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Abstract—We present a constructive algorithm for the de-
sign of real lapped equal-norm tight frame transforms. These
transforms can be efficiently implemented through filter banks
and have recently been proposed as a redundant counterpart to
lapped orthogonal transforms, as well as an infinite-dimensional
counterpart to harmonic tight frames. The proposed construction
consists of two parts: First, we design a large class of new real
lapped orthogonal transforms derived from submatrices of the
discrete Fourier transform. Then, we seed these to obtain real
lapped tight frame transforms corresponding to tight, equal-norm
frames. We identify those frames that are maximally robust to
erasures, and show that our construction leads to a large class
of new lapped orthogonal transforms as well as new lapped tight
frame transforms.

Index Terms—Frames, tight, bases, orthonormal, filter banks,
lapped orthogonal transforms, DFT, paraunitary matrices.

I. I NTRODUCTION

Over the past decades, redundancy has become a common
tool in signal processing and communications and found its
way into signal representations through frames [1]–[3]. Nowa-
days, frames serve a wide range of applications from robust
transmission to denoising (see [4] and references therein)to
the classification of diverse biomedical image datasets [5]–[7].
Motivated by the need of having frame families dedicated to
a spectrum of applications not considered before, we seek to
design new classes of frames.

We consider a frame to be a redundant set of vectors
{'i}, i ∈ ℤ, which spanℓ2(ℤ). A signal x ∈ ℓ2(ℤ) is
expanded into the frame using atransform, which computes
the signal projection coefficients. The original signal is then
reconstructed using the corresponding inverse transform

x = ΦX =

inverse transform
︷ ︸︸ ︷

Φ Φ̃∗x
︸︷︷︸

transform

. (1)

Here (⋅)∗ is the Hermitian transpose. BothΦ and itsdual Φ̃
can be seen as infinite matrices, a view that we take in our
construction. The frame vectors'i are the columns ofΦ.
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Which frame properties should we look for? Our design
criteria lead us to search for what we calllapped tight frame
transforms (LTFTs). These frames should be:

∙ Computationally efficient:they can be implemented with
filter banks. As additional benefit, they have real coeffi-
cients.

∙ Tight: Φ̃ = Φ, so that the signal reconstruction is trivial,
sinceΦΦ∗ = I.

∙ Equal norm:∥'i∥ = ∥'j∥ for any i, j ∈ ℤ.
∙ Lapped: the support of each'i is longer than a single

block of the signal processed by the filter bank.
∙ Maximally robust to erasures(when possible): a signal

can be reconstructed after a partial data loss. We provide
a formal definition later.

The above requirements resemble those of the nonredundant
LTFT counterparts that inspired this work:lapped orthogonal
transforms (LOTs)[8]. LOTs are expansions into orthonormal
bases (counterpart of tight frames), computationally efficient
since they can be implemented with filter banks. They have
basis vectors of overlapping support to eliminate blocking
artifacts. In our previous work [9], we constructed LTFTs from
LOTs by a process calledseeding, a special form of submatrix
extraction.

When constructing LTFTs from known LOTs in [9], we no-
ticed that these LOTs have similar structure, which we exploit
here to systematically construct a large class of real LOTs
from specific submatrices of discrete Fourier transform (DFT)
matrices. We then useseedingto obtain real LTFTs from
LOTs. We prove that the corresponding frames are equal-norm,
tight, and that many of them are maximally robust to erasures.
We estimate the total number of the constructed LOTs and
LTFTs, and provide examples to illustrate our method. In
addition, we demonstrate that some of the known real LOTs
can be constructed using our algorithm. Our systematic method
is flexible, leads to a large number of previously unknown
LOTs and LTFTs, and implicitly ensures desirable properties
we listed above.

Related work includes [10], where the authors propose a
transform derived from the extended lapped complex trans-
form [11]. They use a change of parameters to derive the
decomposition vectors from the extended lapped complex
transform, ensure that the decomposition is invertible, and
describe the construction of the inverse. While in spirit this
approach is similar to ours, it does not use seeding and leadsto
a completely different LTFT (the corresponding inverse filter
bank is optimized to process seismic data [12]). The same
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Fig. 1. An M -channel filter bank sampled byN implementing a basis
(M = N ) or a frame (M > N ) expansion. The analysis part computes the
transformX = Φ̃∗x; and the synthesis part computes the inverse transform
x = ΦX.

authors have also developed a 2D nonseparable LTFT [13].
Another well-known family of tight frames, the tight Weyl-

Heisenberg frames [14], can also be viewed as a special class
of LTFTs with arbitrary overlap. These frames are constructed
from a prototype window function by translating it in time
and modulating in frequency. They can also be implemented
with oversampled multichannel filter banks, in which all filters
are modulates of one prototype filter. To demonstrate this, we
identify a subclass of LTFTs constructed in this paper that are
tight Weyl-Heisenberg frames.

II. BACKGROUND

In this section, we discuss signal transforms that can be
implemented with multichannel filter banks. Such transforms
can be interpreted as expansions into bases or frames, imple-
mented with critically-sampled or oversampled filter banks,
respectively. Our focus is on basis and frame vectors with
overlapping support to avoid blocking effects. Finally, we
describe the seeding process and discuss the construction of
tight frames by seeding basis matrices.

A. Filter Banks

Consider anM -channel filter bank, shown in Fig. 1. Each
channel consists of an analysis filterℎ̃m and synthesis filterℎm
(m = 0, . . . ,M−1), and down- and upsamplers byN . If M =
N , the filter bank is calledcritically-sampled; if M > N , it
is oversampled. We assume all analysis and synthesis filters
ℎ̃m = (ℎ̃m,0, . . . , ℎ̃m,L−1) and ℎm = (ℎm,0, . . . , ℎm,L−1)
have the same lengthL = qN for some q ∈ ℕ (this
requirement is not restrictive as long as all filters have finite
support). For a signalx, the operation of the filter bank can
be described via matrix-vector products as shown in (1): the
transformX = Φ̃∗x is filtering followed by downsampling
and the inverse transformx = ΦX is upsampling followed by
filtering. Φ has the form

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
...

...
...

...
...

. . .
. . . Φ0 0 . . . 0 0 . . .
. . . Φ1 Φ0 . . . 0 0 . . .

. . .
...

...
...

...
... . . .

. . . Φq−1 Φq−2 . . . Φ0 0 . . .

. . . 0 Φq−1 . . . Φ1 Φ0 . . .
. . .

...
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2)

where each blockΦr, 0 ≤ r ≤ q − 1, is theN ×M matrix

Φr =

⎛

⎜
⎝

ℎ0,rN . . . ℎM−1,rN

...
. . .

