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Abstract Recently, we introduced the framework for signal processing on a non-
separable 2-D hexagonal spatial lattice including the associated notion of Fourier
transform called discrete triangle transform (DTT). Spatial means that the lattice
is undirected in contrast to earlier work by Mersereau introducing hexagonal dis-
crete Fourier transforms. In this paper we derive a general-radix algorithm for
the DTT of ann × n 2-D signal, focusing on the radix-2×2 case. The runtime
of the algorithm isO(n2 log(n)), which is the same as for commonly used sep-
arable 2-D transforms. The DTT algorithm derivation is based on the algebraic
signal processing theory. This means that instead of manipulating transform co-
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Fig. 1 Fourier transform Polynomial algebra Basis Separable

(a) 2-D DFT C[x, y]/〈xn − 1, yn − 1〉 {xiyj} yes
(b) 2-D DCT, type 3 C[x, y]/〈Tn(x), Tn(y)〉 {Ti(x)Tj(y)} yes
(c) DTT C[x, y]/〈Tn,0(x, y), T0,n(x, y)〉 {Ti,j(x, y)} no

Table 1 Correspondence between the signal structures in Fig. 1, associated Fourier transforms,
and polynomial algebra with fixed basis.

efficients, the algorithm is derived through a stepwise decomposition of its un-
derlying polynomial algebra based on a general theorem that we introduce. The
theorem shows that the obtained DTT algorithm is the precise equivalent of the
well-known Cooley-Tukey fast Fourier transform, which motivatesthe title of this
paper.

1 Introduction

In [1], we introduced the framework for signal processing on a spatial hexagonal
lattice in two dimensions (2-D). The derivation of this framework isan appli-
cation of the algebraic signal processing theory that we recently introduced [2,3].
Namely, from basic assumptions on the desired geometry (in this case a hexagonal
lattice) to be imposed on the signal we derived the proper polynomial algebra and
a suitable basis to support this geometry. The polynomial algebra then provides
the proper notions of signal space, filter space, shift operators, convolution, spec-
trum, and Fourier transform. The latter we termed the discrete triangle transform
(DTT).

The DTT, and the polynomial algebra framework in general, is best under-
stood by visualizing the associated geometry of the signal domain imposed by the
DTT and comparing it to the geometry imposed by other transforms: see Fig. 1
and Table 1, which provides the associated polynomial algebras and basis. More
details are provided in the paper.

For example, the 2-D discrete Fourier transform (DFT) assumes the signal
(given by a 2-D array of numbers) resides on the rectangular lattice shown in
Fig. 1(a). The lattice is directed and the boundary conditions (not shown) are pe-
riodic, which makes the domain a torus. The 2-D DFT diagonalizesthe adjacency
matrix of this torus, which makes the connection between transform and lattice
rigorous. The polynomial algebra and basis underlying the torus are shown in Ta-
ble 1.

Next, the 2-D discrete cosine and sine transforms (DCTs/DSTs) impose a sim-
ilar structure shown in Fig. 1(b), but now the lattice is undirected, which we call
spatial. The boundary conditions are symmetric or antisymmetric, depending on
the type of DCT or DST. Again, the adjacency matrix of this graphis diagonal-
ized by the respective 2-D DCT or DST. The polynomial algebra andbasis for
the special case of a DCT, type 3, is shown in Table 1. In contrastto the previous
case, both algebra and basis are built from Chebyshev polynomials Ti(x) of the
first kind in one variable [4,5].
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(c) DTT

Fig. 1 Visualizations of the signal structure imposed by (a) the 2-D DFT (cyclic boundary con-
ditions are omitted); (b) the 2-D DCTs/DSTs (symmetric/antisymmetric boundary conditions
are omitted); and (c) the DTTs (boundary conditions are omitted).

In both cases, the signal domain is separable, which means a direct product of
line graphs. As a consequence the transforms are tensor or Kronecker products of
1-D transforms (DFT or DCT/DST in this case).

The signal structure assumed by the DTT, again without boundaryconditions,
is shown in Fig. 1(c). The lattice is spatial and hexagonal and hence nonseparable.
Its adjacency matrix is diagonalized by the DTT. The polynomial algebra (Table 1)
is now built from the lesser known Chebyshev polynomialsTi,j(x, y) of the first
kind in two variables [1,6].

In this paper we first show that the DTT possesses general radix Cooley-Tukey
type algorithms. By this we mean algorithms that are based on thesame algebraic
principle as the Cooley-Tukey fast Fourier transform (FFT). Namely,we derive
these algorithms by a stepwise decomposition of the underlying polynomial alge-
bra rather than the transform itself using only one general theorem.In [7,8] we
have used this technique to derive a large class of Cooley-Tukey type algorithms
for trigonometric 1-D transforms. Here, we generalize this theorem to 2-D and ap-
ply it to the DTT. Further, we perform a detailed derivation for the radix-2×2 case,
completing our preliminary results from [9], and show that the resulting algorithm
hasO(n2 log(n)) runtime, just like the best known algorithms for the separable
2-D DFT and 2-D DCTs/DSTs.
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Related work. Hexagonal lattices, their associated Fourier transforms, and
their fast algorithms where considered before as part of the seminal work on multi-
dimensional signal processing by Mersereau [10,11]. See also thebook [12] which
contains an extensive treatment of hexagonal lattices in image processing and ap-
plications and the paper [13] and the references given therein.

However, the above work considers exclusivelydirectedhexagonal lattices,
i.e., those of the type in Fig. 1(a). This implies a notion of Fourier transform dif-
ferent from the DTT. Intuitively, a spatial, orundirected, lattice should make more
sense for many image processing applications. Indeed, for standard rectangular
images, the 2-D DCT, associated with the spatial lattice in Fig. 1(b), is often used
instead of the 2-D DFT. A prominent example is JPEG image compression.

One contribution of this paper is in providing a fast algorithm for the DTT. The
other is our technique for deriving this algorithm, namely, by working with the
polynomial algebra instead of the transform. This approach can beviewed as an
extension of Nussbaumer’s derivations of FFTs and convolution algorithms in the
first book on FFTs [14]. Namely, he also used polynomial algebras and factoriza-
tion properties of polynomials. The same holds for the radix-2 fast DCT algorithm
derived in [15]. In contrast, we use decomposition properties of polynomials and
have shown that these underly general-radix algorithms [4,8].

Another technique for deriving fast algorithms for 1-D transforms ispresented
in [16,17] and requires that the underlying polynomial algebra has a basis of or-
thogonal polynomials. The technique only uses the three-term recurrence, which
is a defining property of these polynomials, and is thus very general. However,
for the 1-D DCTs and DSTs, built from (orthogonal) Chebyshev polynomials, it
yields suboptimal algorithms withO(n log2(n)) operations versusO(n log(n))
for the best known ones. The same suboptimality is likely for a potential 2-D ex-
tension of that method (which does not exist yet) when appliedto the DTT.

Finally, we want to characterize our algorithm derivation in morealgebraic
terms. Namely, a polynomial algebra, viewed as regular module,is an induction
of the trivial regular module [18]. Our stepwise decomposition is equivalent to
a decomposition of the induction into two steps. The same method, applied to
group algebras, has been used to derive fast Fourier transforms on groups, an area
pioneered by Beth in his seminal book [19] and further developed by Clausen
[20–22], and by Rockmore, Maslen, and others [23–25].

Organization. Section 2 provides the necessary background on polynomial al-
gebras in one and two variables and their associated transforms. This includes the
DTT that we introduce and define. We also briefly discuss the connection to signal
processing. Section 3 then explains how to derive fast transform algorithms using
polynomial algebras, first focusing on one variable with the DFT and DCT as ex-
amples, and then generalizing the technique to two variables to make it applicable
to the DTT. In Section 4 we then perform the actual derivation of a general-radix
DTT algorithm with emphasis on the radix-2×2 case. We conclude with Section 5.

2 Polynomial Algebras and Their Transforms

In this section we provide the necessary background on polynomial algebras and
their associated polynomial transforms. These cover many of the transforms used
in signal processing including the DTT, which is defined in this section. Later, we
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derive DTT algorithms by decomposing the underlying polynomial algebra rather
than working with the transform itself.

2.1 Polynomial Algebras

Recall that analgebraA is a vector space that is also a ring, i.e., it is also equipped
with a multiplication for its elements [26]. Important examples for algebras are
the complex numbersC and the setsC[x], C[x, y] of polynomials in one or two
variables, respectively.

One variable. Let p(x) ∈ C[x] be a polynomial of degreen. Then we can
define another important class of algebras as follows: the elements are the polyno-
mials of degree less thann and the multiplication of two polynomials is computed
modulop(x). This algebra is denoted by

A = C[x]/p(x) = C[x]/〈p(x)〉 = {q(x) | deg(q) < deg(p)}.

It has dimensiondim(A) = deg(p).
More formally,〈p(x)〉 = p(x)C[x]�C[x] is the ideal [27,28] ofC[x] generated

by p(x) andC[x]/p(x) is the associated quotient ring or factor ring.
An example isA = C[x]/(x2 − 1). In A, for example,x2 = 1 mod(x2 − 1)

and we can computex(x + 1) = x2 + x = x + 1 mod(x2 − 1). A basis ofA is
b = (1, x) (we use parentheses since the order of basis elements matters in this
paper).

