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Abstract—We present a constructive algorithm for the de-
sign of real lapped equal-norm tight frame transforms. Theg
transforms can be efficiently implemented through filter barks
and have recently been proposed as a redundant counterparbt
lapped orthogonal transforms, as well as an infinite-dimenisnal
counterpart to harmonic tight frames. The proposed constriction
consists of two parts: First, we design a large class of new ak
lapped orthogonal transforms derived from submatrices of he
discrete Fourier transform. Then, we seed these to obtain &
lapped tight frame transforms corresponding to tight, equd-norm
frames. We identify those frames that are maximally robust b
erasures, and show that our construction leads to a large cts
of new lapped orthogonal transforms as well as new lapped tig
frame transforms.

Index Terms—Frames, tight, bases, orthonormal, filter banks,
lapped orthogonal transforms, DFT, paraunitary matrices.

I. INTRODUCTION

Which frame properties should we look for? Our design
criteria lead us to search for what we clpped tight frame
transforms (LTFTs)These frames should be:

« Computationally efficienthey can be implemented with
filter banks. As additional benefit, they have real coeffi-

cients.

. Tight: ® = &, so that the signal reconstruction is trivial,
since®d* = J.

« Equal norm:||¢;|| = ||, for anyi,j € Z.

« Lapped:the support of eaclp; is longer than a single
block of the signal processed by the filter bank.

« Maximally robust to erasureéwhen possible): a signal
can be reconstructed after a partial data loss. We provide
a formal definition later.

The above requirements resemble those of the nonredundant

Over the past decades, redundancy has become a comfbn! counterparts that inspired this wqﬂl&pped orthogonal
tool in signal processing and communications and found #&nsforms (LOTs]8]. LOTs are expansions into orthonormal

way into signal representations through frames [1]-[3wido

bases (counterpart of tight frames), computationally ieffic

days, frames serve a wide range of applications from rob§#ice they can be implemented with filter banks. They have
transmission to denoising (see [4] and references thetein)Pasis vectors of overlapping support to eliminate blocking

the classification of diverse biomedical image datasetqdT5]

artifacts. In our previous work [9], we constructed LTFTerfr

Motivated by the need of having frame families dedicated #OTS Py a process callestedinga special form of submatrix
a spectrum of applications not considered before, we seekefgraction.

design new classes of frames.

When constructing LTFTs from known LOTSs in [9], we no-

We consider a frame to be a redundant set of vectdiged that these LOTs have similar structure, which we dkplo

{pi}, i € Z, which span¢?*(Z). A signal z € (*(Z) is

here to systematically construct a large class of real LOTs

expanded into the frame usingt@nsform which computes from specific submatrices of discrete Fourier transformTPF

the signal projection coefficients. The original signal ien
reconstructed using the corresponding inverse transform

inverse transform
/_/H

DX o d*z 1)
~~

T

transform

Here (-)* is the Hermitian transpose. Both and itsdual ®
can be seen as infinite matrices, a view that we take in
construction. The frame vectogs are the columns ob.
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matrices. We then useeedingto obtain real LTFTs from
LOTs. We prove that the corresponding frames are equal-norm
tight, and that many of them are maximally robust to erasures
We estimate the total number of the constructed LOTs and
LTFTs, and provide examples to illustrate our method. In
addition, we demonstrate that some of the known real LOTs
can be constructed using our algorithm. Our systematic ogeth
oiﬁ flexible, leads to a large number of previously unknown
L{)Ts and LTFTs, and implicitly ensures desirable propsrtie
we listed above.

Related work includes [10], where the authors propose a
transform derived from the extended lapped complex trans-
form [11]. They use a change of parameters to derive the
decomposition vectors from the extended lapped complex
transform, ensure that the decomposition is invertibled an
describe the construction of the inverse. While in spiris th
approach is similar to ours, it does not use seeding and teads
a completely different LTFT (the corresponding inverseefilt
bank is optimized to process seismic data [12]). The same



where each blockp,., 0 <r < g —1, isthe N x M matrix
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Note that the synthesis filters form tieelumnsof ®.

For (1) to hold, we must hav@®* = I. In this paper, we

Fig. 1. An M-channel filter bank sampled biV implementing a basis ; 3 'ﬂg
(M = N) or a frame (M > N) expansion. The analysis part computes the?nIy considerself-dualbases and frames, meani ® or

transform X = ®*z; and the synthesis part computes the inverse transform *
T = DX PP* =1. (4)
We can rewrite (4) in the-domain using polyphase anal-

authors have also developed a 2D nonseparable LTFT [13]3./2{5' Namely, we define th& x M polyphase matrixp, ()

Another well-known family of tight frames, the tight Weyl—al q—1
Heisenberg frames [14], can also be viewed as a special class ,(2) = Z 27", (5)
of LTFTs with arbitrary overlap. These frames are consadct =0

from a prototype window function by translating it in time iy ¢ . as defined in (3). We sag,(z) has degree — 1
r . P ’

and modulating in frequency. They can also be implementeg] .o any polynomial ib,,(z) has degree at mogt-1. Using
with oversampled multichannel filter banks, in which allefik (5), (4) is equivalent tab,(z) being paraunitary:
L p .

are modulates of one prototype filter. To demonstrate thés, w
identify a subclass of LTFTs constructed in this paper that a ,(2)®,(2) = 1. (6)

tight Weyl-Heisenberg frames. Here,®;(z) represents the Hermitian transpose of a polyphase

matrix of ®(z), in which coefficients are complex-conjugated,
Il. BACKGROUND 21 is replaced by, and the matrix is transposed. A parau-

