
quently access the rest of elements in the cache line. This way we
are exploiting spatial locality. Sorting algorithms that scan the data
like insert sort or quicksort have high spatial locality, and result in
a high cache line utilization. Algorithms like CC-radix sort, ex-
ploit this spatial locality when reading the source vector, but not
when writing the keys into the destination vector.

In the case of the multiway merge sort, the heap is implemented
as an array of nodes where siblings are located in consecutive array
elements. When sorting using the heap, there are some operations
that execute frequently. One of these operations searches for the

child with the largest/smallest key. Thus, if the number of chil-
dren of each parent is smaller than the number of nodes that fit in
a cache line, the cache line will be under-utilized. For this reason,
we use a heap with a fanout of A/r, that is, each parent has A/r
children, where A is the size of the cache line and r is the size of
each node. Figure 6 shows a heap where each parent has 4 chil-
dren, what would result in maximum cache line utilization when
the cache line has for example 32 bytes and each node has 8 bytes.
Of course, for this to be true, the array structure implementing the
heap needs to be properly aligned.

} Cache line

~ @~ ~

Cache line

Cache line

Figure 6. Fill as many as possible child nodes into a
cache line.

3.2 Input Data Factors

When evaluating the performance of a sorting algorithm, most
studies only consider the algorithm complexity of the average and
the worst case for the uniform distribution [6]. However, this may
not suffice for the selection of the best sorting algorithm for a par-
ticular data set. In the past, the number of keys to sort has been
typically used to decide the algorithm to apply, but other charac-
teristics of the input data are usually ignored. Next, we discuss the
characteristics of the input data that we have found to affect the
performance of the sorting algorithms.

3.2.1 Number of keys to sort

One factor could be the number of keys to sort, although as
described in the introduction, when considered by itself, it does
not affect the relative performance of the sorting algorithms we
considered.

3.2.2 Distribution of the input data

One of the statistical properties that determines how data are
spread out is the distribution. Most of previous studies that have
worked on sorting algorithms have only considered uniform distri-
bution. However, other distributions are also important. For exam-
ple, in the TPC-H database benchmark [1] the exponential and the
uniform distribution are used to generate the database. Figure 1
shows the execution time of quicksort, CC-radix and multiway
merge with three distributions: normal, uniform and exponential.
The standard deviation is constant. As it can be seen, the distribu-
tion does not seem to affect much the performance of the different
algorithms in the platform shown. In most cases, differences are
within 15%. Experiments in other platforms produced the same
results.
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3.2.3 Standard Deviation

Another property is the standard deviation. Figure 2 shows the
effect of standard deviation in performance. The keys were gen-
erated using a normal distribution. The Figure shows that the ex-
ecution times of the different algorithms change with the standard
deviation. For 2M keys we see that, for small values of standard
deviation quicksort is the best algorithm. For large values of stan-
dard deviation, CC-radix sort is the best. However, for 16M keys,
the best algorithm for small values of standard deviation is multi-
way merge. CC-radix sort is also the best one for 16M keys as the
standard deviation increases.

Let us see why the performance of CC-radix sort depends on
the value of standard deviation. CC-radix sort partitions the data
in each bucket that does not fit into the cache. If the values of the
elements in the input data are concentrated around some values, it
is more likely that most of these elements end up in a small number
of buckets. Thus, more partitions will have to be applied before the
buckets fit into the cache. On the other hand, when the elements
are spread out, values will be distributed among the buckets and
fewer partitions will be necessary to fit the buckets in the cache,
and as a result CC-radix sort will perform better.

Finally, besides the normal distribution that we used to gen-
erate the experiments in Figure 2, we also tried exponential and
uniform distributions with different numbers of keys and standard
deviations, but we did not see variations in the execution times.

Thus, from our experimental results we consider that the char-
acteristics of the input data that determine the behavior of the al-
gorithms in our set are the number of keys to sort and the standard
deviation. Our experiments also take us to conclude, that both
factors need to be considered when deciding which is the best al-
gorithm. Taking into account a single factor, such as the number
of keys could result in a wrong conclusion, as the results from Fig-
ure 1 show.