Two variables.Similarly, we can consider two polynomialsp(x, y) andq(x, y)
in two variables and construct the polynomial algebra

A = C[x, y]/〈p(x, y), q(x, y)〉. (1)

Again, 〈p(x, y), q(x, y)〉 = p(x, y)C[x, y] + q(x, y)C[x, y] � C[x, y] denotes the
ideal of C[x, y] generated byp(x, y) and q(x, y) (in short: byp and q). A is
equipped with ordinary addition and multiplication and all computations are car-
ried out modulop andq. Computation modulo two polynomials is no longer a
simple matter as before in the case of univariate algebras. It very much depends on
the actual choice ofp andq whether it is possible or not to obtain auniquereduced
normal form by successively performing reductions modulop andq. Technically,
the condition to guarantee unique normal forms is thatp andq form a Gr̈obner
basis [28,27]. We will not digress any further into this theory but note that all
examples considered in this paper actually have the property that p andq form a
Gröbner basis, i. e., computing modulop andq is always well-defined (see also
Appendix B for further discussion).

Also note thatA in (1) is not necessarily of finite dimension. However, the
cases considered in this paper will be.

As an example, considerA = C[x, y]/〈x2 −1, y2 −1〉. In A, we can compute,
for example,x(xy + 1) = x2y + x = x + y mod〈x2 − 1, y2 − 1〉. Using similar
reductions, one finds thatdim(A) = 4; for example,b = (1, x, y, xy) is a basis.

A generalization of (1) ton variables is straightforward. However, in this pa-
per, we restrict ourselves to the special case of two variables.
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2.2 Polynomial Transforms

With each polynomial algebra we can associate a polynomial transform as ex-
plained next.

One variable. Let A = C[x]/p(x) be a polynomial algebra in one variable.
We assume that the zerosα = (α0, . . . , αn−1) of p are pairwise distinct. The
Chinese Remainder Theorem (CRT) for polynomials [29] decomposesA into one-
dimensional algebras as follows:

∆ : C[x]/p(x) →
⊕

0≤k<n C[x]/(x − αk),
s(x) 7→ (s(α0), . . . , s(αn−1)).

(2)

Here,⊕ is the direct sum of algebras defined as their Cartesian product with com-
ponentwise operation.∆ is an isomorphism of algebras (even anA-module homo-
morphism) and, in particular, a bijective linear mapping. Letb = (p0, . . . , pn−1)
be a basis ofC[x]/p(x) and choose the basis(x0) = (1) in each one-dimensional
C[x]/(x − αk). Then∆ can be expressed by an invertiblen×n matrix which we
refer to as the correspondingpolynomial transformfor A with basisb. This matrix
is denoted withPb,α, since it depends on the basisb and the zeros ofp. Pb,α is
obtained by evaluating all basis elements at all zeros ofp:

Pb,α = [pℓ(αk)]0≤k,ℓ<n. (3)

An important example is the discrete Fourier transformDFTn. Here the al-
gebra isA = C[x]/(xn − 1) with basis polynomialspℓ = xℓ and the zeros are
α = (ωi

n | 0 ≤ i < n), whereωn = exp(−2πi/n). We confirm that

Pb,α = [ωkℓ
n ]0≤k,ℓ<n = DFTn

is the polynomial transform in this case (see [14,2]).
Furthermore, it can be shown that practically all trigonometric 1-Dtransforms

used in signal processing are polynomial transforms (or slight generalizations
thereof) [2,4,8]. For example, IfTk denotes thekth Chebyshev polynomial of
the first kind and degreek (see Appendix A) and we setA = C[x]/Tn(x) and
b = (T0(x), . . . , Tn−1(x)), then

Pb,α = [Tℓ(αk)]0≤k,ℓ<n = [cos (k+1/2)ℓπ
n ]0≤k,ℓ<n. (4)

is the discrete cosine transform (DCT) of type 3. This was already mentioned (for
the transpose, i.e., the DCT of type 2) in the original derivation in [30].

Two variables.We consider an algebra

A = C[x, y]/〈p(x, y), q(x, y)〉 (5)

where for simplicity and because of its relevance for the following we assume
that the total degrees aredeg(p) = deg(q) = n. The total degree ofp(x, y) is the
largestk + ℓ over all nontrivial summandsβk,ℓx

kyℓ of p(x, y).
Furthermore, we assume that the common zeros ofp(x, y) andq(x, y) consti-

tute a finite set of preciselyn2 distinct zeros,1 given by the pairsα = ((αk, βk) |
0 ≤ k < n2), with each pair inC2.

1 Note that for “generic” polynomials this is true, which follows from B́ezout’s theorem [27].
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Again we invoke the CRT and obtain a decomposition inton2 one-dimensional
algebras:

∆ : A →
⊕

0≤k<n2 C[x, y]/〈x − αk, y − βk〉,
s(x, y) 7→ (s(αk, βk) | 0 ≤ k < n2).

(6)

This decomposition also implies thatdim(A) = n2. We express∆ as a matrix
by choosing a vector space basisb = (pℓ(x, y) | 0 ≤ ℓ < n2) for A and the
basis(x0y0) = (1) in eachC[x, y]/〈x − αk, y − βk〉. The resulting matrix is the
polynomial transform (now in two variables) forA with respect tob:

Pb,α = [pℓ(αk, βk)]0≤k,ℓ<n2 . (7)

This is a direct generalization of (3). The DTT discussed later is a polynomial
transform of the form (7).

A particularly simple example, but relevant for applications, is a separable
polynomial algebra in two variables. This means thatp(x, y) = p(x) andq(x, y) =
q(y). In this case,A in (5) is to isomorphic to the tensor product of two polynomial
algebras in one variable:

C[x, y]/〈p(x), q(y)〉 ∼= C[x]/p(x) ⊗ C[x]/q(y).

More constructively, the tensor product provides for anyA′ = C[x]/p(x) with
basisb′ = (p0, . . . , pn−1) a counterpart in two variables, namely

A = A′ ⊗A′ = C[x, y]/〈p(x), p(y)〉 (8)

with basisb = b′ ⊗ b′ = (pi(x)pj(x) | 0 ≤ i, j < n). Let P(b′, α′) denote the
polynomial transform forA′, whereα′ denotes the zeros ofp(x). ComputingPb,α

using (7) shows that it is the tensor or Kronecker product (of matrices)

Pb,α = Pb′,α′ ⊗ Pb′,α′ ,

whereα is given by all possible pairs of elements ofα′ and

A ⊗ B = [ak,ℓB]k,ℓ for A = [ak,ℓ]k,ℓ. (9)

As an example, we considerA = C[x, y]/〈xn − 1, yn − 1〉 with basis(xiyj |
0 ≤ i, j < n). The above discussion shows that

Pb,α = DFTn ⊗DFTn

is precisely the 2D-DFT.
In contrast to this example, the DTT defined next is nonseparable.
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2.3 Discrete Triangle Transform (DTT)

In this section we define the discrete triangle transform (DTT), introduced in [31,
1], as a polynomial transform for a suitable polynomial algebra in two variables.
Hence, the DTT is a special case of (7). The definition requires theChebyshev
polynomialsTk,ℓ(x, y), k, ℓ ∈ Z, in two variables. The reader is invited to read
Appendix B at this point, which collects all the necessary basic information about
these polynomials.

DTT definition. Let A = C[x, y]/〈Tn,0, T0,n〉 with basisbn = (Tk,ℓ | 0 ≤
k, ℓ < n). We denote then2 solutions ofTn,0 = T0,n = 0 with α = ((αi,j , βi,j) |
0 ≤ i, j < n). These are determined by

(ui, vj) = (ωi
n, ω1+3j

3n ), 0 ≤ i, j < n, (10)

in the power form ofTn,0, T0,n (see (57) in Appendix B).
The DTT is the associated polynomial transform; namely, then2 × n2 matrix

DTTn×n = [Tk,ℓ(αi,j , βi,j)]0≤i,j<n, 0≤k,ℓ<n. (11)

The double index(i, j) is the row index, and(k, ℓ) is the column index, both
ordered lexicographically. To compute the matrix entries, the polynomialsTk,ℓ are
evaluated at the zeros ofTn,0 = T0,n = 0 using (10) and the power form ofTk,ℓ

(see (56) in Appendix B). The result is

Tk,ℓ(αi,j , βi,j) = 1
6

(

ω3ki−3ℓj−ℓ
3n + ω3kj−3ℓi+k

3n + ω3ki+3ℓi+3ℓj+ℓ
3n

+ ω3ℓi+3kj+3ℓj+k+ℓ
3n + ω−3ki−3ℓi−3kj−k

3n + ω−3ki−3kj−3ℓj−k−ℓ
3n

)

.

Example: DTT of size2×2. As an example we considern×n = 2×2, which
implies that theDTT is a4×4 matrix. Here we have to evaluate the polynomials
T0,0 = 1, T0,1 = y, T1,0 = x, T1,1 = 1

2 (3xy − 1) at the zeros of the equation
T2,0 = T0,2 = 0. The solutions are given by the four points

( 2
3 , 2

3 ), (0, 0), ( 2
3ω3,

2
3ω2

3), ( 2
3ω2

3 , 2
3ω3). (12)

HenceDTT2×2 is the4 × 4 matrix

DTT2×2 =













1 2
3

2
3

1
6

1 0 0 − 1
2

1 2
3ω2

3
2
3ω3

1
6

1 2
3ω3

2
3ω2

3
1
6













. (13)

Origin of the DTT. The motivation for the definition of the DTT is explained
in detail in [1] and briefly in the next section where we establishthe connection to
signal processing.
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2.4 Connection to Signal Processing: Signal Model

Even though it is not crucial for this paper, we very briefly explain the connection
between polynomial algebras, transforms and signal processing as established by
the algebraic signal processing theory [4].