In this section, we discuss signal transforms that can B&ary square matrix is unitary on the unit circle.
implemented with multichannel filter banks. Such transferm |f we consider the columns @ as vectors ir?(Z), then (4)
can be interpreted as expansions into bases or frames,-imp@siuires these vectors to form either an orthonormal bésis (
mented with critically-sampled or oversampled filter bankd/ = N) or a tight, self-dual frame (fol/ > N) in £*(Z). We
respectively. Our focus is on basis and frame vectors withll often emphasize the special case of a basis by denoting
Over|apping Support to avoid b|ocking effects. Fina”y, W(g) with W. Correspondingly, the base vectors are denoted with
describe the seeding process and discuss the construdtior dor frames ory for bases.
tight frames by seeding basis matrices. In summary, oversampled filter banks correspond to frames
in ¢%(Z), whose elements form the columns ®fin (2). The
) converse is also true. This class of frames is cdiléel bank
A. Filter Banks frames
Consider an)/-channel filter bank, shown in Fig. 1. Each we have three equivalent representations of filter bank
channel consists of an analysis filtey, and synthesis filtek,,,  frames, and, by slight abuse of notation, we will use them
(m =0,...,M~1), and down- and upsamplers By. If M = interchangeably as convenient and refer to all of them as
N, the filter bank is calledritically-sampled if M > N, it frames:

is oversampledWe assume all analysis and synthesis filters .
B = (Pmos- s hmr—1) @nd by, = (hm.os -+ s hani—1) « a set of vectorgp; }icz spanningl?(Z);
n me e " T « an infinite matrix® as in (2);

have the same lengtlh, = ¢N for someq € N (this _ .

requirement is not restrictive as long as all filters havedini * a polyphase matri,(z) as in (5).

support). For a signat, the operation of the filter bank canWe will also encounter finite frames, that is, spanning sets

be described via matrix-vector products as shown in (1): tié CV or RY, and will view them equivalently a®v x M

transform X = ®*x is filtering followed by downsampling matrices M > N. A finite basis hence corresponds to a square

and the inverse transform= ®X is upsampling followed by matrix.

filtering. ® has the form For a given framab, X = ®*z is the associated transform
that computes the vector of projection coefficients witlpees

: to ®, as shown in (1). Depending on the value @f ®
D o ... 0 0 ... processes the signal either in nonoverlappingg(= 1) or
1 o ... 0 0 ... overlapping ¢ > 2) blocks, thus leading to eithdrlockedor
o= : : : : . @ lappedtransformsb*. These cases are visualized in Fig. 2 and
O, B, ... By O discussed next.
0 Pg1 ... &1 P
. . . 1The subscripip will always denote a polyphase matrix in this paper and

should not be confused with subscripts denoting submatiasein (2).



We use these conditions later to show that the new transforms
we construct are indeed LOTSs.

Two main classes of LOTs exist that use either complex
exponentials or cosines in their basis vectors. They ara inse
a variety of applications. For example, the Malvar LOT [15] i
well-suited for noise suppression and echo cancellatidnlew
the Young-Kingsbury LOT [11] was introduced for motion
estimation applications. Below we list four known families
LOTs U* by specifying a block row of this matrix, that is,
the M x 2M matrix [T§ ¥7]. The index range in each case
is0 <m< M, 0 <k < 2M. A block column of the
corresponding basi¥ is obtained by Hermitian conjugation.

« Princen-Johnson-Bradley LOT [16]:
1 [COS <7T(2m—|—1)(2/€—M—|—1)>} (10)

(c) @ for frame expansion (d) ® for frame expansion \/M AM

with block transform with lapped transformq( = 2)
« Oddly-Modulated DCT LOT:

(@) ® = ¥ for basis expansion (b) ® = W for basis expansion
with block transform with lapped transformg( = 2)

Fig. 2. The infinite matrix® in (2) in four different scenarios. The columns

of ® are the basis/frame vectors. In this paper we assihé = I; ®* is 1 m(2m+ 1)(2k+ M + 1)
the transform that computes the corresponding coefficiehts signalz. NaYi COS AM (11)
« Young-Kingsbury LOT [11]:
B. Basis Expansionsi(= V) 1 moe (@D . ik 1
Basis Expansions with Blocked Transforritsa critically- VM (=1)™ sin M JWsm (12)
sampled filter bank X/ = N) with filters of length equal to ]
the sampling factof, = N = M (q = 1), o Malvar Complex LOT [15]:
o 2 [ (2k+D7T\ —mt1)(@kt+14M

is a block-diagonal matrix with copies df, on the diagonal,
as visualized in Fig. 2(a). In this case, (4) is equivalent 8. Frame Expansions

UoWUs = I, that is, Uy is an orthonormal basis i, . . . -
0*0 M 0 In the previous section we explained how critically-sandple

' o : 5
The f_||ter bank processes an |nf|n|te_S|gnaaIe ¢ (Z.) by filter banks compute basis expansions. Similarly, oversednp
applying ¥, to successive nonoverlapping blocksdf signal f'Ite[ banks compute frame expansions

elements. Since signal blocks are processed as indepeno‘eEOr frames, the property (4)p&* — I, is called tight-

signals, and the results are thgn gqncaten king effects ess[17].2 Tight frames can be constructed from orthonormal
occur due to boundary discontinuities. A well-known exaenp . . )
ases using the Naimark theorem [18], [19]:

of a blocked transform use¥) = DFT,,; others include
the use of discrete cosine and sine transforms or the disc
Hartley transform.

In the case of the DFT,

r'?ﬁeorem 1 A set{y; }:cz is a tight frame for a Hilbert space
H if and only if there exists another Hilbert spaéé > H
with an orthonormal basigv;},cz, so that the orthogonal

U4 =DFTy = L[wﬁk]ogm,kd@ wy = e~ 2™I/M. projection P of K onto H satisfies:Pvy; = ;, for all i € .