...
ℎ0,rN+N−1 . . . ℎM−1,rN+N−1

⎞

⎟
⎠ . (3)

Note that the synthesis filters form thecolumnsof Φ.
For (1) to hold, we must haveΦΦ̃∗ = I. In this paper, we

only considerself-dualbases and frames, meaningΦ = Φ̃ or

ΦΦ∗ = I. (4)

We can rewrite (4) in thez-domain using polyphase anal-
ysis. Namely, we define theN ×M polyphase matrixΦp(z)
as1

Φp(z) =

q−1
∑

r=0

Φrz
−r, (5)

with Φr as defined in (3). We sayΦp(z) has degreeq − 1,
since any polynomial inΦp(z) has degree at mostq−1. Using
(5), (4) is equivalent toΦp(z) being paraunitary:

Φp(z)Φ
∗
p(z) = I. (6)

Here,Φ∗
p(z) represents the Hermitian transpose of a polyphase

matrix ofΦ(z), in which coefficients are complex-conjugated,
z−1 is replaced byz, and the matrix is transposed. A parau-
nitary square matrix is unitary on the unit circle.

If we consider the columns ofΦ as vectors inℓ2(ℤ), then (4)
requires these vectors to form either an orthonormal basis (for
M = N ) or a tight, self-dual frame (forM > N ) in ℓ2(ℤ). We
will often emphasize the special case of a basis by denoting
Φ with Ψ. Correspondingly, the base vectors are denoted with
' for frames or for bases.

In summary, oversampled filter banks correspond to frames
in ℓ2(ℤ), whose elements form the columns ofΦ in (2). The
converse is also true. This class of frames is calledfilter bank
frames.

We have three equivalent representations of filter bank
frames, and, by slight abuse of notation, we will use them
interchangeably as convenient and refer to all of them as
frames:

∙ a set of vectors{'i}i∈ℤ spanningℓ2(ℤ);
∙ an infinite matrixΦ as in (2);
∙ a polyphase matrixΦp(z) as in (5).

We will also encounter finite frames, that is, spanning sets
of ℂN or ℝN , and will view them equivalently asN ×M
matrices,M ≥ N . A finite basis hence corresponds to a square
matrix.

For a given frameΦ, X = Φ∗x is the associated transform
that computes the vector of projection coefficients with respect
to Φ, as shown in (1). Depending on the value ofq, Φ
processes the signalx either in nonoverlapping (q = 1) or
overlapping (q ≥ 2) blocks, thus leading to eitherblockedor
lappedtransformsΦ∗. These cases are visualized in Fig. 2 and
discussed next.

1The subscriptp will always denote a polyphase matrix in this paper and
should not be confused with subscripts denoting submatrices as in (2).
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(a) Φ = Ψ for basis expansion
with block transform
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(b) Φ = Ψ for basis expansion
with lapped transform (q = 2)
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(c) Φ for frame expansion
with block transform
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(d) Φ for frame expansion
with lapped transform (q = 2)

Fig. 2. The infinite matrixΦ in (2) in four different scenarios. The columns
of Φ are the basis/frame vectors. In this paper we assumeΦΦ∗ = I; Φ∗ is
the transform that computes the corresponding coefficientsof a signalx.

B. Basis Expansions (Φ = Ψ)

Basis Expansions with Blocked Transforms.In a critically-
sampled filter bank (M = N ) with filters of length equal to
the sampling factorL = N =M (q = 1),

Ψ = diag(. . . ,Ψ0,Ψ0, . . .) (7)

is a block-diagonal matrix with copies ofΨ0 on the diagonal,
as visualized in Fig. 2(a). In this case, (4) is equivalent to
Ψ0Ψ

∗
0 = IM , that is, Ψ0 is an orthonormal basis inℂM .

The filter bank processes an infinite signalx ∈ ℓ2(ℤ) by
applyingΨ0 to successive nonoverlapping blocks ofM signal
elements. Since signal blocks are processed as independent
signals, and the results are then concatenated,blocking effects
occur due to boundary discontinuities. A well-known example
of a blocked transform usesΨ∗

0 = DFTM ; others include
the use of discrete cosine and sine transforms or the discrete
Hartley transform.

In the case of the DFT,

Ψ∗
0 = DFTM =

1√
M

[!mk
M ]0≤m,k<M , !M = e−2�j/M .

Basis Expansions with Lapped Transforms.To avoid block-
ing artifacts, basis vectors with longer support can be used, as
is the case with LOTs. They can be viewed as a class ofM -
channel critically-sampled filter banks, originally developed
for filters of lengthL = 2N = 2M and later generalized to
arbitrary integer multiples ofN [8].

In this paper, we focus on LOTsΨ∗ with basis vector
supportL = 2N = 2M (q = 2) whose basesΨ are visualized
in Fig. 2(b). The only nonzero blocks in (2) areΨ0 andΨ1;
hence, (5) yields a polyphase matrix of degreeq − 1 = 1:

Ψp(z) = Ψ0 + z−1Ψ1. (8)

SinceΨp(z) is square, (6) is equivalent to

Ψ0Ψ
∗
0 +Ψ1Ψ

∗
1 = I, (9a)

Ψ0Ψ
∗
1 = Ψ1Ψ

∗
0 = 0. (9b)

We use these conditions later to show that the new transforms
we construct are indeed LOTs.

Two main classes of LOTs exist that use either complex
exponentials or cosines in their basis vectors. They are used in
a variety of applications. For example, the Malvar LOT [15] is
well-suited for noise suppression and echo cancellation, while
the Young-Kingsbury LOT [11] was introduced for motion
estimation applications. Below we list four known familiesof
LOTs Ψ∗ by specifying a block row of this matrix, that is,
theM × 2M matrix [Ψ∗

0 Ψ∗
1]. The index range in each case

is 0 ≤ m < M, 0 ≤ k < 2M . A block column of the
corresponding basisΨ is obtained by Hermitian conjugation.

∙ Princen-Johnson-Bradley LOT [16]:

1√
M

[

cos

(
�(2m+ 1)(2k −M + 1)

4M

)]

(10)

∙ Oddly-Modulated DCT LOT:

1√
M

[

cos

(
�(2m+ 1)(2k +M + 1)

4M

)]

(11)

∙ Young-Kingsbury LOT [11]:

1√
M

[

(−1)m sin

(
(2k + 1)�

4M

)

j!
(2m+1)(2k+1)
8M

]

(12)

∙ Malvar Complex LOT [15]:

−
√

2

M

[

sin

(
(2k + 1)�

4M

)

!
−(2m+1)(2k+1+M)
8M

]

(13)

C. Frame Expansions

In the previous section we explained how critically-sampled
filter banks compute basis expansions. Similarly, oversampled
filter banks compute frame expansions.