4 Building the Library

In this section, we discuss the procedures followed to install
the sorting library and to decide at execution time, based on the
characteristics of the input data, which algorithm to execute and
the specific configuration this algorithm should assume. The ob-
jective of the installation phase is to determine the configuration
that each algorithm should assume to deliver the best performance
on the particular target machine. In our current implementation
this configuration is independent of the input data in the case of
quicksort and CC-radix sort and is a function of the characteristics
of the input data in the case of multiway merge.

To determine the algorithm parameters that depend on the ar-
chitecture, the installation phase executes the algorithm for several
different values of these parameters and selects the combination
of parameter values that delivers the best performance. This ap-
proach is similar to that followed by other empirical optimizers
like ATLAS [12] or SPIRAL [13]. To determine at run time the
best sorting algorithm for a given input data the installation phase
learns a function that maps properties of the input data onto the
best algorithm. The training of the function is based on the Mn-
now machinelearning algorithm[9], which can learn concepts that
are linearly separable. The range of the function includes only two

properties of the input data: the number of records to sort and the
entropy, which we describe below. Information about the distribu-
tion is not necessary, since it has very little influence on the relative
performance of the algorithms.

We first describe the entropy in Section 4.1, and then the imple-
mentation details, including the Winnow algorithm are presented
in Section 4.2.

4.1 Entropy

As explained in Section 3.2, when the number of keys is small
(usually less than 3 million) the best sorting algorithm is either
quicksort or CC-radix sort. For larger numbers, either CC-radix or
multiway merge are the best algorithms. Consequently, our run-
time selection method will first make use of the number of keys to
sort to determine which two algorithm are in the running and then
use entropy to determine when to choose CC-radix sort.

The performance of the CC-radix sort is mainly affected by
the number of times that a partition ("Reverse Sorting” in Fig-
ure 3) needs to be performed before the resulting buckets fit into
the cache. This number depends on how many different values
each of the digit positions of the key assumes across the entire
input data set. If the most significant digit only assumes a few
different values, most of the keys will end up in the same subset
when applying CC-radix sort. As a result, the data will have to be
partitioned again. If, however, the values of the digit are spread
out, the keys will go into different subsets, and it is more likely
that the data would fit in the cache, making additional partitions
unnecessary.

Although the standard deviation is related to the distribution of
each digit position, it does not give us precise information. Stan-
dard deviation measures the distribution of key values instead of
the distribution of each digit position. In addition, the standard de-
viation is expensive to compute. It requires several operations per
key. We can, however, use the notion of entropy from information
theory. Thus, we can compute the entropy of each digit position
for all the keys in the input data. If the values of a digit position
are spread out, the entropy is high. In this case the data would be
distributed in many buckets and fewer partitions would be needed
to make the data fit in the cache. If, however, the entropy is low, it
means the opposite.

To compute the entropy, we need to scan the data and get the
number of keys that have a particular value for a particular digit
position. For each digit, the entropy is computed as >, —P; *
log, P;, where P; = c;/N, c; is the number of keys with value i
in that digit, and N is the total number of keys. We obtain a vector
of entropies. Each element of the vector represents the entropy of
a digit position in the key.

4.2 Implementation Details

In this section we explain the implementations of our library.
We explain the empirical search of parameters that depend on the
target architecture in Section 4.2.1, the learning procedure used to
compute the selection function in Section 4.2.2, and the runtime
selection procedure in Section 4.2.3.
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4.2.1 Empirical search of parameters that depend on the ar-
chitecture

To optimize performance, empirical search is used to determine
the exact form that the sorting algorithms should have for the ma-
chine where the library is being installed. In the case of quicksort
and CC-radix sort, only one configuration is used through out this
work. In the case of multiway merge sort, the best configuration
is a function of the entropy vector and the number of keys of the
input data set. Therefore, at installation time, the best configura-
tions (size of the heap and fanout) are identified for several values
of the pair (dataset size, entropy vector). At run time, the system
counts the number of records, N, and computes the entropy vector
of the input set, F, and selects from the table the configuration of
multiway merge sort corresponding to the index of the table that is
closest to the pair (N, E).