One example of an orthogonal projection is the canonical
projection that simply omits coordinates and is caltebd-
ing [20].
In the finite case, seeding yields a framé x M matrix) ®
for CN by omitting rows from a basisM/ x M matrix) ¥ of
CM. Conversely, every finite frame can be obtained this #vay.
To seed in the infinite case considered here, we extend this
approach to polyphase matric@s,(z).

Basis Expansions with Lapped Transformis.avoid block-
ing artifacts, basis vectors with longer support can be used
is the case with LOTs. They can be viewed as a clasi/ef
channel critically-sampled filter banks, originally deveéd
for filters of length, = 2N = 2M and later generalized to
arbitrary integer multiples ofV [8].

In this paper, we focus on LOT®* with basis vector
supportL = 2N = 2M (q = 2) whose base¥ are visualized
in Fig. 2(b). The only nonzero blocks in (2) ae, and ¥y;

hence, (5) yields a polyphase matrix of deggee 1 — 1: Definition 1 A frame ®,(z) is obtained byseedingfrom a

basis ¥, (z), if it is constructed from¥,(z) by preserving
U,(2) = Vg + 2710y, (8) only a subset of the rows df,(z). This is written asp, (z) =
. : : . v 7], whereZ is the set of indices of the retained rows.
Since ¥, (z) is square, (6) is equivalent to p(2)T]
* * 2Note that in general, a tight frame is also one for whigb* = cI;
\IJO\IJO + \111\111 =1, (9a) however, since: can be pulled intob, we consider only = 1 here.
YUy =005 = 0. (9b) 3Just extendP with rows to an invertible square matrix.



In particular, for¢q = 1, seeding constructs frames ofD. Frame Properties
the form in Fig. 2(c) from bases of the form in Fig. 2(a). apart from tightness, other frame properties are often de-
Conversely, every such frame can be constructed this WaY.sirable, such as [4]:

Forgq > 1, seeding constructs frames of the form in Fig. 2(d)
from bases of the form in Fig. 2(b) (the example in the figure
is for ¢ = 2). However, in this case, it is unclear whether the
converse is true.

The following result is a special case of Theorem 1:

« Equal norm:These are frames with basis vectors of the
same norm||y;|| = ||¢;ll, for 4, j € Z. Since in the real
world, the squared norm of a vector is usually associated
with its energy, equal norm is required in situations where
equal-energy signals are desirable.

) . ) » Maximal robustnessAn N x M frame ®,(z) is max-

Lgmma 1 Seeding an orthonormal basis (paraunitafy)(z) imally robust to erasuresif and only if any N x N

yields a tight frame®,, (2). submatrix of ®,(z) has the full rank on the unit cir-

cle. This requirement arose in using frames for robust

transmission [21] where the loss of up tof — N

transform coefficient over the transmission channel would

not prevent the complete reconstruction of the original
signal. The loss of coefficients translates into removal of
® = diag(..., Pg, Py, ...). (14) the corresponding set af — N columns in®,,(z) and the
ability to reconstruct translates into the remaining nxatri
being invertible.

We can construct new frames from old ones by appropriate
"flransformations that preserve the desired propertiesvBele

Iiat such transformations in the polyphase domain (polyiabm

e . : :

counterpart of the discussion for scalar matrices [20]).

Next, we discuss the blocked and lapped frame expansions
in Figs. 2(c) and (d) in greater detail.

Frame Expansions with Blocked Transforrifsg = 1, then,
as visualized in Fig. 2(c),

The difference from (7) is thad, is now rectangular®, €
CNXM and can be viewed as aW-element frame inC".
Hence, if it is tight, it can be constructed from an orthogon
basis inC™ by seeding.

As an example, harmonic tight frames (HTFs) are obtain
by preserving the firsiv rows of &y = DFT},, that is,®, =

DFT},[0, ..., N—1]. ® is a frame forC; the corresponding " :
® in (14) is a frame for the complef(Z). Proposmon 1 Assum(_e all the matrix products below are
compatible andb, (z) is a frame. Then,

Similarly, real HTFs can be obtained by seeding from thé

real DFT (RDFT) [20]. For example, thdercedes-Benz frame () Un(2)®,(2)V,(2) is a frame, for anyUy(z), Vp(z) of
full rank on the unit circle.

AR VAVO R VAVD) (i) If ®,(z) is a tight (unit-norm tight) frame, then
®o = (15) b : ,
2/3 —1/v6 -1/V6 alUy,(2)®,(2)V,(2) (Uy(2)®,(2)V,(2)) is also a tight
can be seeded from the orthogonal (unit-norm tight) frame, for any paraunitary matrices
Up(2), Vp(2) anda # 0.

V3 1/vV3  1/V3 (i) If @,(z) is a maximally robust frame, then
RDFT3 = 2/3 —1/v6 —1/V6 Up(2)®,(2)Dp(2) is also a maximally robust frame,
0 —1/vV2  1/V2 for any diagonal matrixD,(z) and any matrixU,(z),

by retaining (and exchanging) the last two rows. both of full rank on the unit circle.

Frame Expansions with Lapped TransforrRsojecting sig-
nals onto frame vectors with nonoverlapping support leads t !/l CONSTRUCTION OFNEW LOTS AND LTFTs
similar blocking artifacts as for orthonormal bases. Westhu Our goal is to design real filter bank frames that fighit,
use the same approach as for orthonormal bases in Secton Bgual-norm andmaximally robust to erasuredVe do this by
and consider frames i#?(Z) with vector supportl = 2N, starting from a polyphase matrix closely related to the DFT.

visualized in Fig. 2(d). We first show that particular submatrices of this matrix ¢iel
As in (8), the resulting polyphase matrik,(z) has de- new LOTsV (bases); we then use seeding to obtain the desired
gree 1: frames® and hence LTFT®*.

