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Abstract Recently, we introduced the framework for signal processing oma no
separable 2-D hexagonal spatial lattice including the aatmtnotion of Fourier
transform called discrete triangle transform (DTT). Spatial meartghidattice

is undirected in contrast to earlier work by Mersereau introducexgfonal dis-
crete Fourier transforms. In this paper we derive a general-radix #igofor
the DTT of ann x n 2-D signal, focusing on the radxx2 case. The runtime
of the algorithm isO(n? log(n)), which is the same as for commonly used sep-
arable 2-D transforms. The DTT algorithm derivation is based on Itjebeaic
signal processing theory. This means that instead of marnipgl&ansform co-
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Fig. 1 Fourier transform  Polynomial algebra Basis Separabl
(@ 2-DDFT Cla,y]/(z" = 1,y" — 1) {z'y’} yes
(b) 2-DDCT,type3 Clz,y|/(Tn(z), Tn(y)) {Ti(x)T5(y)}  vyes
(c) DTT Clz,y]/(Tno(z,y), Ton(z,y)) {Ti;(z,y)}  no

Table 1 Correspondence between the signal structures in Fig. dciassd Fourier transforms,
and polynomial algebra with fixed basis.

efficients, the algorithm is derived through a stepwise decaitipo of its un-
derlying polynomial algebra based on a general theorem that tinelirce. The
theorem shows that the obtained DTT algorithm is the precisavagut of the
well-known Cooley-Tukey fast Fourier transform, which motivdtestitle of this
paper.

1 Introduction

In [1], we introduced the framework for signal processing on a spagiehdonal
lattice in two dimensions (2-D). The derivation of this frameworlars appli-
cation of the algebraic signal processing theory that we recartbduced [2, 3].
Namely, from basic assumptions on the desired geometry (in thésachexagonal
lattice) to be imposed on the signal we derived the proper pohyal algebra and
a suitable basis to support this geometry. The polynomialbadgthen provides
the proper notions of signal space, filter space, shift operatorsolution, spec-
trum, and Fourier transform. The latter we termed the discrete tearansform
(DTT).

The DTT, and the polynomial algebra framework in general, is beden
stood by visualizing the associated geometry of the signalaito imposed by the
DTT and comparing it to the geometry imposed by other transforeesFg. 1
and Table 1, which provides the associated polynomial algedmmd basis. More
details are provided in the paper.

For example, the 2-D discrete Fourier transform (DFT) assumes dginalsi
(given by a 2-D array of numbers) resides on the rectangular lattioers in
Fig. 1(a). The lattice is directed and the boundary conditionsghown) are pe-
riodic, which makes the domain a torus. The 2-D DFT diagonatizesdjacency
matrix of this torus, which makes the connection between tramsémnd lattice
rigorous. The polynomial algebra and basis underlying the toristaown in Ta-
ble 1.

Next, the 2-D discrete cosine and sine transforms (DCTs/DSTs)den@sim-
ilar structure shown in Fig. 1(b), but now the lattice is undirdcteghich we call
spatial The boundary conditions are symmetric or antisymmetric, ddipgron
the type of DCT or DST. Again, the adjacency matrix of this graptiagonal-
ized by the respective 2-D DCT or DST. The polynomial algebra lzasls for
the special case of a DCT, type 3, is shown in Table 1. In conivabe previous
case, both algebra and basis are built from Chebyshev polyromial) of the
first kind in one variable [4,5].



(a) 2-D DFT (b) 2-D DCT/DST

(c) DTT

Fig. 1 Visualizations of the signal structure imposed by (a) tHe RFT (cyclic boundary con-
ditions are omitted); (b) the 2-D DCTs/DSTs (symmetrid&rhmetric boundary conditions
are omitted); and (c) the DTTs (boundary conditions are i)t

In both cases, the signal domain is separable, which meanscaplioeluct of
line graphs. As a consequence the transforms are tensor or Kromeokects of
1-D transforms (DFT or DCT/DST in this case).

The signal structure assumed by the DTT, again without bouratarglitions,
is shown in Fig. 1(c). The lattice is spatial and hexagonal amté nonseparable.
Its adjacency matrix is diagonalized by the DTT. The polyndailigebra (Table 1)
is now built from the lesser known Chebyshev polynomigls(z, y) of the first
kind in two variables [1, 6].

In this paper we first show that the DTT possesses general radigyzdakey
type algorithms. By this we mean algorithms that are based osetime algebraic
principle as the Cooley-Tukey fast Fourier transform (FFT). Nameéy/derive
these algorithms by a stepwise decomposition of the underjyatynomial alge-
bra rather than the transform itself using only one general thedrefi, 8] we
have used this technique to derive a large class of CooleyyTyke algorithms
for trigonometric 1-D transforms. Here, we generalize this theorerriD@8ad ap-
ply it to the DTT. Further, we perform a detailed derivation for thaixe2 x 2 case,
completing our preliminary results from [9], and show that the r@syHlgorithm
hasO(n?log(n)) runtime, just like the best known algorithms for the separable
2-D DFT and 2-D DCTs/DSTs.



Related work. Hexagonal lattices, their associated Fourier transforms, and

their fast algorithms where considered before as part of the sewinaon multi-
dimensional signal processing by Mersereau [10, 11]. See alsotig12] which
contains an extensive treatment of hexagonal lattices igénpaocessing and ap-
plications and the paper [13] and the references given therein.

However, the above work considers exclusivdlyectedhexagonal lattices,
i.e., those of the type in Fig. 1(a). This implies a notion of f@utransform dif-
ferent from the DTT. Intuitively, a spatial, aindirected lattice should make more
sense for many image processing applications. Indeed, forasthmectangular
images, the 2-D DCT, associated with the spatial lattice gn Efb), is often used
instead of the 2-D DFT. A prominent example is JPEG image corajanmes

One contribution of this paper is in providing a fast algorithmtfee DTT. The
other is our technique for deriving this algorithm, namely, byrking with the
polynomial algebra instead of the transform. This approach caiieleed as an
extension of Nussbaumer’s derivations of FFTs and convaiwigorithms in the
first book on FFTs [14]. Namely, he also used polynomial algetmddactoriza-
tion properties of polynomials. The same holds for the radix-2D&ST algorithm
derived in [15]. In contrast, we use decomposition properties offfowhials and
have shown that these underly general-radix algorithms [4, 8].

Another technique for deriving fast algorithms for 1-D transformmésented
in [16,17] and requires that the underlying polynomial algebsadbasis of or-
thogonal polynomials. The technique only uses the three-tecornence, which
is a defining property of these polynomials, and is thus very igéneowever,
for the 1-D DCTs and DSTs, built from (orthogonal) Chebyshev patyiads, it
yields suboptimal algorithms witt)(n log?(n)) operations versu® (nlog(n))
for the best known ones. The same suboptimality is likely footemptial 2-D ex-
tension of that method (which does not exist yet) when apptigte DTT.

Finally, we want to characterize our algorithm derivation in malgebraic
terms. Namely, a polynomial algebra, viewed as regular modkikn induction
of the trivial regular module [18]. Our stepwise decompositisreduivalent to
a decomposition of the induction into two steps. The saméhatktapplied to
group algebras, has been used to derive fast Fourier transformsupsgam area
pioneered by Beth in his seminal book [19] and further develope&lausen
[20-22], and by Rockmore, Maslen, and others [23-25].

Organization. Section 2 provides the necessary background on polynomial al-

gebras in one and two variables and their associated transfohissn€ludes the
DTT that we introduce and define. We also briefly discuss the@ction to signal
processing. Section 3 then explains how to derive fast transflyonitams using
polynomial algebras, first focusing on one variable with the DR@T BCT as ex-
amples, and then generalizing the technique to two variablegke it applicable
to the DTT. In Section 4 we then perform the actual derivation ofreeged-radix
DTT algorithm with emphasis on the rad«2 case. We conclude with Section 5.

2 Polynomial Algebras and Their Transforms

In this section we provide the necessary background on polyhaihgiebras and
their associated polynomial transforms. These cover manyedafémsforms used
in signal processing including the DTT, which is defined i théction. Later, we



derive DTT algorithms by decomposing the underlying polynd@iligebra rather
than working with the transform itself.

2.1 Polynomial Algebras

Recall that aralgebra.A is a vector space that is also aring, i.e., it is also equipped
with a multiplication for its elements [26]. Important examples détgebras are
the complex number€ and the set€[z], C[z, y] of polynomials in one or two
variables, respectively.

One variable. Let p(z) € C[z] be a polynomial of degree. Then we can
define another important class of algebras as follows: the eltsnaee the polyno-
mials of degree less thanand the multiplication of two polynomials is computed
modulop(x). This algebra is denoted by

A = C[z]/p(z) = Clz]/(p(z)) = {q(=) | deg(q) < deg(p)}.