For quicksort, empirical search is used to determine whether
it is better to use insertion sort or sorting networks for small par-
titions. In addition, empirical search looks for the threshold be-
low which one of these two algorithms is to be applied. Thus,
the installation phase of the library generates an input data set and
sorts it in four different ways: i) using only quicksort, ii) using
quicksort first, leaving partitions smaller than a threshold unsorted
and at the end applying insertion sort to the whole array of keys,
iii) using quicksort and immediately sorting partitions smaller than
the threshold using insertion sort, and iv) quicksort using sorting
networks when small partitions are found. In ii), iii) and iv) we
need to find a threshold. Thus, we run these options with several
thresholds that range from 8 to 32 in steps of 4. The experiment
is executed with several input sets, to reduce statistical errors. The
option that obtains the best performance will be used to gener-
ate the code for quicksort. Notice that our library is written in
C, and consequently the architectural features of the machine and
the interaction between the compiler and the C code will deter-
mine the threshold values that obtain the best performance. Also,
when searching for a threshold value for sorting networks, for each
threshold we try different schedules (Section 3.1.2). However, the
scheduling in the C code will interact with the scheduling that the
compiler does.

In the case of CC-radix sort, once the partition fits in the cache,
the remaining digits are sorted using a simple radix algorithm.
However, if the amount of elements in the set is small enough it
can be sorted using insertion sort or sorting networks. Thus, we
use empirical search to find out which of these options is the best:
i) CC-radix with radix sort, or ii) CC-radix with insertion sort iii)
CC-radix with sorting networks. Again, we need to find the thresh-
old value for the size of the set to be sorted. The procedure is
similar to the one used in quicksort, and again the option that re-
sults in the best performance will be used to generate the code for
CC-radix sort.

For multiway merge, we need to find the size of the heap and
the fanout. However, as mentioned above, these values not only
depend on the characteristics of the target machine but also on
the input data. The installation phase searches for their best value
during the learning procedure explained in the next section.

4.2.2 Learning Procedure

After computing the configuration of quicksort and CC-
radix sort, the next step of the installation process is to find
a function f, that based on the number of keys to sort (IN),
and the entropy vector (E) predicts the best algorithm among
CC-radix, quicksort, or multiway merge. f (N,E) —
{CC-radix, Multiway Merge(N, E), Quicksort}. Here, multiway
merge is indexed by N and E because the values of the heap size
and fanout of this algorithm will depend on the number of keys to
sort, and the entropy vector of the input.

This function is evaluated in two steps. The first step uses
the size of the input data to determine whether the comparison
should be between quicksort and CC-radix sort or between multi-
way merge sort and CC-radix sort. The second step makes a binary
decision between the pair of sorting algorithms selected by the first
part. The second part of the function is learned at installation time
using the Winnow algorithm. This algorithm computes weights
w; and a threshold @ such that Zl w; * E; > 0 if and only if CC-
radix sort performs better than the other algorithms (quicksort or
multiway merge sort) for input data with the entropy vector E.

We assume that the second step of our function is linearly sep-
arable as assumed by the Winnow algorithm. The experimental
data presented in the next section show that good results are pos-
sible under this assumption. It can also be argued that this is a
reasonable assumption by observing that the entropies of the most
significant digits are more important (have a bigger weight) than
those of the least significant ones. The reason is that if the entropy
value of the more significant digits is high, it is more likely that the
subsets will fit into the cache, and as a result, partitioning will not
have to be applied using the low order digits. The relative weights
of the entropy of each digit will depend on the amount of data to
sort and the size of the cache. Intuitively, for a given cache size, the
more data we sort, the more digits we will need to consider until
the data fit in the cache. The Winnow algorithm seems appropriate
to deal with this problem.