®,(2) = B + 271 Py,
and the tightness conditioh®* = I is equivalent tod,(z) A. Construction of New Real LOTs

being paraunitary (6). In Section I1-B we showed that a real LOT basis corresponds
In [9], we constructed LTFTs by seeding the polyphase a real square paraunitary polyphase mafrjXz) of degree
matrix ¥, (z) of an LOT basis: g — 1. Although in generall',,(z) is paraunitary if and only if

it is unitary on the entire unit circléz| = 1, for a real¥,(z)
of degreeg — 1 = 1, it suffices to check only two conditions:
By the Naimark theorem, the constructed frames are tight;

this is why we named them lapped tight frame transformsemma 2 Let ¥,(z) be a realM x M polyphase matrix of
We will follow later the same procedure here to derive LTFTdegreel, that is, ¥,,(z) = ¥, + 2710, where Uy, ¥, €
from LOT bases. First, we introduce the frame properties vie"’ **. Then,¥,,(z) is paraunitary if and only if¥,,(1) and
consider. U, (4) are unitary.

Dy(2) = Vp(2)[Z]. (16)



submatrix seed i ith i i
DFT, x(z) U, (2) D, (2) N_ote th_at in Theorem 2 we work with index sets instead
of lists since permutations of rows and columns preserve
Fig. 3. Construction of frames fay = 2. paraunitarity.

Each paraunitary matrix,(z) obtained with Theorem 2
defines a basi¥; the associated LOT ig*.
Proof: “=" is immediate. To prove <", let ¥;,(1) =  We provide examples and further analysis in Section IV.
Vo + ¥y and ¥, (j) = ¥ — j¥; be unitary, that is, Here, we first complete the theory and discuss the seeding of

{(‘I’o F ) (U + 0T = Iy LTFTs from the above LOTs.

: T ~pT) —
(Wo = jW1)(¥o +J¥1) = D B. Construction of New LTFTs from LOTs

DoUf + U U] + Uolf + UG = Iy (17)  In this section we seed/ x M LOT matrices ¥, (2),

DoWg + W1 0] + j(Wo¥] — U1 07) = Ins constructed as in Theorem 2, to obtdihx M frames®,(z)
and establish their properties.

TightnessAny seeding of al,,(z) obtained with Theorem 2

WY + W 0f — j(UeU] — U, 0() =0 yields a tight frameb,(z) by Lemma 1.

e VoU? + 007 =0y and Tel? — U 07 =0y, Equal Norm. Every element of¥,(z) constructed with
Theorem 2 has the nory /M. Hence, the columns of any
seededV x M matrix ®,(z) have the same norry N/M.
Inserting into (17) yieldsbo W + ¥, 0T = [,,; all require- Maximally Robust Framedn general, maximal robustness
ments (9a)-(9b) for a paraunitady,(z) are satisfied. m for frames is a property difficult to prove since one has to

Lemma 2 chooses 1 anjdas evaluation points. Using a verycheck that everyV x N submatrix of ®,(z) is invertible.
similar proof’ we can genera"ze to arbitrary roots of umﬁy The gOOd news is that it is sufficient to ensure that each such

andw,, providedw, # +w;, tw}. submatrix is nonsingular for at least one value [23]:

Subtracting the two equations yields

& U =0y and ¥ U8 = 0y

As an example application of Lemma 2, consider fhe K . ] . ]
polyphase matrix Lemma 3 A square polyphase matriA,(z) is nonsingular if

and only if there exists, € C such thatdet A,(zy) # 0.
DFT 1 2kl 1 2kl
i (2) = VE | K TE s ochecx—1  We will use this fact in the proof of the following theorem.

Both DFT, x(j) = DFTg and DFT, k(1) = DHT, Theorem 3 Let ¥,(z) be a paraunitary polyphase matrix
(the discrete Hartley transform [22]) are unitary; hencg, k£onstructed using Theorem 2 such tiddtand M RC/K are
Lemma 2,DFT, k(=) is paraunitary. co-prime. Further, we seed a frame,

In Theorem 2 (the proof is in Appendix A), we show ®,(2) = U, (2)[Z]
that specific submatrices @FT, x(z) are paraunitary, and P P ’
thus correspond to LOTs. In Section 11I-B we will seed theday retaining N' < M rows. Then®,(z) is maximally robust
matrices to obtain LTFTs (this algorithm is depicted in FY. to erasures if (as sets)

IZ={d+DkmodM |0<k< N}

Theorem 2 Let ¥ be anM x M submatrix of\/K /M -
o(2) / for some) < d < M andD = (MRC/K)~! mod M.

DFT, x(z), K > M > 2, constructed by selecting the

following row and column sets: The proof is given in Appendix B,
rows:  {r+kRmodK [0<k<M—1} bAS arli_re;(_?rr.lple, consider the following family of maximally
columns: {c+/¢C modK |0</{<M—1} robust s:

for some constant8 < r,¢, R,C < K. Corollary 2 If ¥,(2) is constructed as in Theorem 2 with

Then, ¥, (2) is paraunitary if K = M ged(K,RC) (in R =1, C = K/M, andr = ¢ = 0, then any consecutive
particular, M dividesK) and one of the following is satisfied:Seeding (retaining of consecutive rows) Wf,(z) yields a

() K divides2rC, 4rc, and2M Re; maximally robust LTFTP, (z).

(i) K does not divide2rC, and K divides both2r(2c + Note that the LTFTs constructed as in Corollary 2 and

CM —C) and R(2c+ CM — C). seeded starting with the first row (i#.= {0,1,...,M —1})
are Weyl-Heisenberg frames [14].