It has dimensionrlim(.A) = deg(p).
More formally,(p(x)) = p(z)Clz]<C[z] is the ideal [27,28] of[x] generated
by p(x) andCl[z]/p(z) is the associated quotient ring or factor ring.
An example isd = C[z]/(z* — 1). In A, for examplez? = 1 mod (22 — 1)
and we can compute(r + 1) = 22 + 2 = = + 1 mod (z? — 1). A basis ofA is
b = (1,z) (we use parentheses since the order of basis elements matthis in t
paper).
Two variables. Similarly, we can consider two polynomialée, y) andg(z, y)
in two variables and construct the polynomial algebra

A = Clz,yl/(p(z,y), q(z,y)). 1)

Again, (p(z,y),q(z,y)) = p(z,y)C[z,y] + q(z,y)Clz, y] < Clz, y] denotes the
ideal of C[z,y] generated by(z,y) and ¢(x,y) (in short: byp andq). A is
equipped with ordinary addition and multiplication and alimquutations are car-
ried out modulop and¢. Computation modulo two polynomials is no longer a
simple matter as before in the case of univariate algebras. It vech tlepends on
the actual choice gf andg whether it is possible or not to obtairuaiquereduced
normal form by successively performing reductions moduémdq. Technically,
the condition to guarantee unique normal forms is ghahdq form a Gibner
basis [28,27]. We will not digress any further into this theory botenthat all
examples considered in this paper actually have the propeaty #indq form a
Grobner basis, i. e., computing modylaand q is always well-defined (see also
Appendix B for further discussion).

Also note thatA4 in (1) is not necessarily of finite dimension. However, the
cases considered in this paper will be.

As an example, considet = C[z,y]/(z? — 1,y? — 1). In A, we can compute,
for examplex(zy + 1) = 2%y + x = x + y mod (22 — 1,y? — 1). Using similar
reductions, one finds thdim(.A) = 4; for examplep = (1, z,y, zy) is a basis.

A generalization of (1) ta variables is straightforward. However, in this pa-
per, we restrict ourselves to the special case of two variables.



2.2 Polynomial Transforms

With each polynomial algebra we can associate a polynomiakfoam as ex-
plained next.

One variable. Let A = Clz]/p(z) be a polynomial algebra in one variable.
We assume that the zeros = (ao,...,a,—1) Of p are pairwise distinct. The
Chinese Remainder Theorem (CRT) for polynomials [29] decongds$eto one-
dimensional algebras as follows:

A Clz]/p(x) — @ogl«nc[x]/(x - a), (2)

s(x) — (s(a), ..., s(an-1))-

Here,® is the direct sum of algebras defined as their Cartesian prodtictain-
ponentwise operatiom\ is an isomorphism of algebras (even.dmmodule homo-
morphism) and, in particular, a bijective linear mapping. ket (po,...,pn—1)
be a basis of’[z]/p(z) and choose the basis’) = (1) in each one-dimensional
Clz]/(x — ag). ThenA can be expressed by an invertible n matrix which we
refer to as the correspondipglynomial transfornfor A with basish. This matrix
is denoted withP, ., since it depends on the basisnd the zeros op. Py is
obtained by evaluating all basis elements at all zergs of

Py.o = [pe(on)]o<k,t<n- (3

An important example is the discrete Fourier transfaiT,,. Here the al-
gebra isA = Clz]/(z" — 1) with basis polynomialg, = =* and the zeros are
a=(w! | 0<1i<n), wherew, = exp(—2xi/n). We confirm that

Poo = [wi'lo<ke<n = DFT,

is the polynomial transform in this case (see [14, 2]).

Furthermore, it can be shown that practically all trigonometric ttabsforms
used in signal processing are polynomial transforms (or slighemgdimations
thereof) [2,4,8]. For example, If};, denotes thé:ith Chebyshev polynomial of
the first kind and degrek (see Appendix A) and we set = C[z]|/T,(x) and
b= (TO(x)v s aTn—l(:L‘))' then

(k+1/2)27r]

Pr.a = [Te(on)]o<k t<n = [cOS 0<k,t<n- (4)

is the discrete cosine transform (DCT) of type 3. This was alreadytioreed (for
the transpose, i.e., the DCT of type 2) in the original derivaiio[30].
Two variables. We consider an algebra

A = Clz,yl/(p(z,y), q(x,y)) (5)

where for simplicity and because of its relevance for the follguve assume
that the total degrees adeg(p) = deg(q) = n. The total degree gi(z, y) is the
largestk + ¢ over all nontrivial summandsy, ,z*y* of p(x, y).

Furthermore, we assume that the common zerggaafy) andg(z, y) consti-
tute a finite set of precisely? distinct zeros, given by the pairs = ((a, Bx) |
0 < k < n?), with each pair inC?.

1 Note that for “generic” polynomials this is true, which fol¥s from Bezout’s theorem [27].



Again we invoke the CRT and obtain a decomposition ift@ne-dimensional
algebras:

A A— ®O§k<n2 Cla,yl/(x — ar,y — Br), ©)
s(x,y) = (s(ar, B) | 0 < k < n?).

This decomposition also implies thaim(A) = n?. We expressA as a matrix
by choosing a vector space basis= (p¢(z,y) | 0 < ¢ < n?) for A and the
basis(2%y°) = (1) in eachC[z, y]/(z — a,y — B%). The resulting matrix is the
polynomial transform (now in two variables) fot with respect ta:

Py, = [pe(s Bic) o<k t<n2- (7)
This is a direct generalization of (3). The DTT discussed lates polynomial
transform of the form (7).
A particularly simple example, but relevant for applicatiorssaiseparable
polynomial algebra in two variables. This means fi{at y) = p(z) andq(z,y) =

q(y). In this caseA in (5) is to isomorphic to the tensor product of two polynomial
algebras in one variable:

Clz, y]/{p(2), q(y)) = Clz]/p(x) @ Clz]/q(y).

More constructively, the tensor product provides for atly= C[xz]/p(x) with
basist’ = (po, . ..,pn—1) @ counterpart in two variables, namely

A=A @A =Clx,y]/(p(x),p(y)) ®)

with basisb = b’ @ b’ = (p;(x)p;(z) | 0 < 4,5 < n). Let P(V, ') denote the
polynomial transform ford’, wherea’ denotes the zeros pfz). ComputingP;
using (7) shows that it is the tensor or Kronecker product (of iweg)i

pbpz = Pb’,a’ ® Pb’,a’7
whereq is given by all possible pairs of elementsdfand
AR B = [a]%gB]kyg for A = [akﬁdk 0- (9)

As an example, we considet = C[z,y]/(z™ — 1,y" — 1) with basis(z’y’ |
0 <14,j < n). The above discussion shows that

Py = DFT,, ® DFT,

is precisely the 2D-DFT.
In contrast to this example, the DTT defined next is nonseparable



2.3 Discrete Triangle Transform (DTT)

In this section we define the discrete triangle transform (DTT), intced in [31,
1], as a polynomial transform for a suitable polynomial algebravim ¥ariables.
Hence, the DTT is a special case of (7). The definition requireCtiebyshev
polynomialsTy, ((x,y), k, ¢ € Z, in two variables. The reader is invited to read
Appendix B at this point, which collects all the necessarydm$ormation about
these polynomials.

DTT definition. Let A = Clz, y]/{Tn,0,To,n) With basisb,, = (T, | 0 <
k,¢ < n). We denote the? solutions of7;, o = Ty, = 0 with o = ((vi 5, Bi ;) |
0 <1i,j < n). These are determined by

(uivvj) = (wfmwéj;sj)v O S ZaJ < n, (10)

in the power form off}, o, 1o, (see (57) in Appendix B).
The DTT is the associated polynomial transform; namelyythe n? matrix

DTT,xn = [The(i g, Bij)]o<ij<n, 0<k,t<n- (11)

The double indeXi, j) is the row index, andk, ¢) is the column index, both
ordered lexicographically. To compute the matrix entries, thenuonialsT}, , are
evaluated at the zeros @f, o = Ty, = 0 using (10) and the power form @ ,
(see (56) in Appendix B). The result is

1/ 3ki—3j—¢ 3kj—30i+k 3ki+30i+305+¢
Tr.e(ci g, Big) = § (Wi + Wy, + Wip

6
3li+3kj+3Lj+k+L —3ki—34i—3kj—k

—3ki—3kj—3Lj—k—¢
+ Wan, + Wan,

+ ws,, )
Example: DTT of size2x 2. As an example we considerx n = 2 x 2, which
implies that theDT'T is a4 x4 matrix. Here we have to evaluate the polynomials

Too = 1,701 = y,Tho = 2,111 = %(3953; — 1) at the zeros of the equation
T50 = To,2 = 0. The solutions are given by the four points

(%,%),(0,0),(%&)3,%&}%),(%&)3,§W3) (12)

HenceDTTyy» is thed x 4 matrix

I

DTy |, 0 0 (13)
1 %wg %wg %
1 jws 3ui 3§

Origin of the DTT. The motivation for the definition of the DTT is explained
in detail in [1] and briefly in the next section where we estabiighconnection to
signal processing.



2.4 Connection to Signal Processing: Signal Model

Even though it is not crucial for this paper, we very briefly expldie connection
between polynomial algebras, transforms and signal processiegtablished by
the algebraic signal processing theory [4].

Finite shift-invariant 1-D signal models. Given a polynomial algebral =
C[z]/p(x) of dimensiondeg(p) = n and a basi$ = (po,...,pn—1) Of A, we
considerA also as a regulad-moduleM = A. We ses = (sg,...,5,_1)] € C"
and define

®. C"—> M
S s(x) = X o<pan StPL-

The triple(.A, M, @) is called asignal modefor C™ in algebraic signal processing.
The idea is that the signal model assigns the structure ofittheodule M to the
vector spac€™ of finite 1-D signals via the bijective mappidg Once the signal
model is chosen, the basic signal processing concepts aefiakd. For example,
A is the filter spaceM the signal space, andl is the “;-transform” associated
with this model. The multiplication of polynomials(xz) € A ands(x) € M
(i.e., the multiplication modulg(z)) is the filtering or convolution for this model.
The special filterr € A is the shift operator and, sincé is commutative, the
signal model supportshift-invariantsignal processing, i.ezh(x) = h(z)z for
h(z) € A. The CRT in (2) yields the spectral decomposition of the sigpakce
M (i.e., the decomposition into irreduciblé-modules) andP, ,, is the Fourier
transform (in coordinate form) associated with this model.

