
J. Symbolic Computation (2004) 11, 1–000

Symmetry-Based Matrix Factorization

SEBASTIAN EGNER† AND MARKUS PÜSCHEL‡§

†Philips Research, 5656 AA Eindhoven, The Netherlands
‡Department of Electrical and Computer Engineering, Carnegie Mellon University

(Received 21 May 2004)

We present a method to factor a given matrix M into a short product of sparse matri-
ces, provided M has a suitable “symmetry”. This sparse factorization represents a fast
algorithm for the matrix-vector multiplication with M . The factorization method con-

sists of two essential steps. First, a combinatorial search is used to compute a suitable
symmetry of M in the form of a pair of group representations. Second, the group repre-
sentations are decomposed stepwise, which yields factorized decomposition matrices and

determines a sparse factorization of M . The focus of this article is the first step, finding
the symmetries. All algorithms described have been implemented in the library AREP.
We present examples for automatically generated sparse factorizations—and hence fast
algorithms—for a class of matrices corresponding to digital signal processing transforms

including the discrete Fourier, cosine, Hartley, and Haar transform.

1. Introduction

In this article we address the following fundamental problem: “Given a not necessarily
square matrix M , construct an algorithm to evaluate the linear mapping x 7→M ·x with
as few arithmetic operations in the base field as possible”. We present an algorithm that
takes a given matrix M as input, and outputs a factorization of M into a short product
of highly structured sparse matrices,

M = M1 ·M2 · · ·Mk, Mi sparse.

By “short”, we mean that this factorization actually reduces the cost (in terms of the
number of additions and multiplications) of computing M · x. In the paper we will use
interchangeably “sparse factorization of M”and “fast algorithm for M”.

Our method is applicable if and only if the matrixM has a “symmetry” in a sense being
defined. Intuitively, the symmetry captures redundancy inM given by linear relationships
among the entries of M . Then, we use the symmetry to derive a sparse factorization. The
factorization method consists of three steps: (1) Find a suitable symmetry of M by com-
binatorial search. The symmetry is given as a pair of group representations of a common
finite group. (2) Decompose both representations recursively into a direct sum of irre-
ducible representations. This yields decomposition matrices that are products of sparse

§ The work of Markus Püschel was supported in part by NSF through award 9988296.

0747–7171/90/000000 + 00 $03.00/0 c© 2004 Academic Press Limited

2 S. Egner and M. Püschel

matrices. (3) Find a correction matrix that reconstructs M from these decomposition
matrices. The correction matrix is sparse.

The first step—and the method in general—is the focus of this article. In particular, it
is explained what we mean by symmetry, what types of symmetry have proven useful for
our purposes and how these symmetries can be found algorithmically. The second step
is concerned with the constructive decomposition of representations and is explained in
detail in Püschel (2002). For the sake of completeness we give a brief survey of these
methods. The third step of the method involves only matrix multiplications.

We will give several examples of matrices where the method can be applied and indeed
constructs an efficient algorithm. The examples are chosen from the field of digital signal
processing and include the discrete Fourier transform, cosine transforms, and the Hartley
transform. It was our original motivation to construct fast algorithms for these kind of
matrices but the method itself is not restricted to discrete signal transforms.

1.1. Background

The factorization method has its roots in the relationship between the discrete Fourier
transform (DFT) used in digital signal processing, and the theory of group representa-
tions. In signal processing, the DFT is defined as a multiplication of a (complex) vector
x ∈ C

n (the sampled signal) by the DFT matrix of size n× n, given by

DFTn = [e2πikℓ/n | 0 ≤ k, ℓ ≤ n− 1], i =
√
−1.

In the framework of representation theory, the DFTn can be viewed as the isomorphism
decomposing the group algebra C[Zn] of a cyclic group Zn into a direct sum of algebras
of dimension 1, if suitable, canonical bases are chosen,

DFTn : C[Zn] → C ⊕ . . .⊕ C.

This decomposition is a special case of a theorem first proved by Wedderburn (1907)
in his classification of semisimple algebras. Let G be a finite group and d1, . . . , dh the
degrees of a complete set of irreducible representations. Then the group algebra C[G] is
isomorphic to the direct sum of simple algebras C

d1×d1 ⊕ · · · ⊕ C
dh×dh . Based on this,

Apple and Wintz (1970) generalize the DFT for G = Zn to a DFT for a general abelian
group G and Karpovsky and Trachtenberg (1977) generalize to arbitrary finite groups.

The algebraic description has proven extremely useful in deriving and understanding
the structure of fast algorithms for the DFT of a group G. In essence, the structure
of a fast algorithm reflects the structure of an associated representation of C[G]. Most
important for applications, Auslander et al. (1984) and Beth (1984) derive and explain the
famous Cooley-Tukey algorithm (Cooley and Tukey, 1965)—in signal processing known
as the “fast Fourier transform”, or FFT—by a stepwise decomposition of C[Zn].

For an introduction and survey of the area of DFTs for groups G and their fast algo-
rithms, we refer the reader to the textbook by Clausen and Baum (1993) or the more
recent survey article by Maslen and Rockmore (1995). Maslen and Rockmore (1997) give
a recent overview on the complexity of evaluating the DFT for several classes of groups
including the more general view of the DFT on “homogeneous spaces” C[G/K], K ≤ G.

Despite the success of the DFT, it became more and more important to find efficient
algorithms for other signal transforms as well. One important example is the discrete

Symmetry-Based Matrix Factorization 3

cosine transform (DCT) used in the JPEG compression standard for digital images.†
Unfortunately, the DCT (and its many variants), and most other transforms used in
signal processing, cannot be interpreted as generalized DFTs. This naturally posed the
question whether it is possible to characterize these transforms in the framework of
group representations, and, in the affirmative case, use this connection to derive their
fast algorithms.

To answer this question, Minkwitz (1993) reversed the way of working. Instead of
defining a transform based on some given algebraic structure (a finite group or a ho-
mogeneous space), he tried to find the algebraic structure of a given transform. For this
purpose, he defined the notion of “symmetry”, which associates to a given matrix a pair
of matrix representations of a common group. These symmetries have to be explicitly
found since they are not known by construction (as for a generalized DFT). Methods to
find symmetry in a matrix are the focus of this article, which is based on the work of
Egner (1997). Once a symmetry is explicitly known, as representations of finite groups, it
must be decomposed into irreducible components such that the decomposition is stepwise
and constructive. Minkwitz (1993) gave algorithms to accomplish this for permutation
representations of solvable groups by using Clifford’s theory. Püschel (2002) generalized
the methods to monomial representations of solvable groups. Together, the algorithms
for finding symmetry and for decomposing monomial representations constructively form
a powerful algorithm to factor a given matrix into a short product of sparse matrices.
Application to signal transforms yields fast algorithms in many cases, which shows that
the connection between signal processing and representation theory is stronger than pre-
viously understood.

1.2. Structure of this Article

In Section 2 we introduce the notion of symmetry of a matrix M , and explain which
types of symmetry are useful to derive a sparse factorization of M . Then we explain
the algorithm for the symmetry-based matrix factorization. The problem of finding a
suitable symmetry is treated in Section 3. The subsections are devoted to the different
types of symmetry considered. The second major ingredient for deriving a sparse matrix
factorization is a method to decompose monomial representations, which is explained
in Section 4. The software library AREP contains all presented algorithms and is briefly
explained in Section 5. Finally, Section 6 contains a gallery of automatically generated
sparse factorizations for a class of signal transform matrices, including runtime measure-
ments of the factorization algorithm.

1.3. Notation

For the convenience of the reader, we give a brief overview on notation and concepts
from ordinary representation theory of finite groups. For further information refer to
standard textbooks such as Curtis and Reiner (1962).

Matrices A are introduced by specifying the entry Ak,ℓ at position k, ℓ over some index
range, as in A = [Ak,ℓ | 0 ≤ k, ℓ ≤ n− 1]. The operators ⊕,⊗ are used for the direct sum
and tensor (or Kronecker) product of matrices, respectively. The (n × n)-permutation
matrix corresponding to the permutation σ is denoted by [σ, n] = [δiσj | 1 ≤ i, j ≤ n]

† JPEG is part of each and every Internet browser.

4 S. Egner and M. Püschel

or simply by σ if the matrix size n is known from the context. A monomial matrix has
exactly one non-zero entry in each row and column (and is hence invertible) and is written
as [σ,L] = [σ, length(L)] · diag(L), where diag(L) is a diagonal matrix with the list L on
the diagonal. The (n× n)-identity matrix is denoted by 1n. Finally, we use ωn = e2πi/n

for the complex primitive nth root of unity.
A (matrix) representation of a finite group G of degree deg(φ) = n is a homomorphism

φ : G→ GLn(F) from G into the group of invertible (n×n)-matrices over a field, which
we denote by the letter F throughout this article. A representation φ is a permutation
or monomial representation, if all images φ(g) are permutation matrices or monomial
matrices, respectively. We denote by 1G : g 7→ 1 the trivial representation of G (of
degree 1). If A ∈ GLn(F), then φA : g 7→ A−1 · φ(g) · A is the conjugate of φ by A.
φ and ψ are called equivalent, if φ = ψA. If φ, ψ are representations of G, then the

representation φ ⊕ ψ : g 7→ φ(g) ⊕ ψ(g) =
[
φ(g) 0

0 ψ(g)

]
is called the direct sum of φ and

ψ. φ is called irreducible, if it cannot be conjugated into a direct sum. In this paper, we
will deal only with ordinary representations. This means the characteristic of F does not
divide the group order |G| (Maschke condition). In this case, every representation φ can
be conjugated, by a suitable matrix A, into a direct sum of irreducible representations
ρi (Maschke’s theorem). In other words, φA =

⊕k
i=1 ρi, which is called a decomposition

of φ and A is referred to as a decomposition matrix for φ.
Let H ≤ G be a subgroup and T = (t1, . . . , tk) a transversal, meaning a system of

representatives of the right cosets of H in G. Furthermore, let φ be a representation of
H. We define the induction of φ to G with respect to T as the representation of G that
is defined as

(φ ↑T G)(g) = [φ̇(tigt
−1
j) | i, j],

where φ̇(x) = φ(x) for x ∈ H and φ̇(x) is the all-zero matrix if x 6∈ H. A regular
representation is an induction of the form φ = (1E ↑T G) where E denotes the trivial
subgroup of G. If φ is a representation of G then φ ↓ H denotes the restriction of φ to
H. The intertwining space of the representations φ, ψ is defined as the vector space of
matrices Int(φ, ψ) = {M ∈ F

deg(φ)×deg(ψ) | φ(g) ·M = M · ψ(g), g ∈ G}.
Finally, we would like to emphasize that we are working with matrix representations,

and not with equivalence classes of representations, for which characters are the appro-
priate data structure.