For frames, the property (4),ΦΦ∗ = I, is called tight-
ness[17].2 Tight frames can be constructed from orthonormal
bases using the Naimark theorem [18], [19]:

Theorem 1 A set{'i}i∈ℐ is a tight frame for a Hilbert space
ℍ if and only if there exists another Hilbert spaceK ⊃ ℍ

with an orthonormal basis{ i}i∈ℐ , so that the orthogonal
projectionP of K ontoℍ satisfies:P i = 'i, for all i ∈ ℐ.

One example of an orthogonal projection is the canonical
projection that simply omits coordinates and is calledseed-
ing [20].

In the finite case, seeding yields a frame (N×M matrix)Φ
for ℂN by omitting rows from a basis (M ×M matrix) Ψ of
ℂM . Conversely, every finite frame can be obtained this way.3

To seed in the infinite case considered here, we extend this
approach to polyphase matricesΨp(z).

Definition 1 A frameΦp(z) is obtained byseedingfrom a
basis Ψp(z), if it is constructed fromΨp(z) by preserving
only a subset of the rows ofΨp(z). This is written asΦp(z) =
Ψp(z)[ℐ], whereℐ is the set of indices of the retained rows.

2Note that in general, a tight frame is also one for whichΦΦ∗ = cI;
however, sincec can be pulled intoΦ, we consider onlyc = 1 here.

3Just extendΦ with rows to an invertible square matrix.
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In particular, for q = 1, seeding constructs frames of
the form in Fig. 2(c) from bases of the form in Fig. 2(a).
Conversely, every such frame can be constructed this way.

Forq > 1, seeding constructs frames of the form in Fig. 2(d)
from bases of the form in Fig. 2(b) (the example in the figure
is for q = 2). However, in this case, it is unclear whether the
converse is true.

The following result is a special case of Theorem 1:

Lemma 1 Seeding an orthonormal basis (paraunitary)Ψp(z)
yields a tight frameΦp(z).

Next, we discuss the blocked and lapped frame expansions
in Figs. 2(c) and (d) in greater detail.

Frame Expansions with Blocked Transforms.If q = 1, then,
as visualized in Fig. 2(c),

Φ = diag(. . . ,Φ0,Φ0, . . . ). (14)

The difference from (7) is thatΦ0 is now rectangular:Φ0 ∈
ℂN×M , and can be viewed as anM -element frame inℂN .
Hence, if it is tight, it can be constructed from an orthogonal
basis inℂM by seeding.

As an example, harmonic tight frames (HTFs) are obtained
by preserving the firstN rows ofΨ0 = DFT∗

M , that is,Φ0 =
DFT∗

M [0, . . . , N−1]. Φ0 is a frame forℂN ; the corresponding
Φ in (14) is a frame for the complexℓ2(ℤ).

Similarly, real HTFs can be obtained by seeding from the
real DFT (RDFT) [20]. For example, theMercedes-Benz frame

Φ0 =

(
0 −1/

√
2 1/

√
2

√

2/3 −1/
√
6 −1/

√
6

)

(15)

can be seeded from the orthogonal

RDFT3 =

⎛

⎝

1/
√
3 1/

√
3 1/

√
3

√

2/3 −1/
√
6 −1/

√
6

0 −1/
√
2 1/

√
2

⎞

⎠

by retaining (and exchanging) the last two rows.
Frame Expansions with Lapped Transforms.Projecting sig-

nals onto frame vectors with nonoverlapping support leads to
similar blocking artifacts as for orthonormal bases. We thus
use the same approach as for orthonormal bases in Section II-B
and consider frames inℓ2(ℤ) with vector supportL = 2N ,
visualized in Fig. 2(d).

As in (8), the resulting polyphase matrixΦp(z) has de-
gree 1:

Φp(z) = Φ0 + z−1Φ1,

and the tightness conditionΦΦ∗ = I is equivalent toΦp(z)
being paraunitary (6).

In [9], we constructed LTFTs by seeding the polyphase
matrix Ψp(z) of an LOT basis:

Φp(z) = Ψp(z)[ℐ]. (16)

By the Naimark theorem, the constructed frames are tight;
this is why we named them lapped tight frame transforms.
We will follow later the same procedure here to derive LTFTs
from LOT bases. First, we introduce the frame properties we
consider.

D. Frame Properties

Apart from tightness, other frame properties are often de-
sirable, such as [4]:

∙ Equal norm:These are frames with basis vectors of the
same norm,∥'i∥ = ∥'j∥, for i, j ∈ ℐ. Since in the real
world, the squared norm of a vector is usually associated
with its energy, equal norm is required in situations where
equal-energy signals are desirable.

∙ Maximal robustness:An N ×M frame Φp(z) is max-
imally robust to erasures, if and only if any N × N
submatrix ofΦp(z) has the full rank on the unit cir-
cle. This requirement arose in using frames for robust
transmission [21] where the loss of up toM − N
transform coefficient over the transmission channel would
not prevent the complete reconstruction of the original
signal. The loss of coefficients translates into removal of
the corresponding set ofM−N columns inΦp(z) and the
ability to reconstruct translates into the remaining matrix
being invertible.

We can construct new frames from old ones by appropriate
transformations that preserve the desired properties. Below we
list such transformations in the polyphase domain (polynomial
counterpart of the discussion for scalar matrices [20]).

Proposition 1 Assume all the matrix products below are
compatible andΦp(z) is a frame. Then,

(i) Up(z)Φp(z)Vp(z) is a frame, for anyUp(z), Vp(z) of
full rank on the unit circle.

(ii) If Φp(z) is a tight (unit-norm tight) frame, then
aUp(z)Φp(z)Vp(z) (Up(z)Φp(z)Vp(z)) is also a tight
(unit-norm tight) frame, for any paraunitary matrices
Up(z), Vp(z) and a ∕= 0.

(iii) If Φp(z) is a maximally robust frame, then
Up(z)Φp(z)Dp(z) is also a maximally robust frame,
for any diagonal matrixDp(z) and any matrixUp(z),
both of full rank on the unit circle.

III. C ONSTRUCTION OFNEW LOTS AND LTFTS

Our goal is to design real filter bank frames that aretight,
equal-norm, andmaximally robust to erasures. We do this by
starting from a polyphase matrix closely related to the DFT.
We first show that particular submatrices of this matrix yield
new LOTsΨ (bases); we then use seeding to obtain the desired
framesΦ and hence LTFTsΦ∗.