For example, the signal model associated with the DFT isgiyed = M =
C[z]/ (2™ — 1) and the finitez-transform

d: s— Z sex’. (14)

The convolution associated with this model is the multgiien of polynomials
h(zx), s(x) moduloz™ — 1. This is equivalent to circular convolution of the coor-
dinate sequencds s, as expected.

Similarly, the signal model associated with €T, type 3 is given byd =
M = C[z]/T,(x) and the finitel -transformé : sw— >, s/Ty(x).

The differences between signal models are best understood khtioeig vi-
sualizations. The visualization is a graph that has the lesiments ob (fixed
by @) as nodes and the edges are determined by the operation of the shi
b. In algebraic terms, the adjacency matrix of this graph(is), where¢ is the
representation o#l afforded by M with basisb. Basic algebra asserts that:) is
diagonalized by the Fourier transforj ,,.

Two examples are shown in Fig. 2. Fig. 2(a) is a directed grapbesinz’ =
zf+1 and thus is called Bimemodel. Fig. 2(b) is undirected sineeT, = (T,_, +
Ti41)/2 (see (49) in Appendix A) and hence is calledgacemodel.

Intuitively, the visualization shows the structure imposedson C™ by the
signal model including the boundary conditions. For exanipig. 2(a) shows the
cyclic boundary condition associated with the DFT arising frgm— 1 = 0 (in
M), ie 2" =1=2°

Finite shift-invariant 2-D signal models. The above discussion is for finite
1-D signalss € C™ and readily extended to 2-D using polynomial algebras in
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(a) Finite discrete time model associated with the DFT

VN
[ ] [ ) [ ]
To T T Th3 Th2 Th

(b) Finite discrete space model associated with the DCE 8/p

Fig. 2 Visualization of two finite signal models fdt™.

two variables. For example, the signal model underlying the2FD is given by
A =M =Clz,y]/(z™ — 1,y™ — 1) and the the finite 2-B-transform

d: Cnxn —>M, Si— E sk,gxkyg.
0<k,l

Note that the signals are nown x n 2-D arrays. In contrast to before, we have
now two shift operators andy and letting both operate on the basis: (z*y" |
0 < k, ¢ < n) yields as visualization the graph that higs') + ¢(y) as adjacency
matrix. It is shown in Fig. 1(a), without boundary conditions. &amy, the sig-
nal model imposed by a 2-D DCT, type 3 is shown in Fig. 1(b), agathout
boundary conditions. These graphs are precisely the direct pggodithe graphs
in Fig. 2 with themselves, respectively, since the 2-D signadefs are separable.
The signal model underlying the DTT is given by

A=M = C[xay]/<Tn,O(x’y)vT0,n(x7y)>

and
¢: C"" - M, s~ Z Sk Th (2, y)
0<k,t

and is nonseparable. The operation of the shiftédy on theT}, , follows from
(54) (in Appendix B) and creates the spatial hexagonal struchawrsin Fig. 1(c)
without boundary conditions.

In summary, the DTT is the analog of the DCT for 2-D signals on adfinit
hexagonal lattice.

3 Cooley-Tukey Type Algorithms

The algebraic signal processing theory shows that polynorigebeas provide
the structure for finite shift-invariant signal processing (see the Biscussion in
Section 2.4) and identifies the polynomial algebras assatiwith many of the
existing signal transforms. This makes all transforms to Fouri@stoams in a
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rigorous sense, namely for a suitably chosen signal model demdifies the asso-
ciated notions of spectrum, convolution, and many othersidBsghat there is a
second, crucial benefit in knowing the polynomial algebra uguheg a transform:

it provides the means to derive the transform’s fast algorithmmeélyg instead of
manipulating the transform itself to obtain a fast algorithm, manipulate the
underlying polynomial algebra.

The basicidea is simple. A transform decomposes a polynongiebea via the
CRTin (2) or (6). A fast algorithm is obtained by performing this depositionin
steps In particular, we have shown in [7] that there is one decommusitieorem
for polynomial algebras (in one variable) that spawns what wegealeral-radix
Cooley-Tukey type algorithms for a large class of (1-D) transformkiiing the
DFT (for which the standard Cooley-Tukey FFT is obtained), DCE¥B, and the
real DFT [32]. In this section we generalize this theorem to polyiabaigebras
in two variables, which makes it applicable to the DTT. Accordingig resulting
algorithms are again "Cooley-Tukey type.”

We start with introducing the matrix notation used.

Matrix notation. We use permutation matrices, most importantly for stride
permutations. They are defined for integersn, wherem|n, and are given by

Lh il b imtd, 0<j< 2, 0<i<m.
m m

In other words,L”, is the transposition of an/m x m matrix stored in a vector
in row-major order.

Other permutation matriceB, are defined by their underlying permutation
m i — w(i), 0 <14 < n; namely, in rowi of P there is precisely one non-zero
entry 1 in the columnr(z).

We writediag(ay, . . . , a,,—1) to denote am x n diagonal matrix with diagonal
entriesag, ..., ap_1.

For two matricesA and B, A @ B is their (block diagonal) direct sum and
A ® B defined in (9) is their Kronecker or tensor product.

Special matrices used throughout the paper are the identityxnig, the all-
zero matrix0,,,, and

0
Jm = ) Zm = .
01
Finally, as before, we denote the complex unitibin roman) to distinguish it
from the summation indek(in italics).

3.1 Cooley-Tukey Type Algorithms: One Variable

We assume that a polynomial transfofg ., is given with underlying algebra
A = Clz]/p(z) and basi$. ThenP; , has a Cooley-Tukey type algorithm if
p(x) = q(r(x)) decomposes into polynomigjsandr as explained next.
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We assumeleg(q) = k, deg(r) = m, which impliesdeg(p) = n = km. We
denote the zeros afwith 5 = (G, . .., Bx—1). Now we can factop in two steps

as
p)= [ c@)=8)= T II =@-i)
0<i<k 0<i<k 0<j<m
Here,y; = (vi,0,--.,%,m—1) are the zeros af(x) — 3;; eachr; ; is of course also
a zeroay, of p.

Using the CRT repeatedly, we obtain the following associategvése de-
composition ofA:

Clz]/p(x) — Clz]/q(r(x)) (15)
— P Clel/(r(2) - 5) (16)
0<i<k

- P P Cll/i@—n,) (17)

0<i<k 0<j<m

— D Cll/(z —ax). (18)

0<k<n

This decomposition leads to a recursive factorization of tese@ated polynomial
transform into a product dbur sparse matrices corresponding to ther steps
(15)-(18) as explained in [7, 8].

Step 1:The first step (15) does not change the algebra but performs a base
changeB,, in C[z]/p(x) from the given basis to a new basi$’ which is defined

by

Y = (roqo(r(w)), .. 77’m,1q0(7”(.%‘)),

Toqr—1(7(7)), o, Tmo1qr—1(r())), (19)

whered = (ro,...,rm—1) iS @ chosen basis for each of t6ér]/(r(x) — ;) and
¢=(qo,-.-,qx—1) is a chosen basis fd[y]/q(y).

Step 2:In (16), the CRT is applied t€[y]/q(y), y = r(x). To obtain the
associated matrix, every elementdfs reduced module(x) — 3; and expressed
in the basigry, . .., rm—1). This yields the matri, g @ I,,,.

Step 3:In step (17), again the CRT is applied to e&cl|/(r(z) — 5;), de-
composing it withPg . Thus, the entire matrix is given @, ;. Pa.+, -

Step 4:The final step (18) permutes the summands into the right orderawith
suitable permutation matrik,, .

We summarize in the following theorem.

Theorem 1 (1-D Cooley-Tukey Type Algorithms)Let P, , be a polynomial
transform forA = C[z]/p(z) with basisb, wherep(x) = ¢(r(z)) decomposes.
Then, using the notation introduced above,

Poa =Pl P Paa:)(Pess @ Im)By. (20)

0<i<k
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Note that all four factors are guaranteed to be sparse except,for

We illustrate this theorem by first deriving the general-radix Cpdlekey
FFT, which also explains the name of Theorem 1. Then we apppdyttie DCT,
type 3. The latter derivation will be analogous to the algonittherivation for the
DTT shown later.

Example: DFT. The DFT is a polynomial transform fod = C[z]/(z™ — 1)
with basish = (1, z,...,2"~!). Assuming that. = km, we have the decomposi-
tionz” — 1 = (z™)* — 1, i.e., we se(z) = ¥ — 1, andr(z) = ™. As bases we
chooser = (1,z,...,2" 1) andd = (1,,...,2™ 1), i.e.,q; = z* andr; = 7.

Step Llitturns out that! = b, i.e.,B = I,,.

Step 2:The partial decomposition is done B. g ® I,,, = DFT}, ®I,,. The
smaller algebras in (16) are given Bz /(2™ — w}).

Step 3:EachC[z]/(z™ — w}) is decomposed b, ,, = DFT,, - diag(w |
0 < j < m) as direct computation shows.

