
A Prototypical Self-Optimizing Package for Parallel Implementation of Fast
Signal Transforms

Kang Chen and J. R. Johnson
Mathematics and Computer Science

Drexel University, Philadelphia, PA 19104
kchen, jjohnson@mcs.drexel.edu

Abstract

This paper presents a self-adapting parallel package for
computing the Walsh-Hadamard transform (WHT), a pro-
totypical fast signal transform, similar to the fast Fourier
transform. Using a search over a space of mathematical
formulas representing different algorithms to compute the
WHT, the package finds the best parallel implementation on
a given shared-memory multiprocessor. The search auto-
matically finds the best combination of sequential and par-
allel code leading to the effective granularity, load balance,
and cache utilization. Experimental results are presented
showing the optimizations required to obtain nearly linear
speedup on a sample symmetric multiprocessor.

1 Introduction

In [6] a package for automatically implementing and op-
timizing the Walsh-Hadamard transform (WHT) was pre-
sented. The WHT is a prototypical digital signal processing
(DSP) transform with applications to signal and image pro-
cessing [1] and coding theory [8]. Fast algorithms for com-
puting the WHT are similar to the fast Fourier transform
(FFT) and its variants [7]. The only difference is that there
are no twiddle factors and bit-reversal. The lack of these
extra complications allows us to focus on the role of differ-
ent divide and conquer strategies and data access patterns as
they relate to performance.

The package provides a flexible software architecture
that can be configured to implement many different algo-
rithms, with potentially different performance, for comput-
ing the WHT. Algorithmic choices are represented by a sim-
ple grammar which provides mathematical formulas corre-
sponding to different algorithms. Automatic optimization is
performed by searching through the space of WHT formu-
las for the formula that leads to the best performance. This
package and method of self-adaptation is similar to the ap-

proach used by FFTW [3], a well-known and efficient pack-
age for computing the FFT.

In this paper we extend the package so that it can gen-
erate and search for optimal parallel implementations. Cur-
rently the generated programs are expressed using OpenMP
[10] and are applicable to shared-memory multiprocessors
– in particular symmetric multiprocessors (SMPs). The au-
tomatic optimization techniques allow us to search for the
appropriate combination of parallel and sequential code that
produces the best combination of granularity, load balance,
and cache performance. The optimal program found obtains
nearly linear speedup on a 12 processor IBM S80 [5].

In Section 2 we review the WHT, the sequential WHT
package, and the techniques of [11] for reducing cache
misses. The following section summarizes the sequential
performance obtained on a single node of the S80. In Sec-
tion 4 we introduce the parallel extensions to the package
and discuss the various performance optimizations that are
available. The corresponding parallel performance and re-
sults of our automatic optimization are presented in Sec-
tion 5. Conclusions and future work are summarized in
Section 6.

2 Algorithms for Computing the WHT

The WHT applied to a signal� is the matrix-vector prod-
uct WHT��� � , where the signal� is represented by a vector
of size

�����
	
and the transform WHT� is represented by

an
����

matrix. The WHT is conveniently defined using
the tensor (Kronecker) product. The tensor product of two
matrices is the block matrix whose��������� block is equal to
the ��������� element of the first matrix multiplied by the second
matrix.

WHT � � 	� � ��� WHT � � 	� �! "
WHT �$#%�&�&�'# WHT �(�

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

where

WHT � �*),++ +- +/.10
For example,

WHT 2 � WHT � # WHT �
�43556 ++++

+- ++- +
+- +- +- +

+- +- ++
7988: 0

Algorithms for computing the WHT can be obtained by
factorizations of the transform matrix WHT� . The follow-
ing factorization encompasses a wide range,;<�>= 	 � , of pos-
sible algorithms. Let? � ? �A@ �B�&� @ ?DC be a partition of the
exponent? and letEGF denote theH � H identity matrix.

WHT � � CI� ��� � I �KJMLONQP P P N
JBRTS L # WHT � J R # I �KJ&R N L NUP P P NVJ&W � 0
(1)

Each of the recursive computationsX�Y[Z � J R can be com-
puted with a similar factorization. The entire computation
can be denoted by a partition tree, where the root is labeled
by ? and the children by? � � 0B0&0 �\?DC . The standard itera-
tive algorithm is obtained by setting] � ? and ? � � + for� � + � 0B0&0 �\] . The standard recursive program is obtained by
setting] �^� with ? � � + and ?_� � ? - + with the same
substitution done recursively forX�Y[Z � J S L . The general
factorization combines various amounts of recursion and it-
eration.