2. Symmetry-Based Matrix Factorization

In this section we introduce the notion of “symmetry” of a matrix M and explain how
it is used to factor M into a product of sparse matrices. The factorization represents a
fast algorithm for computing the matrix-vector product M · x.

The symmetry of a matrix serves a two-fold purpose. First, it captures redundancy
contained in the matrix that arises from relationships among the entries of M . Second,
it establishes a connection between the matrix and certain group representations. This
connection then is used to factorize M .

The origin of the following definition is due to Minkwitz (1993).

Definition 2.1 Let M ∈ F
n×m be a rectangular matrix over a base field F. We call a

Symmetry-Based Matrix Factorization 5

Table 1. Mnemonic names for types of a representation φ.

perm permutation representation
mon monomial representation
block permuted direct sum: (φ1 ⊕ · · · ⊕ φr)π , where π is a permutation
irred like block but all the φi are irreducible
mat any matrix representation under Maschke condition

pair (φ, ψ) of representations of the same group G a symmetry of M if

φ(g) ·M = M · ψ(g) for all g ∈ G.

We write this symbolically as φ
M−→ ψ.

The definition implies the rules

φ
M1−−→ ψ

M2−−→ ρ ⇒ φ
M1·M2−−−−→ ρ, and

φ
M−→ ψ ⇒ ψ

M−1

−−−→ φ, for M invertible.

Note that M has the symmetry (φ, ψ) if and only if M ∈ Int(φ, ψ), the intertwining
space of φ and ψ (defined above). Equivalently, we can formulate a symmetry (φ, ψ) of
M as the invariance of M under the operation • of G on F

n×m, given by

g •M = φ(g) ·M · ψ(g−1), g ∈ G, M ∈ F
n×m.

The purpose of the group G is to link the two representations φ and ψ together, but
G has also a major influence on the structure of the factorization for M obtained (see
Step 2 of the factorization algorithm in this section and Section 4).

Definition 2.1 is in its generality hardly useful to capture redundancy contained in
the matrix M . For example, if M is invertible, then (φ, φM) is a symmetry of M for
every group representation φ of suitable degree. And indeed, not all matrices can have a
useful sparse factorization! Consider the following crude estimate of the algebraic problem
complexity: If we derive an O(n log n)-algorithm for an (n×n)-matrix then there are only
O(n log n) degrees of freedom in the algorithm but F

n×n is a n2-dimensional vector space.
However, if φ and ψ are restricted to certain types of representations (for example

permutation or direct sum of irreducibles) then the intertwining space Int(φ, ψ) does
become interesting. This has led Minkwitz (1993) to study different types of symmetry
arising from different types of representations φ, ψ. For convenience we use mnemonic
names to describe these different types. For example, φ is of type mon if it is monomial,
or of type irred, if it is a direct sum of irreducible representations (possibly conjugated by
a permutation). A full list of the considered types is listed in Table 1. Correspondingly
we name the types of symmetry. For example, (φ, ψ) is a perm-irred symmetry if φ is
of type perm and ψ is of type irred. The reason for considering these types will become
clear in the following.

We will now describe the method to construct a fast algorithm—represented as a sparse
factorization—for the matrix-vector multiplication with a given matrix M . The method
is displayed in Figure 1 and consists of the following three steps.

6 S. Egner and M. Püschel

Step 3: Combining decompositions

Step 2: Decomposing representations

Step 1: Finding symmetry φ ψ

φ̂ ψ̂

-M

?

A = A1 · · ·Ar

?

B = B1 · · ·Bs

-C

�� �� ��

Figure 1. Factorizing the matrix M using a suitable symmetry (φ, ψ). The factorization is given by

M = A1 · · ·Ar · C ·B−1
s · · ·B−1

1 ; the Ai, C, and the B−1
j are all sparse.

Step 1: Finding Symmetry

The goal of this step is to make the symmetry in the matrix M explicit in the sense
that the pair of representations is actually known by group generators and their images.
Given the matrix M it is first decided which type of symmetry to use for constructing a
factorization of M (e.g., perm-irred symmetry or mon-mon symmetry). Then a combi-
natorial search is run on M for the chosen type of symmetry as described in Section 3.

The result is a pair (φ, ψ) of representations of the chosen types such that φ
M−→ ψ.

As we will see in Step 3, a symmetry (φ, ψ) is useful for factorizing M only if for
both representations φ and ψ a decomposition matrix can be determined as a product of
sparse matrices. With our current methods this can be done for representations of type
irred (the decomposition matrix is a permutation) and of type mon (of solvable groups,
see Section 4). Thus, the following types of symmetry are of interest: mon-mon, mon-
irred, irred-mon, and the subtypes perm-perm, perm-irred, irred-perm. We omit the type
irred-irred, since it is not of practical importance (in general, it requires M to be already
sparse—a consequence of Schur’s lemma). Since transposing a matrix with irred-mon
(or irred-perm) symmetry yields a matrix with mon-irred (or perm-irred) symmetry, we
restrict our investigations to the latter types.

Finding mon-mon and mon-irred symmetry requires substantially different approaches
(see Section 3). Note that matrices may have both types of symmetry, which leads to
different factorizations (e.g., Section 6.4).

Step 2: Decomposing Representations

The second step decomposes the representations φ and ψ into a direct sum of irre-
ducibles φ̂ and ψ̂ with decomposition matrices A and B, respectively, i.e.,

φA = φ̂ = φ1 ⊕ · · · ⊕ φk, and ψB = ψ̂ = ψ1 ⊕ · · · ⊕ ψℓ, φi, ψj irreducible.

The crucial point is that A and B are determined as (short) product of sparse matrices,
A = A1 · · ·Ar, and B = B1 · · ·Bs. For the type irred this product reduces to a single
permutation; for the type mon (or perm) the product is obtained through a decompo-
sition algorithm that recurses over the structure of the representation (see Section 4).
As a simple example, if φ is recognized as a permuted direct sum then it is sufficient
to decompose the direct summands independently. The structural recursion approach is
neither the one used by Parker (1984) for the MeatAxe, nor does it just evaluate projec-
tions onto irreducibles. The principle of the MeatAxe is to choose “random” elements x
of the group algebra and decompose the full vector space into x-invariant subspaces until
the components are irreducible. Unfortunately, this method does not produce sparse ma-
trices to decompose the representation. The recursive method to decompose monomial

Symmetry-Based Matrix Factorization 7

representations, as used here, is briefly explained in Section 4. A more detailed treatment
is beyond the scope of this article and we refer the reader to Püschel (2002).

Step 3: Combining Decompositions

The final step is trivial but important. It computes the matrix

C = A−1 ·M ·B
to make the diagram in Figure 1 commute. The matrix C is in the intertwining space
Int(φ̂, ψ̂), which implies—using Schur’s lemma—that C contains zeros at all components
that connect inequivalent representations φi and ψj . So, C is permuted block diagonal
with the sizes and positions of the blocks depending on the irreducibles contained in φ
and ψ. For example, if all irreducibles φi in φ are pairwise inequivalent and ψ is equivalent
to φ then there are at most

∑
i(deg φi)

2 non-zero entries in C. Finally, we note that the
type of sparse matrices Ai, Bj generated by the decomposition algorithm for monomial
representations preserves its sparsity under inversion.

Taken together, we read from Figure 1 the following sparse factorization of M :

M = A · C ·B−1 = A1 · · ·Ar · C ·B−1
s · · ·B−1

1 .

From a different point of view, our factorization method can be viewed as a particular
type of common subexpression elimination for matrix-vector multiplication algorithms.
The common subexpressions are captured by the respective symmetry.

3. Finding Symmetries of a Matrix

We now turn to the problem of actually finding symmetry, given a matrix M . For this
purpose it is useful to look at symmetry in a slightly different way: We consider individual
pairs (L,R) of invertible matrices such that LM = MR. Clearly, this property is retained
under componentwise multiplication and inversion: If LM = MR and L′M = MR′ then
LL′M = MRR′ and L−1M = MR−1. Hence, all pairs (L,R) of invertible matrices
satisfying LM = MR form a group under componentwise multiplication. We could call
it the “universal symmetry group” of M because it contains all more specific symmetries
as a subgroup.

Unfortunately, as mentioned earlier, the universal symmetry is not very helpful to
decompose the matrix M . For example, if M is invertible, the universal symmetry is
the set of all pairs (L,M−1LM) with invertible L; the universal symmetry group is
(isomorphic to) the GLn(F). Clearly, this symmetry does not provide information about
M . There are two further problems with general symmetries: First, the group might not
be finite and thus the symmetry group can not be computed, and, second, we do not
know an algorithm to decompose a general representation into irreducibles such that the
decomposition matrix is a product of sparse matrices.

Therefore, we introduce restrictions on the matrices L and R, which leads, as explained
in Section 2, to the types of symmetry considered in this paper: mon-irred symmetry and
mon-mon symmetry, and the subtypes perm-irred symmetry and perm-perm symmetry.