Step 4:1t remains to determine the permutation matfix. At this point we
have the decomposition in (17), which takes the form

Cla)/@" ~1) -~ @ P Clal/(@—wit).

0<i<k 0<j<m

Hence, the remaining task is to reorder frgin+ ¢ to im + j, where0 < i < k
and0 < j < m, to make the exponents consecutive. This implies Hais the
stride permutatior.”,. Overall, we obtain the radix decimation-in-frequency
Cooley-Tukey FFT

DFT,, = L" (I; ® DFT,,)T" (DFT;, ®1,,), (21)

whereT = EBO<Z<,€ diag(w¥ | 0 < j < m). Transposition of (21) yields the
decimation-in-time version.

Example: DCT, type 3. The DCT, type 3, for input size, is denoted with
DCT-3,. Itis the polynomial transform for the algebtae]/ 7', () with basishb =
(To, ..., Tn—1) as shown in (4). We assume= km. In this caseT,, = Tx(T},)
indeed decomposes and yields general-radix Cooley-Tukey dgwi[7].

We will show the derivation of the radix-Z (= 2) case since it is analogous
to the more involved radigx 2 algorithm for the DTT derived later. This radix-2
algorithm was originally discovered in iterative form (which awttle definition
of skew DCTs) in [15] and derived using implicitly polynomidgiabras.

We setq(z) = Tx(x), r(z) = T,n(x), and choose bases= (7p,7:) and

d = (To,...,Tmm-1). The decomposition now becomes:
Cl]/Tn(x) — Clz]/T2(Tm(x)) (22)
[x}/( T (z ) CcoS 4) D (C[ V( T () — cos JI) (23)
@ /(x — cosr; ;) (24)
0<i<20<j<m
= Clz]/(x — cos ZEEUT), (25)

0

IA
A

k<n
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Region | Region Il

(a) Line graph for DCT, type 3 (b) Decomposed line graph

Fig. 3 (a) The signal domain associated with ID€T-3,, for n = 16. Boundary conditions are
omitted. (b) Radix-2 decomposition to compute the baseghanthe Cooley-Tukey algorithm.

Here,ro; = 22U andr, ; = 4H2EED which follows from the general
factorization (forn even)

T, — cosrm = 2"~1 H (x — cosrem), (26)
0<t<n

where the list of the zeros, ordered by increasing angle normatlizéa interval
[0, 7], is determined by

(re)o<e<n = U (%277#) (27)

0<i<n/2

Now we start the algorithm derivation.
Step 1:The basid/’ is given by

b/ = (ToTo(Tm(J})), . ,Tm_lTo(Tm(.I‘)), T0T1 (T’,ﬂ(l‘))7 - 7Tm—1T1 (Tm(x)))
= (sz_]/2+sz+J/2 | 0 <1< 2,0 g] < m),

where we used the properfy.T,, = (T,—x + Tn+x)/2 (see (53) in Appendix A)
which holds for allk, n € Z.

Unlike in theDFT case above, the base change (22) fioim b’ is no longer
trivial. To determine the exact form we have to express the elenwnhe basis
b= (Ty,...,T,—1) as a linear combination of elementsf Accordingly, we
first split the indices into a radix-two representation:

b:(Tim+j|0§i<2,0§j<m),

where we use the lexicographic ordering on péirg) = (0,0),(0,1),.... Cor-
respondingly, we get a partition 6f...,n — 1 into two regions, namely the part
in which: = 0 and the part in which = 1 (see Fig. 3).
The base change is now computed as follows.
Region I:1T; € b), for 0 < j < m.
Region II:
Tm : TO : ] = Oa

QTmTJ - Tmfj 2] # 0.

Hence the base changg, takes the form

B, = (I, ® diag(1,2,...,2)) {é’” _IZm] . (28)
m m



15

DCT-3, = DCT-3,(3)

\
/

DCT-3x (3) DCT-3x (%)

/

DCT-3x (%)  DCT-3z(I) DCT-32(3) DCT-3s(2)

Fig. 4 The recursion tree of the radixalgorithm for the DCT, type 3. For input size= 2¢,
the depth of the tree ig.

Step 2:The partial decomposition in (23) is done WIHCT-3; ® I,,,.

Step 3:The complete decomposition in (24) is done WIBCT-3,,(3) &
DCT—3,,L(§), where we defin®CT-3,,(r) as the polynomial transform for the al-
gebraC[z]/(T;, — cosrm) with basis(Ty, . .., T,,—1) and the order of zeros shown
in (27). We callDCT-3,,(r) askewDCT of type 3 [4].

Step 4:The final reordering of the zeros in (25) is done with the permutation

Py = (L2 ® (I2 @ J2)) Ly, (29)

At this point we have the complete decompositionDdfT-3,,, namely, the
computation is reduced to two skew DCTs of half the size. Thegeirn, can be
decomposed in exactly the same fashion, sifige- cosrm decomposes if and
only if T,, decomposes. In this decomposition both the base ch&ngend the
permutationP,, do not depend om. The result is the following fully specified
recursive radix-2 Cooley-Tukey algorithm for the DCT, type 3.

Theorem 2 (Radix-2 algorithm for DCT, type 3) Letn be even. Then,

DCT-3, = DCT-3,(3),

DCT-3,(rr) = P, (DCT-3x (5) & DCT-3x (257)) (DCT-3; ® I ) B,

with base case

1 cosZ 1 1
- — 2 — :
DCT-35(r) = [1 _ cos QW] = [1 _J diag(1, cosrm).

The algorithm in Theorem 2 can be visualized by its associamds®n tree
in Fig. 4, which shows the occurring skew DCTSs.

By solving recurrences, the operations count of this algorithra taro-power
sizen is determined asi(n) = 3nlog,(n) — n + 1 additions andM (n) =
%r_LlogQ(n) multiplications for a total oRn log,(n) —n + 1 = O(nlog(n)) oper-
ations.
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3.2 Cooley-Tukey Type Algorithms: Two Variables

Now we extend Theorem 1 to polynomial algebras in two variables.

Let A = Clz,y]/{(p(z,y), ¢(z,y)) and assume that the idegl, ¢) decom-
poses. This means that we can find bivariate polynomigls:, v € C[z, y] such
thatp(z,y) = u(r(z,y), s(z,y)) andg(z, y) = v(r(z,y), s(z,y)). Again, in this
case a fast algorithm for the polynomial transfofn, can be constructed by
decomposing the algebrd in steps. For simplicity we assume thétg(p) =
deg(q) = n, deg(u) = deg(v) = k, anddeg(r) = deg(s) = m, which im-
pliesn = km. Denote the common zeros of the outer polynomidls, y) and
v(z,y) by B = ((pi,vi) | i = 0,...,k% —1). Next we define the common ze-
rosy; = ((kij,Nij) | 5 =0,...,m* — 1) of the polynomials-(z,y) — n; and
s(z,y) — v;. Now, eachry, ; = (ki j, Ai;) IS @ common zeray, = (rg, Ag) Of
p(z,y) andg(z,y), wherel = 0, ..., n? — 1. From the CRT we obtain the decom-
position

Clz, yl/{p(z,y),q(x,y)) — Clz,y]/(ulr(z,y),s(z,y)), v(r(z,y), s(x,y))) (30)
- @ C[a:,y]/(r(:c,y) - /Li,S(l',y) - Vi> (31)

0<i<k?

- D D Clay/@—riy)ly—Aij) (32

0<i<k? 0<j<m?2

- @ (C[$7y]/<($—,‘<;g),(y—)\z)>). (33)

0<l<n?

As in the univariate case this decomposition leads to a re@faetorization
of Py, into four matrices.

Step 1:In (30) we do not decompose the algebra but rather perform a base
change to the basig defined by

b = (rouo(r(z,y),s(x,9)), ..., rmz_1uo(r(z,y), s(z,y)),

TOqu—l(T(xa y)7 S(Ia y))v s 7Tm2—1uk2—1(r(xay)a S(I, y))7

where the same basis = (rg,...,rn2_1) IS chosen for each of the algebras
Clx, y]/{r(z,y) — i, s(z,y) — v;), ande = (ug, ..., uxz2_1) is the chosen basis
for Clz, y]/(u(x,y),v(z,y)). We call the base change matiby,.

Step 2:The coarse decomposition using the CRT is performed by the matrix
P53 ® I,2 as direct computation shows.

Step 3:The complete decomposition is done by a direct sum of polyabmi
transforms@ ;1> Pa,v, -

Step 4:A suitable permutatio®,, maps the concatenation of thgontoa.

Theorem 3 (2-D Cooley-Tukey Type Algorithms)Let P, , be a polynomial
transform forA = Clz]/{(p(x,v), ¢(z,y)) with basisb, and assume thai(z) =
u(r(z), s(x)) andq(z) = v(r(x,y), s(z,y)) decompose. Then, using previous no-
tation,

Poa=Po( P Par)(Pes @ Ln2)Bn. (34)

0<i<k?
As in Theorem 1, all four factors are guaranteed to be sparse exedpy fo
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3.3 Discussion

In the above derivation of Cooley-Tukey type algorithms we ersjdeal the ac-
tual construction and introduced only as much algebra as needetiow the
derivation. In particular, only rather basic polynomial congtigins are sufficient
to arrive at the results. However, it is also desirable to undsilstae underlying
algebraic principles at work. Among other things, this enable®mparison to
related work on fast Fourier transforms for groups or group algebrasrigfsy
discuss this in the following.