Finite shift-invariant 1-D signal models. Given a polynomial algebraA =
C[x]/p(x) of dimensiondeg(p) = n and a basisb = (p0, . . . , pn−1) of A, we
considerA also as a regularA-moduleM = A. We sets = (s0, . . . , sn−1)

T ∈ C
n

and define
Φ : C

n → M
s 7→ s(x) =

∑

0≤ℓ<n sℓpℓ.

The triple(A,M, Φ) is called asignal modelfor C
n in algebraic signal processing.

The idea is that the signal model assigns the structure of theA-moduleM to the
vector spaceCn of finite 1-D signals via the bijective mappingΦ. Once the signal
model is chosen, the basic signal processing concepts are all defined. For example,
A is the filter space,M the signal space, andΦ is the “z-transform” associated
with this model. The multiplication of polynomialsh(x) ∈ A and s(x) ∈ M
(i.e., the multiplication modulop(x)) is the filtering or convolution for this model.
The special filterx ∈ A is the shift operator and, sinceA is commutative, the
signal model supportsshift-invariantsignal processing, i.e.,xh(x) = h(x)x for
h(x) ∈ A. The CRT in (2) yields the spectral decomposition of the signalspace
M (i.e., the decomposition into irreducibleA-modules) andPb,α is the Fourier
transform (in coordinate form) associated with this model.

For example, the signal model associated with the DFT is given byA = M =
C[x]/(xn − 1) and the finitez-transform

Φ : s 7→
∑

0≤ℓ<n

sℓx
ℓ. (14)

The convolution associated with this model is the multiplication of polynomials
h(x), s(x) moduloxn − 1. This is equivalent to circular convolution of the coor-
dinate sequencesh, s, as expected.

Similarly, the signal model associated with theDCT, type 3 is given byA =
M = C[x]/Tn(x) and the finiteT -transformΦ : s 7→

∑

0≤ℓ<n sℓTℓ(x).
The differences between signal models are best understood through their vi-

sualizations. The visualization is a graph that has the basiselements ofb (fixed
by Φ) as nodes and the edges are determined by the operation of the shift x on
b. In algebraic terms, the adjacency matrix of this graph isφ(x), whereφ is the
representation ofA afforded byM with basisb. Basic algebra asserts thatφ(x) is
diagonalized by the Fourier transformPb,α.

Two examples are shown in Fig. 2. Fig. 2(a) is a directed graph, sincex · xℓ =
xℓ+1 and thus is called atimemodel. Fig. 2(b) is undirected sincex ·Tℓ = (Tℓ−1 +
Tℓ+1)/2 (see (49) in Appendix A) and hence is called aspacemodel.

Intuitively, the visualization shows the structure imposed ons ∈ C
n by the

signal model including the boundary conditions. For example, Fig. 2(a) shows the
cyclic boundary condition associated with the DFT arising fromxn − 1 = 0 (in
M), i.e.,xn = 1 = x0.

Finite shift-invariant 2-D signal models. The above discussion is for finite
1-D signalss ∈ C

n and readily extended to 2-D using polynomial algebras in
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b b b b b b b b b b b

x0 x1 x2 xn−3 xn−2 xn−1

(a) Finite discrete time model associated with the DFT

b b b b b b b b b b b

T0 T1 T2 Tn−3 Tn−2 Tn−1

(b) Finite discrete space model associated with the DCT, type 3

Fig. 2 Visualization of two finite signal models forCn.

two variables. For example, the signal model underlying the 2-DDFT is given by
A = M = C[x, y]/〈xn − 1, yn − 1〉 and the the finite 2-Dz-transform

Φ : C
n×n → M, s 7→

∑

0≤k,ℓ

sk,ℓx
kyℓ.

Note that the signalss are nown × n 2-D arrays. In contrast to before, we have
now two shift operatorsx andy and letting both operate on the basisb = (xkyℓ |
0 ≤ k, ℓ < n) yields as visualization the graph that hasφ(x) + φ(y) as adjacency
matrix. It is shown in Fig. 1(a), without boundary conditions. Similarly, the sig-
nal model imposed by a 2-D DCT, type 3 is shown in Fig. 1(b), again without
boundary conditions. These graphs are precisely the direct products of the graphs
in Fig. 2 with themselves, respectively, since the 2-D signal models are separable.

The signal model underlying the DTT is given by

A = M = C[x, y]/〈Tn,0(x, y), T0,n(x, y)〉

and
Φ : C

n×n → M, s 7→
∑

0≤k,ℓ

sk,ℓTk,ℓ(x, y)

and is nonseparable. The operation of the shiftsx andy on theTk,ℓ follows from
(54) (in Appendix B) and creates the spatial hexagonal structure shown in Fig. 1(c)
without boundary conditions.

In summary, the DTT is the analog of the DCT for 2-D signals on a finite
hexagonal lattice.

3 Cooley-Tukey Type Algorithms

The algebraic signal processing theory shows that polynomial algebras provide
the structure for finite shift-invariant signal processing (see the brief discussion in
Section 2.4) and identifies the polynomial algebras associated with many of the
existing signal transforms. This makes all transforms to Fourier transforms in a
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rigorous sense, namely for a suitably chosen signal model, and identifies the asso-
ciated notions of spectrum, convolution, and many others. Besides that there is a
second, crucial benefit in knowing the polynomial algebra underlying a transform:
it provides the means to derive the transform’s fast algorithms. Namely, instead of
manipulating the transform itself to obtain a fast algorithm, wemanipulate the
underlying polynomial algebra.

The basic idea is simple. A transform decomposes a polynomial algebra via the
CRT in (2) or (6). A fast algorithm is obtained by performing this decompositionin
steps. In particular, we have shown in [7] that there is one decomposition theorem
for polynomial algebras (in one variable) that spawns what we call general-radix
Cooley-Tukey type algorithms for a large class of (1-D) transforms including the
DFT (for which the standard Cooley-Tukey FFT is obtained), DCTs/DSTs, and the
real DFT [32]. In this section we generalize this theorem to polynomial algebras
in twovariables, which makes it applicable to the DTT. Accordingly,the resulting
algorithms are again ”Cooley-Tukey type.”

We start with introducing the matrix notation used.
Matrix notation. We use permutation matrices, most importantly for stride

permutations. They are defined for integersn, m, wherem|n, and are given by

Ln
m : i

n

m
+ j 7→ jm + i, 0 ≤ j <

n

m
, 0 ≤ i < m.

In other words,Ln
m is the transposition of ann/m × m matrix stored in a vector

in row-major order.
Other permutation matricesP , are defined by their underlying permutation

π : i 7→ π(i), 0 ≤ i < n; namely, in rowi of P there is precisely one non-zero
entry 1 in the columnπ(i).

We writediag(α0, . . . , αn−1) to denote ann×n diagonal matrix with diagonal
entriesα0, . . . , αn−1.

For two matricesA andB, A ⊕ B is their (block diagonal) direct sum and
A ⊗ B defined in (9) is their Kronecker or tensor product.

Special matrices used throughout the paper are the identity matrix Im, the all-
zero matrix0m, and

Jm =





1

···

1



 , Zm =







0
0 1

··· ···

0 1






.

Finally, as before, we denote the complex unit byi (in roman) to distinguish it
from the summation indexi (in italics).

3.1 Cooley-Tukey Type Algorithms: One Variable

We assume that a polynomial transformPb,α is given with underlying algebra
A = C[x]/p(x) and basisb. ThenPb,α has a Cooley-Tukey type algorithm if
p(x) = q(r(x)) decomposes into polynomialsq andr as explained next.
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We assumedeg(q) = k, deg(r) = m, which impliesdeg(p) = n = km. We
denote the zeros ofq with β = (β0, . . . , βk−1). Now we can factorp in two steps
as

p(x) =
∏

0≤i<k

(r(x) − βi) =
∏

0≤i<k

∏

0≤j<m

(x − γi,j).

Here,γi = (γi,0, . . . , γi,m−1) are the zeros ofr(x)−βi; eachγi,j is of course also
a zeroαk of p.

Using the CRT repeatedly, we obtain the following associated stepwise de-
composition ofA:

C[x]/p(x) → C[x]/q(r(x)) (15)

→
⊕

0≤i<k

C[x]/(r(x) − βi) (16)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x − γi,j) (17)

→
⊕

0≤k<n

C[x]/(x − αk). (18)

This decomposition leads to a recursive factorization of the associated polynomial
transform into a product offour sparse matrices corresponding to thefour steps
(15)–(18) as explained in [7,8].

Step 1:The first step (15) does not change the algebra but performs a base
changeBn in C[x]/p(x) from the given basisb to a new basisb′ which is defined
by

b′ = (r0q0(r(x)), . . . , rm−1q0(r(x)),

. . .

r0qk−1(r(x)), . . . , rm−1qk−1(r(x))), (19)

whered = (r0, . . . , rm−1) is a chosen basis for each of theC[x]/(r(x) − βi) and
c = (q0, . . . , qk−1) is a chosen basis forC[y]/q(y).

Step 2:In (16), the CRT is applied toC[y]/q(y), y = r(x). To obtain the
associated matrix, every element ofb′ is reduced modulor(x)− βi and expressed
in the basis(r0, . . . , rm−1). This yields the matrixPc,β ⊗ Im.

Step 3:In step (17), again the CRT is applied to eachC[x]/(r(x) − βi), de-
composing it withPd,γi

. Thus, the entire matrix is given by
⊕

0≤i<k Pd,γi
.

Step 4:The final step (18) permutes the summands into the right order witha
suitable permutation matrixPn.

We summarize in the following theorem.