Let N
�

N � �B�&� N C , where N

� ���(R , and let�A` acb d denote
the vector � � �feG�G� � ��e @hg �!�B�&�&�B� � �fe @ �fi - + � g �O� . A se-
quential implementation of the factorization in Equation 1
is as follows. This scheme assumes that the algorithm
works in-place and is able to accept stride parameters.

R = N; S = 1;
for i = 1, . . . , t

R = R / N

�
;

for j = 0, . . . , R - 1
for k = 0, . . . , S - 1� � Rj � R�kVl�m b k � WHT � R_n � � Rj � Rfkolpm b k ;

S = S * N

�
;

While all factorizations have exactly the same arithmetic
(
�hqsr
t � � � operations), different factorizations lead to algo-

rithms with different data access patterns and consequently
can have vastly different performance.

In [6] a package for computing the WHT based on
these ideas was presented. The package is available from
http://www.ece.cmu.edu/˜spiral, and was developed as part
of the SPIRAL project [9]. Particular algorithms, corre-
sponding to instances of Equation 1, are represented by a

tree data structure corresponding to the associated partition
tree. Leaf nodes correspond to straight-line code (used to
reduce recursion and iteration overhead). Internal nodes,
calledsplit nodes, correspond to applications of Equation 1.
WHT trees can be described using a grammar with the key-
word split for internal nodes andsmall for leaf nodes.

The optimal tree for a given size, corresponding to the
fastest implementation, is a combination of recursion, iter-
ation and straight-line code. The optimal tree is architec-
ture specific and is determined automatically using a search
based on dynamic programming (DP). DP does not neces-
sarily return the optimal tree since the dynamic program-
ming assumption may be violated. Nonetheless, experience
shows that it usually returns a tree with very good perfor-
mance. Dynamic programming, usually restricted to binary
trees, is used since exhaustive search is too costly. Alter-
native search methods, that do not require the dynamic pro-
gramming assumption, have been explored in [12].

The factorization in Equation 1 is a product of matrices
of the form Eu#%v%#wE . In the special case of binary trees
all factors are of the formE1#xv (parallel form) andvy#yE
(vector form) [7]. The vector form accesses the data at stride
and consequently can introduce conflict misses when the
stride is large [11].

It is possible to convert the vector form to a parallel form
by dynamically permuting the data. Ifv is an ? � ? matrix,
then v1#1E&F �%z F 		 �fEGFu#1v{� z F 	F , where

z F 	F is a permuta-
tion called a stride permutation since it gathers the elements
of a vector at strideH [7]. Since

z F 		 is the inverse of
z F 	F

this transformation corresponds to relabeling the input and
output data. Since the relabeling is performed at runtime, it
has been called Dynamic Data Layout (DDL) [11]. Intro-
ducing DDL may reduce the runtime since the parallel form
of the tensor product accesses data consecutively and con-
sequently reduces cache misses. Whether or not the runtime
is reduced depends on the cache miss penalty as compared
to the overhead of performing the runtime permutations.

The option of using DDL in the WHT package was in-
troduced in [11] by introducing an additional internal node
called asplitddl node. In order to conform to the in-place
computation used in the WHT package, an alternative per-
mutation rather than a stride permutation was used (the per-
mutation that converts the vector form to the parallel form
is not unique). A permutation of order two, which can be
performed in-place was selected. Assume

�|�~} n�� and}~� � (since
���%�
	

,
}

divides �). The
} n�� data vector

viewed as an
}�� � matrix is divided into�p� } square matri-

ces in size of
}���}

. After division, transpose is performed
individually on each square matrix. This procedure is called
in-place pseudo-transpose. Since it is of order two, the same
process is used to perform the inverse computation.