The training data consist of input sets with different number of
keys and standard deviations. For each number of keys, we gen-
erate input sets with standard deviations of sizes 8" * 512, with n
ranging from 0 to 5. It is very difficult to generate an input set with
a given entropy vector, so we use different standard deviation to
control entropy indirectly. Each input set is sorted with all the al-
gorithms: quicksort, CC-radix, and multiway merge sort. In the
case of multiway merge sort, for each of these input sets the sys-
tem empirically searches for the best value for size_of _the_heap
and the fanout of the heap. For quicksort, and CC-radix sort
we have previously determined the best parameters for these algo-
rithms and these platforms.

For each input in the training set we measure the performance
of each algorithm. For each size of the input data set, the Win-
now algorithm will result in a tuned weight vector. In addition to
the weight vector we also keep track of which algorithm was bet-
ter, CC-radix sort or either quicksort for smaller data set sizes or
multiway merge for larger inputs.

Notice that for each size of the input data in the training set we
have searched the value for size_of _the_heap and the fanout for
the multiway merge algorithm. As mentioned in Section 4.2.1, we
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keep this information in a table indexed by the amount of data to
sort and the entropy vector.

4.2.3 Runtime Procedure

At runtime, the system computes the entropy vector of all the
digit positions of the input data. Then it computes the inner prod-
uct (S in Figure 7) of the entropy vector and the weight vector
corresponding to the size of the actual input data set. If the result
is larger than the threshold, the prediction is to use CC-radix sort.
If however, the value is smaller, the algorithm to use will be ei-
ther quicksort or multiway merge, depending on the input data set
size. This algorithm we call Select Algorithm and it is shown in
Figure 7-(a).

When the predicted algorithm is multiway merge we need to
access the table that keeps the parameters for size_of_the_heap
and the fanout. The algorithm is shown in Figure 7-(b)

SELECT-ALGORITHM(Src, W, Threshold, Alg)

; Sre: Input data

W Weight vector from Winnow algorithm
; Threshold: Threshold

; Alg: Alternative algorithm

Sample the input array and compute the entropy vector F;
Compute S =3, W; * E;
if § > Threshold
select CC-radix
else
select Alg
()

SELECT-MEMSORT_-PARAMETER(S, Smnulti)

;S the inner-product of E and W as computed by the
select_algorithm

Vector generated during the learning process.

For each Si computed during the training process we
have the size_of the_heap and the fanout. Smulti
is sorted.

;Smulti:

Find ¢t € Smulti such that ¢ is the closest to .S
Use the parameters corresponding to ¢

(b)

Figure 7. Runtime algorithms. (a)-Select Algorithm (b)- Select
Multiway Merge Parameters.

5 Evaluation

In this section we present some measurements of the behavior
of our sorting library generator. In Section 5.1, we describe the
environmental setup that we used for the evaluation. Section 5.2
presents the performance results, and in Section 5.3 two sensitivity
analysis experiments are discussed.

5.1 Environmental Setup

We evaluated our sorting library on seven different platforms:
AMD Athlon MP, IBM Power3, Sun UltraSparc III, Intel Pentium
III Xeon, SGI R12000, Intel Pentium IV, and Intel Itanium 2. Ta-
ble 1 lists for each platform the architectural parameters, the ver-
sion of the operating system, the compiler, and the compiler op-
tions used for the experiments.

All experiments sort records with two fields, a 32 bit integer
key and a 32 bit pointer. The reason for this choice is that for

the long records typical of databases, sorting is usually performed
on an array of tuples each containing a key and a pointer to the
original record [10]. We assume that this array has been created
before our library routine is called.

During the installation of our sorting library we used training
sets of input data with 4M and 16M records with standard devia-
tions of sizes 8" * 512, with n ranging from 0 to 5 and a normal
distribution. Notice that by varying the standard deviation of the
input data we also change the entropy.