A. Construction of New Real LOTs

In Section II-B we showed that a real LOT basis corresponds
to a real square paraunitary polyphase matrixΨp(z) of degree
q− 1. Although in generalΨp(z) is paraunitary if and only if
it is unitary on the entire unit circle∣z∣ = 1, for a realΨp(z)
of degreeq − 1 = 1, it suffices to check only two conditions:

Lemma 2 Let Ψp(z) be a realM ×M polyphase matrix of
degree1, that is, Ψp(z) = Ψ0 + z−1Ψ1, whereΨ0,Ψ1 ∈
ℝ

M×M . Then,Ψp(z) is paraunitary if and only ifΨp(1) and
Ψp(j) are unitary.
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DFTp,K(z)
submatrix

// Ψp(z)
seed

// Φp(z)

Fig. 3. Construction of frames forq = 2.

Proof: “⇒” is immediate. To prove “⇐”, let Ψp(1) =
Ψ0 +Ψ1 andΨp(j) = Ψ0 − jΨ1 be unitary, that is,

{

(Ψ0 +Ψ1)(Ψ
T
0 +ΨT

1 ) = IM

(Ψ0 − jΨ1)(Ψ
T
0 + jΨT

1 ) = IM

⇔
{

Ψ0Ψ
T
0 +Ψ1Ψ

T
1 +Ψ0Ψ

T
1 +Ψ1Ψ

T
0 = IM

Ψ0Ψ
T
0 +Ψ1Ψ

T
1 + j(Ψ0Ψ

T
1 −Ψ1Ψ

T
0 ) = IM

(17)

Subtracting the two equations yields

Ψ0Ψ
T
1 +Ψ1Ψ

T
0 − j(Ψ0Ψ

T
1 −Ψ1Ψ

T
0 ) = 0M

⇔ Ψ0Ψ
T
1 +Ψ1Ψ

T
0 = 0M andΨ0Ψ

T
1 −Ψ1Ψ

T
0 = 0M

⇔ Ψ0Ψ
T
1 = 0M andΨ1Ψ

T
0 = 0M

Inserting into (17) yieldsΨ0Ψ
T
0 + Ψ1Ψ

T
1 = IM ; all require-

ments (9a)-(9b) for a paraunitaryΨp(z) are satisfied.
Lemma 2 chooses 1 andj as evaluation points. Using a very

similar proof, we can generalize to arbitrary roots of unity!1

and!2, provided!2 ∕= ±!1,±!∗
1 .

As an example application of Lemma 2, consider theK×K
polyphase matrix

DFTp,K(z) =
1√
K

[

cos
2kℓ�

K
+ z−1 sin

2kℓ�

K

]

0≤k,ℓ≤K−1

.

(18)
Both DFTp,K(j) = DFTK and DFTp,K(1) = DHTK

(the discrete Hartley transform [22]) are unitary; hence, by
Lemma 2,DFTp,K(z) is paraunitary.

In Theorem 2 (the proof is in Appendix A), we show
that specific submatrices ofDFTp,K(z) are paraunitary, and
thus correspond to LOTs. In Section III-B we will seed these
matrices to obtain LTFTs (this algorithm is depicted in Fig.3).

Theorem 2 Let Ψp(z) be anM ×M submatrix of
√

K/M ⋅
DFTp,K(z), K ≥ M ≥ 2, constructed by selecting the
following row and column sets:

rows: {r + kR modK ∣ 0 ≤ k ≤M − 1}
columns: {c+ ℓC modK ∣ 0 ≤ ℓ ≤M − 1}

for some constants0 ≤ r, c, R,C < K.
Then,Ψp(z) is paraunitary if K = M gcd(K,RC) (in

particular,M dividesK) and one of the following is satisfied:

(i) K divides2rC, 4rc, and2MRc;
(ii) K does not divide2rC, andK divides both2r(2c +

CM − C) andR(2c+ CM − C).

Note that Theorem 2 implies thatM must divideK.
SinceDFTp,K(z) is symmetric, we can interchange the row

and column index sets in the theorem:

Corollary 1 Ψp(z) constructed as in Theorem 2 is parauni-
tary if and only ifΨp(z)

T is paraunitary.

Note that in Theorem 2 we work with index sets instead
of lists since permutations of rows and columns preserve
paraunitarity.

Each paraunitary matrixΨp(z) obtained with Theorem 2
defines a basisΨ; the associated LOT isΨ∗.

We provide examples and further analysis in Section IV.
Here, we first complete the theory and discuss the seeding of
LTFTs from the above LOTs.

B. Construction of New LTFTs from LOTs

In this section we seedM × M LOT matricesΨp(z),
constructed as in Theorem 2, to obtainN ×M framesΦp(z)
and establish their properties.

Tightness.Any seeding of aΨp(z) obtained with Theorem 2
yields a tight frameΦp(z) by Lemma 1.

Equal Norm. Every element ofΨp(z) constructed with
Theorem 2 has the norm1/

√
M . Hence, the columns of any

seededN ×M matrix Φp(z) have the same norm
√

N/M .
Maximally Robust Frames.In general, maximal robustness

for frames is a property difficult to prove since one has to
check that everyN × N submatrix ofΦp(z) is invertible.
The good news is that it is sufficient to ensure that each such
submatrix is nonsingular for at least one value [23]:

Lemma 3 A square polyphase matrixAp(z) is nonsingular if
and only if there existsz0 ∈ ℂ such thatdetAp(z0) ∕= 0.

We will use this fact in the proof of the following theorem.

Theorem 3 Let Ψp(z) be a paraunitary polyphase matrix
constructed using Theorem 2 such thatM andMRC/K are
co-prime. Further, we seed a frame,

Φp(z) = Ψp(z)[ℐ],

by retainingN < M rows. ThenΦp(z) is maximally robust
to erasures if (as sets)

ℐ = {d+Dk modM ∣ 0 ≤ k < N}

for some0 ≤ d < M andD ≡ (MRC/K)−1 modM .

The proof is given in Appendix B.
As an example, consider the following family of maximally

robust LTFTs:

Corollary 2 If Ψp(z) is constructed as in Theorem 2 with
R = 1, C = K/M, and r = c = 0, then any consecutive
seeding (retaining of consecutive rows) ofΨp(z) yields a
maximally robust LTFTΦp(z).

Note that the LTFTs constructed as in Corollary 2 and
seeded starting with the first row (i.e.ℐ = {0, 1, . . . ,M − 1})
are Weyl-Heisenberg frames [14].