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

0.5

1

1.5

2

2.5

3

3.5

4 6 8 10 12 14 16 18 20 22

ra
ti
o

 o
f

ru
n

ti
m

e

WHT size log(N)

best tree w/o DDL
best tree with DDL
recursive
iterative

Figure 1. Ratio of runtime to the best WHT
without DDL

3 Sequential Performance of the WHT

To prepare for our parallel study we analyzed the per-
formance of the sequential package on a single node of our
SMP. We used an IBM S80 RS64 III with twelve 450 MHz
CPUs. Each CPU has separate 128 KB L1 data and instruc-
tion caches and an 8 MB L2 cache. There is a total of 8 GB
of memory. The operating system was AIX 4.3.3, and we
used version 5.0.5 of the IBM C compiler with flags set to
-O5 -q64.

Figure 1 shows the relative running times for four WHT
algorithms: recursive, iterative, and the best algorithms
found by DP with and without DDL. Both the recursive and
iterative algorithms use WHT2 instead of WHT� for leaf
nodes. All times are presented as ratios compared to the
best tree without DDL. Several key observations should be
made. First, the iterative algorithm is initially faster than the
recursive algorithm, but the recursive algorithm becomes
faster at

����� �O�
. The iterative algorithm has less con-

trol overhead than the recursive algorithm, but the recur-
sive algorithm exhibits better locality. Hence as the cache
boundaries are crossed the influence of the cache becomes
more important and at size

� �O�
the benefit of better cache

utilization outweighs the additional control overhead. Sec-
ond, Figure 1, shows that the trees found by DP are at least
two times faster than either the recursive or iterative algo-
rithms. Finally DDL improves performance by about 15%
when

����� �O�
.

Fig. 4(a) and Fig. 4(b) displays the best WHT tree with
and without DDL for size

� �K� . The tree with DDL is more
balanced than the tree without DDL. This improves perfor-
mance since nodes of size

� �K�
and

� � � used by DDL fit in
the L1 cache, whereas the node of size

� �O�
used by the non-

DDL version exceeds the L1 cache.

0

5e-09

1e-08

1.5e-08

2e-08

2 4 6 8 10 12 14 16 18 20 22 24

ru
n

n
in

g
 t

im
e

 /
 N

 l
o

g
(N

)

�

WHT size log(N)

sequential WHT w/o DDL
sequential WHT with DDL

Figure 2. Normalized runtime at different
sizes

The influence of the cache on performance is better seen
in a plot of runtimes normalized by? qst ��?p� , the number of
arithmetic operations. Normalized runtime is independent
of data size, and it reflects the cost of different data access
patterns with respect to the underlying architecture. Fig-
ure 2 shows the normalized runtime of the WHT program.
The three plateaus in the figure are related to the L1 and L2
caches (the L1 data cache is 128 KB or

� � 2 doubles, and
the L2 combined cache is 8 MB or

� �\� doubles). When the
data size exceeds the cache boundary, additional costs due
to cache misses account for the jumps in runtime. Fig. 2
indicates that an uneven partition of a large WHT node may
result in a node in the first plateau and another node in
the second plateau, which implies more cache misses and
a greater runtime. A better binary partition would be built
from nodes within the first plateau. This favors balanced
trees.

In order to minimize the overhead of performing the
pseudo-transpose required by DDL blocking is used. When
blocking is used, the input, viewed as a matrix, is organized
into blocks and all of the elements within a block are trans-
posed prior to moving to the next block. Prefetching can
take advantage of the localized data access pattern provided
by blocking to reduce the number of cache misses. Block-
ing introduces the control overhead of two additional loops,
but it may improve cache efficiency and thus overall perfor-
mance.

Most modern caches are organized into blocks called
cache lines. When a single data element in the cache line
is accessed for the first time, the entire cache line is brought
into cache. Thus additional accesses to the same cache line
will not cause cache misses. When data is accessed with a
large stride, the cache line may be replaced before adjacent
elements are accessed. When blocking is used this prob-

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

lem can be avoided. The optimal block size depends on the
cache line size and the problem size and stride. For some
sizes and strides, it is beneficial to have a block size smaller
than the cache line size. The optimal block size can be de-
termined empirically using search. For the S80 the optimal
block size ranged from 64 to 256 bytes.