AssumeA = Clz]/p(x) with p(z) = ¢(r(x)). This implies thaty = r(x)
spans a subalgebia < A that is equal taC[y]/q(y). Further, we can choose a
transversall = (rq,...,rx_1), deg(r;) = i, of Bin A such that

A:T()B@...@Tk_llg. (35)

If we view A as a regulard-module and3 as regulat3-module, then (35) shows
that.A is the induction of3 to A with transversatl, written as (see [18])

A2 Ao B=B1Tq4 A

First, this explains the basisin (19), which is compatible with the decomposition
in (35). Namely, ifc = (qo(y), - - -, gm—1(y)) is a basis oB, then ther;q; (y) form
a basis ofA.

Second, Theorem 1 derives a fast algorithm by decomposing tliared-
module into a stepwise induction; the steps determine theriaation. The same
procedure, applied to group algebras, is known to produce fastitlgs for
Fourier transforms on groups. This technique was used by Beth ji{4&8 also
[33]) to explain the Cooley-Tukey FFT as a stepwise decomposdf the group
algebra for the cyclic group; then, he generalized the sameitpehto arbitrary
solvable groups (see also [24]). For these groups he also derivexpheitee-
cursion formula that, not surprisingly, is in structure similarhe tecursions in
Theorems 1 and 3. Nonsolvable groups may require additionahitpods (e.g.,
[23,25]), even though they are still decomposable inductiohs.decomposition
of non-regular group modules that afford a monomial representetésnstudied
in [34]. Again, the derived decomposition formula looks simita(20).

This discussion is readily extended to the bivariate case ardrém 3.

4 Cooley-Tukey Type Algorithm for the DTT

In this section we apply Theorem 3 to derive Cooley-Tukey typerétlyms for the
DTT. The derivation parallels the algorithm derivation for theDpe 3, except
for more involved calculations. To emphasize the corresporajeme follow the
exact same steps as in Section 3.1. The reader is invited tohseften between
that and the following section to discover the similarities.
We use notation introduced in Appendix B. In particular, we sesimplicity

T (z,y) = Tpo(z,y) and denote witlp(z,y) = p(y,z) the polynomial with
reversed arguments. According®,, (z,y) = To.n(z,y).
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4.1 Derivation of the Fast Algorithm

The DTT,,«,, is the polynomial transform fo€ [z, y]/(T,.(z,y), T (x,y)) With
basisb, = (Tx¢ | 0 < k,¢ < n). We assumer = km, which implies that
(T,,,T,) decomposes as shown in (60) in Appendix B:

Tn = Tk(TmaT'm)a Tn = Tk’(Tnu Tm)-

Using Theorem 3, it is hence clear that the DTT possesses aajjeadix algo-
rithm. The arithmetic cost of this algorithm depends on the #iyas§the initial
base change matrig. We call the general algorithm radix< % to emphasize the
two-dimensional character of the decomposition.

In the following we will focus on the radigx2 case § = 2) and derive the
algorithm in detail. Necessarily, we assume that 2m.

Preliminaries. Before we derive the decomposition of the algebra we intro-
duce notation to simplify the representation of the occurringzekamely, we
introduce functiong andr as

0.(7,.7 8) = | (eQTriT + e2mis + e—27ri(r+s)),

(6—27ri7" _|_e—27ris _i_eZTri(r—‘,-s))7

Wl Wl

wherer,; s € [0,1). Note thato(r, s) is the complex conjugate of(r, s). These
functions will play the same role ass(rr) = 3(e*™' + e~27") in the DCT
algorithm derivation in Section 3.1. In particular, we need anivedent to the
factorization in (26), which means we have to find the simulbaisezeros of the
equations

T, —o(r,s) =T, —1(r,s) =0.

If u = e?™", v = 275, then because of the power forms Bf andT,, (see
(57) in Appendix B), then? solutions are (inu,v parameterization) given by
{(us,v;) = (€2™57,e2™%5) | 0 < i, j < n}. The corresponding? solutions in
x,y parameterization are now readily obtained by applyirandr. We write the
result as an intersection of ideals in the following lemma.

Lemma 1 Using previous notation,

(T —o(r,s),Tu—7(rs) = [ (&—o(Z, =),y —7(5H, 5H)). (36)

0<i,j<n

In the special case= 0, s = 1/3, we haver(r, s) = 7(r,s) = 0and Lemma 1
yields the zeros df;, = T',, = 0 shown before and used to define the DTT.

Algorithm derivation. Following the notation from Section 3.2, we set=
Ty, v = Tg, r =T, s = Tm and choose bases = (TO,O;TO,laTl,OaTl,l)
andd = (Tx¢ | 0 < k,¢ < m). The decomposition, following (30)-(33), now
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becomes:
(C[x,y]/(Tn,Tn>
- (C[x, y]/<T2(vaTm)aTE(TmaTm)> (37)
- (C[‘Ta y]/<Tm - 0(07 %)7Tm - T(Oa %»
& C[x,y]/(Tm - 0(07 %)va - 7(07 §)>
@ (C[J?, y]/<Tm - U(%v %)aTm - T(%v %»
& (C[xay]/<Tm - U(%a %)aT’m - T(%v %)>
(C[Ji,y]/<Tm - %’Tm - %>
D (C[x,y]/(Tm7Tm>
@ Clz,y]/(Tm — 3w3, Trn — 3w3)
@ (C[x,y]/ T — %ngfm - %W3> (38)
- @ C[l’,y]/<$—a21 2373/ 621 2]>
0<i,j<m
® @ Clz, yl/{x — @2i2j+1,y — Boi2j+1) (39)
0<i,j<m
® @ Clz,y]/(z — a2it1,2j, Y — Bait1,25)
0<i,j<m
@ @ Clz,yl/(x — a2it1,2j+1,Y — B2it1,2j+1) (40)
0<i,j<m
- @ C[Jﬁ,y]/<ﬂ? —Q5,Y — ﬂi,j>' (41)
0<i,j<m

Here we have used the notatian; = o(%, ) andg; ; = 7(%, L) for the simul-
taneous zeros df,, andT’,,. Now we start the algorithm derivation.
Step 1:The basigd/, is given by

by, = (T0,0T0,0(Toms Tom)s - -+ » Tn—1,m—1T0,0(Toms T,
To,0T0,1 (T T m)s s Tm—1,m—1T0, 1(Tm,Tm),
To,0T1,0(Tms Ton)s -+ s Tt m—17T1, O(TmaT'rn)a
TO,OTl,l(Tmmi), co s Ton—1m=1T1 1 (T T Tw))

As for the DCT, type 3, the base chanBgy,, from b, to b/, in (37) is nontrivial.
Since the exact derivation @, «,, is rather involved, we defer it to Section 4.2.
Step 2:The partial decomposition in (38) is done Wit T2 ®1,,2.
Step 3:The complete decomposition in (40) is done with

DTT%X%(O,%) @DTT%X%(O,g) @DTT%X,(? E) @DTTan(z,g)

where forr, s € [0,1) we define theskewtransformsDTT,,«,,(r, s) as the poly-
nomial transform for

Clz,y| /(T — o(r,8), Ty — 7(r,5))
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with basisb,, and order the zeros dsa; ;,5;;) | 0 < 4,5 < n), where we use
lexicographic ordering on the paifs j) = (0,0), (0,1),.. ..

Step 4:Inspection shows that the final reordering of the zeros in (41) i® don
with the permutation

Poyn = LZ2/2(Lin®In/2)- (42)

At this point we have the complete decompositiomDdf T, «,,, namely, the
computation is reduced to four skew DTTs, each of one quartéreasize. These
can be decomposed in exactly the same fashion, gifice o(r,s),T,, — 7(r, s))
decomposes if and only ifT},, T,,) decomposes. In this decomposition the per-
mutation P, «,, does not depend on s. However, in contrast to the DCT, type 3,
the base change for the skew DTT depends ands: B,,x, = Bnxn(r,s). We
derive it in Section 4.2. Here, we only note that it is sparse endrithmetic cost
is O(n?).

In summary, we get the fully specified recursive raglix2 Cooley-Tukey al-
gorithm for the DTT.

Theorem 4 (Radix-2x 2 algorithm for DTT) Letn be even. Then,

DTT,xn = DTT,xn(0, 1), (43)
DTT,xn(r.5) = Pascn (DT T2 x5 (5, 3) ® DT T 5 (3, 52
®DTTyxz (4, 5) ® DT Ty s (55, =)
(DTT2><2 ®I%)ann(7'a 5); (44)

with B,,«,(r, s) specified in Theorem 6 in Section 4.2. The base cases are

1 o(3:3) 7(5:3) 3(30(5,5)7(5,5)-1)
Vo) s Ao e )
DTTQXQ(T’ S): r+1 s r+1 s 1 r+1 s r+1 s
Lo(53) 75) 330 (5, 5)7(5, 5)-1)
1oo(m5h, =5 n(5 55 (8o (5, =) (5, =5 -1)

The recursion tree associated with this algorithm is visualizédg. 5 and shows
the occurring skew DTTs.

Assuming thatB,, «,, requires onlyO(n?) operations, as shown later, it is al-
ready clear that the algorithm ha¥n?log(n)) runtime. We give more detailed
operation counts in Section 4.3.