IV. N EW LOTS AND LTFTS: EXAMPLES AND ANALYSIS

In this section, we construct new classes of real LOTs and
LTFTs using the theory from Section III. We first provide
examples of LOTs constructed with Theorem 2; we also
show that the previously known real LOTs (10)-(11) can be
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Fig. 4. Magnitude responses of (a) LOT basis vectors in (19) and (b)
seeded LTFT frame vectors in (21) derived using our construction method.
The corresponding filter bank hasM = 3 filters with support2M = 6 (LOT)
or 2N = 4 (LTFT).

constructed using Theorem 2. Then we seed these LOTs to
construct LTFTs. Further, we discuss the design of windows
for the LTFTs, providing additional flexibility in design.
Finally, we briefly discuss complex LTFTs constructed from
the complex LOTs (12)-(13). Note that, as before, we always
construct basesΨ and framesΦ; the associated LOTs and
LTFTs are given byΨ∗ andΦ∗.

A. New LOTs

Small Example.We start with DFTp,6(z) and construct
a polyphase matrix using Theorem 2 with parametersK =
6,M = 3, R = 4, C = 1, r = 0, c = 0 and get

Ψp(z) =
1√
3

⎛

⎜
⎝

1 1 1

1 − 1
2 −

√
3
2 z

−1 − 1
2 +

√
3
2 z

−1

1 − 1
2 +

√
3
2 z

−1 − 1
2 −

√
3
2 z

−1

⎞

⎟
⎠ . (19)

Since the parameters satisfy condition (i) of the theorem,
Ψp(z) is paraunitary and hence specifies an LOT.

Fig. 4(a) depicts the magnitude responses of the basis
vectors in this example.

Class of LOTs.Next we give one example of how to con-
struct an entire class of LOTs for any sizeM . In Theorem 2,
we chooseK = aM with any a ∈ ℕ, r = c = 0, R = 1 and
C = a to satisfy condition (i). Then, for anya ∈ ℕ,

Ψp,a(z) =
1√
M

[

cos
2kℓa�

K
+ sin

2kℓa�

K
z−1

]

0≤k,ℓ<M
(20)

is paraunitary, that is,Ψ∗ is an LOT.
Number of New LOTs.We now investigate how manyM ×

M Ψp(z) can be derived fromDFTp,K(z) and Theorem 2.
Necessarily,M ∣ K, which implies thatK is not prime. This
in mind, Table I shows the number of new LOTs generated
using our method. For example, there are 283×3 paraunitary
submatrices ofDFTp,6(z) and all are found with the theorem.
Note that every submatrix is specified by a row subset and
column subset ofDFTp,6(z); the ordering does not matter.

Further, there are 405 × 5 paraunitary submatrices of
DFTp,10 that do not arise from Theorem 2. One such example
is the row set{0, 1, 3, 7, 9}, and the column set{0, 2, 4, 6, 8}.
However, we speculate that these matrices are up to permuta-
tions the same as other submatrices that are derived from the
theorem. In fact, Theorem 2 could be extended based on the

M

K 2 3 4 5 6 7 8

4 16

6 17 28

8 128 — 64

9 — 66

10 49 — — 84
40

12 304 384 53 — 96
128 116 176

14 97 — — — — 172
336

15 — 161 — 141
120 376

16 896 — 1216 — — — 256
1088 768

TABLE I
NUMBER OF PARAUNITARYM ×M Ψp(z) GENERATED FROMDFTp,K

USING THEOREM 2. THE NUMBERS OF PARAUNITARY SUBMATRICES

Ψp(z) THAT DO NOT SATISFYTHEOREM2 ARE SHOWN IN ITALIC.

permutation symmetries of the DFT [24], [25] and may then
cover all paraunitary submatrices.

Finally, we must note that empirical tests show that there
are noM ×M paraunitary submatrices ofDFTp,K(z) for M
not dividingK, for K ≤ 16.

B. New Real LTFTs

Small Example.As a small example we seed (19) by
retaining the first two rows and get

Φp(z) =
1√
3

(
1 1 1

1 − 1
2 −

√
3
2 z

−1 − 1
2 +

√
3
2 z

−1

)

(21)

=
1√
3

(
1 1 1
1 − 1

2 − 1
2

)

+
1√
3
z−1

(
0 0 0

0 −
√
3
2

√
3
2

)

= Φ0 + z−1Φ1.

By construction, this frame is tight and equal norm. By
Theorem 3, any seeding at stride(MRC/K)−1 ≡ 1 modM
(that is, consecutive) yields a maximally robust frame; hence,
the constructed LTFT is also maximally robust.

The frameΦ has columns{'3k, '3k+1, '3k+2}k∈ℤ with

'3k =
1√
3
(. . . , 1, 1, 0, 0, . . . )T ,

'3k+1 =
1√
3
(. . . , 1,− 1

2 , 0,−
√
3
2 , . . . )

T ,

'3k+2 =
1√
3
(. . . , 1,− 1

2 , 0,
√
3
2 , . . . )

T ,

where the first element1 in each vector is at positionk.
Φ can be viewed as a lapped counterpart of the Mercedes-

Benz frame in (15). Fig. 4(b) depicts the magnitude responses
of the frame vectors in this example.

Class of LTFTs.Given anyN < M , an N × M Φp(z)
can be constructed by seeding theM × M Ψp(z) in (20),
retainingN rows. Any such frame will be tight and equal
norm. Since the construction parameters satisfy Theorem 3,
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Fig. 5. Magnitude responses of LTFT frame vectors resultingfrom consec-
utive seeding withM = 8, N = 5 of the (a) Princen-Johnson-Bradley and
(b) oddly-modulated DCT LOTs. In each case the corresponding filter bank
hasM = 8 filters of support2N = 10.

and (MRC/K)−1 ≡ 1 modM , Φp(z) also is maximally
robust if it results from consecutive seeding.

C. Known Real LOTs and LTFTs

We demonstrate that the two known families of real LOTs
(Princen-Johnson-Bradley and Oddly-Modulated DCT) in (10)
and (11) can be derived using Theorem 2.

First, we compute the corresponding polyphase matrices.
Note that both (10) and (11) show[ΨT

0 ΨT
1 ] and we have to

computeΨp(z) = Ψ0 + z−1Ψ. Below, the row index isk and
the column index ism.

For the Princen-Johnson-Bradley LOT (10),

Ψp(z) =
1√
M

[

cos�k,m + z−1 sin�k,m

]

, (22)

where�k,m = (−1)m+1(2m+ 1)(2k + 1−M)�/4M.

For the Oddly-Modulated DCT LOT (11),

Ψp(z) =
1√
M

[

cos�k,m + z−1 sin�k,m

]

, (23)

where�k,m = (−1)m+1(2m+ 1)(2k + 1 +M)�/4M.

In both cases,ΨT
p (z) can be constructed as in Theorem 2

with parametersK = 8M, R = 2, C = 4, r = 7M + 1,
c = 6M + 2+ (−1)M for the Princen-Johnson-Bradley LOT;
andK = 8M ,R = 2,C = 4, r =M+1, c = 6M+2+(−1)M

for the Oddly-Modulated DCT LOT. These parameters satisfy
condition (ii) of the theorem, and thusΨp(z)

T is paraunitary.
By Corollary 1,Ψp(z) is paraunitary as well.