Theorem 1 (1-D Cooley-Tukey Type Algorithms)Let Pb,α be a polynomial
transform forA = C[x]/p(x) with basisb, wherep(x) = q(r(x)) decomposes.
Then, using the notation introduced above,

Pb,α = Pn(
⊕

0≤i<k

Pd,α′

i
)(Pc,β ⊗ Im)Bn. (20)
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Note that all four factors are guaranteed to be sparse except forBn.
We illustrate this theorem by first deriving the general-radix Cooley-Tukey

FFT, which also explains the name of Theorem 1. Then we apply itto the DCT,
type 3. The latter derivation will be analogous to the algorithm derivation for the
DTT shown later.

Example: DFT. The DFT is a polynomial transform forA = C[x]/(xn − 1)
with basisb = (1, x, . . . , xn−1). Assuming thatn = km, we have the decomposi-
tion xn − 1 = (xm)k − 1, i.e., we setq(x) = xk − 1, andr(x) = xm. As bases we
choosec = (1, x, . . . , xk−1) andd = (1, x, . . . , xm−1), i.e.,qi = xi andrj = xj .

Step 1:It turns out thatb′ = b, i.e.,B = In.
Step 2:The partial decomposition is done byPc,β ⊗ Im = DFTk ⊗Im. The

smaller algebras in (16) are given byC[x]/(xm − ωi
k).

Step 3:EachC[x]/(xm − ωi
k) is decomposed byPd,γi

= DFTm ·diag(ωij
n |

0 ≤ j < m) as direct computation shows.
Step 4:It remains to determine the permutation matrixPn. At this point we

have the decomposition in (17), which takes the form

C[x]/(xn − 1) →
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x − ωjk+i
n ).

Hence, the remaining task is to reorder fromjk + i to im + j, where0 ≤ i < k
and0 ≤ j < m, to make the exponents consecutive. This implies thatPn is the
stride permutationLn

m. Overall, we obtain the radix-m decimation-in-frequency
Cooley-Tukey FFT

DFTn = Ln
m(Ik ⊗ DFTm)Tn

m(DFTk ⊗Im), (21)

whereTn
m =

⊕

0≤i<k diag(ωij
n | 0 ≤ j < m). Transposition of (21) yields the

decimation-in-time version.
Example: DCT, type 3. The DCT, type 3, for input sizen, is denoted with

DCT-3n. It is the polynomial transform for the algebraC[x]/Tn(x) with basisb =
(T0, . . . , Tn−1) as shown in (4). We assumen = km. In this case,Tn = Tk(Tm)
indeed decomposes and yields general-radix Cooley-Tukey algorithms [7].

We will show the derivation of the radix-2 (k = 2) case since it is analogous
to the more involved radix-2×2 algorithm for the DTT derived later. This radix-2
algorithm was originally discovered in iterative form (which avoids the definition
of skew DCTs) in [15] and derived using implicitly polynomial algebras.

We setq(x) = T2(x), r(x) = Tm(x), and choose basesc = (T0, T1) and
d = (T0, . . . , Tm−1). The decomposition now becomes:

C[x]/Tn(x) → C[x]/T2(Tm(x)) (22)

→ C[x]/(Tm(x) − cos π
4 ) ⊕ C[x]/(Tm(x) − cos 3π

4 ) (23)

→
⊕

0≤i<2

⊕

0≤j<m

C[x]/(x − cos ri,jπ) (24)

→
⊕

0≤k<n

C[x]/(x − cos (2k+1)π
2n ). (25)
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q q q q q q q q q q q q q q q q

(a) Line graph for DCT, type 3

q q q q q q q q q q q q q q q q

Region I Region II

(b) Decomposed line graph

Fig. 3 (a) The signal domain associated with theDCT-3n for n = 16. Boundary conditions are
omitted. (b) Radix-2 decomposition to compute the base change in the Cooley-Tukey algorithm.

Here,r0,j = 4j+2−(−1)j

2n andr1,j = 4j+2+(−1)j

2n , which follows from the general
factorization (forn even)

Tn − cos rπ = 2n−1
∏

0≤ℓ<n

(x − cos rℓπ), (26)

where the list of the zeros, ordered by increasing angle normalizedto the interval
[0, π], is determined by

(rℓ)0≤ℓ<n =
⋃

0≤i<n/2

(

r+2i
n , 2−r+2i

n

)

. (27)

Now we start the algorithm derivation.
Step 1:The basisb′ is given by

b′ = (T0T0(Tm(x)), . . . , Tm−1T0(Tm(x)), T0T1(Tm(x)), . . . , Tm−1T1(Tm(x)))

= (Tim−j/2 + Tim+j/2 | 0 ≤ i < 2, 0 ≤ j < m),

where we used the propertyTkTn = (Tn−k + Tn+k)/2 (see (53) in Appendix A)
which holds for allk, n ∈ Z.

Unlike in theDFT case above, the base change (22) fromb to b′ is no longer
trivial. To determine the exact form we have to express the elements of the basis
b = (T0, . . . , Tn−1) as a linear combination of elements ofb′. Accordingly, we
first split the indices into a radix-two representation:

b = (Tim+j | 0 ≤ i < 2, 0 ≤ j < m),

where we use the lexicographic ordering on pairs(i, j) = (0, 0), (0, 1), . . . . Cor-
respondingly, we get a partition of0, . . . , n − 1 into two regions, namely the part
in which i = 0 and the part in whichi = 1 (see Fig. 3).

The base change is now computed as follows.
Region I:Tj ∈ b′n for 0 ≤ j < m.
Region II:

Tm+j =







Tm · T0 : j = 0,

2TmTj − Tm−j : j 6= 0.

Hence the base changeBn takes the form

Bn = (Im ⊕ diag(1, 2, . . . , 2))

[

Im −Zm

0m Im

]

. (28)
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Fig. 4 The recursion tree of the radix-2 algorithm for the DCT, type 3. For input sizen = 2d,
the depth of the tree isd.

Step 2:The partial decomposition in (23) is done withDCT-32 ⊗ Im.
Step 3:The complete decomposition in (24) is done withDCT-3m( 1

4 ) ⊕

DCT-3m( 3
4 ), where we defineDCT-3n(r) as the polynomial transform for the al-

gebraC[x]/(Tn − cos rπ) with basis(T0, . . . , Tn−1) and the order of zeros shown
in (27). We callDCT-3n(r) askewDCT of type 3 [4].

Step 4:The final reordering of the zeros in (25) is done with the permutation

Pn = (Im/2 ⊗ (I2 ⊕ J2))L
n
m. (29)

At this point we have the complete decomposition ofDCT-3n, namely, the
computation is reduced to two skew DCTs of half the size. These, in turn, can be
decomposed in exactly the same fashion, sinceTn − cos rπ decomposes if and
only if Tn decomposes. In this decomposition both the base changeBn and the
permutationPn do not depend onr. The result is the following fully specified
recursive radix-2 Cooley-Tukey algorithm for the DCT, type 3.

Theorem 2 (Radix-2 algorithm for DCT, type 3) Letn be even. Then,

DCT-3n = DCT-3n( 1
2 ),

DCT-3n(rπ) = Pn

(

DCT-3n
2
( r
2 ) ⊕ DCT-3n

2
( 2−r

2 )
)

(DCT-32 ⊗ In
2
)Bn,

with base case

DCT-32(r) =

[

1 cos r
2π

1 − cos r
2π

]

=

[

1 1
1 −1

]

diag(1, cos rπ).

The algorithm in Theorem 2 can be visualized by its associated recursion tree
in Fig. 4, which shows the occurring skew DCTs.

By solving recurrences, the operations count of this algorithm fora two-power
size n is determined asA(n) = 3

2n log2(n) − n + 1 additions andM(n) =
1
2n log2(n) multiplications for a total of2n log2(n) − n + 1 = O(n log(n)) oper-
ations.
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3.2 Cooley-Tukey Type Algorithms: Two Variables

Now we extend Theorem 1 to polynomial algebras in two variables.
Let A = C[x, y]/〈p(x, y), q(x, y)〉 and assume that the ideal〈p, q〉 decom-

poses. This means that we can find bivariate polynomialss, t, u, v ∈ C[x, y] such
thatp(x, y) = u(r(x, y), s(x, y)) andq(x, y) = v(r(x, y), s(x, y)). Again, in this
case a fast algorithm for the polynomial transformPb,α can be constructed by
decomposing the algebraA in steps. For simplicity we assume thatdeg(p) =
deg(q) = n, deg(u) = deg(v) = k, anddeg(r) = deg(s) = m, which im-
plies n = km. Denote the common zeros of the outer polynomialsu(x, y) and
v(x, y) by β = ((µi, νi) | i = 0, . . . , k2 − 1). Next we define the common ze-
rosγi = ((κi,j , λi,j) | j = 0, . . . ,m2 − 1) of the polynomialsr(x, y) − µi and
s(x, y) − νi. Now, eachγi,j = (κi,j , λi,j) is a common zeroαℓ = (κℓ, λℓ) of
p(x, y) andq(x, y), whereℓ = 0, . . . , n2 −1. From the CRT we obtain the decom-
position

C[x, y]/〈p(x, y), q(x, y)〉 → C[x, y]/〈u(r(x, y), s(x, y)), v(r(x, y), s(x, y))〉 (30)

→
⊕

0≤i<k2

C[x, y]/〈r(x, y) − µi, s(x, y) − νi〉 (31)

→
⊕

0≤i<k2

⊕

0≤j<m2

C[x, y]/〈(x − κi,j), (y − λi,j)〉 (32)

→
⊕

0≤ℓ<n2

C[x, y]/〈(x − κℓ), (y − λℓ)〉). (33)

As in the univariate case this decomposition leads to a recursive factorization
of Pb,α into four matrices.