It is straightforward to derive a general radix< k& Cooley-Tukey algorithm
for the DTT following Theorem 3. We give the result in the following theorem
without explicitly computingB and P.

Theorem 5 (Radix# x k algorithm for DTT) Letn > 2 and letk|n. Then,

k) 1"—|—z s+7
0<i,j<k

(DTThur @Iz 42) BE), (7, 9) (46)
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DTTrnxn (0
DTTz =2 (0, ) DTTuyxn(0,5) DTTzyn(3,5)  DTTz.=(3,3)

JINT N NN

Fig. 5 The recursion tree of the radiX- 2 algorithm for the DTT. Forn = 2¢, the depth of
the tree isd.

with suitably defined permutation matr Xn, base change matrlB,(LX)n(r ),
and base casdd3TTy«x(r, s).

4.2 The Base Change for the Recursion Step
In this section we derive the precise form of the base change magrix, (r, s)

used in Theorem 4. As mentioned before, this matrix correspondsettvdse
change fronb,, to

b;L = (TO)OTO,O(Tm7Tm)7 vy T—1,m—1Th, O(Tm,Tm),
To,oTo’l(Tm,Tm), co s T—1,m—1Th, 1T, Thn),
To,0T1,0(Tms To)s - s Tt m—17T1, (](vafm)a
To,0T11 (T, Tin)s - s Tt m—1T11 (T, Tin))

In other words we have to express every elenfignte b,, as a linear combination
of the elements i/, ; the coefficient vectors obtained this way are the columns of
B, «n(r, s). In particular, we will see that the base change matrix is sparse.

Theorem 6 Letn = 2m and let0 < k,¢ < m. Then the following equations
define the base change mat#, ., (r, s). The special cas®,, ., is obtained by
settingr = 0 ands = % The following division into regions is according to Fig. 6
and parallels Fig. 3 for the DCT, type 3.

Region I:1Ty , € b, for 0 < k, £ < m.

Region II:
Tm’o tk=/4=0
QTmOTOE 1Tm 2,0 - k:O,E;«EO,
3Tm,0Tk,O - 2Tm—k,k =0,k 7é 0,
Tngke = 3T0m,0Tk,e — Trn—t—k,k

ck+L<myk, L #£0,
—Lon—k k+0

3T m,0T%,0 — %To,mTz,o - %To,k tk+l=m

3Tm,0Tk,e — 3T0,mLm—k k+e—m
+Ty0m—k—e

ck+4>m.
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(a) Hexagonal grid
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INONINININININ INININININININ/
INININININININT ININININININN - Region 1V

Region IlI
egton AVAVAVAVAVAV#V AVAVAVAVAVAV%V

Region |

(b) Decomposed hexagonal grid

Fig. 6 (a) The signal domain associated with the DTT forx n = 16 x 16. Boundary
conditions are omitted. (b) RadiX-x 2 decomposition to compute the base change matrix in

the Cooley-Tukey algorithm.

Region llI: The representation of polynomials in this region is\setifrom Re-
gion Il by applyingT}y, pm+¢ = T'm+e,k- FOr completeness, we list them.

Toﬂn ck=0= 0
%To,mTk,o - %T‘(],mfk k=0, 14 75 0,
3T‘O,miz—b,f - 2T€,m7€ A= 0, k 7é 0,

Ty mte = 3To,mTke — ge,m—e—k kAl <mikl£0,
—LEk+lm—4
3To,mTre — 2TmoTo — 2100 + k+0=m,

3T0 mTk L — 3Tm OTk-i-f—m m—_
’ ’ ’ ’ ck4+4>m.
+om—k—e,k + m

Region IV: Some of the entries corresponding to basis elementstfrismegion
depend on the parameters; that define the skew transform. We tet= o (r, s)
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andg = 7(r, s) and describe the dependence in terma ahdg:

Tom : k=¢0=0,
3Tm,mTO,Z - 3Tm,OT€,m—Z + TO,Z k=01 7£ 0,

3Tm,mTk,O - 3TO,me7k:,k + Tk,O Al = 0, k 7é 0,

6Tm,mTrke — Tr—tm—t + 2T 0.
_STm,OTk+€,m74 - 3TO,me7k,k+l.

3
6T mTke+ The — 5TmoTe0.
Tonthmie = —2To.mTor — 3aTok — 36T00

6Tm,mTk,Z + 2Tk,€

+3Tm,0T2m7€7k,k: - STm7OTm7k,E+kfm. k=0 = gm
+3TO¢mTE,2m7[7k - STO,mTEqufm,mfZ. 37
*(3@ + 3/6 + ]-)Tm—k,m,—k
6T, mTre + 3Tm,0T2m—t—k k + 2T% 0
—dIm—_Am—k — 3Tm,OTm,—k,Z+k'—m. k =+ / >m

+3TO,mT€,2m—€—k - 3TO,mTé+k—m,m—Z
=30 ot 0—m,m—t — 3BT m—k ktt—m

Proof: We focus on one particular case: we show that the €fyry;. , for a
polynomial in region Il is given by the claimed formula in the casel > m. The
other cases are shown analogously. We have to express evenppoft7,, , ; ¢,

0 < k,¢ < m,inregion ll, in the basi#, . First note that using property (59) from
Appendix B we obtain

Trno0Tke = %(Tm%,z + Tk o—m + Theme+m)s
which implies
Ttk = 3Tm,0Tke — Tho—m — Th—m t4m- (47)

This is an expansion df,, ¢ into polynomials which are not all in the basis.
Thus, we rewrite the second and third polynomial on the right tsithel of (47)
using (58). We obtain

T T _ Tk+€7m,m7£ tk+L> m,
kfl—m — Lk+l—mm—L — Tm—@—k,k k40 <m.

Note that in both cases the given polynomial shown on the fighd side is an
element ob!, since it lies in region I.

Next, we modify the tern¥},_,, ¢+ in (47). Again, we distinguish the two
cases + ¢ < mandk + ¢ > m. If k+ ¢ < m, we can use the rul&,_,, ¢+, =
To—k k+e € b, and get

Tkt = 3Tm0Tke — To—k—t,k — Dok, kit (48)
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1 2

Fig. 7 Subdivision of each region in Fig. 6(b) into six subregioocompute the arithmetic
cost of the base change.

provided thaD < k + ¢ < m. Hence, we can assume that- ¢ > m. We define
uw=k+£—mandv =m — k. Note thatd < p,v <mandthal < u+v < m.
Hence, we can use (48) as follows:

Toemyetm = Thttm—k
- Tm-‘r,u.,u
= STWMOTMV - Tm—u—v,u - Tm—u,w-u
= 3TomTv,u — Tum—p—v — Tptv,m—p;

where the last line is a decomposition into elements ofSubstituting back the
values fory andv yields the formula

Ti—mo+m = 3TomLm—k k+t—m — Thtrt—mm—t — Tt.2m—k—e-

Hence, we have found expressions for all terms on the right hard§id7) and
can compute the resulting expansion as

Tonsre = 3T, 0Tke — Tho—m — Them,e+m
= 3Tm,,OTk,£ - Tk+€—m,m—€ - 3T0,me—k,k+€—m
F T t—mm—t + Lo 2m—k—¢
= 3Tm,0Tk,e — 3To,mTm—kktre—m + Te2m—k—t

as claimed for the case+ ¢ > m in the theorem. The other cases- 0, ¢ = 0,
andk + ¢ = m for polynomials in region Il arise as special cases in which the
linear combinations can be further simplifieda

4.3 Arithmetic Cost

In this subsection we determine the arithmetic cost of the re@BST T algorithm
in Theorem 4. Our cost measuredsmplexadditions and multiplications, were
multiplications by+1 are not counted. We assum®a'T,, .,,, wheren is a two-
power. The main task is to determine the number of operationgried by the
base change matri® in Theorem 6.

Cost for the base changeTo count the number of arithmetic operations nec-
essary for the base chanffewve have to analyze the number and the values of the
non-zero entries in each row &f. This information is obtained in a straightfor-
ward way from the description d8 in Theorem 6.
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We start by counting for each of the regions I-1V in Fig. 6 the nundfeddi-
tions (adds) and multiplications (mults) necessary for the baaageB,, «..(r, s)
in Theorem 4. Each region is further subdivided into the six regisimown in
Fig. 7. Fig. 8 summarizes the coefficients which occur whenaymrticular row
of B, x,(r, s) corresponds to a point in one of these regions. Harg . .., Rig
denote the subregions of region I, and so on.

Next, we consider how many additions and multiplicationsreseded for the
matrix-vector product. In computing this we also perform obvionspéifications.
For example, for computing the produéy/2,3/2,1, —1) - (u, v, w, z)" we obtain
a count of three additions, and one multiplication (since the multiplications
with the same scala/2 can be simplified).

For the polynomials in region | we obtain the following tabldwewe each entry
denotes the number of complex additions and multiplication

Region Occurrences Adds Mults
Ry 1 0 0
Ry m—1 4(3) 2(1)
Ry m—1 4(3) 2(1)
Riy  (m—1)(m-2)/2 6(4) 3(1)
RL5 m—1 1
1

3
Rig (m—1)(m —2)/2 6

The numbers in parentheses are the corresponding count for thek@on-s
DTT, i.e., for the special cas8,, (0, %). Similarly, we compute the number
of additions and multiplications for regions Il and Il which arevsuarized in
the following table. Note that the numbers of region Il and regioaid identical.
Hence, only the values for region Il are given.