As a consequence, any frameΦp(z) seeded from the above
Ψp(z) is tight and equal-norm.

Finally, using Theorem 3 we conclude that any consecutive
seeding of the aboveΨT

p (z) yields a maximally robust LTFT,
with vector norm

√

N/M .
As an example, Fig. 5(a) and 5(b) show the magnitude re-

sponses of the frame vectors constructed by preserving the first
N = 5 rows ofΨp(z) of sizeM = 8 for the Princen-Johnson-
Bradley and the Oddly-Modulated DCT LOTs, respectively.

D. Window Design

We can gain additional freedom in LTFT construction, as
well as improve the frequency behavior of the corresponding
filters in the filter bank, bywindowingthe constructed LTFTs.

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

(a)

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

(b)

Fig. 6. Window solution to (25a)-(25b) for (a)N = 7 and (b)N = 8.

We are interested in one window that modulates all frame
functions at once. That is, we seek to design a2N×2N diag-
onal window matrixΔ = diag(�0, . . . , �2N−1) that produces
a windowed LTFT

ΦΔ = Δ ⋅
(
Φ0

Φ1

)

. (24)

We use two different approaches to the window design. The
first one is analytical and uses algebraic conditions that govern
the filter bank. The second one uses optimization techniques
to approximate the frequency behavior of HTFs, as these are
narrow bandpass filters evenly spread across the frequency
domain.

The following derivations apply to all LTFTs seeded from
LOTs. As a running example, we use LTFTs seeded from the
Princen-Johnson-Bradley LOT (10).

Analytical Approach.For a LTFT seeded from the Princen-
Johnson-Bradley LOT, the(k,m)-th element ofΦ0Φ

∗
0 or

Φ1Φ
∗
1 is

ak,m = 1
4M

sin(�(k−m))

sin(
�(k−m)

2M )
+ (−1)M+1 1

4M
sin(�(k+m+1))

cos(
�(k+m+1)

2M )

for k,m = 0, . . . , N − 1.
Substituting (24) into (4), we get the following system of

equations

am,m�
2
m + (1− am,m)�2N+m = 1,

�N+m�N+k = �m�k,

for 0 ≤ k,m < N, k ∕= m. It has an infinite set of solutions.
Among them let us consider symmetric ones:�m = �2M−1−m.
In this case, as shown in Appendix C, we obtain the following
system of equations:

am,m�
2
m + (1 − am,m)�2N−m−k = 1, (25a)

�N−m−1�N−k−1 = �m�k, (25b)

for 0 ≤ k,m < N, k ∕= m. Fixing �0 = −1, we have�N−1 =
±1 and�k = −�N−1�N−k−1 for 1 ≤ k < N − 1.

An example of a symmetric window is shown in Fig. 6. It
is given by

�m =

{
cos( m�

N−1 + �) for N even,
cos( 2m�

N−1 + �) for N odd,
0 ≤M < N.

Also, note that conditions (25a)-(25b) hold for anti-
symmetric windows, for which�m = −�2M−1−m.

Optimization Approach.We first explore error minimiza-
tion algorithms. The procedure finds an optimal window�̂
that minimizes the weighted error between an HTF and the
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Fig. 7. Magnitude responses of the (a) HTF and (b) Princen-Johnson-Bradley
LTFT frame vectors withM = 8, N = 5; as well as windowed Princen-
Johnson-Bradley LTFT frame vectors also withM = 8, N = 5 with (c)
error-minimization designed window; and (d) a random window.

frame seeded from the Princen-Johnson-Bradley LOT in the
frequency domain as follows:

�̂ = argmin
�

�⊙ (Φ(HTF ) − � ⊛ Φ(PJB)),

where� is a weight vector,⊙ denotes point-wise multiplica-
tion, ⊛ denotes column-wise convolution, and

Φ(PJB) =

(
Φ0

Φ1

)

is the frame seeded from the Princen-Johnson-Bradley LOT.
To make sizes compatible, we use a stacked version of the
HTFs, that is, we buildΦ(HTF ) by stacking twoN × M
HTF matrices on top of each other. Algorithms used to
implement this procedure include the trust region method [26]
and sequential quadratic programming methods [27], which
are gradient descent-based methods. The results we obtain
are not satisfactory; indeed, randomly generating the window
achieves better results. Fig. 7(c) and (d) show the results
when using the optimized windoŵ� and a random window,
respectively. As a reference, we give the magnitude responses
of the HTF and Princen-Johnson-Bradley frame vectors in
Fig. 7(a) and (b), respectively.

Our second optimization approach relies upon polar decom-
position of matrices and the Fan & Hoffman theorem [28].
Given a2N × 2N matrix Θ, its polar decomposition is

Θ = ΔΣ,

whereΣ is a2N×2N Hermitian positive semi-definite matrix
Σ = (ΘΘ)

1
2 , andΔ is a2N×2N unitary matrix with singular

value decomposition

Δ = P

(
Ir 0
0 Θ

)

Q∗,

wherer is the rank ofΘ, and the matricesP andQ are such
that the singular value decomposition ofΘ isΘ = PΛQ∗ [29].
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Fig. 8. Magnitude responses of the windowed Princen-Johnson-Bradley LTFT
frame vectors using the polar decomposition method withM = 8, N = 5,
and (a)Δ̂1, (b) �̂2, (c) �̂3.

Note that Δ is unique if Θ has full rank. Then the best
approximation theorem by Fan & Hoffman [28] states that

∥Δ−Θ∥ = min {∥Δ−Q∥ : Q∗Q = I2N} (26)

for any unitarily invariant norm. Thus, by takingΘ =
Φ(HTF ) Φ(PJB)∗ andΔ the window matrix, we have:

Δ̂ = argmin
Δ

∥Δ− Φ(HTF )Φ(PJB)∗∥. (27)

Ideally we would like to have one window vector for the entire
set of LTFT filters (that is, we want̂Δ to be diagonal). Hence,
we can usêΔ in three different ways:

1) Δ̂1 = Δ̂; each column of̂Δ1 windows one LTFT filter.
2) �̂2 is the vector of eigenvalues of̂Δ; �̂2 windows all

LTFT filters.
3) �̂3 = � e, with � the largest eigenvalue,e the correspond-

ing eigenvector of̂Δ; �̂3 windows all LTFT filters.

Fig. 8 shows the magnitude responses of the Princen-Johnson-
Bradley LTFT filters when windowed bŷΔ1, �̂2 and �̂3,
showing a slight improvement over the original Princen-
Johnson-Bradley LTFT in that they have a better frequency
localization, with�̂2 being the best one.