Step 1:In (30) we do not decompose the algebra but rather perform a base
change to the basisb′ defined by

b′ = (r0u0(r(x, y), s(x, y)), . . . , rm2−1u0(r(x, y), s(x, y)),

. . . . . .

r0uk2−1(r(x, y), s(x, y)), . . . , rm2−1uk2−1(r(x, y), s(x, y)),

where the same basisd = (r0, . . . , rm2−1) is chosen for each of the algebras
C[x, y]/〈r(x, y) − µi, s(x, y) − νi〉, andc = (u0, . . . , uk2−1) is the chosen basis
for C[x, y]/〈u(x, y), v(x, y)〉. We call the base change matrixBn.

Step 2:The coarse decomposition using the CRT is performed by the matrix
Pc,β ⊗ Im2 as direct computation shows.

Step 3:The complete decomposition is done by a direct sum of polynomial
transforms:

⊕

0≤i<k2 Pd,γi
.

Step 4:A suitable permutationPn maps the concatenation of theγi ontoα.

Theorem 3 (2-D Cooley-Tukey Type Algorithms)Let Pb,α be a polynomial
transform forA = C[x]/〈p(x, y), q(x, y)〉 with basisb, and assume thatp(x) =
u(r(x), s(x)) andq(x) = v(r(x, y), s(x, y)) decompose. Then, using previous no-
tation,

Pb,α = Pn

(

⊕

0≤i<k2

Pd,γi

)

(Pc,β ⊗ Im2)Bn. (34)

As in Theorem 1, all four factors are guaranteed to be sparse except for Bn.
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3.3 Discussion

In the above derivation of Cooley-Tukey type algorithms we emphasized the ac-
tual construction and introduced only as much algebra as neededto follow the
derivation. In particular, only rather basic polynomial computations are sufficient
to arrive at the results. However, it is also desirable to understand the underlying
algebraic principles at work. Among other things, this enablesa comparison to
related work on fast Fourier transforms for groups or group algebras. Webriefly
discuss this in the following.

AssumeA = C[x]/p(x) with p(x) = q(r(x)). This implies thaty = r(x)
spans a subalgebraB ≤ A that is equal toC[y]/q(y). Further, we can choose a
transversald = (r0, . . . , rk−1), deg(ri) = i, of B in A such that

A = r0B ⊕ . . . ⊕ rk−1B. (35)

If we view A as a regularA-module andB as regularB-module, then (35) shows
thatA is the induction ofB to A with transversald, written as (see [18])

A ∼= A⊗B B = B ↑d A.

First, this explains the basisb′ in (19), which is compatible with the decomposition
in (35). Namely, ifc = (q0(y), . . . , qm−1(y)) is a basis ofB, then theriqj(y) form
a basis ofA.

Second, Theorem 1 derives a fast algorithm by decomposing the regular A-
module into a stepwise induction; the steps determine the factorization. The same
procedure, applied to group algebras, is known to produce fast algorithms for
Fourier transforms on groups. This technique was used by Beth in [19] (see also
[33]) to explain the Cooley-Tukey FFT as a stepwise decomposition of the group
algebra for the cyclic group; then, he generalized the same technique to arbitrary
solvable groups (see also [24]). For these groups he also derived an explicit re-
cursion formula that, not surprisingly, is in structure similar to the recursions in
Theorems 1 and 3. Nonsolvable groups may require additional techniques (e.g.,
[23,25]), even though they are still decomposable inductions. The decomposition
of non-regular group modules that afford a monomial representationwas studied
in [34]. Again, the derived decomposition formula looks similar to (20).

This discussion is readily extended to the bivariate case and Theorem 3.

4 Cooley-Tukey Type Algorithm for the DTT

In this section we apply Theorem 3 to derive Cooley-Tukey type algorithms for the
DTT. The derivation parallels the algorithm derivation for the DCT, type 3, except
for more involved calculations. To emphasize the correspondence, we follow the
exact same steps as in Section 3.1. The reader is invited to switch often between
that and the following section to discover the similarities.

We use notation introduced in Appendix B. In particular, we set for simplicity
Tn(x, y) = Tn,0(x, y) and denote withp(x, y) = p(y, x) the polynomial with
reversed arguments. Accordingly,Tn(x, y) = T0,n(x, y).
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4.1 Derivation of the Fast Algorithm

The DTTn×n is the polynomial transform forC[x, y]/〈Tn(x, y), Tn(x, y)〉 with
basisbn = (Tk,ℓ | 0 ≤ k, ℓ < n). We assumen = km, which implies that
〈Tn, Tn〉 decomposes as shown in (60) in Appendix B:

Tn = Tk(Tm, Tm), Tn = T k(Tm, Tm).

Using Theorem 3, it is hence clear that the DTT possesses a general radix algo-
rithm. The arithmetic cost of this algorithm depends on the sparsity of the initial
base change matrixB. We call the general algorithm radix-k×k to emphasize the
two-dimensional character of the decomposition.

In the following we will focus on the radix-2×2 case (k = 2) and derive the
algorithm in detail. Necessarily, we assume thatn = 2m.

Preliminaries. Before we derive the decomposition of the algebra we intro-
duce notation to simplify the representation of the occurring zeros. Namely, we
introduce functionsσ andτ as

σ(r, s) = 1
3 (e2πir + e2πis + e−2πi(r+s)),

τ(r, s) = 1
3 (e−2πir + e−2πis + e2πi(r+s)),

wherer, s ∈ [0, 1). Note thatσ(r, s) is the complex conjugate ofτ(r, s). These
functions will play the same role ascos(rπ) = 1

2 (e2πir + e−2πir) in the DCT
algorithm derivation in Section 3.1. In particular, we need an equivalent to the
factorization in (26), which means we have to find the simultaneous zeros of the
equations

Tn − σ(r, s) = Tn − τ(r, s) = 0.

If u = e2πir, v = e2πis, then because of the power forms ofTn andTn (see
(57) in Appendix B), then2 solutions are (inu, v parameterization) given by
{(ui, vj) = (e2πi r+i

n , e2πi s+j
n ) | 0 ≤ i, j < n}. The correspondingn2 solutions in

x, y parameterization are now readily obtained by applyingσ andτ . We write the
result as an intersection of ideals in the following lemma.

Lemma 1 Using previous notation,

〈Tn − σ(r, s), Tn − τ(r, s)〉 =
⋂

0≤i,j<n

〈x− σ( r+i
n , s+j

n ), y − τ( r+i
n , s+j

n )〉. (36)

In the special caser = 0, s = 1/3, we haveσ(r, s) = τ(r, s) = 0 and Lemma 1
yields the zeros ofTn = Tn = 0 shown before and used to define the DTT.

Algorithm derivation. Following the notation from Section 3.2, we setu =
T2, v = T 2, r = Tm, s = Tm and choose basesc = (T0,0, T0,1, T1,0, T1,1)
andd = (Tk,ℓ | 0 ≤ k, ℓ < m). The decomposition, following (30)-(33), now
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becomes:

C[x, y]/〈Tn, Tn〉

→ C[x, y]/〈T2(Tm, Tm), T 2(Tm, Tm)〉 (37)

→ C[x, y]/〈Tm − σ(0, 1
6 ), Tm − τ(0, 1

6 )〉

⊕ C[x, y]/〈Tm − σ(0, 2
3 ), Tm − τ(0, 2

3 )〉

⊕ C[x, y]/〈Tm − σ( 1
2 , 1

6 ), Tm − τ( 1
2 , 1

6 )〉

⊕ C[x, y]/〈Tm − σ( 1
2 , 2

3 ), Tm − τ( 1
2 , 2

3 )〉

=

C[x, y]/〈Tm − 2
3 , Tm − 2

3 〉

⊕ C[x, y]/〈Tm, Tm〉

⊕ C[x, y]/〈Tm − 2
3ω3, Tm − 2

3ω2
3〉

⊕ C[x, y]/〈Tm − 2
3ω2

3 , Tm − 2
3ω3〉 (38)

→
⊕

0≤i,j<m

C[x, y]/〈x − α2i,2j , y − β2i,2j〉

⊕
⊕

0≤i,j<m

C[x, y]/〈x − α2i,2j+1, y − β2i,2j+1〉 (39)

⊕
⊕

0≤i,j<m

C[x, y]/〈x − α2i+1,2j , y − β2i+1,2j〉

⊕
⊕

0≤i,j<m

C[x, y]/〈x − α2i+1,2j+1, y − β2i+1,2j+1〉 (40)

→
⊕

0≤i,j<m

C[x, y]/〈x − αi,j , y − βi,j〉. (41)

Here we have used the notationαi,j = σ( i
n , j

n ) andβi,j = τ( i
n , j

n ) for the simul-
taneous zeros ofTn andTn. Now we start the algorithm derivation.

Step 1:The basisb′n is given by

b′n = (T0,0T0,0(Tm, Tm), . . . , Tm−1,m−1T0,0(Tm, Tm),

T0,0T0,1(Tm, Tm), . . . , Tm−1,m−1T0,1(Tm, Tm),

T0,0T1,0(Tm, Tm), . . . , Tm−1,m−1T1,0(Tm, Tm),

T0,0T1,1(Tm, Tm), . . . , Tm−1,m−1T1,1(Tm, Tm))

As for the DCT, type 3, the base changeBn×n from bn to b′n in (37) is nontrivial.
Since the exact derivation ofBn×n is rather involved, we defer it to Section 4.2.