4 Parallel WHT Package using OpenMP

The WHT package was extended to support parallel
computation on shared-memory SMPs. The package ob-
tains parallelism through the use of parallelsplit andsplit-
ddl nodes, and is optimized by searching for the best use of
these nodes. Additional optimization is obtained by tuning
the implementation of these nodes. The tuning process can
be automated by searching over a set of implementation pa-
rameters. The search process automatically optimizes gran-
ularity, load balance, cache utilization, and the selection of
appropriately optimized sequential code.

Parallel code was obtained using OpenMP [10], a par-
allel programming model for shared-memory multiproces-
sors. OpenMP is comprised of a set of compiler directives
and a small supporting library of subroutines. The direc-
tives describe the desired parallelism of the source code
(C/C++ or Fortran) to any OpenMP supporting compiler.
The book [2] provides a good introduction to the design of
parallel programs using OpenMP.

Theparallel split node is similar to thesplit node except
that the work is distributed over a collection of parallel
threads. Additional code is required to create, manage, and
synchronize the threads.

#begin parallel region
R = N; S = 1; id = getthreadid();
num = gettotal thread();
for i = 1, . . . , t

R = R / N

�
;

for id = id, . . . , R * S - 1, step = num
j = id / S;
k = id mod S;� � Rj � R>kolpm b k � WHT � RDn � � Rj � Rfkolpm b k ;

S = S * N

�
;

#parallel barrier
#end parallel region

The inner loop allocates the work (recursive WHT appli-
cations) for each stage in the factorization in Equation 1.
Since the input from each stage depends on the output from
the previous stage, a barrier synchronization is inserted
between stages. Alternatively, new threads could be created
and joined each iteration of the outer loop with the use of
a parallel region. This would simplify the code, but would
add substantial overhead.

The parallel splitddl node is comprised of four stages

corresponding to the factorization
z �fE k # WHT ��� z ��E&��#

WHT k � , where
z

is the pseudo-transpose operation. In or-
der to obtain good efficiency all four stages must be par-
allelized individually with barriers inserted between the
stages. Since the

}^��}
block transpose operations in the

pseudo-transpose are independent, they can be performed in
parallel. This coarse-grained DDL works well if there are
sufficiently many square matrices for the threads to work
on. However, this is not always the case. In a balanced
split with

}*� � , the number of square matrices��� } is
small, and the size of each square matrix is very big. This
leads to a poorly balanced workload and degrades parallel
performance. In such cases, a fine grained version can be
obtained by parallelizing the blocking technique used dur-
ing the transpose of the square matrices in the sequential
implementation.

In the sequential DDL, data are transposed in small
blocks except those on the diagonal. So it is possible
to distribute the transpose tasks at the block level. The
small granularity ensures good workload balance among the
threads. The fine-grained parallel DDL incurs additional
overhead, but the cost is negligible compared with the ben-
efit of better load balance. Since the square matrices are in-
dependent, barrier synchronization is not required. As soon
as a thread finishes its work on one square matrix it con-
tinues in the same row working on the next matrix until all
of the blocks in the row are complete. Since the bottom
rows contain fewer tasks than the top rows, it is necessary
to rotate the rows assigned to a thread as the threads move
from one

}���}
matrix to the next to completely balance

the work.

The tradeoff between parallel versions ofsplit andsplit-
ddl is subject to the same compromises as the sequen-
tial versions. In a parallelsplit node, each thread applies
WHT � R on different blocks of data,� � Rj � R kolpm b k , of size is� �

at stride � . If the size or the stride exceeds the cache
boundary, there will be additional cost due to cache misses
as is the case in the sequential program. The penalty is
even greater in the parallel case due to interactions amongst
the caches of the separate processors. The IBM S80 uses a
bus snooping policy to enforce cache coherence [5]. When���� + independent WHT computations access data that
is interleaved. When the interleaving is in the same cache
line the need to maintain cache coherency introduces ex-
tra cache misses and synchronization overhead. This inter-
action between processors severely degrades performance.
Multiple copies of the same cache line will be accessed at
the same time by different processors. This is the case even
though the data accessed is different (only the cache lines
are shared). This situation can be avoided by using a paral-
lel version of asplitddl node, where access is at stride one.
However, there is additional overhead due to the parallel
pseudo-transpose.