Region Occurrences Adds Mults
Rt 1 0 0
RII,Q m—1 1 2
RII,3 m—1 1 2
Riyga  (m—1)(m—2)/2 2 2
R s m—1 1 2
Rue  (m—1)(m—2)/2 2 2

Finally, the coefficients for region IV turn out to be very simple;additions
and only one multiplication for each entry has to be performed.

Mults

Region Occurrences Adds

Riv 1 1 0 0
R1v72 m—1 0 1
RI\/)3 m—1 0 1
RIV,4 (m - 1)(m - 2)/2 0 1
R1V75 m—1 0 1
RIV,G (TTI — 1)(m — 2)/2 0 1
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1

Fig. 8 A visualization of the coefficients of the base chaggx,(r, s) that is useful for
determining its arithmetic cost. The numbers indicate tedficients of the rows aBy, x» (1, s),
i.e., they indicate with which coefficient an element of trasisb,, occurs when this element
is used to express the basis element$,in The division of the grid into four regions is as
in Fig. 6(b). Those regions are then further subdivided Bitosubregions each as in Fig. 7.
All basis elements of], which appear in the same subregion occur with the same deetic
namely the numbers written into the respective subregioniristance, the figure shows that
the rows of B, x» (r, s) corresponding to any basis elements in regitiy have preciselyr
non-zero element$, 1,1, -1, —1, —1, 2. To implement the vector product with this row,
multiplication and6 additions are required.

From the above we determine the total number of additions fontagix-
vector multiplicationy = B, x»(a, 8)x as

17(m — 1) +20(m — 1)(m — 2)/2 = 10m* — 13m + 3,
and the number of multiplications as
Tm? —m — 6.

For the special (non-skew) cag#, (0, %) the count is slightly less, namely
9m? — 12m + 3 additions andm? — 6 multiplications.

Cost for the base casedNext, we consider the base case for the recursion,
i.e., the operations needed for a skew-DTT of size 4. SinceT,, = 1, each
skewDTTay5(r, s) has in the first column only 1's. Thus, the arithmetic cost is at
most12 additions and multiplications.

For the non-skeWTTs - in (13) the count is obviously less, but we can do
even better by generating an algorithm using the algorithnodéesy tool provided
by AREP [35,36]. Specifically, applying the AREP function MaBecomposi-
tionByMonMonSymmetry tdTT, o produces the following factorization (the
dots represent zero entries):

U3 e [da ) [ 4
1 0 0-%| 1|t 3 5 1 :
1%w§ %W'g, % |1 1%@03 %w% 1 -
1 £ Lo 21 R
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This shows that a matrix-vector multiplication wilhTT» > can be perfomed
using8 additions and” multiplications.

Cost of the DTT algorithm. Now we area ready to determine the overall cost
of the algorithm in Theorem 4.

Theorem 7 Letn = 2%, wherek > 1. Then, using Theorem 4, the discrete trian-
gle transformDTT,, ,, can be computed using at most

11 4 1 1
A(n) = ?nQ logn — gnQ + gn 3
2 T2, 3
M(n) =4n logn—ﬁn +§n—|—2

complex additions and multiplications, respectively. Imtjgalar, the complexity
of the DTT isO(n? log(n)).

Proof: We first determine an upper bound on the number of operations fanén
trary skewDTT,, ., (r, s) computed using the recursion (44) given in Theorem 4,
from left to right. The cost for the base chanBgy . (r, s) was determined above.
The matrix(DTTax2(r, s) ® I,,2) incurs 12m? additions andym? multiplica-
tions. Next, the four skew DTTs are computed recursively Brdbes not incur
operations. We obtain the following recurrences for additionsraanltiplications

(m =n/2):

As(n)
M (n)

= 4A,(m) 4 22m?* — 13m + 3,
= 4M,(m) 4 16m?* — m — 6.

The base cases arg (2) = 12 andM;(2) = 9 as explained above. The solutions
are the cost of a skeWTT,,x,:

11 11 13
As(n) = ?nZ logn — ?n? + 2" 1,
1
M(n) = 4n?logn — gnQ + on + 2.

Finally, we compute the cost of the non-sk®A'T,,,, and the cost of the
skew DTTs computed above. Note that we take into accountnth@4) one of
the smaller (sizen x m) DTTs is not skew. We obtain the recurrences-£ n/2)

A(n) = A(m) + 3A,(m) + 17m? — 12m + 3,
M(n) = M(m) + 3M(m) + 13m* — 6,

with initial conditionsA(2) = 8 and M (2) = 7. Solving these recurrences yields
the desired result. O

5 Conclusions
We presented a fasf)(n? log(n)) algorithm for the discrete triangle transform

(DTT) for input sizen x n. This shows that the DTT has the same arithmetic cost
as other, separable, two-dimensional transforms. Similar tpeawious work on
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trigonometric 1-D transforms, we derived the algorithm not by lepgttatrix
entry manipulations, but by a stepwise decomposition of thigropmial algebra
associated to the transform.

In algebraic terms, as we briefly explained, this technique istibjewise de-
composition of the induction of modules (where the polynoraigébra is viewed
as regular module) into irreducible modules. This techniquelyees recursive
algorithms for many 1-D trigonometric transforms (associated witlrmonial
algebras in one variable), the 2-D DTT (associated with a polyabaigebra
in two variables), and Fourier transforms for at least solvable grqapsoci-
ated with group algebras). The DFT is contained in two of theassels since
Clz]/ (=™ — 1) = C[Z,] is equivalently a polynomial algebra or the group algebra
for the cyclic group. The stepwise decomposition yields thel&eTukey FFT
(in recursive form) in this case. For this reason we term the enties dhalgo-
rithms based on the stepwise decomposition of induction®l&eTukey type,”
including the algorithm derived in this paper.

References

1. M. Pischel and M. Btteler, “Algebraic signal processing theory: 2-D hexagospatial
lattice,” IEEE Transactions on Image Processingl. 16, no. 6, pp. 1506-1521, 2007.

2. M. Pischel and J. M. F. Moura, “Algebraic signal processing theboundation and 1-D
time,” submitted for publication, part of [3].

. M. Ruschel and J. M. F. Moura, “Algebraic signal processing theavailable at
http://arxiv.org/abs/cs.IT/0612077, parts of this mamipd are submitted as [2] and [4].

. M. Puschel and J. M. F. Moura, “Algebraic signal processing ityeb-D space,” submitted
for publication, part of [3].

. T.J. Rivlin, The Chebyshev PolynomiaM/iley Interscience, 1974.

. T. Koornwinder, “Orthogonal polynomials in two variabMhich are eigenfunctions of two
algebraically independent partial differential operatgrart 111),” Indag. Math, vol. 36, pp.
357-369, 1974.

7. M. Pischel and J. M. F. Moura, “Algebraic signal processing theGooley-Tukey type
algorithms for DCTs and DSTSs,IEEE Transactions on Signal Processjntp appear; a
longer version is available at http://arxiv.org/abs/t&V02025.

8. M. Ruschel and J. M. F. Moura, “The algebraic approach to theeliscosine and sine
transforms and their fast algorithms SIAM Journal of Computingvol. 32, no. 5, pp.
1280-1316, 2003.

9. M. Ruschel and M. Rtteler, “Cooley-Tukey FFT like algorithm for the discreteangle
transform,” inProc. 11th IEEE DSP Workshpp004, pp. 158-162.

10. R. M. Mersereau, “The processing of hexagonally sampleedimensional signalsPro-
ceedings of the IEEBvol. 67, no. 6, pp. 930-949, 1979.

11. D. E. Dudgeon and R. M. MersereauMultidimensional Digital Signal Processing
Prentice-Hall, 1984.

12. L. Middleton and J. Sivaswamijexagonal Image Processin§pringer, 2005.

13. A. M. Grigoryan, “Hexagonal discrete cosine transfoamifnage coding,1EEE Transac-
tions on Signal Processingol. 50, no. 6, pp. 1438—1448, 2002.

14. H. J. NussbaumerFast Fourier Transformation and Convolution AlgorithmSpringer,
2nd edition, 1982.

15. G. Steidl and M. Tasche, “A polynomial approach to fagbethms for discrete Fourier-
cosine and Fourier-sine transformdylathematics of Computatiowol. 56, no. 193, pp.
281-296, 1991.

16. J.R. Driscoll, D. M. Healy Jr., and D. Rockmore, “Fastdige polynomial transforms with
applications to data analysis for distance transitive lggsdpSIAM Journal Computatign
vol. 26, pp. 1066—-1099, 1997.

17. D. Potts, G. Steidl, and M. Tasche, “Fast algorithms fecréte polynomial transforms,”
Mathematics of Computatiorol. 67, no. 224, pp. 1577-1590, 1998.

o0 A W



29

18. W. C. Curtis and I. ReineRepresentation Theory of Finite Groygaterscience, 1962.

19. Th. Beth, Verfahren der Schnellen Fouriertransformation [Fast FeurTransform Meth-
ods], Teubner, 1984.

20. M. Clausen, Beitrage zum Entwurf schneller Spektraltransformationen (Htakions-
schrift), Univ. Karlsruhe, 1988.

21. M. Clausen, “Fast generalized Fourier transform$goretical Computer Scienocl. 67,
pp. 55-63, 1989.

22. M. Clausen and U. Baunfrast Fourier TransformsBI-Wiss.-Verl., 1993.

23. D. Maslen and D. Rockmore, “Generalized FFTs — a survesoofe recent results,” in
Proceedings of IMACS Workshop in Groups and Computafiea5, vol. 28, pp. 182—-238.