Step 2:The partial decomposition in (38) is done withDTT2×2 ⊗Im2 .
Step 3:The complete decomposition in (40) is done with

DTTn
2
×n

2
(0, 1

6 ) ⊕ DTTn
2
×n

2
(0, 2

3 ) ⊕ DTTn
2
×n

2
( 1
2 , 1

6 ) ⊕ DTTn
2
×n

2
( 1
2 , 2

3 ),

where forr, s ∈ [0, 1) we define theskewtransformsDTTn×n(r, s) as the poly-
nomial transform for

C[x, y]/〈Tn − σ(r, s), Tn − τ(r, s)〉
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with basisbn and order the zeros as((αi,j , βi,j) | 0 ≤ i, j < n), where we use
lexicographic ordering on the pairs(i, j) = (0, 0), (0, 1), . . ..

Step 4:Inspection shows that the final reordering of the zeros in (41) is done
with the permutation

Pn×n = Ln2

n2/2(L
2n
n ⊗ In/2). (42)

At this point we have the complete decomposition ofDTTn×n, namely, the
computation is reduced to four skew DTTs, each of one quarter of the size. These
can be decomposed in exactly the same fashion, since〈Tn −σ(r, s), Tn − τ(r, s)〉
decomposes if and only if〈Tn, Tn〉 decomposes. In this decomposition the per-
mutationPn×n does not depend onr, s. However, in contrast to the DCT, type 3,
the base change for the skew DTT depends onr ands: Bn×n = Bn×n(r, s). We
derive it in Section 4.2. Here, we only note that it is sparse and its arithmetic cost
is O(n2).

In summary, we get the fully specified recursive radix-2×2 Cooley-Tukey al-
gorithm for the DTT.

Theorem 4 (Radix-2×2 algorithm for DTT) Letn be even. Then,

DTTn×n = DTTn×n(0, 1
3 ), (43)

DTTn×n(r, s) = Pn×n

(

DTTn
2
×n

2
( r
2 , s

2 ) ⊕ DTTn
2
×n

2
( r
2 , s+1

2 )

⊕ DTTn
2
×n

2
( r+1

2 , s
2 ) ⊕ DTTn

2
×n

2
( r+1

2 , s+1
2 )

)

(DTT2×2 ⊗In2

4

)Bn×n(r, s), (44)

with Bn×n(r, s) specified in Theorem 6 in Section 4.2. The base cases are

DTT2×2(r, s) =

2

6

6

6

6

6

4

1 σ( r
2
, s

2
) τ( r

2
, s

2
) 1

2

`

3σ( r
2
, s

2
)τ( r

2
, s

2
)−1

´

1 σ( r
2
, s+1

2
) τ( r

2
, s+1

2
) 1

2

`

3σ( r
2
, s+1

2
)τ( r

2
, s+1

2
)−1

´

1 σ( r+1

2
, s

2
) τ( r+1

2
, s

2
) 1

2

`

3σ( r+1

2
, s

2
)τ( r+1

2
, s

2
)−1

´

1 σ( r+1

2
, s+1

2
) τ( r+1

2
, s+1

2
) 1

2

`

3σ( r+1

2
, s+1

2
)τ( r+1

2
, s+1

2
)−1

´

3

7

7

7

7

7

5

.

The recursion tree associated with this algorithm is visualizedin Fig. 5 and shows
the occurring skew DTTs.

Assuming thatBn×n requires onlyO(n2) operations, as shown later, it is al-
ready clear that the algorithm hasO(n2 log(n)) runtime. We give more detailed
operation counts in Section 4.3.

It is straightforward to derive a general radix-k × k Cooley-Tukey algorithm
for the DTT following Theorem 3. We give the result in the following theorem
without explicitly computingB andP .

Theorem 5 (Radix-k×k algorithm for DTT) Letn ≥ 2 and letk|n. Then,

DTTn×n = DTTn×n(0, 1
3 ), (45)

DTTn×n(r, s) = P
(k)
n×n

⊕

0≤i,j<k

DTTn/k×n/k

(

r + i

k
,
s + j

k

)

(

DTTk×k ⊗In2/k2

)

B
(k)
n×n(r, s) (46)
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DTTn×n(0, 1

3
)
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DTT n

2
×

n
2
(0, 1

6
) DTT n

2
×

n
2
(0, 2

3
) DTT n

2
×

n
2
( 1

2
, 1

6
) DTT n

2
×

n
2
( 1

2
, 2

3
)
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···
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···

CC
···
AA
···
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···
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···

CC
···
AA
···
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···
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···

CC
···
AA
···

��
···

��
···

CC
···
AA
···

Fig. 5 The recursion tree of the radix-2 × 2 algorithm for the DTT. Forn = 2d, the depth of
the tree isd.

with suitably defined permutation matrixP (k)
n×n, base change matrixB(k)

n×n(r, s),
and base casesDTTk×k(r, s).

4.2 The Base Change for the Recursion Step

In this section we derive the precise form of the base change matrixBn×n(r, s)
used in Theorem 4. As mentioned before, this matrix corresponds to the base
change frombn to

b′n = (T0,0T0,0(Tm, Tm), . . . , Tm−1,m−1T0,0(Tm, Tm),

T0,0T0,1(Tm, Tm), . . . , Tm−1,m−1T0,1(Tm, Tm),

T0,0T1,0(Tm, Tm), . . . , Tm−1,m−1T1,0(Tm, Tm),

T0,0T1,1(Tm, Tm), . . . , Tm−1,m−1T1,1(Tm, Tm))

In other words we have to express every elementTk,ℓ ∈ bn as a linear combination
of the elements inb′n; the coefficient vectors obtained this way are the columns of
Bn×n(r, s). In particular, we will see that the base change matrix is sparse.

Theorem 6 Let n = 2m and let0 ≤ k, ℓ < m. Then the following equations
define the base change matrixBn×n(r, s). The special caseBn×n is obtained by
settingr = 0 ands = 1

3 . The following division into regions is according to Fig. 6
and parallels Fig. 3 for the DCT, type 3.

Region I:Tk,ℓ ∈ b′n for 0 ≤ k, ℓ < m.
Region II:

Tm+k,ℓ =



























































Tm,0 : k = ℓ = 0

3
2Tm,0T0,ℓ −

1
2Tm−ℓ,0 : k = 0, ℓ 6= 0,

3Tm,0Tk,0 − 2Tm−k,k : ℓ = 0, k 6= 0,

3Tm,0Tk,ℓ − Tm−ℓ−k,k

−Tm−k,k+ℓ
: k + ℓ < m; k, ℓ 6= 0,

3Tm,0Tk,ℓ −
3
2T0,mTℓ,0 −

1
2T0,k : k + ℓ = m,

3Tm,0Tk,ℓ − 3T0,mTm−k,k+ℓ−m

+Tℓ,2m−k−ℓ
: k + ℓ > m.
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(a) Hexagonal grid
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Region I

Region III Region IV

Region II

(b) Decomposed hexagonal grid

Fig. 6 (a) The signal domain associated with the DTT forn × n = 16 × 16. Boundary
conditions are omitted. (b) Radix-2 × 2 decomposition to compute the base change matrix in
the Cooley-Tukey algorithm.

Region III: The representation of polynomials in this region is derived from Re-
gion II by applyingTk,m+ℓ = Tm+ℓ,k. For completeness, we list them.

Tk,m+ℓ =



























































T0,m : k = ℓ = 0

3
2T0,mTk,0 −

1
2T0,m−k : k = 0, ℓ 6= 0,

3T0,mT0,ℓ − 2Tℓ,m−ℓ : ℓ = 0, k 6= 0,

3T0,mTk,ℓ − Tℓ,m−ℓ−k

−Tk+ℓ,m−ℓ
: k + ℓ < m; k, ℓ 6= 0,

3T0,mTk,ℓ −
3
2Tm,0T0,k − 1

2Tℓ,0 : k + ℓ = m,

3T0,mTk,ℓ − 3Tm,0Tk+ℓ−m,m−ℓ

+T2m−k−ℓ,k
: k + ℓ > m.

Region IV: Some of the entries corresponding to basis elements fromthis region
depend on the parametersr, s that define the skew transform. We letα = σ(r, s)
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andβ = τ(r, s) and describe the dependence in terms ofα andβ:

Tm+k,m+ℓ =







































































































































Tm,m : k = ℓ = 0,

3Tm,mT0,ℓ − 3Tm,0Tℓ,m−ℓ + T0,ℓ : k = 0, ℓ 6= 0,

3Tm,mTk,0 − 3T0,mTm−k,k + Tk,0 : ℓ = 0, k 6= 0,

6Tm,mTk,ℓ − Tm−ℓ,m−k + 2Tk,ℓ

−3Tm,0Tk+ℓ,m−ℓ − 3T0,mTm−k,k+ℓ
: k + ℓ < m,

6Tm,mTk,ℓ + Tk,ℓ −
3
2Tm,0Tℓ,0

− 3
2T0,mT0,k − 3

2αT0,k − 3
2βTℓ,0

: k + ℓ = m,

6Tm,mTk,ℓ + 2Tk,ℓ

+3Tm,0T2m−ℓ−k,k − 3Tm,0Tm−k,ℓ+k−m

+3T0,mTℓ,2m−ℓ−k − 3T0,mTℓ+k−m,m−ℓ

−(3α + 3β + 1)Tm−k,m−k

: k = ℓ = 2
3m,

6Tm,mTk,ℓ + 3Tm,0T2m−ℓ−k,k + 2Tk,ℓ

−Tm−ℓ,m−k − 3Tm,0Tm−k,ℓ+k−m

+3T0,mTℓ,2m−ℓ−k − 3T0,mTℓ+k−m,m−ℓ

−3αTk+ℓ−m,m−ℓ − 3βTm−k,k+ℓ−m

: k + ℓ > m.

