Markus Püschel and Martin Rötteler (IEEE Transactions on Image Processing, Vol. 16, No. 6, pp. 1506-1521, 2007)
Algebraic Signal Processing Theory: 2-D Spatial Hexagonal Lattice
Preprint (359 KB)
Published paper (link to publisher)
Bibtex

We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

Keywords:
Algebraic signal processing theory: Current status, Nonseparable transforms and lattices

More information:

More information on the algebraic signal processing theory

More on nonseparable lattices