The task of finding the symmetry of a certain type for a given matrix M can be
described as finding a generating set for the group G of all pairs (L,R) of invertible
matrices of the given type such that LM = MR. We call such a group a symmetry
group, although it is very important that it is not just an abstract group but a group of

8 S. Egner and M. Püschel

pairs of matrices. The relation of this view of symmetry to the description in Section 2 is
as follows: Let (φ, ψ) be a pair of representations of a group G̃. Then G = {(φ(g), ψ(g)) |
g ∈ G̃} is a group of pairs (L,R) of matrices such that LM = MR. Conversely, let G
be a group of matrices (L,R) such that LM = MR. Then the canonical projections
Π1 = (L,R) 7→ L and Π2 = (L,R) 7→ R are representations of the group G and the
pair (Π1,Π2) is a symmetry of M in the sense of Section 2. Note that G̃ may be larger
than G, i.e., G may be a homomorphic image of G̃, because φ and ψ could both map
some normal subgroup of G̃ into the trivial group. For the purpose of decomposing M
the knowledge of G is then as good as the knowledge of G̃.

In the remainder of this section we first explain, in Section 3.1, the general structure of
an arbitrary symmetry group, and how it can be used to simplify the symmetry search.
Sections 3.2–3.6 are then devoted to finding the different types of symmetry. Section 3.2
deals with the perm-perm symmetry, and Section 3.3 shows how the mon-mon symmetry
(of a certain class) of a matrix can be found via the perm-perm symmetry of a suitable
larger matrix. Section 3.4 is concerned with finding the perm-mat symmetry, which is
used as a subroutine for finding the perm-irred symmetry in Section 3.5. Finding the
mon-irred symmetry uses a similar approach, which is sketched in Section 3.6.

3.1. Subdirect Product Structure of the Symmetry Group

The structure of an arbitrary symmetry group is given by the subdirect product of its
left and right projections Π1(G) and Π2(G) (with respect to a certain isomorphism). We
detail this structure formally and explain how it is used to simplify the symmetry search.

First we recall the notion of a subdirect product with identified factor groups (Huppert,
1983, Kap. I, §9). Let G1, G2 be groups with normal subgroups N1 � G1 and N2 � G2,
and assume ϕ : G1/N1 → G2/N2 is an isomorphism of the factor groups. Then

G1 G2 = {(g1, g2) ∈ G1 ×G2 | ϕ(g1N1) = g2N2}
is a subgroup of the direct product G1 ×G2, called the subdirect product with identified

factor groups†.

Lemma 3.1 Let M be a matrix and G be a group of pairs (L,R) of matrices such
that LM = MR. Furthermore, let Π1 and Π2 denote the canonical projection from G
onto the first and the second component, respectively. Then G is the subdirect product
Π1(G) Π2(G) with identified isomorphic factor groups

Π1(G)/Π1(ker Π2) ∼= Π2(G)/Π2(ker Π1).

Proof. The lemma can be shown by checking the definition of the subdirect product
for the isomorphism ϕ defined by

ϕ(L′ · {L | (L, 1) ∈ G}) = R′ · {R | (1, R) ∈ G},
for all (L′, R′) ∈ G. 2

The subdirect structure can be used to simplify the search for symmetry. In the first
step the normal subgroups of the left and right projection are constructed. Then, in the

† The symbol depicts the two towers Gi D Ni ≥ E with factor groups Gi/Ni, i = 1, 2, identified.
Here E denotes the trivial subgroup.

Symmetry-Based Matrix Factorization 9

second step, the common factor group is constructed. We illustrate this approach by an
example for the perm-perm symmetry. Assume we want to find the group G of all pairs
(L,R) of permutation matrices such that LM = MR for the matrix

M =





1 0 1 1
1 1 0 1
1 0 0 1
1 0 0 1



 .

By definition, N1 = Π1(ker Π2) = {L | LM = M} is the group of all permutations
L of the rows of M that leave M invariant. Since the third and fourth row are equal,
N1 = 〈(3, 4)〉. In the same way N2 = {R | M = MR} = 〈(1, 4)〉, because the first and
fourth column of M are equal. (We write permutation matrices as permutations in cycle
notation assuming the matrix size is known from the context.) Now we reduce the matrix
M by partitioning its rows as (1|2|3 4) and partitioning its columns as (1 4|2|3), i.e., the
double rows and columns are removed. (We denote partitions by listing the elements,
separating the blocks with a vertical bar.) This leaves us with the smaller matrix

M̃ =




1 0 1
1 1 0
1 0 0



 .

The second step involves finding the common factor group of the projections of G. The
factor group acts by permuting rows and columns of M̃ , which in turn correspond to
blocks of rows and columns of M . It is readily seen that the only non-trivial symmetry
operation on M̃ is (1, 2) · M̃ = M̃ · (2, 3). Hence, the factor groups (with rows, columns
named as for M) are G1/N1 = 〈(1, 2)〉 ∼= G2/N2 = 〈(2, 3)〉. As the result we obtain the
symmetry group G = 〈((3, 4), 1), (1, (1, 4)), ((1, 2), (2, 3))〉.

The subdirect structure can also be exploited for types of symmetry other than perm-
perm. If the left representation is to be monomial (i.e, of type mon), then the group
N1 = {L | LM = M} contains all monomial transformations on rows that are scalar
multiples of each other. Similarly, if the left representation is unrestricted (i.e., of type
mat) then N1 contains a general linear group acting on the null space {x | xM = 0}.
Similar statements hold for the right representation, depending on its type. In each case
it is possible to reduce the search of the symmetry by reducing the matrix M to a
matrix M̃ for which the corresponding groups Ñ1 and Ñ2 are trivial. This reduction
is mathematically trivial, although the bookkeeping is rather involved and complicates
implementation. We omit these details.

3.2. Perm-Perm Symmetry

The simplest type of symmetry we consider is the perm-perm symmetry. Given a matrix
M ∈ F

n×m, define the group of pairs of permutations

PermPerm(M) = {(L,R) ∈ Sn×Sm | LM = MR},

where Sn denotes the symmetric group permuting n elements. By abuse of language we
will frequently drop the distinction between permutation and permutation matrix. Using
Lemma 3.1 it is sufficient to consider matrices M with pairwise distinct rows and pairwise
distinct columns.

10 S. Egner and M. Püschel

An example of the perm-perm symmetry is the well known symmetry of the discrete
Fourier transform (we use the shorthand notation i 7→ f(i) to denote the permutation):

Lemma 3.2 Let DFTn = [e2πjkℓ/n | 0 ≤ k, ℓ < n] and define Lk = (i 7→ ki mod n) for
each k ∈ Z×

n = {k | gcd(k, n) = 1}. Then

PermPerm(DFTn) = {(Lk, L−1
k) | k ∈ Z×

n }.

Unfortunately, a polynomial time algorithm for constructing PermPerm(M) for a given
matrix M implies a polynomial time algorithm for testing isomorphism of two given
graphs (Egner, 1997, Satz 3.2). The graph isomorphism problem is well studied ([Open1]
from Garey and Johnson (1979)) and no polynomial time algorithm is known for it (nor
has it been shown to be NP-complete). Hence, we should not expect an algorithm for
PermPerm(M) that is fast for any matrix M . Fortunately, powerful necessary conditions
are known that may make an exhaustive search feasible.

From the practical point of view, the perm-perm symmetry of a matrix can be com-
puted with a partition based backtracking search in a suitable permutation group as
described in Leon (1991). There is also a highly optimized implementation of this search
method programming language C (available from Leon via his homepage). In addition,
the authors implemented a search in the language GAP. Both implementations are avail-
able in the library AREP (see Section 5), and are able to handle 100 × 100 matrices
stemming from signal transforms in seconds.

The perm-perm symmetry of a matrix is of interest beyond the application to signal
processing we have in mind here. Given an incidence structure (V,B, I) (so V and B are
disjoint finite sets and I ⊆ V ×B) one can obtain the automorphism group of (V,B, I) as
the perm-perm symmetry of its incidence matrix (the matrix M ∈ {0, 1}V×B such that
Mv,b = 1 if and only if (v, b) ∈ I). As an example, the vertices of a graph are incident to
the edges. This way, the perm-perm symmetry is closely related to automorphism groups
of many discrete structures.

3.3. Mon-Mon Symmetry

The mon-mon symmetry of a matrixM is a generalization of the perm-perm symmetry.
Let Monn(F) denote the group of monomial (n× n)-matrices with entries from the field
F. Then we define for the matrix M ∈ F

n×m

MonMon(M) = {(L,R) ∈ Monn(F) × Monm(F) | LM = MR}.
It is easy to check that MonMon(M) is a group. Unfortunately, for infinite F, the group
MonMon(M) is not finite since scalars can be moved freely from the left of M to the
right. This “scalar symmetry” conveys no structural information about M , i.e., the “in-
teresting” part of the symmetry is given by the factor group

MonMon(M)/F× = MonMon(M)/{(x · 1n, x · 1m) | x 6= 0, x ∈ F}.
To obtain a tractable search problem, we restrict ourselves to a subtype of the mon-mon
symmetry, which considers only the finite group of all monomial matrices with kth roots
of unity as non-zero entries. We call these matrices k-monomial and denote the group of
all k-monomial matrices of size n×n by Monn(F, k). The parameter k is fixed and chosen
depending on the given matrix M . Formally, we want to find the mon-mon symmetry of

Symmetry-Based Matrix Factorization 11

order k, defined by

MonMonk(M) = {(L,R) ∈ Monn(F, k) × Monm(F, k) | LM = MR}.
Briefly summarized, our approach computes the mon-mon symmetry of order k of M ∈
F
n×m by computing the perm-perm symmetry of the larger matrix Ck(M) ∈ F

kn×km,
where Ck is a suitable coding function. In other words, we compute MonMonk(M) via
PermPerm(Ck(M)). The idea for this approach is based on a method described in Leon
(1991) for finding the mon-mon symmetry over finite fields. We detail the approach in
the following, starting with defining the coding function Ck.