Proof: We focus on one particular case: we show that the entryTm+k,ℓ for a
polynomial in region II is given by the claimed formula in the casek+ℓ > m. The
other cases are shown analogously. We have to express every polynomialTm+k,ℓ,
0 ≤ k, ℓ < m, in region II, in the basisb′n. First note that using property (59) from
Appendix B we obtain

Tm,0Tk,ℓ = 1
3 (Tm+k,ℓ + Tk,ℓ−m + Tk−m,ℓ+m),

which implies

Tm+k,ℓ = 3Tm,0Tk,ℓ − Tk,ℓ−m − Tk−m,ℓ+m. (47)

This is an expansion ofTm+k,ℓ into polynomials which are not all in the basisb′n.
Thus, we rewrite the second and third polynomial on the right handside of (47)
using (58). We obtain

Tk,ℓ−m = Tk+ℓ−m,m−ℓ =

{

Tk+ℓ−m,m−ℓ : k + ℓ ≥ m,
Tm−ℓ−k,k : k + ℓ < m.

Note that in both cases the given polynomial shown on the righthand side is an
element ofb′n since it lies in region I.

Next, we modify the termTk−m,ℓ+m in (47). Again, we distinguish the two
casesk + ℓ < m andk + ℓ ≥ m. If k + ℓ < m, we can use the ruleTk−m,ℓ+m =
Tm−k,k+ℓ ∈ b′n and get

Tm+k,ℓ = 3Tm,0Tk,ℓ − Tm−k−ℓ,k − Tm−k,k+ℓ, (48)
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1 2

3

4

5

6

Fig. 7 Subdivision of each region in Fig. 6(b) into six subregions to compute the arithmetic
cost of the base change.

provided that0 ≤ k + ℓ < m. Hence, we can assume thatk + ℓ ≥ m. We define
µ = k + ℓ−m andν = m− k. Note that0 ≤ µ, ν ≤ m and that0 ≤ µ + ν < m.
Hence, we can use (48) as follows:

Tk−m,ℓ+m = T k+ℓ,m−k

= Tm+µ,ν

= 3Tm,0Tµ,ν − Tm−µ−ν,µ − Tm−µ,µ+ν

= 3T0,mTν,µ − Tµ,m−µ−ν − Tµ+ν,m−µ,

where the last line is a decomposition into elements ofb′n. Substituting back the
values forµ andν yields the formula

Tk−m,ℓ+m = 3T0,mTm−k,k+ℓ−m − Tk+ℓ−m,m−ℓ − Tℓ,2m−k−ℓ.

Hence, we have found expressions for all terms on the right hand side of (47) and
can compute the resulting expansion as

Tm+k,ℓ = 3Tm,0Tk,ℓ − Tk,ℓ−m − Tk−m,ℓ+m

= 3Tm,0Tk,ℓ − Tk+ℓ−m,m−ℓ − 3T0,mTm−k,k+ℓ−m

+Tk+ℓ−m,m−ℓ + Tℓ,2m−k−ℓ

= 3Tm,0Tk,ℓ − 3T0,mTm−k,k+ℓ−m + Tℓ,2m−k−ℓ

as claimed for the casek + ℓ > m in the theorem. The other casesk = 0, ℓ = 0,
andk + ℓ = m for polynomials in region II arise as special cases in which the
linear combinations can be further simplified.⊓⊔

4.3 Arithmetic Cost

In this subsection we determine the arithmetic cost of the recursive DTT algorithm
in Theorem 4. Our cost measure iscomplexadditions and multiplications, were
multiplications by±1 are not counted. We assume aDTTn×n, wheren is a two-
power. The main task is to determine the number of operations incurred by the
base change matrixB in Theorem 6.

Cost for the base change.To count the number of arithmetic operations nec-
essary for the base changeB we have to analyze the number and the values of the
non-zero entries in each row ofB. This information is obtained in a straightfor-
ward way from the description ofB in Theorem 6.
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We start by counting for each of the regions I–IV in Fig. 6 the numberof addi-
tions (adds) and multiplications (mults) necessary for the basechangeBn×n(r, s)
in Theorem 4. Each region is further subdivided into the six regions shown in
Fig. 7. Fig. 8 summarizes the coefficients which occur whenever a particular row
of Bn×n(r, s) corresponds to a point in one of these regions. HereRI,1, . . . , RI,6

denote the6 subregions of region I, and so on.
Next, we consider how many additions and multiplications areneeded for the

matrix-vector product. In computing this we also perform obvious simplifications.
For example, for computing the product(3/2, 3/2, 1,−1) · (u, v, w, x)t we obtain
a count of three additions, and one multiplication (since the two multiplications
with the same scalar3/2 can be simplified).

For the polynomials in region I we obtain the following table, where each entry
denotes the number of complex additions and multiplications.

Region Occurrences Adds Mults

RI,1 1 0 0
RI,2 m − 1 4 (3) 2 (1)
RI,3 m − 1 4 (3) 2 (1)
RI,4 (m − 1)(m − 2)/2 6 (4) 3 (1)
RI,5 m − 1 3 1
RI,6 (m − 1)(m − 2)/2 6 1

The numbers in parentheses are the corresponding count for the non-skew
DTT, i.e., for the special caseBn×n(0, 1

3 ). Similarly, we compute the number
of additions and multiplications for regions II and III which are summarized in
the following table. Note that the numbers of region II and region IIIare identical.
Hence, only the values for region II are given.

Region Occurrences Adds Mults

RII,1 1 0 0
RII,2 m − 1 1 2
RII,3 m − 1 1 2
RII,4 (m − 1)(m − 2)/2 2 2
RII,5 m − 1 1 2
RII,6 (m − 1)(m − 2)/2 2 2

Finally, the coefficients for region IV turn out to be very simple; no additions
and only one multiplication for each entry has to be performed.

Region Occurrences Adds Mults

RIV,1 1 0 0
RIV,2 m − 1 0 1
RIV,3 m − 1 0 1
RIV,4 (m − 1)(m − 2)/2 0 1
RIV,5 m − 1 0 1
RIV,6 (m − 1)(m − 2)/2 0 1
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Fig. 8 A visualization of the coefficients of the base changeBn×n(r, s) that is useful for
determining its arithmetic cost. The numbers indicate the coefficients of the rows ofBn×n(r, s),
i.e., they indicate with which coefficient an element of the basisb′n occurs when this element
is used to express the basis elements inbn. The division of the grid into four regions is as
in Fig. 6(b). Those regions are then further subdivided intosix subregions each as in Fig. 7.
All basis elements ofb′n which appear in the same subregion occur with the same coefficients,
namely the numbers written into the respective subregion. For instance, the figure shows that
the rows ofBn×n(r, s) corresponding to any basis elements in regionRI,6 have precisely7
non-zero elements1, 1, 1,−1,−1,−1, 2. To implement the vector product with this row,1
multiplication and6 additions are required.

From the above we determine the total number of additions for thematrix-
vector multiplicationy = Bn×n(α, β)x as

17(m − 1) + 20(m − 1)(m − 2)/2 = 10m2 − 13m + 3,

and the number of multiplications as

7m2 − m − 6.

For the special (non-skew) caseBn×n(0, 1
3 ) the count is slightly less, namely

9m2 − 12m + 3 additions and6m2 − 6 multiplications.
Cost for the base cases.Next, we consider the base case for the recursion,

i. e., the operations needed for a skew-DTT of size4 × 4. SinceT0,0 = 1, each
skewDTT2×2(r, s) has in the first column only 1’s. Thus, the arithmetic cost is at
most12 additions and9 multiplications.

For the non-skewDTT2×2 in (13) the count is obviously less, but we can do
even better by generating an algorithm using the algorithm discovery tool provided
by AREP [35,36]. Specifically, applying the AREP function MatrixDecomposi-
tionByMonMonSymmetry toDTT2×2 produces the following factorization (the
dots represent zero entries):
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



1 2
3

2
3

1
6

1 0 0 − 1
2

1 2
3ω2

3
2
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1
6

1 2
3ω3

2
3ω2

3
1
6










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
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
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· · · 1

1 · · ·

· · 1 ·









·











1 2
3ω2

3
2
3ω3 ·

1 2
3

2
3 ·

1 2
3ω3

2
3ω2

3 ·

· · · 1











·











1 · · 1
6

· 1 · ·

· · 1 ·

1 · · −1
2











.
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This shows that a matrix-vector multiplication withDTT2×2 can be perfomed
using8 additions and7 multiplications.

Cost of the DTT algorithm. Now we area ready to determine the overall cost
of the algorithm in Theorem 4.

Theorem 7 Letn = 2k, wherek ≥ 1. Then, using Theorem 4, the discrete trian-
gle transformDTTn×n can be computed using at most

A(n) =
11

2
n2 log n −

43

6
n2 +

15

2
n −

1

3
,

M(n) = 4n2 log n −
7

2
n2 +

3

2
n + 2

complex additions and multiplications, respectively. In particular, the complexity
of the DTT isO(n2 log(n)).

Proof: We first determine an upper bound on the number of operations for anarbi-
trary skewDTTn×n(r, s) computed using the recursion (44) given in Theorem 4,
from left to right. The cost for the base changeBn×n(r, s) was determined above.
The matrix(DTT2×2(r, s) ⊗ Im2) incurs 12m2 additions and9m2 multiplica-
tions. Next, the four skew DTTs are computed recursively andP does not incur
operations. We obtain the following recurrences for additions andmultiplications
(m = n/2):

As(n) = 4As(m) + 22m2 − 13m + 3,

Ms(n) = 4Ms(m) + 16m2 − m − 6.