Note that Theorem 2 implies that must divideK.

SinceDFT), k (z) is symmetric, we can interchange the row |y, New LOTS AND LTFTS: EXAMPLES AND ANALYSIS

and column index sets in the theorem: In this section, we construct new classes of real LOTs and
LTFTs using the theory from Section Ill. We first provide

Corollary 1 ¥,(z) constructed as in Theorem 2 is parauniexamples of LOTs constructed with Theorem 2; we also

tary if and only if ¥, (2)7 is paraunitary. show that the previously known real LOTs (10)-(11) can be
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Fig. 4. Magnitude responses of (a) LOT basis vectors in (18) &) 128 116 176
seeded LTFT frame vectors in (21) derived using our conttruanethod. 14 97— - = = 573%
The corresponding filter bank had = 3 filters with suppor2 M = 6 (LOT)
or 2N = 4 (LTFT). 15 — 161 — 11
120 376
16 896 — 1216 — — — 256
1088 768

constructed using Theorem 2. Then we seed these LOTs to TABLE |

construct LTFTs. Further, we discuss the design of Windowguueer oF PARAUNITARY M x M W,,(2) GENERATED FROMDFT,, x
for the LTFTs, providing additional flexibility in design. USING THEOREM2. THE NUMBERS OF PARAUNITARY SUBMATRICES
Finally, we briefly discuss complex LTFTs constructed from ¥r(2) THAT DO NOT SATISFYTHEOREM2 ARE SHOWN IN ITALIC.
the complex LOTs (12)-(13). Note that, as before, we always

construct base¥ and frames®; the associated LOTs and

LTFTs are given by* and &*. ) )
permutation symmetries of the DFT [24], [25] and may then

cover all paraunitary submatrices.
A. New LOTs Finally, we must note that empirical tests show that there
Small ExampleWe start with DT, ¢(z) and construct '€ NoM x M paraunitary submatrices &fi"T;,  (2) for M

a polyphase matrix using Theorem 2 with parametrs= ot dividing K, for K < 16.
6,M=3,R=4,C=1,r=0,c=0 and get

1 1 1 1 B. New Real LTFTs
Vy(z) = 7 13—t 143l (19)  gal Example.As a small example we seed (19) by
1 148,71 _1_ 3,1 retaining the first two rows and get

Since the parameters satisfy condition (i) of the theorem, 1N 1 1 21
¥, (z) is paraunitary and hence specifies an LOT. bp(z) = V3 \u —1 -8t 1y @Zfl (21)

Fig. 4(a) depicts the magnitude responses of the basis 1 /1 1 1 1 0 0 0
vectors in this example. = ﬁ (1 1 _l> + 732_1 (0 3 ﬁ)

Class of LOTsNext we give one example of how to con- . 2 2 2 2
struct an entire class of LOTSs for any sizé. In Theorem 2, = Pg+2z7 0.
we choosel’ = aM with anya € N, r =c=0, R=1and gy construction, this frame is tight and equal norm. By
C = a to satisfy condition (i). Then, for any € N, Theorem 3, any seeding at stri&/ RC/K)~' = 1 mod M

1 2klam . 2kbam _, (that is, consecutive) yields a maximally robust frame;deen
Up.a(2) = Nyl s a2 ki nt the constructed LTFT is also maximally robust.

(20) The frame® has columng ¢sk, ©3k+1, Psk+2 trez With
is paraunitary, that isP* is an LOT.

1
Number of New LOT4&\e now investigate how many/ x 3k = ﬁ(- -,1,1,0,0,...)7,
M V,(z) can be derived frorDFT, x(z) and Theorem 2. 1
NecessarilyM | K, which implies thatkK is not prime. This P3k+1 = ﬁ(“ 1,-20,—2, )7,
in mind, Table | shows the number of new LOTs generated 1
using our method. For example, there are3283 paraunitary P3ktr2 = ﬁ(.. , 1, —%, 0, @,. DL

submatrices oDFT, ¢(z) and all are found with the theorem.

Note that every submatrix is specified by a row subset amthere the first elemerit in each vector is at positioh.

column subset oDFT,, 4(z); the ordering does not matter. ~ ® can be viewed as a lapped counterpart of the Mercedes-
Further, there are 4% x 5 paraunitary submatrices of Benz frame in (15). Fig. 4(b) depicts the magnitude response

DFT, 10 that do not arise from Theorem 2. One such exampé the frame vectors in this example.

is the row sef0,1,3,7,9}, and the column sef0, 2,4, 6, 8}. Class of LTFTs.Given anyN < M, an N x M ®,(z)

However, we speculate that these matrices are up to permuian be constructed by seeding thé x M T,(z) in (20),

tions the same as other submatrices that are derived from th&ining N rows. Any such frame will be tight and equal

theorem. In fact, Theorem 2 could be extended based on ti@m. Since the construction parameters satisfy Theorem 3,



(@) (b)

Fig. 5. Magnitude responses of LTFT frame vectors resulinog consec- Fig. 6. Window solution to (25a)-(25b) for (@Y = 7 and (b) N = 8.
utive seeding withM = 8, N = 5 of the (a) Princen-Johnson-Bradley and
(b) oddly-modulated DCT LQOTs. In each case the correspaniiter bank

has M = 8 filters of suppor2N = 10. . . .
PP We are interested in one window that modulates all frame

functions at once. That is, we seek to desigitax 2N diag-
onal window matrixA = diag(dy, - .., dan—1) that produces

-1 _ i i
and (MRC/K)™' = 1 modM, ®,(z) also is maximally a windowed LTET

robust if it results from consecutive seeding.
_ ®o
oa-a(®). e

C. Known Real LOTs and LTFTs We use two different approaches to the window design. The
We demonstrate that the two known families of real LOTHrst one is analytical and uses algebraic conditions thaégo