For the experiments we used an implementation of CC-radix
sort generously provided by the authors of [4].

The installation time of our library varies depending on the
platform, but it ranges from 35 minutes in Intel Itanium 2 to 120
minutes in SGI R12000.

5.2 Performance Results

Figure 8 presents plots of the execution time against the stan-
dard deviation when sorting 12M records for four different sorting
algorithms: adaptive sort, which is the algorithm executed when
our sorting library is called, quicksort, CC-radix, and multiway
merge sort. The performance is measured in cycles per key and re-
sults are shown for the seven platforms in Table 1. The input data
sets used for the experiments in Figure 8 differ from the data sets
used for training during installation in the number of records and
the standard deviations. Specifically, the input data sets used for
the experiments contain 12M records, and standard deviations of
sizes 4™ %512, with n ranging from 0 to 8. The weight vector used
by our runtime system was computed during training based on in-
put data sets containing 16M records. Also, the table mapping the
entropy vector to the best parameters of the multiway merge was
computed using a training input of 16M records. The distribution
of the data used in the experiments is the same as that of the train-
ing set (normal distribution). However, we have found that similar
results are obtained with other distributions.

Figure 8 shows that adaptive sort chooses the best algorithm for
all the platforms. As discussed below, the performance of adaptive
sort is somewhat lower than that of the best algorithm at each point
due to the overhead associated with the process of selecting the
best algorithm. For the data set sizes of 12M records used in this
experiment the trend is the same in all the platforms. In all cases,
multiway mergesort is the fastest algorithm when the value of the
standard deviation is low. And, as the standard deviation increases,
CC-radix sort improves and eventually becomes the faster. Adap-
tive sort identifies the best algorithm and the cross-point correctly
in all platforms. This cross-point is at different values of standard
deviation in each platform. Thus, our results indicate that the use
of the entropy and the amount of data, together with the Winnow
algorithm, systematically leads to the selection of the best sorting
algorithm.

The versions of quicksort and CC-radix sort used in the ex-
periments are those obtained statically at installation time using
empirical search.

The use of runtime decision of adaptive sort introduces an av-
erage overhead of a 5%. This overhead comes from sampling the
input data set, the computation of the vector of entropies, and the
prediction. To compute the entropy we used a sample of 1 element
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[ [ AMD | IBM | Sun | InteIPIT | SGI [ Intel PIV [ Intel Itanium2 ||
CPU Athlon MP Power3 UltraSparc I1I PIII-Xeon R12000 Pentium IV Itanium 2
Frequency 1.2GHz 375MHz 750MHz 550MHz 300MHz 2GHz 1.5GHz
L1d/L1i Cache 64KB/64KB 64KB/64KB 64KB/32KB 16KB/16KB 32KB/32KB 8KB/12KB 16KB/16KB
L2 Cache 256KB 8MB 8MB 512KB 4MB 512KB 256KB
Memory 1GB 8GB 4GB 1GB 1GB 512MB 8GB
os RedHat9 AIX4.3 SunOS5.8 RedHat7.3 IRIX64 v6.5 RedHat7.2 RedHat7.2
Compiler Version gcc3.2.2 VisualAge ¢ v5 | Workshop cc v5.0 gee3.3.1 MIPSPro cc v7.3.1.1m gcc3.3.1 gcc3.3.2
Compiler Options -03 -0O3 -bmaxdata: -native -xO5 -03 -03 -TARG: -03 -03

0x80000000 platform=IP30

Table 1. Test Platforms. L1d stands for L1 data cache, while L1i stands for L1 instruction cache.