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20 22 24 26

s
p
e
e
d
u
p�

WHT size log(N)

sequential WHT with DDL
parallel WHT w/o DDL
coarse-grained WHT
fine-grained WHT

Figure 3. Speedup of parallel WHT using 10
threads

5 Parallel Performance of the WHT

Dynamic programming was used to find the best paral-
lel algorithms, built using parallel split (psplit) and split-
ddl (p splitddl) nodes, for computing the WHT using ten
threads on the IBM S80 (the number of threads can be var-
ied during the search). Programs were compiled with IBM’s
OpenMP compiler, ccr, with flags set to -qsmp=omp -O5 -
q64. The best trees and running times for data size up to

� � �
were recorded. To compare the performance of the differ-
ent parallel implementations, psplit nodes, psplitddl nodes
with coarse-grained pseudo-transpose, and the psplitddl
nodes with fine-grained pseudo-transpose were incorpo-
rated separately into the sequential WHT package and
tested individually.

Figure 3 shows the speedup of the parallel WHTs for
sizes from

�
to
� � � . Speedup is computed as the ratio of

the running time of the best sequential WHT to the running
time of the parallel WHT. The resulting best WHT parti-
tion trees show that the parallel split nodes replaces the se-
quential split node as the root node when the data size is
larger than

� �c�
. That means, after this point, the benefit

of sharing work among multiple threads offsets the paral-
lel overhead. Parallelism becomes more and more benefi-
cial as the data size increases. The best efficiency obtained
(speedup/number of threads) was approximately 90%. Ob-
serve that the speedup obtained by the parallel WHT with-
out DDL is less than three. That means DDL greatly im-
proves the performance of the parallel WHT. The improve-
ment, which is as high as four at

� � � , is substantially more
significant than in the sequential case.

Table 1 compares the performance of the parallel WHT
with coarse-grained DDL and with fine-grained DDL. The
speedup is calculated based on the best runtime for sequen-

Table 1. Performance of parallel WHT with
DDL at size

� � �
Thread Coarse-grained DDL Fine-grained DDL

Time(sec)SpeedupEff. (%) Time(sec)SpeedupEff. (%)
1 24.34 0.86 86 20.35 1.03 103
2 12.36 1.69 85 10.33 2.02 101
3 8.38 2.49 83 6.97 3.00 100
4 6.24 3.35 84 5.22 4.00 100
5 5.10 4.10 82 4.24 4.93 99
6 4.27 4.89 82 3.58 5.84 97
7 3.69 5.66 81 3.11 6.72 96
8 3.25 6.43 80 2.75 7.60 95
9 2.97 7.03 78 2.5 8.36 93
10 2.78 7.51 75 2.27 9.20 92

tial WHT at size
� � � , which is 20.89 sec. The efficiency is

the speedup divided by the number of threads involved in
the computation.

To understand the improvement due to fine-grained
DDL it is helpful to look at the trees that were
selected. The best tree of size

� � � with coarse-
grained DDL is psplitdll[split[small[4], small[5]], split-
ddl[small[8], split[small[4], small[5]]]], while the best
tree with fine-grained DDL is psplitdll[split[small[6],
small[7]], split[small[6], small[7]]].

Recall that our analysis of the sequential performance
(see Figure 2) indicated that balanced partitions are pre-
ferred to unbalanced partitions. However, for the parallel
WHT with coarse-grained DDL, balanced partitions lead to
suboptimal load balance. Since profiling data indicates the
pseudo-transpose takes more than 20% of the WHT run-
time, too many threads being idle at this step is an efficiency
bottleneck. Therefore, even though uneven partitions might
lead to poor performance, they are still better off than the
close-to-even partitions. As a result of this trade-off, the
best trees found by DP search tend to be uneven but not
extremely uneven (see Fig. 4(d)). This result indicates that
coarse-grained parallelism has a strong preference to un-
even partitions, and this preference becomes a restriction
imposed on the DP search and consequently leads it to find
suboptimal trees.

This problem does not occur for the fine-grained im-
plementation of DDL. Since load balancing of the pseudo-
transpose is no longer a problem, DP is free to select a par-
allel tree built from the best sequential trees. Consequently,
the best trees found have a similar structure to the best se-
quential trees as is seen in Figure 4.