Definition 3.3 Let x ∈ F and k ≥ 1. We assume that the characteristic of F is zero or
does not divide k and let ωk denote a primitive kth root of unity in F. We call

Ck(x) =





x · ω0
k x · ω1

k · · · x · ω(k−1)
k

x · ω1
k x · ω2

k · · · x · ω0
k

...
...

. . .
...

x · ω(k−1)
k x · ω0

k · · · x · ω(k−2)
k




= [x · ωi+jk | 0 ≤ i, j ≤ k − 1]

the k-coding of x. For M ∈ F
n×m we analogously call

Ck(M) = [Ck(Mi,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m] ∈ F
kn×km

the k-coding of M .

The key property of Ck is that, for x ∈ F, the (i+ 1)th row of Ck(x) is obtained from the
ith row by multiplication with ωk, for 1 ≤ i ≤ n − 1; the first row is obtained from the
nth row this way. An analogous property holds for the columns and we get the following
lemma.

Lemma 3.4

Ck(ωℓk · x) = (1, . . . , k)ℓ · Ck(x) = Ck(x) · (1, . . . , k)−ℓ.

Corresponding to the coding function Ck, we define a group homomorphism Pk that
embeds Monn(F, k) into Skn. Before we state the general definition we give an illustrative
example. We consider k = 3 and the 3-monomial matrix S = [(1, 2), (1, ω2

3)] = (1, 2) ·
diag(1, ω2

3). The permutation matrix Pk(S) is obtained by replacing each entry in S by
a (3 × 3)-matrix: zero entries are replaced by the all-zero matrix, and entries ωi3 are
replaced by (1, 2, 3)i. We visualize this by emphasizing the resulting block structure:

S =

[
0 ω2

3

1 0

]
↔ Pk(S) =





0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




.

The block structure of Pk(S) can be expressed by the following decomposition.

S = [(1, 2), (1, ω2
3)] ↔ Pk(S) = ((1, 2) ⊗ 13) ·

(
(1, 2, 3)0 ⊕ (1, 2, 3)2

)
.

For general k and n, the block permutations in Skn arising this way have the structure

(σ ⊗ 1k) · (τ1 ⊕ . . .⊕ τn) ,

12 S. Egner and M. Püschel

where σ ∈ Sn represents the “macro” permutation and the τi are powers of the k-cycle
(1, . . . , k). The group of all these permutations is the wreath product Zk ≀Sn (James and
Kerber, 1981) in its natural permutation representation on kn points.

Definition 3.5 Let F and k be as in Definition 3.3 and let 0 ≤ ui ≤ k − 1, 1 ≤ i ≤ n.
We define the mapping Pk by

Pk : Monn(F, k) → Zk ≀Sn (as a subgroup of Skn),

[σ, (ωu1

k , . . . , ωun

k)] 7→ (σ ⊗ 1k) ·
⊕n

i=1(1, . . . , k)
ui .

By construction, it is clear that Pk is a group isomorphism.
Our algorithm for finding the mon-mon symmetry of order k for a given matrix M

is based on the following theorem. It shows that the mon-mon symmetry of order k is
contained, via the mapping Pk, in the perm-perm symmetry of Ck(M). The proof is
straightforward using the definitions of Ck and Pk and Lemma 3.4.

Theorem 3.6 Let x ∈ F and k ≥ 1. We assume that the characteristic of F is zero or
does not divide k. Let M ∈ F

n×m. Then

(L,R) ∈ MonMonk(M) ⇒ (Pk(L),Pk(R)) ∈ PermPerm(Ck(M)).

We note that the converse is not true in general, i.e., to “decode” the mon-mon symmetry
of order k of M , we need to first intersect the perm-perm symmetry of Ck(M) with
(Zk ≀Sn) × (Zk ≀Sn). For all our practical applications, however, it has turned out that
the intersection is not necessary, i.e., PermPerm(Ck(M)) ∼= MonMonk(M).

The remaining question is the appropriate choice of the parameter k. If F = Fq is finite
with q elements, k = q − 1 can be chosen, which guarantees that the entire mon-mon
symmetry is found. For F ≤ C a matrix can have mon-mon symmetries of arbitrary order
k. For example,

M =

[
a 0
0 b

]
, a, b ∈ F,

has the mon-mon symmetry
[
ωk 0
0 ω−1

k

]
·M = M ·

[
ωk 0
0 ω−1

k

]
, for all k = 1, 2,

If a matrix with complex entries has a monomial symmetry of order k, then the symmetry
permutes entries with equal absolute value. For this reason, we consider all quotients
Mi,j/Mk,ℓ with |Mi,j | = |Mk,ℓ| 6= 0. These quotients are roots of unity and we choose k
as the least common multiple of the order of those roots for which the order is finite.

As a summary, we give in Figure 2 pseudocode for computing the mon-mon symmetry
of order k for a matrix M .

Regarding the computational complexity, finding mon-mon symmetry is not easier than
finding perm-perm symmetry. Moreover, the encoding method described above increases
the size of the matrix from n×m to kn×km where the parameter k depends on the base
field over which to search for symmetries. The availability of very fast implementations
for the perm-perm symmetry (see Section 3.2) makes our approach a viable solution for
small k. For real matrices, and hence for most signal transforms, it is sufficient to choose
k = 2 as the only real roots of unity are {−1, 1}. We refer the reader to Section 6 (in
particular 6.4) for runtime examples.

Symmetry-Based Matrix Factorization 13

MonMonk(M):
choose the parameter k
compute the k-coding Ck(M)
compute P := PermPerm(Ck(M))
intersect (if necessary) P ′ := P ∩ (Zk ≀ Sn) × (Zk ≀ Sn)
return MonMonk(M) = {(P−1

k (L),P−1
k (R)) | (L, R) ∈ P ′}

Figure 2. The algorithm for finding MonMonk(M) for a matrix M including the choice of k.

3.4. Perm-Mat Symmetry

As a building block to compute the perm-irred and the mon-irred symmetry, we now
consider the perm-mat symmetry. As the name indicates, we are looking for all pairs
(L,R) where L is a permutation matrix, R can be any matrix, and LM = MR. Formally,
for M ∈ F

n×m, we define

PermMat(M) = {(L,R) ∈ Sn×GLm(F) | LM = MR}.

Not all cases of the perm-mat symmetry are interesting. For example, if M is invertible
then there is a matrix R, namely R = M−1LM , for any permutation L, in which case
PermMat(M) is just (isomorphic to) the symmetric group Sn. In addition, as explained
in Section 3.1, the subdirect structure allows to eliminate identical copies of rows (the
perm part) and to eliminate linear dependent rows (the mat part). The following lemma
is the basis for computing the identified factor group of the subdirect product for the
perm-mat symmetry for a matrix M , which has more rows than columns. For notational
compactness we use the notation MI,J to indicate submatrices of M, where I and J are
either integers, sets or lists of integers, or the symbol “∗” denoting the full index set.
For example, Mi,∗ denotes the i-th row of M , M∗,j denotes the j-th column, and MI,∗
denotes the submatrix of rows of M with index i ∈ I.

Lemma 3.7 Let M ∈ F
n×m be a matrix with n ≥ m and assume that the rows of M

are pairwise distinct, and that the columns of M are linearly independent. Choose an
m-tuple I of row indices such that the submatrix MI,∗ is invertible. Let L(I) denote the
image of I under the permutation L. Then

PermMat(M) = {(L,M−1
I,∗ML(I),∗) | L ·M = M ·M−1

I,∗ML(I),∗}.

Proof. If LM = MM−1
I,∗ML(I),∗ for some permutation L then (L,M−1

I,∗ML(I),∗) ∈
PermMat(M). Conversely, let (L,R) ∈ PermMat(M) and consider the rows in I:

(LM)I,∗ = ML(I),∗ = MI,∗R = (MR)I,∗ ⇒ R = M−1
I,∗ML(I),∗,

as desired. 2

The preceeding lemma states that a permutation L of the perm-mat symmetry is
already defined by its image L(I) on a certain base I of size m. Moreover, the mapping
L 7→M−1

I,∗ML(I),∗ is an isomorphism from the permutation group on the left of M to the
corresponding matrix group on the right.

14 S. Egner and M. Püschel

PermMat(G, M):
choose a list I of row indices such that MI,∗ is invertible; — (1)
precompute M · (MI,∗)

−1, {Mk,ℓ | k, ℓ} and {Mk,∗ | k};
H := E (the trivial subgroup of G);
for J ∈ orbit of I under G do

L := findperm(M, I, J);
if L 6= false and L ∈ G then

extend H by L
return H.

findperm(M, I, J):
L := id; (the identity mapping on {1, . . . , n})
for i ∈ {1, . . . , n} do

r := [];
for j ∈ {1, . . . , m} do

r[j] := (M · (MI,∗)
−1)i,1 · MJ[1],j + · · · + (M · (MI,∗)

−1)i,m · MJ[m],j ;
if r[j] 6∈ {Mk,ℓ | k, ℓ} then return false;

if r 6∈ {Mk,∗ | k} then return false;
L(i) := (k such that r = Mk,∗); — (2)

if not L is a permutation return false;
return L.

Figure 3. PermMat(M) for an (n×m)-matrix M with linear independent columns and distinct rows.
The argument G allows to restrict the search to a subgroup of the symmetric group.

The lemma is the basis for the correctness of the algorithm shown in pseudocode in
Figure 3. It computes

PermMat(G,M) = {L | (L,R) ∈ PermMat(M), L ∈ G},

for an (n × m)-matrix M with linear independent columns and pairwise unequal rows
and a subgroup G of the full permutation group Sn. The additional argument G is useful
for the application of the algorithm to computing the perm-irred symmetry. Note that
the list I in statement (1) exists because the columns of M are linear independent and
that the image L(i) in statement (2) is uniquely defined because the rows of M are
distinct. The algorithm uses the local function findperm to test if M̃ = MM−1

I,∗MJ,∗ is
a row-permuted version of M , and, if so, to compute the permutation. (The variable r
contains the i-th row of M̃ .) The function interleaves constructing M̃ and testing its
properties to allow an early return. PermMat may invoke findperm up to m!