The base cases areAs(2) = 12 andMs(2) = 9 as explained above. The solutions
are the cost of a skewDTTn×n:

As(n) =
11

2
n2 log n −

11

2
n2 +

13

2
n − 1,

Ms(n) = 4n2 log n −
5

2
n2 +

1

2
n + 2.

Finally, we compute the cost of the non-skewDTTn×n and the cost of the
skew DTTs computed above. Note that we take into account thatin (44) one of
the smaller (sizem×m) DTTs is not skew. We obtain the recurrences (m = n/2)

A(n) = A(m) + 3As(m) + 17m2 − 12m + 3,

M(n) = M(m) + 3Ms(m) + 13m2 − 6,

with initial conditionsA(2) = 8 andM(2) = 7. Solving these recurrences yields
the desired result.⊓⊔

5 Conclusions

We presented a fast,O(n2 log(n)) algorithm for the discrete triangle transform
(DTT) for input sizen× n. This shows that the DTT has the same arithmetic cost
as other, separable, two-dimensional transforms. Similar to ourprevious work on



28

trigonometric 1-D transforms, we derived the algorithm not by lengthy matrix
entry manipulations, but by a stepwise decomposition of the polynomial algebra
associated to the transform.

In algebraic terms, as we briefly explained, this technique is thestepwise de-
composition of the induction of modules (where the polynomialalgebra is viewed
as regular module) into irreducible modules. This technique produces recursive
algorithms for many 1-D trigonometric transforms (associated with polynomial
algebras in one variable), the 2-D DTT (associated with a polynomial algebra
in two variables), and Fourier transforms for at least solvable groups (associ-
ated with group algebras). The DFT is contained in two of these classes since
C[x]/(xn − 1) = C[Zn] is equivalently a polynomial algebra or the group algebra
for the cyclic group. The stepwise decomposition yields the Cooley-Tukey FFT
(in recursive form) in this case. For this reason we term the entire class of algo-
rithms based on the stepwise decomposition of inductions “Cooley-Tukey type,”
including the algorithm derived in this paper.
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A Chebyshev Polynomials in One Variable

We collect some properties of Chebyshev polynomials which are used in the text to define the
DCT, type 3. See [5] for more details on Chebyshev polynomials. For a general introduction to
the theory of orthogonal polynomials we refer to [37].

Definition through recurrence. The Chebyshev polynomials of the first kind (in one vari-
able) are denoted with(Tn(x) | n ∈ Z) and defined by the three-term recurrence

Tn+1 = 2xTn − Tn−1, (49)

with initial valuesT0 = 1, T1 = x. The recurrence can be run in both directions to computeTn
for n < 0.

A few examples areT−3 = 4x3 − 3x, T−2 = 2x2 − 1, T−1 = x, T0 = 1, T1 = x,
T2 = 2x2 − 1, T3 = 4x3 − 3x.

Parameterization.TheTn can be written in a parameterized form, calledpower form, as

Tn =
1

2
(un + u−n), x =

1

2
(u + u−1). (50)
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Further, thetrigonometric formof Tn is obtained by substitutingu = eiθ into (50):

Tn = cos nθ, cos θ = x, (51)

which is valid forx ∈ [−1, 1].
Zeros.From (51), the zeros ofTn are obtained as

cos
2k + 1

2n
π, 0 ≤ k < n.

Symmetry property. Both parameterizations exhibit the symmetry property

T−n = Tn. (52)

Shift property. The following property can be readily derived from the three-term recur-
sion:

Tk · Tn =
1

2
(Tn+k + Tn−k), k, n ∈ Z. (53)

Decomposition property.Finally, we have the decomposition property

Tkm = Tk(Tm),

which underlies the Cooley-Tukey type algorithms for the DCT, type 3.

B Chebyshev Polynomials in Two Variables

The Chebyshev polynomials in two variables are not as well known as their counterparts in one
variable. We use the definitions given in [6,38] with minor modifications to parallel the case
of the univariate Chebyshev polynomials of the first kind presented above in Appendix A. In
contrast to the univariate case, the polynomials are now labeled by two integersTm,n(x, y),
wherem, n ∈ Z.

Definition through recurrence. The Chebyshev polynomials of the first kind in two vari-
ables are denoted with(Tm,n(x, y) | m, n ∈ Z) and are defined by the two four-term recur-
rences

Tm+1,n = 3xTm,n − Tm,n−1 − Tm−1,n+1,

Tm,n+1 = 3yTm,n − Tm−1,n − Tm+1,n−1.
(54)

The initial conditions are

T0,0 = 1, T1,0 = x, T2,0 = 3x2 − 2y,

T0,1 = y, T1,1 = (3xy − 1)/2, T0,2 = 3y2 − 2x.

The recurrences (54) can be run in all direction to obtain a full lattice of polynomials. The
recurrence equations also show that each polynomial has sixneighbors, which naturally arranges
them into the hexagonal 2-D array shown in Fig. 9.

Recall that for a polynomialp(x, y) the total degree is the largesta + b over all nontrivial
summandscxayb of p. Using the recurrences (54) it is easy to show that the following lemma
holds for allTm,n.

Lemma 2 Every polynomialTm,n has total degreem + n. Furthermore, everyTm,n has pre-
cisely one summandcxayb for whicha + b = m + n holds, and for this summanda = m and
b = n. Hence,{Tm,n | m, n ≥ 0} is a basis ofC[x, y].

This lemma implies that every polynomialTm,n with m < 0 or n < 0 is a linear combination
of Chebyshev polynomialsTm,n with m, n ≥ 0.

Parameterization.Similar to the univariate case, there is a power form for the Chebyshev
polynomials in two variables. It uses theu, v-parameterization

x =
1

3
(u + v + (uv)−1), y =

1

3
(u−1 + v−1 + uv). (55)
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· · · · · · · · · · · ·

◦ ◦ ◦ ◦

T0,−1 T1,−1 T2,−1 T3,−1

◦ • • • ◦

T−1,0 T0,0 T1,0 T2,0 T3,0

◦ • • ◦

T−1,1 T0,1 T1,1 T2,1

◦ ◦ • ◦ ◦

T−2,2 T−1,2 T0,2 T1,2 T2,2

· · · · · · · · · · · ·

Fig. 9 The entire 2-D array of Chebyshev polynomials in two variables is uniquely determined
by the initial conditionsT0,0, T1,0, T2,0, T0,1, T1,1, T0,2 (solid bullets) via (54).

and is given by (see [6])

Tm,n(x, y) = 1

6
(unv−m + u−mvn + un+mvm

+ umvn+m + u−n−mv−n + u−nv−n−m). (56)

In particular, the power forms ofTn,0 andT0,n have only three summands:

Tn,0 =
1

3
(un + vn + (uv)−n), T0,n =

1

3
(u−n + v−n + (uv)n). (57)

Substitutingu = eiφ, v = eiψ yields the corresponding trigonometric form.
For p(x, y) ∈ C[x, y] we denote withp(x, y) = p(y, x) the same polynomial with

exchanged variables. ForTm,n(x, y), exchangingx andy is equivalent to replacingu, v by
u−1, v−1 in the power form. Evaluation shows that

Tm,n(x, y) = Tn,m(x, y).

In the paper, we often setTm,0 = Tm (not to be confused with the Chebyshev polynomials in
one variable) for brevity and henceT0,n = Tn. Again from the power forms it follows that

Tm,n =
1

2
(3TmTn − Tm−n).

Zeros. It can be shown that the equationsTn(x, y) = Tn(x, y) = 0 have preciselyn2

pairwise distinct common complex zeros(x, y). It is convenient to represent these zeros in the
u, v-parameterization (55), in which they are given by all pairs

(ui, vj) = (ωin, ω1+3j
3n ), 0 ≤ i, j < n, ωn = e−2πi/n.

Symmetry property. The definition ofTm,n exhibits two symmetry properties given by

Tn,−m = Tn−m,m, T−n,m = Tn,m−n. (58)

Shift property. The following equation is the equivalent of (53):

Tk,ℓ · Tm,n = 1

6
(Tm−k−ℓ,n+k + Tm−k,n+k+ℓ + Tm+k,n+ℓ

+ Tm+k+ℓ,n−ℓ + Tm+ℓ,n−k−ℓ + Tm−ℓ,n−k). (59)
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Decomposition property.Finally, for the purpose of deriving fast algorithms the following
decomposition property [39] is used:

Tkm = Tk(Tm, Tm), T km = T k(Tm, Tm). (60)

Gröbner basis property.As noted in the text following (1), the polynomialsp andq in the
definition of the algebra

A = C[x, y]/〈p(x, y), q(x, y)〉

have to satisfy the property that they form a Gröbner basis to make the computation modulop
andq well-defined. Whereas in general a given set of polynomials has to be modified to form a
Gröbner basis—sometimes involving the addition of an exponential number of generators—in
special cases this is not necessary. We briefly argue why the polynomialsp(x, y) = Tm,0(x, y)
andq(x, y) = T0,m(x, y), which are used to define the discrete triangle transform, already
form a Gr̈obner basis for allm ≥ 1.

Recall that the total degree of a polynomialp(x, y) is the largesta + b over all nontrivial
summandscxayb of p. The leading term ofp(x, y) is the term of highest degree. Lemma 2
implies that the leading term ofTm,0 is given byxm and that the leading term ofT0,m is given
by ym.

Now, Buchberger’s first criterion [28, Section 5.5] can be applied which says that two poly-
nomialsp(x, y) andq(x, y) with disjoint leading terms (with respect to the total degree term
order) already constitute a Gröbner basis. This shows the correctness of our definition of reduced
polynomials inA.