Intel Pentium IV has a

12KB trace cache instead of a L1 instruction cache. Intel Itanium 2 has a L3 cache of 6MB.
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Figure 8. Execution time versus standard deviation for
our library and the different sorting algorithms when sort-

ing 12M records.
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out of 4 in the input data. Scanning all the data in the input in-
stead of sampling would have resulted in an additional overhead
of 2%. This overhead could perhaps be reduced without affect-
ing accuracy by applying more sparse sampling. Also, notice that
this overhead pays off since in most situations the wrong decision
leads to much lower performance. In addition, when the predicted
algorithm is CC-radix sort, most of the operations that cause the
overhead could be used to replace some of the operations of CC-
radix sort. The reason is that the histogram built to compute the
entropy can be reused in CC-radix sort. We did not apply this op-
timization because for our experiments we used the CC-radix sort
provided by Jimenez et al. [4] and we did not modify their code.

If we compare quicksort, CC-radix, and multiway merge sort,
we find that quicksort is never the best algorithm when sorting
12M records, although in a few situations it obtains the same per-
formance as one or both of the other two. Multiway merge sort
is better than CC-radix sort for small standard deviations because
small standard deviation tend to increase the number of keys with
the same value. As a result, CC-radix sort tends to execute more
partitions to fit the data into the caches. The partition process of
CC-radix sort has a high data miss ratio that hinders performance.
However, multiway merge sort naturally partitions the data in such
a way that the data miss ratio can be kept low. In addition, as the
standard deviation decreases, the parent node and the child node
in the heap are more likely to have the same value. When that hap-
pens, no data movement is necessary. As a result, the number of
instructions executed by multiway merge sort is very likely to be
small for low values of standard deviation.

As the standard deviation increases, CC-radix sort needs fewer
partitions to accommodate the data in the cache and, as a result,
it performs better. For multiway merge sort the situation is just
the opposite. More keys have different values and the number of
operations in the heap increases.

We also ran experiments with fewer records. In particular, for
2M keys, quicksort and CC-radix sort obtained the best perfor-
mance. In this case, our adaptive sort algorithm was also able
identify the best algorithm.

Overall, our adaptive sort algorithm has proven to be very ef-
fective to predict the correct algorithm. Results in Figure 8 show
that when sorting data inputs of 12M keys with various standard
deviations, our adaptive approach selected the best algorithm for
all the input data sets and all the platforms. The wrong decision
could have introduced a performance degradation of up to 133%
with an average value of 44%. This indicates that the technology
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that we have presented in this paper is well suited to the problem
for which it was used.

5.3 Sensitivity Analysis

In this section we study how sensitive the performance is to
the variation of the algorithm parameters that are identified at in-
stallation time by the empirical search. We present results for the
algorithms applied to small partitions by quicksort and for the heap
size in the implementation of multiway merge sort.

Table 2 shows the execution time measured in seconds of four
different versions of quicksort on three platforms: SGI R12000,
Sun UltraSparc III and Intel PIII Xeon. For each platform we
show results for two data set sizes, 4M and 16M, and four dif-
ferent options: plain quicksort (Quicksort), quicksort with a single
insertion sort applied as a single pass at the end (Insert Sort at the
end), quicksort with insertion sort applied to the small partitions
as they appear (Insert Sort at each partition), and quicksort with
sorting networks applied to small partitions as they appear (Sort-
ing Networks). For the last three cases, results are shown for the
thresholds that delivered the best result. The thresholds are the val-
ues that determine the partition size for which quicksort switches
to one of the options just mentioned. The results show that quick-
sort plus sorting networks is the optimization that delivers the best
performance. The only exception occurs Sun UltraSparc III with
16M, where insertion sort at the end obtains slightly better per-
formance. The R12000 processor is the platform where sorting
networks obtained the largest improvement, around 22% when
compared to plain quicksort. On the average, sorting networks
obtained a performance improvement of 15% when compared to
plain quicksort.

SGI R12000 Sun UltraSparclll | Intel PIII-Xeon
4M | 1M AM [ I6M AM | I6M |

Quicksort | 2.960 | 13.915 | 1.579 6.498 2.429 | 10.886
Insert Sort | 2.676 | 11.576 | 1.406 6.098 2.174 | 9.759
at the end
Insert Sort | 2.859 | 11.976 | 1.475 6.415 2.321 | 10.486
at each
partition
Sorting 2275 | 10.994 | 1.372 6.160 2.081 9.207
Networks

Table 2. Execution time in seconds for quicksort and
quicksort plus some optimizations using insert sort or
sorting networks.