(
n
m

)
times.

3.5. Perm-Irred Symmetry

This section explains how to find perm-irred symmetries of a matrix. Throughout this
section we assume the matrix M to be square of size n× n and invertible. Following the
mnemonic names of Table 1, a perm-irred symmetry of M is a pair of representations
(φ, φM) such that φ is a permutation representation and φM is a permuted direct sum
of irreducible representations. In other words, there is a permutation π ∈ Sn such that

φM = (φ1 ⊕ · · · ⊕ φr)
π, where all φi are irreducible.

Symmetry-Based Matrix Factorization 15

Unlike for the perm-perm symmetry, there is no largest perm-irred symmetry containing
all others. Therefore we postpone the formal definition of the search problem and start
by defining a quantitative measure of block structure.

Definition 3.8 Let A be a square matrix (not necessarily invertible) of size n. The
conjugated block structure (cbs) of A is the partition

cbs(A) = {1, . . . , n}/ ∼∗,

where ∼∗ is the reflexive-symmetric-transitive closure of the binary relation ∼ defined
on {1, . . . , n} by i ∼ j ⇔ Aij 6= 0.

For the following investigations we introduce additional notation. Let ⊑ denote the
partial order defined on partitions of {1, . . . , n} (read p ⊑ q as “p refines q”) and define
⊓ (“meet”: coarsest common refinement) and ⊔ (“join”: finest common union of blocks)
as the lattice operations associated with the refinement relation. Moreover, let pπ denote
the partition obtained from p by renumbering the points with permutation π. Finally,
let p⊕ q denote the partition of {1, . . . , n+m} obtained by concatenating the blocks of
p partitioning n points and q partitioning m points, formally p⊕ q = p ∪ {n+ b | b ∈ q}.

The purpose of the cbs is to indicate how far a matrix A decomposes into a direct sum
A1 ⊕ · · · ⊕ Ar if the rows and columns are renumbered properly by conjugating with a
permutation. We will use the following properties of the cbs.

Lemma 3.9 For square matrices A,B and a permutation π,

(i) cbs(Aπ) = cbs(A)π.

(ii) cbs(A⊕B) = cbs(A) ⊕ cbs(B).

(iii) cbs(AB) ⊑ cbs(A) ⊔ cbs(B) if A and B are of the same size.

(iv) cbs(A−1) = cbs(A) if A is invertible.

Proof. We prove the properties one by one.

(i) Compatibility with conjugation follows from Aij = (Aπ)π(i),π(j) for all i, j.

(ii) Compatibility with the direct sum is based on the fact that the relation i ∼ j ⇔
(A ⊕ B)ij 6= 0 already partitions the set {1, . . . , n} into two unconnected subsets,
and taking the reflexive-symmetric-transitive closure does not merge unconnected
subsets.

(iii) Compatibility with matrix multiplication is a consequence of the first two proper-
ties.

(iv) Let A = (A1 ⊕ · · · ⊕ Ar)
π be a finest decomposition of A into a permuted direct

sum. Since matrix inversion is compatible with conjugation and with direct sum,
this implies A−1 = (A−1

1 ⊕ · · · ⊕ A−1
r)π. As the decomposition of A was assumed

finest, Ai cannot be decomposed further and cbs(Ai) is the coarsest partition for
all i. Hence, cbs(A−1) is a refinement of cbs(A) and equality follows from applying
this twice as cbs(A) ⊑ cbs(A−1) ⊑ cbs(A).

2

16 S. Egner and M. Püschel

Table 2. The lattice of all block structures found in SDFT6

6 .

7

6 5

2

3

1

4

p Γ(p) |Γ(p)| generators
1 (1|2|3|4|5|6) Z6 6 (1, 2, 3, 4, 5, 6)
2 (1|2 6|3 5|4) D12 12 (2, 6)(3, 5), (1, 2, 3, 4, 5, 6)
3 (1|2 5|3 6|4) Z3 ×S3 18 (1, 3, 5)(2, 4, 6); (1, 2)(3, 4)(5, 6), (1, 3, 5)(2, 6, 4)
4 (1|2 4 6|3|5) Z2 ×A4 24 (1, 4)(2, 5)(3, 6); (1, 2, 3)(4, 5, 6), (1, 2, 6)(3, 4, 5)
5 (1|2 4 6|3 5) Z2 ×S4 48 (1, 4)(2, 5)(3, 6); (2, 3)(5, 6), (1, 2, 4, 5)(3, 6)
6 (1|2 3 5 6|4) S3 ≀Z2 72 (1, 2)(3, 4)(5, 6), (1, 3, 5)(2, 6, 4); (4, 6)
7 (1|2 3 4 5 6) S6 720 (1, 2), (1, 2, 3, 4, 5, 6)

We illustrate the cbs and Lemma 3.9 (i) with the following example (dots represent
entries of zero):

cbs









1 · 2 · ·
· 3 · · 4
5 · 6 · ·
· · · 7 ·
· 8 · · 9







 = cbs









1 2 · · ·
5 6 · · ·
· · 3 4 ·
· · 8 9 ·
· · · · 7





(2,3)(4,5)


 = (12|34|5)(2,3)(4,5) = (13|25|4).

Now we use the cbs to find the perm-irred symmetry. Given a matrix M , we can relate
permutation groups G ≤ Sn and block structures p ⊑ {{1, . . . , n}} by the mappings Π
and Γ defined by

Π(G) =
⊔

L∈G
cbs(M−1LM), and

Γ(p) = {L ∈ Sn | cbs(M−1LM) ⊑ p}.
This means, Π(G) is the block structure that the group G admits under conjugation with
the matrix M and Γ(p) is the largest group G ≤ Sn admitting the block structure p.
Note that Π(G) can be found by computing cbs(M−1LM) for a generating set of G and
using Lemma 3.9.

Lemma 3.10 Π and Γ are order preserving mappings between the lattice of subgroups
G of Sn and the lattice of partitions p of {1, . . . , n}. Moreover,

Π(Γ(p)) ⊑ p and Γ(Π(G)) ≥ G for all p and G.

Proof. Consequence of the fact that cbs is compatible with matrix multiplication
(Lemma 3.9) and of some simple properties of finite lattices. 2

Despite the previous lemma, Π and Γ are in general no lattice homomorphisms. For
example, Table 2 shows all block structures obtainable as cbs(DFT−1

6 LDFT6) for per-
mutations L ∈ S6. Yet, the partition (1|2 6|3|4|5), the “meet” of entries no. 4 and 6, is
not in the table. Also, the group 〈(Z3 ×S3) ∪ D12〉, the “join” of entries no. 2 and 3, is
not in the table. This shows that the lattice is neither a sublattice of all partitions of
{1, . . . , n} nor of the lattice of subgroups of Sn.

Based on Π and Γ we can now formulate the search problem for the perm-irred sym-
metry. Finding all perm-irred symmetries of M is done by first determining all block
structures found in SMn and second determining all groups G ≤ Sn for which the blocks

Symmetry-Based Matrix Factorization 17

PermBlock(M):
T := ∅;
for L ∈ Sn do

p := cbs(M−1LM);
for G ∈ T do

if Π(G) ⊒ p then
extend G by L;

if p 6∈ {Π(G) | G ∈ T} then
H := 〈G | Π(G) ⊑ p〉;
extend H by L;
insert H into T ;

return T .

PermBlock(M, k):
T := {Sn};
while ∃G ∈ T, b ∈ Π(G) : |b| > k do

choose such G, b;
remove G from T ;
for b′ ⊆ b, 1 ≤ |b′| ≤ k do

H := Γ(p ⊓ {b′, {1, . . . , n} − b′});
insert H into T ;

return T .

Γ(p) (for a given M):
G := Sn;
for b ∈ p do

G := PermMat(G, M∗,b);
return G.

Figure 4. Computing PermBlock(M) by enumerating permutations (left) and by enumerating
partitions consisting of blocks of size at most k (right).

of GM are all irreducible. Formally,

PermBlock(M) = {Γ(p) | p is a partition of {1, . . . , n}},
PermIrred(M) = {G ∈ PermBlock(M) | blocks of GM irreducible}.

For example, Table 2 shows all groups in PermBlock(DFT6), which, in this case, is equal
to PermIrred(DFT6). This completes the definition of the perm-irred symmetry of M . We
will now present two methods to compute PermBlock(M). Once this is found, it is easy
to extract PermIrred(M) from it by testing if all characters of the direct summands of
GM are indeed irreducible. Both methods are described in Egner (1997).

Permutation based Search

The first method constructs PermBlock(M) by enumerating all permutations L ∈ Sn
and maintaining a set T of permutation groups. Pseudocode for the algorithm is shown
in Figure 4 (left). The correctness of the algorithm rests on the following invariant of
the loop: Let L1, . . . , Lk be all permutations encountered so far, and define associated
partitions pi = cbs(M−1LiM). Then T is the set of permutation groups

T = {〈Li | pi ⊑ q〉 | q ∈ {pi | i}}.
In other words, T contains exactly one group for every partition q encountered at this
stage, and for each such q the group contains all permutations leading to a decomposition
of M not coarser than q. Finally, when all permutations have been considered, T is equal
to PermBlock(M).

The approach considers all n! permutations and, for each such permutation L, the (n×
n)-matrix multiplication M−1 · (LM) has to be computed in order to find cbs(M−1LM).
(As matrices are only permuted, scalar multiplications can be precomputed in a table
of size O(n4), which is a minor improvement.) In any case, enumerating permutations
means exponential running time.