E. Complex LTFTs

Complex LOTs, such as (12) and (13), do not fit our current
framework since one cannot apply Lemma 2. However, we
postulate that there could be a more general construction
method involving complex matrices, the study of which we
leave for future work.

Here, we briefly consider seeding the complex bases un-
derlying the LOTs (12) and (13). Because of Lemma 1, any
seeding yields a tight frame. In addition, any such frame is
equal norm. To show this, we first compute the respective
polyphase matrices. Note that both (12) and (13) show[Ψ∗

0 Ψ
∗
1]

and we have to computeΨp(z) = Ψ0+z
−1Ψ1. Below, the row

index isk, the column index ism, and�k = (2k+1)�/(4M).
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Fig. 9. Magnitude responses of LTFT frame vectors resultingfrom con-
secutive seeding withM = 8, N = 5 of the (a) Young-Kingsbury and (b)
Malvar LOTs. In each case the corresponding filter bank hasM = 8 filters
of support2N = 10.

For the Young-Kingsbury LOT (12),Ψp(z) is given by

− 1√
M

[

!
−(2k+1)(2m+1)
8M

(
(−1)mj sin�k − z−1 cos�k

)]

,

and for the Malvar LOT (13),Ψp(z) is given by

−
√

2

M

[

!
(2k+1+M)(2m+1)
8M

(
sin�k − (−1)mz−1j cos�k

)]

.

Observe that in both polyphase matrices every entry has the
same norm,

√

1/M and
√

2/M , respectively. Hence, every
seeded frame will be equal norm.

As an example, we considerM = 8 and seed in both cases
by retaining the first5 rows (N = 5) to obtain an equal-
norm tight frame. The magnitude responses of the associated
analysis filters for Young-Kingsbury frame are shown in
Fig. 9(a), and for Malvar frame are shown in Fig. 9(b).

V. CONCLUSIONS ANDFUTURE WORK

We presented a simple and flexible construction method to
generate new LOTs from DFTs and new LTFTs from these
new LOTs. The new LTFTs are tight, equal-norm and under
certain conditions, maximally robust to erasures. We have
shown that some well-known LOTs can be seen as particular
cases constructed with our method, and have studied LTFTs
derived from these LOTs. In addition, although excluded from
the current framework, we discussed known complex LOT
families and showed that they lead to equal-norm, tight LTFTs.

We intend to extend our construction method to extended
lapped transforms for which the lengthL of the filters is
any integer multipleq ≥ 2 of M (in which caseΨp(z)
contains polynomials of degreeq − 1). Moreover, we plan on
generalizing the method to the complex case, by investigating
the complex counterparts to Lemma 2 and Theorem 2. For
example, we have seen that, forq = 2, the equivalence
between unitary and paraunitary matrices relies on the pair
(1, j), or, more generally, on any two roots of unity with an
angle between them that differs from� and�/2. Do q-tuplets
of complex numbers then exist, such that the same equivalence
is preserved in the case whereq > 2? Another interesting
venue would be to generalize our construction method to
include a larger class of LOTs and LTFTs, and to find the
most general sufficient and necessary conditions on the design
of paraunitary submatrices of the DFT.
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APPENDIX A: PROOF OFTHEOREM 2

According to Lemma 2, to show thatΨp(z) is paraunitary,
it is enough to show thatΨp(j) andΨp(1) are unitary.

The elements of the matrixΨp(z) are

 k,ℓ(z) =
1√
M

(

cos (
2�(r + kR)(c+ ℓC)

K
)

+ sin (
2�(r + kR)(c+ ℓC)

K
)z−1

)

,

0 ≤ k, ℓ ≤M − 1 and0 ≤ r, c, R,C ≤M − 1.

We first find the conditions forΨp(j) to be unitary. The
(k, ℓ)th element ofΨp(j)Ψ

∗
p(j) is given by

(
Ψp(j)Ψ

∗
p(j)

)

k,ℓ
=

1

M

M−1∑

m=0

!
(r+kR)(c+mC)−(r+ℓR)(c+mC)
K

=
1

M
!
(k−ℓ)Rc
K

M−1∑

m=0

!
(k−ℓ)RCm
K

=

⎧

⎨

⎩

1, k = ℓ;

1
M !

(k−ℓ)Rc
K

1−!
(k−ℓ)RCM

K

1−!
(k−ℓ)RC

K

, k ∕= ℓ.

Ψp(j) is unitary if and only if(Ψp(j)Ψ
∗
p(j))k,ℓ = 0 for any

k ∕= ℓ, or, equivalently, if and only ifK is divisible by the
productRCM , but not divisible by(k−ℓ)RC for anyk−ℓ ∕=
0 such that1 ≤ ∣k− ℓ∣ ≤M − 1. This is possible if and only
if K =M gcd(K,RC). Thus,Ψp(j)Ψ

∗
p(j) = IM , andΨp(j)

is unitary if and only ifK =M gcd(K,RC).

We next investigate conditions forΨp(1) to be unitary. The
(m, ℓ)th element ofΨp(1) is

 k,ℓ(1) =
1√
M

(

cos (
2�(r + kR)(c+ ℓC)

K
)

+ sin (
2�(r + kR)(c+ ℓC)

K
)
)

=
1√
M

(1 + j

2
!
(r+kR)(c+ℓC)
K

+
1− j

2
!
−(r+kR)(c+ℓC)
K

)

.
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The (k, ℓ)-th element ofΨp(1)Ψ
∗
p(1) is

(Ψp(1)Ψ
∗
p(1))k,ℓ =

1

M

M−1∑

m=0

[(
1+j
2 !

(r+kR)(c+mC)
K

+ 1−j
2 !

−(r+kR)(c+mC)
K

)

×
(
1−j
2 !

−(r+ℓR)(c+mC)
K + 1+j

2 !
(r+ℓR)(c+mC)
K

)]

= 1
2M

M−1∑

m=0

(!
(k−ℓ)R(c+kC)
K + !

(ℓ−k)R(c+mC)
K )

+ j
2M

M−1∑

m=0

(!
(2r+(k+ℓ)R)(c+mC)
K

−!−(2r+(k+ℓ)R)(c+mC)
K )

= 1
2MΣ

(1)
k,ℓ +

j
2MΣ

(2)
k,ℓ.

SinceK = M gcd(K,RC), then for any0 ≤ k, ℓ ≤ M − 1
with k ∕= ℓ, K is not divisible by(k − ℓ)RC. Thus

Σ
(1)
k,ℓ =

⎧

⎨

⎩

∑M−1
m=0 2, k = ℓ;

!
(k−ℓ)Rc
K

1−!
(k−ℓ)RCM

K

1−!
(k−ℓ)RC

K

+!
(ℓ−k)Rc
K

1−!
(ℓ−k)RCM

K

1−!
(ℓ−k)RC

K

, k ∕= ℓ;

=

{

2M, k = ℓ;

0, k ∕= ℓ.