We now discuss how different sizes of the heap affect the per-
formance of multiway merge sort. Notice that for a fixed number
of keys to sort, the heap size determines the size of each sorted
subset and vice versa. To analyze whether the best size of the
subsets depends only on the cache size or on both cache size and
input data, we used sets of 12M records generated with two differ-
ent standard deviations (512 and 32768) and we sorted them using
subsets of different sizes. Figure 9 shows the results. For each
value of standard deviation the figure shows how the L1 data cache
misses, L2 data cache misses, number of instructions executed and
total clock cycles change as the size of the subset changes from 32
to 8M of records (notice that the values on the X axis have a log-
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arithmic scale). The fanout of the heap is kept constant at two.
The experiments were conducted on a R12000 processor and the
measurements were done using hardware counters.

Comparing the results in Figure 9 for the two values of the stan-
dard deviation we can observe that the plots of L1 cache miss, L2
cache miss, and instruction count behave differently, and as a re-
sult the best performance for each value of the standard deviation
(shown in the Execution Time plot of Figure 9-(d)) is obtained
at different subset sizes. Figure 9 shows that when sorting the
same number of records and using subsets of the same size, dif-
ferent standard deviations result in different cache misses, number
of executed instructions, and total execution times. These results
confirm that, as expected, sorting behaves differently than dense
numerical linear algebra. For example, given a tiled implementa-
tion of matrix multiplication, if the matrix and tile size are kept
constant, the cache misses, the number of executed instructions,
and cycles remain constant. Thus, for matrix multiplications, the
problem of searching for the optimal tile size can be simplified to
that of finding the tile size that minimizes the data cache misses,
and therefore a simple expression of the cache size can be used
to compute the optimal value of the tile size [14]. In sorting, the
problem is more complex, and a more complex approach involving
runtime decisions such as the one discussed above is necessary.

Our approach seems to be quite effective. For the example
shown in Figure 9 where 12M records are sorted, our runtime al-
gorithms used the size of the subset obtained with a training set of
16M records. For the standard deviation of 512, the library routine
selected a size of 16K, which is only 5% slower than the best size.
For the standard deviation of 32768, the runtime selected a size of
32K, which is the value that obtained the best performance.

Finally, notice that to verify that the differences in cache
misses, instructions and cycles executed depend on the standard
deviation, and not on the values to sort, we ran several times the
same experiment with different input data sets that had the same
standard deviation but different values. We found that the differ-
ences for each of the events shown in Figure 9 were always less
than 5%.

6 Conclusion

In this paper we described an approach for the automatic gen-
eration of sorting libraries that produces routines that are highly
tuned to the architecture of the target machine and that dynam-
ically selects the best routine based on the characteristics of the
input data.

The contribution of this paper is threefold. First, we identify
the architectural and runtime factors that affect the performance of
the sorting algorithms from a set that includes quicksort, CC-radix
and multiway merge. Second, we use empirical search to iden-
tify the best shape and parameter values of a sorting algorithm.
In addition, we identify those parameters that depend on both, ar-
chitectural and input characteristics, and show that the use of the
entropy is appropiate to select at runtime the best values. Finally
we use the Winnow machine learning algorithm and two proper-
ties of the input data (entropy and amount of data) to select the best
algorithm from the set.
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Our results show that our approach is quite effective. When

sorting data inputs of 12M keys with various standard deviations,

our adaptive approach selected the best algorithm in all the cases
for the four platforms that we tried. The wrong decision could
have introduced a performance degradation of 133% in the worst
case and an average of 44%.
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Figure 9. Effect of varying the size of the subset when
using multiway merge to sort 12M records on SGI
R12000.In the plots, sdev stands for Standard Devia-
tion. The X axis uses a logarithmic scale.
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