Fortunately, there is a better way to approach the problem of computing PermBlock(M)
than through enumeration of permutations.

18 S. Egner and M. Püschel

Partition based Search

PermBlock(M) = {Γ(p) | p} can also be approached by enumerating partitions instead
of permutations. This approach is motivated by the observation that Γ(p) can be com-
puted using PermMat with the algorithm shown in pseudocode in Figure 4 (lower right).
The correctness of the algorithm is based on the following statement, which allows to
“split off a block” using PermMat.

Lemma 3.11 Let p = {b, {1, . . . , n} − b} be a partition with exactly two blocks. Then

Γ(p) = PermMat(Sn,M∗,b) = {L | (L,R) ∈ PermMat(M∗,b)}.

Proof. Consider (L,R) such that LM∗,b = M∗,bR. Then R operates only on columns
b of M by definition. This implies that cbs(M−1LM) refines p. Conversely, if L is a
permutation such that cbs(M−1LM) refines p, then M−1LM maps the vector space
spanned by the columns b onto itself. Hence, there is an R such that LM∗,b = M∗,bR. 2

The algorithm in Figure 4 to compute Γ(p) for arbitrary p repeatedly reduces the group
G by splitting off one block of p at a time. Iterative application of Lemma 3.11 shows that
the final result contains exactly those permutations L for which cbs(M−1LM) refines p.
The method is best illustrated by an example. Consider the matrix (i =

√
−1)

M = DFT4 =





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



 .

To compute Γ(1|2 4|3) for M we start with the group S4 and split off the block {1}. This
does not reduce the group as the first column of M is constant and any permutation of
the rows is a symmetry. Next, we split off block {2, 4} by computing

PermMat(S4,M∗,{2,4}) = PermMat(S4,





1 1
i −i

−1 −1
−i i



).

The columns are linearly independent and the rows distinct. We choose I = [1, 2] as a
base for the rows and consider all J in the orbit of I under S4, which is

{[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2, 4], [3, 1], [3, 2], [3, 4], [4, 1], [4, 2], [4, 3]}.
Consider for example, J = [2, 3]. In this case, MM−1

I,∗MJ,∗ is a row-permuted M :

MM−1
[1,2],∗M[2,3],∗ =





i −i
−1 −1
−i i
1 1



 = (1, 2, 3, 4) ·M.

Hence, (1, 2, 3, 4) ∈ PermMat(S4,M∗,{2,4}). On the other hand, for J = [1, 3] we obtain

MM−1
[1,2],∗M[1,3],∗ =





−i i
i −i
i −i

−i i



 ,

Symmetry-Based Matrix Factorization 19

which is not a row-permuted version of M . Hence, no permutation L for which L(1) = 1
and L(2) = 3 is in PermMat(S4,M∗,{2,4}). Testing the other possible images J , we find

PermMat(S4,M∗,{2,4}) = D8 = 〈(1, 4)(2, 3), (1, 2, 3, 4)〉,
(D8 denotes a dihedral group of eight elements.) The algorithm would go on splitting off
the final block {3}, but for the sake of illustration we rather compute the partition

Π(D8) = cbs(M−1(1, 4)(2, 3)M)⊔cbs(M−1(1, 2, 3, 4)M) = (1|2 4|3)⊔(1|2|3|4) = (1|2 4|3).

This shows that it is not necessary to split off the block {3} as D8 already separates it.
In effect, the example shows for M = DFT4 that

Γ(1|2 4|3) = 〈(1, 4)(2, 3), (1, 2, 3, 4)〉.
The algorithm to compute Γ(p) can be used to compute PermBlock(M) by simply

computing Γ(p) for all partitions p of {1, . . . , n}. Unfortunately, there are exponentially
many partitions. However, the method allows to restrict the search to partitions that
consist of small blocks, only! This is the purpose of the algorithm in Figure 4 (upper
right). It computes all groups in PermBlock(M) for which the block structure consists
of blocks of size at most k. For signal transforms, these symmetries turn out to be most
useful for obtaining sparse factorizations.

3.6. Mon-Irred Symmetry

The mon-irred symmetry generalizes the perm-irred symmetry in the same way as
the mon-mon symmetry generalizes the perm-perm symmetry. For M ∈ GLn(F) define
MonMat(M), MonBlock(M), and MonIrred(M) as the mon-mat, mon-block, and mon-
irred structures, respectively, substituting Sn in all placed by Monn(F) (the group of all
invertible monomial matrices of size n× n).

By using the subdirect structure (Lemma 3.1) we again only consider the case where no
rows of M are scalar multiples of each other. Similarly to MonMon(M) (see Section 3.3),
also MonIrred(M) may be infinite, and we solve it analogously by defining MonBlockk(M)
and MonIrredk(M), which restrict the symmetry to k-monomial matrices (i.e., containing
only k-th roots of unity as non-zero elements).

The groups in MonBlockk(M) can be constructed in a similar way as PermBlock(M).
One can either enumerate all possible (k-monomial) L or can recursively split off blocks
and use MonMat(M∗,J) to construct the largest group stabilizing the block. We do not
describe the function MonMat here as it is very similar to PermMat. The biggest difference
is that MonMat has to consider kn times as many candidates for a k-monomial matrix of
size n× n, as PermMat has to consider for permutations of the same degree. Therefore,
computing the mon-irred symmetry with our methods is only feasible for very small
values of the parameter k.

4. Decomposing Monomial Representations

The second important step in the matrix factorization algorithm is the decomposition
of monomial representations. As explained in Section 2, we are not only interested in
the irreducible components contained in a monomial representation φ, but also in the
corresponding decomposition matrix of φ given as a product of structured sparse matrices.

20 S. Egner and M. Püschel

The decomposition algorithm decomposes arbitrary monomial representations of solv-
able groups and is comprehensively described in Püschel (2002), which builds on ideas
of Minkwitz (1995). For the sake of completeness, we briefly survey the algorithm in this
section, restricting ourselves to its structure and main steps. Before we give the algorithm
we restate the main results it is based on.

4.1. Background for the Algorithm

We restate the following three theorems from Püschel (2002), where they can be found
as Theorem 3.16, 3.33, and 3.34, respectively.

Let φ be a monomial representation of a solvable group G. We recall that φ is called
transitive, if it cannot be conjugated by a permutation to be a direct sum. The following
result connects transitive monomial representations and inductions.

Theorem 4.1 Let φ be a transitive monomial representation of a group G. Then there
exists a diagonal matrix D, a subgroup H ≤ G with representation λH of degree one, and
a transversal T of G/H such that

φD = λH ↑T G (induction of λ to G with transversal T).

Let N�G be a normal subgroup of G of prime index p and assume φ is a representation
of N with decomposition matrix A. Theorem 4.2 explains how to construct a decompo-
sition matrix of the induction φ ↑T G, and Theorem 4.3 explains how to construct a
decomposition matrix for the extension φ (if it exists). Both theorems are essentially

based on Clifford’s theory† (Curtis and Reiner, 1962).
These two cases constitute the core of our decomposition algorithm. For the purpose

of this paper, the reader may skip the technical details; only the two formulas for the
decomposition matrix B are of importance. Note that all the factors in the formulas are
sparse. Finally, these formulas explain the structure of the factorizations we will present
in Section 6.

Theorem 4.2 Let N �G be a normal subgroup of prime index p and T a transversal of
G/N . Assume φ is a representation of N of degree n with decomposition matrix A such

that φA =
⊕k

i=1 ρi, where ρ1, . . . , ρj are exactly those among the ρi having an extension
ρi to G. Denote by d = deg(ρ1) + . . .+ deg(ρj) the entire degree of the extensible ρi and
set ρ = ρ1 ⊕ . . .⊕ ρj. Then there exists a permutation matrix P such that

B = (1p ⊗A) · P ·
(
⊕

t∈T
ρ(t) ⊕ 1p(n−d)

)
·
(
(DFTp⊗1d) ⊕ 1p(n−d)

)

is a decomposition matrix of φ ↑T G.

Theorem 4.3 Let N � G be a normal subgroup of prime index p with transversal T =
(t0, t1, . . . , tp−1) and representation φ a over the field F. Assume that φ has an extension φ
to G. Further let A decompose φ such that equivalent irreducibles are equal and adjacent,
φA =

⊕k
i=1Ri, where Ri = ρni

i is a homogeneous component of multiplicity ni. We

† The two theorems do not correspond to the induction case and the extension case of Clifford’s
theory; both theorems need both cases.

Symmetry-Based Matrix Factorization 21

MonDec(φ):
case: φ irreducible

return 1deg(φ)

case: φ intransitive
decompose φP = φ1 ⊕ . . . ⊕ φk, φi transitive, P permutation
return P · (MonDec(φ1) ⊕ . . . ⊕ MonDec(φk))

case: φ transitive and not an induction
decompose φD = λH ↑T G, D is diagonal (Theorem 4.1)
return D · MonDec(λH ↑T G)

case: φ = λH ↑T G and exists normal subgroup N with H ≤ N � G, |G/N | prime
decompose (λH ↑T G)M = (λH ↑T1

N) ↑T2
G, M is monomial

A := MonDec(λH ↑T1
N)

return M · B, where B is computed with Theorem 4.2
case: φ = λH ↑T G

A := MonDec((λH ↑T G) ↓ N)
return B, computed with Theorem 4.3

Figure 5. The divide-and-conquer algorithm (sketched) for computing a factorized, structured
decomposition matrix for a monomial representation φ of a solvable group G.

denote di = deg(ρi). Furthermore, we require that whenever Ri ∼= Rt
ℓ

j then even Ri = Rt
ℓ

j

and that these components are adjacent, ordered according to Ri, R
t
i, . . . , R

tp−1

i . Then
there exist invertible matrices Ai ∈ F

ni×ni and a permutation matrix P such that

B = A ·
(

k⊕

i=1

Ai ⊗ 1di

)
· P

is a decomposition matrix of the extension φ.