24. D. Rockmore, “Fast Fourier analysis for abelian grougmesions,” Advances in Applied
Mathematicsvol. 11, pp. 164—204, 1990.

25. D. Maslen and D. Rockmore, “Double coset decomposit@mscomputational harmonic
analysis on groups Journal of Fourier Analysis and Applicationgol. 6, no. 4, 2000.

26. N. JacobsorBasic Algebra | W. H. Freeman and Co., 1974.

27. D. Cox, J. Little, and D. O’Sheddeals, Varieties, and Algorithm$pringer, 1997.

28. Th. Becker and V. Weispfennin@robner BasesSpringer, 1993.

29. Paul A. FuhrmanA Polynomial Approach to Linear Algebr&pringer Verlag, New York,
1996.

30. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosiaaedform,” IEEE Trans. on
Computersvol. C-23, pp. 90-93, 1974.

31. M. Rischel and M. Rtteler, “The discrete triangle transform,” Rroc. ICASSP2004,
vol. 3, pp. 45-48.

32. Y. Voronenko and M. Bschel, “Algebraic derivation of general radix Cooley-&ykal-
gorithms for the real discrete Fourier transform,” Rmoc. International Conference on
Acoustics, Speech, and Signal Processing (ICASERE.

33. L. Auslander, E. Feig, and S. Winograd, “Abelian semigge algebras and algorithms for
the discrete Fourier transform&dvances in Applied Mathematjel. 5, pp. 31-55, 1984.

34. M. Ruschel, “Decomposing monomial representations of soévajpbups,” Journal of
Symbolic Computatigrvol. 34, no. 6, pp. 561-596, 2002.

35. S. Egner and M. ischel, “Automatic generation of fast discrete signald¢farms,” IEEE
Trans. on Signal Processingol. 49, no. 9, pp. 1992-2002, 2001.

36. S. Egner and M. iBchel, “Symmetry-based matrix factorizationfournal of Symbolic
Computationvol. 37, no. 2, pp. 157-186, 2004.

37. T.S. ChiharaAn Introduction to Orthogonal Polynomial§&ordon and Breach, 1978.

38. R. Eier and R. Lidl, “A class of orthogonal polynomialsfirvariables,” Math. Ann, vol.
260, pp. 93-99, 1982.

39. P. E. Ricci, “An iterative property of Chebyshev polyriats of the first kind in several
variables,” Rendiconti di Matematica e delle sue Applicazjorl. 6, no. 4, pp. 555-563,
1986.

A Chebyshev Polynomials in One Variable

We collect some properties of Chebyshev polynomials whiehuaed in the text to define the
DCT, type 3. See [5] for more details on Chebyshev polynasniabr a general introduction to
the theory of orthogonal polynomials we refer to [37].

Definition through recurrence. The Chebyshev polynomials of the first kind (in one vari-
able) are denoted witfll;, (z) | n € Z) and defined by the three-term recurrence

Tn+1 = 2{L’Tn — Tn71, (49)

with initial valuesTy = 1,71 = x. The recurrence can be run in both directions to comiute
forn < 0.

A few examples ard’ 3 = 423 — 3z, T o =222 — 1, Ty =z, To = 1, T} = «z,
Ty =227 — 1, T3 = 42® — 3a.

Parameterization. TheT;, can be written in a parameterized form, calfever form as

Tnzé(u"—i—u*"), m:%(u—&—u*l). (50)
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Further, therigonometric formof T}, is obtained by substituting = ¢ into (50):
T, = cosnf, cosl =z, (51)

which is valid forz € [—1, 1].
Zeros. From (51), the zeros df,, are obtained as

2k-|—17r
2n ’

Symmetry property. Both parameterizations exhibit the symmetry property

cos 0<k<n.

T =T (52)

~ Shift property. The following property can be readily derived from the thteem recur-
sion:

1
Ty -Tn = 5(Tn+;C +Th-k), k,n€Z. (53)
Decomposition property. Finally, we have the decomposition property

which underlies the Cooley-Tukey type algorithms for theTDpe 3.

B Chebyshev Polynomials in Two Variables

The Chebyshev polynomials in two variables are not as wellwmnas their counterparts in one
variable. We use the definitions given in [6,38] with minordifizations to parallel the case
of the univariate Chebyshev polynomials of the first kindsereged above in Appendix A. In
contrast to the univariate case, the polynomials are noeldabby two integerd:,, .. (z,v),
wherem,n € Z.

Definition through recurrence. The Chebyshev polynomials of the first kind in two vari-
ables are denoted witt¥’,, »(z,y) | m,n € Z) and are defined by the two four-term recur-
rences

Tm+1,ﬂ, = 3me,n —dmn—-1 — Trn—l,n+17
Tm,n+1 - 3mi,n - Tm—l,n - Tm+1,n—1-

The initial conditions are

(54)

T070 = 1, T170 =, TQ,O = 3(132 - 2y,
Toa =y, Tin=Bey—1)/2, Too =3y’ — 2.

The recurrences (54) can be run in all direction to obtainlkldttice of polynomials. The
recurrence equations also show that each polynomial haggjkbors, which naturally arranges
them into the hexagonal 2-D array shown in Fig. 9.

Recall that for a polynomiab(z, y) the total degree is the largest- b over all nontrivial
summandsz®y® of p. Using the recurrences (54) it is easy to show that the fafigdemma
holds for allZ>, ...

Lemma 2 Every polynomiall;,, ,, has total degreen + n. Furthermore, ever{’,, » has pre-

cisely one summam:lc’ly” for whicha + b = m + n holds, and for this summand= m and
b = n.Hence{T»n | m,n > 0} is a basis ofC[z, y].

This lemma implies that every polynomidl},, ,, with m < 0 orn < 0is a linear combination
of Chebyshev polynomials,,,,, with m,n > 0.

Parameterization. Similar to the univariate case, there is a power form for theltyshev
polynomials in two variables. It uses thev-parameterization

1 _ 1, _ _
m:§(u+v+(uv) 1),y:§(u Yo ). (55)
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To,-1 Th,—1  To,-1 T3,

Fig. 9 The entire 2-D array of Chebyshev polynomials in two vaesh uniquely determined
by the initial conditionslv,0, 71,0, 12,0, To,1, 11,1, To,2 (solid bullets) via (54).

and is given by (see [6])

Tm,n(m7y) — %(U”’l}im + U77’LU7L + un+'mv7n

+ umvn+m + ufnfmvfn + ufnvfnfm)' (56)
In particular, the power forms aF, o andZy, ,, have only three summands:

1 n n —n 1 —n —-n n
Tho= g(u +0" 4+ (uwv)™ ™), Ton = g(u + o "+ (uwv)"). (57)

Substitutingy = €', v = '¥ yields the corresponding trigonometric form.
For p(z,y) € Clz,y] we denote withp(z,y) = p(y,z) the same polynomial with
exchanged variables. Far., »(x,y), exchanging: andy is equivalent to replacing, v by

u~ ', v~ in the power form. Evaluation shows that

Tmy’ﬂ (fIJ, y) = Tn,m(l’7 y)
In the paper, we often sét,, .0 = T}, (not to be confused with the Chebyshev polynomials in
one variable) for brevity and hen@®,,, = T',,. Again from the power forms it follows that

Ton = %(STMT,L — Ti—n).

Zeros. It can be shown that the equatiof (z, y) = T (x,y) = 0 have precisely:?
pairwise distinct common complex zer@s, y). It is convenient to represent these zeros in the
u, v-parameterization (55), in which they are given by all pairs

1+3j)
7

(ui, v5) = (why, wiy! A/,

0<%,5<n, w,=e
Symmetry property. The definition ofT, ,, exhibits two symmetry properties given by

To—m =Tn-mm, T-nm="Tnm-n- (58)
Shift property. The following equation is the equivalent of (53):

Tee - Trnn = & (Tm—k—tintk + Ton—kntrhre + Tokeonte
+ Tm+k+£,n74 + Tm+l,n7k7£ + Tmfl,nfk)- (59)
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Decomposition property.Finally, for the purpose of deriving fast algorithms thddaling
decomposition property [39] is used:

Grobner basis property.As noted in the text following (1), the polynomigisandg in the

definition of the algebra
A =Clz,y]/(p(z, ), a(z,y))

have to satisfy the property that they form ad@ner basis to make the computation modulo
andq well-defined. Whereas in general a given set of polynomiasstbh be modified to form a
Grobner basis—sometimes involving the addition of an exptakenumber of generators—in
special cases this is not necessary. We briefly argue whyallyagmialsp(z, y) = Tm,o(x, y)
andg(z,y) = To,m(x,y), which are used to define the discrete triangle transforready
form a Gibbner basis for alin > 1.

Recall that the total degree of a polynomjlr, y) is the largest. + b over all nontrivial

summands:z®y® of p. The leading term op(x, y) is the term of highest degree. Lemma 2
implies that the leading term @, o is given byz™ and that the leading term @b .., is given
by y™.
Now, Buchberger’s first criterion [28, Section 5.5] can bplagal which says that two poly-
nomialsp(z, y) andq(z,y) with disjoint leading terms (with respect to the total degterm
order) already constitute a &sner basis. This shows the correctness of our definitioadifced
polynomials inA.