(Princen-Johnson-Bradley and Oddly-Modulated DCT) in) (1@he filter bank. The second one uses optimization techniques

and (11) can be derived using Theorem 2. to approximate the frequency behavior of HTFs, as these are
First, we compute the corresponding polyphase matricemrrow bandpass filters evenly spread across the frequency

Note that both (10) and (11) shoj¢!’ ¥7] and we have to domain.

compute¥,,(z) = ¥, + 2~ ' 0. Below, the row index ig and The following derivations apply to all LTFTs seeded from

the column index isn. LOTs. As a running example, we use LTFTs seeded from the
For the Princen-Johnson-Bradley LOT (10), Princen-Johnson-Bradley LOT (10).
1 Analytical ApproachFor a LTFT seeded from the Princen-
U,(z) = m[cosakﬂm—i—z*lsinahm}, (22) Johnson-Bradley LOT, thék,m)-th element of ®,®} or
O, 07 is
whereay,, = (=1)™ 1 (2m +1)(2k + 1 — M)7/4M. a _ 1 sin(x(k—m)) (_1)M+1L sin(7(k+m+1))
For the Oddly-Modulated DCT LOT (11), fe,m M _ w(k—m) M 7w(ktm+1)
A sin(—537 ) cos( oM )
y(2) = [cosﬂk,m + 271 sinﬂkym}, (23) fork,m=0,...,N —1.
VM Substituting (24) into (4), we get the following system of
where By, = (=1)™" (2m + 1)(2k + 1 + M)m/4M. equations
_In both casesﬁfg(z) can be constructed as in Theorem 2 02 + (1= )03y = 1,
with parameterdl’ = 8M, R =2, C =4, r = TM + 1, 5 5 55
c=6M + 2+ (—1)M for the Princen-Johnson-Bradley LOT; N+mON+k = OmOk,

andK =8M,R=2,C =4,7r = M+1,c=6M+2+(-1) for 0 < k,m < N,k # m. It has an infinite set of solutions.
for the Oddly-Modulated DCT LOT. These parameters satisiymong them let us consider symmetric on&s:= d27—1—m.
condition (ii) of the theorem, and thub,(z)” is paraunitary. |n this case, as shown in Appendix C, we obtain the following
By Corollary 1,¥,(z) is paraunitary as well. system of equations:

As a consequence, any frardg(z) seeded from the above

2 2 _
W, (z) is tight and equal-norm. ammOp + (1 = amm)Oy o = 1, (25a)

Finally, using Theorem 3 we conclude that any consecutive ON-m-10N—k—1 = Omk, (25b)
seeding of the abové () yields a maximally robust LTFT, for 0 < k,m < N,k # m. Fixing 8y = —1, we havely_; —
with vector normy/N/M. 41 anddy, = —0n_10n_p_iforl <k < N—1.

As an example, Fig. 5(a) and 5(b) show the magnitude re-an example of a symmetric window is shown in Fig. 6. It
sponses of the frame vectors constructed by preservingte fis given by

N =5 rows of U, (z) of size M = 8 for the Princen-Johnson- -
Bradley and the Oddly-Modulated DCT LOTs, respectively. 5 _ { cos(xZ7 +m) for IV even, 0<M<N.

cos(32% + ) for N odd,

Also, note that conditions (25a)-(25b) hold for anti-
symmetric windows, for whicld,,, = —dapr—1_mn.

We can gain additional freedom in LTFT construction, as Optimization ApproachWe first explore error minimiza-
well as improve the frequency behavior of the correspondition algorithms. The procedure finds an optimal window
filters in the filter bank, bwindowingthe constructed LTFTs. that minimizes the weighted error between an HTF and the

D. Window Design



. . ) Fig. 8. Magnitude responses of the windowed Princen-JohBsadley LTFT
Fig. 7. Magnitude responses of the (a) HTF and (b) Pf'ﬂcm'Br‘i‘d'ey fragme vectgrs using tl'rlje polar decomposition method with= 8, ]\)fl =5,
LTFT frame vectors withM = 8, N = 5; as well as windowed Princen- and (@)A1, (b) s, (c) 3.

Johnson-Bradley LTFT frame vectors also with = 8, N = 5 with (c)
error-minimization designed window; and (d) a random wimdo

Note that A is unique if © has full rank. Then the best

approximation theorem by Fan & Hoffman [28] states that
frame seeded from the Princen-Johnson-Bradley LOT in the

frequency domain as follows: [A=O[=min{|]A-Q|:Q"Q=1ILn}  (26)
6 = argmin k © (@HTF) _ 5@ ¢(P/B)), for any unitarily invariant norm. Thus, by takin@ =
s GHTF) (PJB)” gnd A the window matrix, we have:
v_vhere/-; is a weight vector_@ denotes pomt-Wlse multiplica- A argmin [|A — GHTF) p(PIB)" || 27)
tion, ® denotes column-wise convolution, and A
(PIB) _ Dy Ideally we would like to have one window vector for the entire
T \P set of LTFT filters (that is, we wanh to be diagonal). Hence,

is the frame seeded from the Princen-Johnson-Bradley Lgfe can use\ in three different ways:

To make sizes compatible, we use a stacked version of thd) A1 = A; each column ofA; windows one LTFT filter.
HTFs, that is, we buildbTF) by stacking twoN x M 2) b, is the vector of eigenvalues ak; 5, windows all
HTF matrices on top of each other. Algorithms used to  LTFT filters.
implement this procedure include the trust region meth@j [2 3) 03 = \e, with \ the largest eigenvalue the correspond-
and sequential quadratic programming methods [27], which  ing eigenvector ofA; 45 windows all LTFT filters.
are gradient descent-based methods. The results we obEi 8 shows the magnitude responses of the Princen-Johnson
are not satisfactory; indeed, randomly generating the sind Bradley LTFT filters when windowed bﬁl, 55 and 43,
achieves better results. Fig. 7(c) and (d) show the resudisowing a slight improvement over the original Princen-
when using the optimized window and a random window, Johnson-Bradley LTFT in that they have a better frequency
respectively. As a reference, we give the magnitude regsongcalization, withd, being the best one.
of the HTF and Princen-Johnson-Bradley frame vectors in
Fig. 7(a) and (b), respectively.
o o : E. Complex LTFTs
ur second optimization approach relies upon polar decom
position of matrices and the Fan & Hoffman theorem [28]. Complex LOTSs, such as (12) and (13), do not fit our current
Given a2N x 2N matrix ©, its polar decomposition is framework since one cannot apply Lemma 2. However, we
postulate that there could be a more general construction
© = AL, method involving complex matrices, the study of which we

whereX. is a2N x 2N Hermitian positive semi-definite matrix eave for future work.
= (00)2, andA is a2N x 2N unitary matrix with singular ~ Here, we briefly consider seeding the complex bases un-

value decomposition derlying the LOTs (12) and (13). Because of Lemma 1, any
I, seeding yields a tight frame. In addition, any such frame is
A=P <0 @) Q" equal norm. To show this, we first compute the respective

polyphase matrices. Note that both (12) and (13) shipjv';]
wherer is the rank of©, and the matrice®” and @ are such and we have to computg, (z) = ¥+ 2~'¥;. Below, the row
that the singular value decomposition®fs © = PAQ* [29]. index isk, the column index isn, anday, = (2k+1)xw/(4M).
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Fig. 9. Magnitude responses of LTFT frame vectors resulfiogn con-
secutive seeding witl/ = 8, N = 5 of the (a) Young-Kingsbury and (b)
Malvar LOTs. In each case the corresponding filter bank has- 8 filters
of support2 N = 10.

For the Young-Kingsbury LOT (12)¥,(z) is given by APPENDIXA: PROOE OFTHEOREM 2
1 - m .. _
— = [wgl\(fk+1)(2 +1) ((=1)™jsinay, — 2" cos ak)] 7

and for the Malvar LOT (13)¥,(z) is given by

2 [ (2k414M)(2m+1) 114 cos According to Lemma 2, to show thdt,(z) is paraunitary,
'Y [W8M (sinay, — (=1)™z""j cos O‘k)} " it is enough to show tha,(j) and ¥, (1) are unitary.

Observe that in both polyphase matrices every entry has therhe elements of the matri® o(2) are
same norm \/l/M and \/2/M respectively. Hence, every

seeded frame will be equal norm. Vk,e(2) ( ( 2m(r + kR)(c + éC))
As an example, we considéd = 8 and seed in both cases 7 VM K

by retaining the firsts rows (V = 5) to obtain an equal- n Sin(2ﬂ(7’+kR)(C+éc))Z71)

norm tight frame. The magnitude responses of the associated K ’

analysis filters for Young-Kingsbury frame are shown i<k, /<M —1and0<r,c,R,C <M —1.

Fig. 9(a), and for Malvar frame are shown in Fig. 9(b).
We first find the conditions fol,(j) to be unitary. The
(k, £)th element ofl, ()W (j) is given by
V. CONCLUSIONS ANDFUTURE WORK M1
Nk 1 (r+kR)(c+mC)—(r+ER)(c+mC)
We presented a simple and flexible construction method Qg’i’(j)wp(j))k,e - M Z Yk

generate new LOTs from DFTs and new LTFTs from these
new LOTs. The new LTFTs are tight, equal-norm and under _ (k 0)Re Z (k—¢)RC'm
certain conditions, maximally robust to erasures. We have M K

. m=0
shown that some well-known LOTs can be seen as particular _y
cases constructed with our method, and have studied LTFTs 1’ RO k=4
derived from these LOTs. In addition, although excludedrro ) s S # L.
M Wi 1— (k TORC >

the current framework, we discussed known complex LOT
families and showed that they lead to equal-norm, tight LE.FTV,,(j) is unitary if and only if (¥,,(j) V5 (j))x,. = 0 for any
We intend to extend our construction method to extendéd# ¢, or, equivalently, if and only ifK" is divisible by the
lapped transforms for which the length of the filters is ProductRCM, but not divisible by(k —£) RC for anyk — ¢ #
any integer multipleg > 2 of M (in which caseW,(z) 0 such thatl <|[k—¢| <M —1. This is possible if and only
contains polynomials of degree— 1). Moreover, we plan on if K = M ged(K, RC). Thus,¥,,(j)¥;(j) = In, and ¥, (5)
generalizing the method to the complex case, by investigatiis unitary if and only if K’ = M ged(K, RC).
the complex counterparts to Lemma 2 and Theorem 2. For,
example, we have seen that, for = 2, the equivalence
between unitary and paraunitary matrices relies on the pgur

'We next investigate conditions fdr,(1) to be unitary. The
)th element of® (1) is

(1,7), or, more generally, on any two roots of unity with an ) - 1 2rr(r + kR)(c + £C)
angle between them that differs fromand /2. Do ¢-tuplets Yre(l) = m(cos( K )
of complex numbers then exist, such that the same equivalenc . 2n(r + kR)(c+ £C)

is preserved in the case whege> 2? Another interesting + sin ( K ))
venue would be to generalize our construction method to B 1 (147 (r+kR)(ct+t0)
include a larger class of LOTs and LTFTs, and to find the N \/—M(TMK

most general sufficient and necessary conditions on thgmlesi 1—j

—(r+kR)(c+£C
of paraunitary submatrices of the DFT. +TwK( ) ))-



The (k, £)-th element ofl,, (1) (1) is

M—
Z { 1+7 (r+kR)(c+mC)