4.2. The Decomposition Algorithm

Figure 5 shows pseudocode for the decomposition algorithm, which uses a “divide-
and-conquer” approach that recurses over the structure of φ by repeatedly considering
a cascade of different cases. We concentrate on the computation of the decomposition
matrix only, omitting the computation of the corresponding irreducible components of φ.
In the actual algorithm, both computations are necessarily intertwined (as can be seen
from Theorems 4.2 and 4.3).

We give an overview of the algorithm. If φ is irreducible, the identity is a decomposition
matrix. If φ is not transitive, we decompose it with a permutation into a direct sum of
transitive monomial representations, which are decomposed recursively. If φ is transitive,
we apply Theorem 4.1 to reduce the decomposition problem to the case of an induction
λH ↑T G. Since G is solvable, we now find a normal subgroup N � G of prime index
and either H ≤ N or H 6≤ N . If H ≤ N then we decompose λH ↑T G with a monomial
matrix M into a double induction (λH ↑T G)M = (λH ↑T1

N) ↑T2
G (explained in

Püschel (2002)) and recurse with the lower induction to find a decomposition matrix A.
The conquer step finds the decomposition matrix B using Theorem 4.2. In the other case,
H 6≤ N , we recurse with the restriction (λH ↑T G) ↓ N . The conquer step is solved by
Theorem 4.3. Since both cases reduces the size of the group represented, the algorithm
terminates.

22 S. Egner and M. Püschel

5. The Library AREP

The authors have implemented the methods described in this article in the software
library AREP (Egner and Püschel, 1998), a refereed shared package written in the com-
puter algebra language GAP (1997). The two central data types are AMat (Abstract
Matrix) and ARep (Abstract Representation), which are recursive data structures to effi-
ciently represent structured matrices (like direct sum or tensor product) and structured
representations (like induction or conjugation) in a symbolic form. Based on these data
types AREP contains

1. functions to efficiently manipulate and compute with structured matrices and rep-
resentations;

2. functions to find the different types of symmetry described in Section 3;
3. a function to decompose monomial representations of solvable groups into irre-

ducibles as sketched in Section 4; and, combining 2. and 3.,
4. functions to construct sparse factorizations for a given matrix as described in Sec-

tion 2.

Furthermore, AREP is interfaced with the SPIRAL-system (Moura et al., 1998), which
allows the user to generate C or Fortran code for each fast algorithm found by AREP

(Egner et al., 2001). For more information on AREP we refer the reader to the website
of AREP (Egner and Püschel, 1998).

6. Examples

This section is a gallery of a few examples for the matrix factorization algorithm
presented in this article. The considered matrices are discrete signal transforms following
the definitions of Elliott and Rao (1982) and Rao and Yip (1990). All factorizations (i.e.,
fast transform algorithms) have been generated verbatim as they are presented (even in
the LATEX format). We state the symmetries found (with varying detail) and the runtime
needed to generate the sparse factorization. All experiments where run on an Athlon 1100
MHz, running Linux. For a comparison of our generated fast transform algorithms to the
algorithms known from the literature we refer the reader to Egner and Püschel (2001).

In addition to the notation introduced in Section 1.3 we will use

Rα =
[

cos(α) sin(α)
− sin(α) cos(α)

]
,

to denote a (2 × 2)-rotation matrix with angle α, and

DFT2 =
[

1 1
1 −1

]
.

for the discrete Fourier transform of size 2 × 2.

6.1. Discrete Fourier Transform

The discrete Fourier transform of size n is defined by the matrix

DFTn =
[
ωkln | 0 ≤ k, ℓ < n

]
.

As it is well-known, the DFTn has a perm-irred symmetry (φ, ψ) with cyclic symmetry
group Zn = 〈x | xn = 1〉,

φ : x 7→ [(1, 2, . . . , n), n], ψ : x 7→ diag(ω0
n, ω

1
n, . . . , ω

n−1
n).

Symmetry-Based Matrix Factorization 23

As an example we consider n = 8. We find this perm-irred symmetry, and, based on it,
the Cooley-Tukey fast Fourier transform (FFT) algorithm,

DFT8 = (DFT2 ⊗14) · diag(1, 1, 1, 1, 1, ω8, ω4, ω
3
8)

·(12 ⊗ DFT2 ⊗12) · diag(1, 1, 1, ω4, 1, 1, 1, ω4)

·(14 ⊗ DFT2) · [(2, 5)(4, 7), 8].

This factorization has been generated in 1.4 seconds.

6.2. Discrete Cosine Transform, type II and III

The (unscaled) discrete cosine transform of type III is defined by the matrix

DCT-IIIn = [cos((2k + 1)ℓπ/2n) | 0 ≤ k, ℓ < n] .

For n = 8 we find a perm-irred symmetry (φ, ψ) with dihedral symmetry group D16 =
〈x, y | x8 = y2 = 1, xy = x−1〉,

φ : x 7→ [(1, 3, 5, 7, 8, 6, 4, 2), 8], y 7→ [(2, 3)(4, 5)(6, 7), 8],
ψ : x 7→M1, y 7→M2.

Using the shorthand notation ck = cos(kπ/8) and sk = sin(kπ/8), the matrices M1 and
M2 are given by

M1 =





c0 0 0 0 0 0 0 0
0 c2 0 0 0 0 0 s2
0 0 c4 0 0 0 s4 0
0 0 0 c6 0 s6 0 0
0 0 0 0 c8 0 0 0
0 0 0 s10 0 c10 0 0
0 0 s12 0 0 0 c12 0
0 s14 0 0 0 0 0 c14





, M2 =





c0 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 s1
0 0 c2 0 0 0 s2 0
0 0 0 c3 0 s3 0 0
0 0 0 0 s4 0 0 0
0 0 0 s5 0 c5 0 0
0 0 s6 0 0 0 c6 0
0 s7 0 0 0 0 0 c7





.

The representation ψ is a permuted direct sum of irreducible representations of degrees
1 and 2: cbs(M1) = cbs(M2) = (1|2 8|3 7|4 6|5).

Based on this symmetry we find the factorization

DCT-III8 = [(1, 2, 6, 8)(3, 7, 5, 4), 8] · (12 ⊗ ((12 ⊗ DFT2) · [(2, 3), 4] · (DFT2 ⊕12)))

·[(2, 7, 6, 8, 5, 4, 3), 8] · (14 ⊕ 1√
2
· DFT2 ⊕12) · [(5, 6), 8]

·((DFT2 ⊗13) ⊕ 12) · [(2, 8, 3, 7, 4), 8]

·(diag(1, 1√
2
) ⊕ R 13

8
π ⊕R 17

16
π ⊕R 11

16
π) · [(2, 5)(4, 7)(6, 8), 8]

The factorization was generated in 1.9 seconds. The discrete cosine transform of type
II, DCT-II, is the transpose of DCT-III and we obtain a factorization for DCT-II8 by
symbolic transposition (also using AREP) of the expression above as

DCT-II8 = [(2, 5)(4, 7)(6, 8), 8] · (diag(1, 1√
2
) ⊕ R 3

8
π ⊕R 15

16
π ⊕R 21

16
π)

·[(2, 4, 7, 3, 8), 8] · ((DFT2 ⊗13) ⊕ 12)

·[(5, 6), 8] · (14 ⊕ 1√
2
· DFT2 ⊕12) · [(2, 3, 4, 5, 8, 6, 7), 8]

·(12 ⊗ ((DFT2 ⊕12) · [(2, 3), 4] · (12 ⊗ DFT2))) · [(1, 8, 6, 2)(3, 4, 5, 7), 8].

The general form of the symmetries for the DCTs and their algebraic derivation can be
found in Püschel and Moura (2001).

24 S. Egner and M. Püschel

6.3. Discrete Cosine Transform, type IV

The (unscaled) discrete cosine transform of type IV is defined by the matrix

DCT-IVn = [cos((2k + 1)(2ℓ+ 1)π/4n) | 0 ≤ k, ℓ < n] .

For n = 8 we find a mon-irred symmetry (φ, ψ) with dihedral symmetry group D32 =
〈x, y | x16 = y2 = 1, xy = x−1〉,

φ : x 7→ [(1, 3, 5, 7, 8, 6, 4, 2), (1, 1, 1, 1, 1, 1, 1,−1)],
y 7→ [(2, 3)(4, 5)(6, 7), (1, 1, 1, 1, 1, 1, 1,−1)],

ψ : x 7→M1, y 7→M2.

Using the shorthand notation ck = cos(kπ/16) and sk = sin(kπ/16), the matrices M1

and M2 are given by

M1 =





c2 0 0 0 0 0 0 s2
0 c6 0 0 0 0 s6 0
0 0 c10 0 0 s10 0 0
0 0 0 c14 s14 0 0 0
0 0 0 s18 c18 0 0 0
0 0 s22 0 0 c22 0 0
0 s26 0 0 0 0 c26 0
s30 0 0 0 0 0 0 c30





, M2 =





c1 0 0 0 0 0 0 s1
0 c3 0 0 0 0 s3 0
0 0 c5 0 0 s5 0 0
0 0 0 c7 s7 0 0 0
0 0 0 s9 c9 0 0 0
0 0 s11 0 0 c11 0 0
0 s13 0 0 0 0 c13 0
s15 0 0 0 0 0 0 c15





.

The representation ψ is a permuted direct sum of irreducibles of degree 2: cbs(M1) =
cbs(M2) = (1 8|2 7|3 6|4 5).

Based on this symmetry we find the factorization

DCT-IV8 = [(1, 2, 8)(3, 6, 5), (1,−1, 1, 1, 1,−1, 1, 1)]

·(12 ⊗ ((12 ⊕ 1√
2
· DFT2) · [(3, 4), 4] · (DFT2 ⊗12)))

·[(1, 3)(2, 4)(5, 7)(6, 8), 8] · (14 ⊕ R 15
8
π ⊕R 11

8
π) · (DFT2 ⊗14)

·[(3, 5, 7)(4, 6, 8), 8] · (R 31
32
π ⊕R 19

32
π ⊕R 27

32
π ⊕R 23

32
π)

·[(1, 8, 5, 6, 3, 2)(4, 7), 8].