To makeΨp(1) a unitary matrix, we choose to impose the
condition Σ

(2)
k,ℓ = 0 for any 0 ≤ k, ℓ ≤ M − 1. Here, we

consider the two cases specified by the theorem:

Case (i).If K divides2rC, 4rc, and2MRc, then for any
k, ℓ

Σ
(2)
k,ℓ = !

(2r+(k+ℓ)R)c
K

M−1∑

m=0

!
(2r+(k+ℓ)R)Cm
K

−!−(2r+(k+ℓ)R)c
K

M−1∑

m=0

!
−(2r+(k+ℓ)R)Cm
K

=

⎧

⎨

⎩

M(!2rc
K − !−2rc

K ), k + ℓ = 0;

M(!2rc+MRc
K − !−2rc−MRc

K ), k + ℓ =M ;

!
2rc+(k+ℓ)Rc
K

1−!
(k+ℓ)RCM

K

1−!
(k+ℓ)RC

K

−!−2rc−(k+ℓ)Rc0
K

1−!
−(k+ℓ)RCM

K

1−!
−(k+ℓ)RC

K

, otherwise;

= 0.

Case (ii). If K does not divide2rC, then Σ
(2)
k,ℓ = 0 is

equivalent to

!
(2r+(k+ℓ)R)(2c+CM−C)
K = 1

for anyk, ℓ. This is possible ifK divides both2r(2c+CM −
C) andR(2c+ CM − C).

Thus, in either of the two casesΨp(1)Ψ
∗
p(1) = IM , and

Ψp(1) is unitary.

Since the above conditions makeΨp(j) andΨp(1) unitary,
Lemma 2 implies thatΨp(z) is paraunitary.

APPENDIX B: PROOF OFTHEOREM 3

We use Lemma 3 withz0 = j, which makesΨp(j) a
submatrix of

√

K/M DFTK . We fix the order of rows and
columns and get

Ψp(j) =
1√
M

[

!
(r+kR)(c+ℓC)
K

]

0≤k,ℓ<M

=
1√
M

[
!rc
K ⋅ !ckR

K ⋅ !rℓC
K ⋅ !kℓRC

K

]

0≤k,ℓ<M

=
1√
M
!rc
K ⋅ Ω1 ⋅

[
!kℓRC
K

]

0≤k,ℓ<M
⋅ Ω2.

Here,Ω1 = diag(!ckR
K )0≤k<M andΩ2 = diag(!rℓC

K )0≤ℓ<M

are full-rank diagonal matrices, and!rc
K ∕= 0. Hence, by

Proposition 1(iii) we can omit them in studying the seeding
of MR frames.

SettingMRC/K = A yields

!kℓRC
K = !

kℓAK

M

K = (!A
M )kℓ. (28)

Sincegcd(M,A) = 1, !A
M is a primitiveM th root of unity,

and thus
1√
M

[
!kℓRC
K

]

0≤k,ℓ≤M−1
= P ⋅DFTM ⋅PT , (29)

whereP is theM ×M permutation matrix:

Pkℓ =

{

1, if ℓ = Ak mod M

0, otherwise
. (30)

Further, letD ≡ (MRC/K)−1 modM , 1 ≤ D < M , and
consider anN×M submatrix of (29), constructed by selecting
rows ℐ = {d+Dk modM ∣ 0 ≤ k < N}. Then

(
P ⋅DFTM ⋅PT

)
[ℐ] = DFTM [J ] ⋅ PT , (31)

whereJ = {dA+k modM ∣ 0 ≤ k < N}. SinceDFTM [J ]
is anN ×M submatrix ofDFTM constructed from adjacent
rows (possibly looping around the bottom of the matrix), each
N × N submatrix of it is invertible [20]. It follows from
Proposition 1 that eachN × N submatrix ofΦp(j) is also
invertible.

Hence, by Lemma 3, everyN × N submatrix ofΦp(z) is
nonsingular, andΦp(z) is maximally robust to erasures.

APPENDIX C: DERIVATION OF CONDITIONS (25a), (25b)
FOR THESYMMETRIC WINDOW Δ

For a symmetric window, we have

Δ =

(
Δ0

JNΔ0JN

)

,

where JN is a N × N complimentary diagonal matrix:
JN (k,m) = 1 if k +m = N − 1 and 0 otherwise.

Substituting (24) into (4), we get

Δ0Φ0Φ
∗
0Δ0 + JNΔ0JNΦ1Φ

∗
1JNΔ0JN = I, (32a)

Φ0Φ
∗
0 +Φ1Φ

∗
1 = I. (32b)

UsingΦ0Φ
∗
0 = I − Φ1Φ

∗
1, we rewrite (32a) as

Δ0Φ0Φ
∗
0Δ0 + JNΔ2

0JN − JNΔ0JNΦ0Φ
∗
0JNΔ0JN = I,

(33)
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whereΔ0 = diag{�n}N−1
n=0 .

If (Φ0Φ
∗
0)k,m = ak,m, then we get

Δ0Φ0Φ
∗
0Δ0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�20a0,0 . . . �j�0a0,m . . .
�0�1a1,0 . . . �j�1a1,m . . .
�0�2a2,0 . . . �j�2a2,m . . .

...
. . .

... . . .
�0�N−1aN−1,0 . . . �m�N−1aN−1,m . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and

JNΔ0JNΦ0Φ
∗
0JNΔ0JN

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�2N−1a0,0 . . . �N−m−1�N−1a0,m . . .
�N−1�N−2a1,0 . . . �N−m−1�N−2a1,m . . .
�N−1�N−3a2,0 . . . �N−m−1�N−3a2,m . . .

...
. . .

... . . .
�N−1�0aN−1,0 . . . �N−m−1�0aN−1,m . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It follows from (33) that�m have to satisfy

(�2m − �2N−m−1)am,m + �2N−m−1 = 1,

�m�k − �N−m−1�N−k−1 = 0,

for 0 ≤ k,m ≤ N − 1, k ∕= m. These are exactly conditions
(25a)-(25b).
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Minden, and J. Kovačević, “Towards an image analysis toolbox for
high-throughput Drosophila embryo RNAi screens,” inProc. IEEE Int.
Symp. Biomed. Imaging, Arlington, VA, Apr. 2007, pp. 288–291.

[8] H. S. Malvar,Signal Processing with Lapped Transforms, Artech House,
Norwood, MA, 1992.
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