S |
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APPENDIXB: PROOF OFTHEOREM 3

We use Lemma 3 withey = j, which makes¥,(j) a
submatrix of /K /M DFTg. We fix the order of rows and
columns and get

+1T”w§<(r+kR)(C+mc)) v = L { <r+kR><c+ec>]
x (Lody HR) emO) mw%-MR)(c-i-mC)ﬂ( ./ 0<k,t< M
2 2
ckR r0C Kk{RC
M-1 = — | WK W W W
! (k—0)R(c+kC) (6—K)R(c+mC) VM Wi - wic K K }Og’“kM
oo (i Tk ) 1 kCRC
m=0 = wif - - [wig ]O<k canr " Sh2
M—1 v M =%
1 2r4+(k4+£)R)(c+mC
+ﬁ (w% Hamer ) Here, Q) = d1ag( CkR)0§k<M and ), = diag(w%c)ong
m=0 are full-rank diagonal matrices, and;’ # 0. Hence, by
—w BTt EHOR) (etmO), Proposition 1(iii) we can omit them in studying the seeding
= Ly® LE( ) of MR frames.
= okt T I Sk

Since K = M ged(K, RC), then for any0 < k, ¢ < M — 1
with k& # ¢, K is not divisible by(k — ¢)RC. Thus

2%701 2, k=¢;
k—0)Re1— (k 0RCM
El(clz = % ) 1 (k RO
’ el w(e kYRCM
‘HU;{ k)R 1(:5776)1907 k#¢;
B 2M, k=1¢;
lo,  k#£e

To make ¥,(1) a unitary matrix, we choose to impose the
0 forany0 < k,¢ < M — 1. Here, we Further, letD =

condition E,(f; =
consider the two cases specified by the theorem:

Case (i).If K divides2rC, 4rc, and2M Re, then for any

k.0
@) @r(k+OR)e X (2r+(k+0R)Cm
Yo = W Z Wik
m=0
M—1
—(2r+(k+0)R)c —(2r+(k+£)R)Cm
—Wi Z Wi
m=0
M(w%gc — w;fm), k+0=0;
M( %{’I‘C"I‘MRC_ I—{Qrc—]WRc)’ k+£: M
= 2rc+(k+l)Rcl w(k+£)RCM
Wi 1_ (k+e)RC
—2rc (k+€)Rco 1—w e ~(k+HRCM . .
—Wpe 71 e, Otherwise;
= 0.

Case (ii). If K does not divide2rC, thenE ) =20is
equivalent to

wgr-i-(k-i—é)R)(Zc-l-CM—C) 1
for any k, ¢. This is possible ifK divides both2r(2¢+ CM —
C)andR(2c+ CM — C).

Thus, in either of the two caseg,(1)¥;(1) = I, and
U,(1) is unitary.

Since the above conditions malig,(j) and ¥, (1) unitary,
Lemma 2 implies thaf,(z) is paraunitary.

Setting M RC/K = A yields

ke AK
A S — (i,

(28)

Sinceged(M, A) = 1, w4, is a primitive Mth root of unity,
and thus

1
Nai [ %Rc}ogk,egzwq =P-DFTy-PT,  (29)
where P is the M x M permutation matrix:
P, — 1, if¢=Ak mod M (30)
"~ o, otherwise '

(MRC/K)"'modM, 1 < D < M, and
consider anV x M submatrix of (29), constructed by selecting
rowsZ = {d+ Dk modM | 0 < k < N}. Then

(P-DFTy -PT) [Z] = DFT[J] - PT, (31)

whereJ = {dA+k modM | 0 <k < N}. SinceDFT y[J]
is an N x M submatrix of DFT; constructed from adjacent
rows (possibly looping around the bottom of the matrix),leac
N x N submatrix of it is invertible [20]. It follows from
Proposition 1 that eacltV x N submatrix of ®,(j) is also
invertible.

Hence, by Lemma 3, every x N submatrix of®,(z) is
nonsingular, andb, (z) is maximally robust to erasures.

APPENDIX C: DERIVATION OF CONDITIONS (25a), (25b)
FOR THESYMMETRIC WINDOW A

For a symmetric window, we have

_ (Ao
A= < JNAOJN> ’

where Jy is a N x N complimentary diagonal matrix:
JIn(k,m)=1Iif k+m = N —1 and 0 otherwise.
Substituting (24) into (4), we get
AO(I)()‘I)SAO + JNA()JN(I)l‘I)TJNAoJN =
Doy + P07 =

1, (32a)
1. (32b)

Using @, ®§ = I — ©; 27, we rewrite (32a) as

Ao®o®5Ag + INAZTIN — INAgINPo®; TN Aoy = 1T,
(33)



whereAg = diag{d,} ;"
If (Po®y)k,m = ar,m, then we get

5804070 5j50a07m
dpd1a1,0 056101,m
AP DA = dpdaaz o 0j02a2,m
do0N—1aN—-1,0 OmON-1aN—1,m
and
JNA()JN‘I)()‘I)BJNA()JN
83 _qa00 OIN-m—10N—-1Q0,m

— IN—10N—3G2,0

OIN—m—10N—2a1,m
IN—m—10N—302,m

IN—10N—2G1,0

ON-100aN—1,0 IN—m—100GN—1,m

It follows from (33) thatd,, have to satisfy
(67271 - 6]2V7m71)am,m + 5]2\7777171 = 17
OmOk — ON—m-16N—k—1 = O,

for 0 < k,m < N — 1,k # m. These are exactly conditions

(25a)-(25b).
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