Similar to the case with the sequential implementation
of DDL, it is important to adjust the block size for the fine-
grained parallel DDL. First, the block size should not be too
big, otherwise there won’t be enough blocks to be assigned
to the threads. Second, the block size should not be smaller
than the cache line size. A small block size may severely

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

23

19

1 18

6 12

6 6

4

23

8 15

141

4 10

5 5

D D
23

11

5 6 6 6

12
D D

23

10

5 6

13

7

D D
23

11

5 6 6 6

12

D

D parallel split with DDL

split

split with DDL

parallel split w/o DDL

(b) (d) (e)

(a) (c)

5

Figure 4. Best WHT trees at data size
� �\� .

(a)sequential WHT without DDL, (b)sequential
WHT with DDL, (c)parallel WHT without DDL,
(d)parallel WHT with coarse-grained DDL,
(e)parallel WHT with fine-grained DDL

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

0 64 128 192 256

s
p

e
e

d
u

p�

block size (byte)

tree size 2^22, stride 2^11
tree size 2^23, stride 2^12

Figure 5. The effect of block size on parallel
performance

reduce parallel performance. If two threads are working on
two different blocks sharing the same cache line, the two
processors will compete for the “exclusive read/write” sta-
tus of the cache line, which results in “ping pong”—a per-
formance hazard in SMP systems. Figure 5 shows the ef-
fect of block size on parallel performance with four threads.
As the size decreases, the parallel performance deteriorates
quickly. We can expect the situation to become even worse
if more threads are involved.

The parallel WHT package was also installed on a 4 pro-
cessor Sun Enterprise 450. On this machine the benefits of
DDL (see http://www.ece.cmu.edu/˜spiral) did not compen-
sate for the extra overhead, and consequently parallelism
based on regular split nodes was selected. To obtain better
performance, the techniques of [4] might be used to im-
prove cache performance without the overhead of DDL.

6 Conclusion

In this paper, we presented a shared-memory parallel
version of a package for implementing efficient Walsh-
Hadamard transforms (a prototypical fast signal transform).
The package uses search to automatically optimize the im-
plementation. The search process is used to adjust granu-
larity, load balance and cache utilization. Empirical perfor-
mance data on the IBM S80 showed nearly linear speedup
for the optimal implementations discovered by the package.
It is important to note that if the search space does not allow
enough algorithmic choices (e.g. DDL with fine-grained
parallel pseudo-transpose) then suboptimal code will be
found. In the future we will obtain additional data for other
SMPs and extend our package to work on distributed mem-
ory multiprocessors. The package and updated performance
data can be obtained at http://www.ece.cmu.edu/˜spiral.

References

[1] K. Beauchamp.Applications of Walsh and related functions.
Academic Press, 1984.

[2] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and
J. McDonald. Parallel Programming in OpenMP. Morgan
Kaufman Publishers, 2000.

[3] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. InICASSP ’98, volume 3, pages
1381–1384, 1998.http://www.fftw.org.

[4] K.-S. Gatlin and L. Carter. Faster FFTs via architecture-
cognizance. InProceedings of PACT 2000, Oct. 2000.

[5] IBM. The RS/6000 enterprise server model s80, technology
and architecture. Technical report. http://www.
rs6000.ibm.com/resource/technology/
s80techarch.html.

[6] J. Johnson and M. Püschel. In search of the optimal Walsh-
Hadamard transform.ICASSP, 2000.

[7] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolim-
ieri. A methodology for designing, modifying, and imple-
menting Fourier transform algorithms on various architec-
tures. Circuits, Systems, and Signal Processing, 9(4):449–
500, 1990.

[8] F. MacWilliams and N. Sloane. The theory of error-
correcting codes. North-Holland Publ.Comp., 1992.

[9] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua,
V. Prasanna, and M. M. Veloso. SPIRAL: Portable Li-
brary of Optimized Signal Processing Algorithms, 1998.
http://www.ece.cmu.edu/˜spiral.

[10] OpenMP.OpenMP C and C++ Application Pragram Inter-
face, Version 1.0, 1998.http://www.openmp.org.

[11] N. Park and V. K. Prasanna. Cache conscious Walsh-
Hadamard transform.ICASSP, 2001.

[12] B. Singer and M. Veloso. Stochastic search for signal pro-
cessing algorithm optimization. InProc. Supercomputing,
Nov. 2001.

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