The factorization was generated in 6.8 seconds.

6.4. Hartley Transform

The (unscaled) discrete Hartley transform DHTn is defined by the matrix

DHTn = [cos(2kℓπ/n) + sin(2kℓπ/n) | 0 ≤ k, ℓ < n] .

We find a perm-irred symmetry (φ, ψ) with dihedral symmetry group D16 = 〈x, y | x8 =
y2 = 1, xy = x−1〉. We give only φ:

φ : x 7→ [(1, 2, 3, 4, 5, 6, 7, 8), 8], y 7→ [(2, 8)(3, 7)(4, 6), 8].

Symmetry-Based Matrix Factorization 25

The corresponding factorization is given by

DHT8 = [(1, 8)(2, 4)(3, 6)(5, 7), 8]

·(12 ⊗ ((12 ⊗ DFT2) · [(2, 3), 4] · (DFT2 ⊕12))) · [(2, 7, 6, 8, 5, 4, 3), 8]

·(14 ⊕− 1√
2
· DFT2 ⊕12) · [(5, 6), 8] · ((DFT2 ⊗13) ⊕ 12)

·[(2, 5, 3, 6, 4)(7, 8), (1,−1,−
√

2,−
√

2,
√

2,
√

2,−1,−1)]

·(16 ⊕ DFT2) · [(2, 5, 8, 7, 3, 4), 8].

The factorization was generated in 1.1 seconds.
The DHT8 also has another perm-irred symmetry (φ, ψ) with symmetry group D16.

We give again only φ:

φ : x 7→ [(1, 2, 3, 8, 5, 6, 7, 4), 8], y 7→ [(2, 4)(3, 7)(6, 8), 8].

The resulting factorization is very similar to the one above.
Furthermore, DHT8 has a mon-mon symmetry with a symmetry group of size 256

and the structure Z2 ⋉ (Z2 × Z2 × Z2 × Z2 × D8), where H ⋉ N denotes the semidirect
product with normal subgroup N . The resulting factorization is quite different from the
one above:

DHT8 = [(1, 4, 6, 7)(2, 8, 5, 3), (1,−1,−1, 1, 1, 1,−1,−1)] · (14 ⊗ DFT2)

·[(1, 5, 7, 8, 2, 3, 6), (
√

2,−
√

2, 1, 1, 1, 1, 1, 1)]

·(12 ⊕ DFT2 ⊕− (12 ⊗ DFT2))

·[(1, 8, 2, 6, 5, 7, 4), 8] · (14 ⊗ DFT2)

·[(1, 5, 6, 2)(3, 7, 4), (1, 1,−1,−1, 1, 1,−1,−1)].

Generating this factorization took 2.4 seconds.
We also chose the Hartley transform to illustrate the runtime behavior of the three

steps in the factorization algorithm (see Section 2) as the transform size increases. Table 3
displays the runtime results (in seconds) for a decomposition via perm-irred symmetry
(left table) and via mon-mon symmetry (right table). The size of the group found is in the
second row and bold-faced, the runtimes for the three steps in the factorization algorithm
are given in rows 3–5: find symmetry, decompose symmetry, and combine decompositions.
The bottom line shows the total runtime needed to generate the factorization. We note
that in all cases the DHT was fully decomposed, i.e., the resulting structural expression
did not contain any subblocks of size larger than 2 × 2.

For the decomposition via perm-irred symmetry we observe a steep increase in run-
time for finding the symmetry, whereas decomposing the symmetry is rather fast due to
the modest group sizes (a dihedral group in all cases). In contrast, the decomposition
via mon-mon symmetry finds the symmetry very fast and suffers from the runtimes for
decomposing the symmetry, which is due to the large group size. According to our expe-
rience, Table 3 provides examples that serve as good representatives for the performance
of our algorithms.

6.5. Haar Transform

The Haar transform HT2k is defined recursively by:

HT2 =

[
1 1

1 − 1

]
, HT2k+1 =

[
HT2k ⊗ [1 1]

2k/2 · 12k ⊗ [1 −1]

]
, k ≥ 1.

26 S. Egner and M. Püschel

Table 3. Runtime profile for decomposing a DHT across different sizes via perm-irred
symmetry (left) and mon-mon symmetry (right); the runtimes are given in seconds.

DHT size 8 16 32

group size 16 32 64
symmetry 0.8 64 4872
decompose 0.1 0.8 2.1
combine 0.2 0.5 2.2

total time 1.1 65 4876

DHT size 8 16 32 64 128 256

group size 256 256 512 1024 2048 4096
symmetry 0 0 0.6 4.8 46 4028
decompose 2.4 5.9 15 1319 6469 34262
combine 0 0 0.5 2.7 16 138

total time 2.4 6.0 16 1381 6531 38428

A fast algorithm for the Haar transform follows directly from the definition. For k = 3
we build the corresponding matrix HT8. The transpose of HT8 has a perm-irred sym-
metry (i.e., HT8 has an irred-perm symmetry). The symmetry group is the iterated
wreath product (Z2 ≀Z2) ≀Z2 of size 128 (Foote et al., 2000). By transposing the resulting
factorization we obtain the following factorization of HT8.

HT8 = [(1, 8, 6, 4, 2, 7, 5, 3), 8]

·(diag(−
√

2,
√

2) ⊕ 14 ⊕ DFT2) · [(1, 5, 4, 8, 6, 3, 7, 2), 8]

·(12 ⊗ ([(1, 2), 4] · (DFT2 ⊕ 2 · 12) · [(2, 3), 4] · (12 ⊗ DFT2)))

·[(1, 8, 4, 7)(3, 6, 2, 5), (1, 1, 1, 1,−1,−1,−1,−1)].

Generating this factorization took 6.5 seconds.

7. Acknowledgments

A major part of the presented results has been developed when the authors where
with Prof. Beth at the Institute of Algorithms and Cognitive Systems at the University
of Karlsruhe, Germany. The authors are indebted to Prof. Beth for his support that made
this work possible. The authors also want to thank Prof. Johnson (Drexel University) for
helpful discussions and the anonymous reviewers for many helpful comments.

References

Apple, G., Wintz, P. (1970). Calculation of Fourier Transforms on Finite Abelian Groups. IEEE Trans.
on Information Theory, IT-16(2):233–34.

Auslander, L., Feig, E., Winograd, S. (1984). Abelian Semi-simple Algebras and Algorithms for the
Discrete Fourier Transform. Advances in Applied Mathematics, 5:31–55.

Beth, T. (1984). Verfahren der Schnellen Fouriertransformation. Teubner.
Clausen, M., Baum, U. (1993). Fast Fourier Transforms. BI-Wiss.-Verl.
Cooley, J. W., Tukey, J. W. (1965). An Algorithm for the Machine Calculation of Complex Fourier

Series. Math. of Computation, 19:297–301.
Curtis, W. C., Reiner, I. (1962). Representation Theory of Finite Groups. Interscience.
Egner, S. (1997). Zur Algorithmischen Zerlegungstheorie Linearer Transformationen mit Symmetrie.

PhD thesis, Universität Karlsruhe, Informatik.
Egner, S., Johnson, J., Padua, D., Püschel, M., Xiong, J. (2001). Automatic Derivation and Implemen-

tation of Signal Processing Algorithms. ACM SIGSAM Bulletin Communications in Computer
Algebra, 35(2):1–19.

Egner, S., Püschel, M. (1998). AREP – Constructive Representation Theory and Fast Signal Transforms.
GAP share package. http://www.ece.cmu.edu/∼smart/arep/arep.html.

Egner, S., Püschel, M. (2001). Automatic Generation of Fast Discrete Signal Transforms. IEEE Trans. on
Signal Processing, 49(9):1992–2002.

Symmetry-Based Matrix Factorization 27

Elliott, D. F., Rao, K. R. (1982). Fast Transforms: Algorithms, Analyses, Applications. Academic Press.
Foote, R., Mirchandi, G., Rockmore, D., Healy, D., Olson, T. (2000). A Wreath Product Approach to

Signal and Image Processing: Part I — Multiresolution Analysis. IEEE Trans. on Signal Processing,
48(1):102–132.

GAP (1997). GAP – Groups, Algorithms, and Programming. The GAP Team, University of St. Andrews,
Scotland. http://www-gap.dcs.st-and.ac.uk/∼gap/.

Garey, M. R., Johnson, D. (1979). Computers and Intractability. W. H. Freeman and Co.
Huppert, B. (1983). Endliche Gruppen, volume I. Springer.
James, G. D., Kerber, A. (1981). The Representation Theory of the Symmetric Group, volume 16 of

Encyclopedia of Mathematics. Addison-Wesley.
Karpovsky, G. D., Trachtenberg, E. A. (1977). Fast fourier transforms on finite non-abelian groups.

IEEE Trans. Comput., C-26(10):1028–1030.
Leon, J. (1991). Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms. Journal

of Symbolic Computation, 12(4/5):533–583.
Maslen, D., Rockmore, D. (1995). Generalized FFTs – A survey of some recent results. In Proceedings

of IMACS Workshop in Groups and Computation, volume 28, pages 182–238.
Maslen, D., Rockmore, D. (1997). Separation of variables for the efficient computation of Fourier trans-

forms on finite groups, 1. Journal of the American Mathematical Society, 10(1):169–214.
Minkwitz, T. (1993). Algorithmensynthese für lineare Systeme mit Symmetrie. PhD thesis, Universität

Karlsruhe, Informatik.
Minkwitz, T. (1995). Algorithms Explained by Symmetry. Lecture Notes on Computer Science, 900:157–

167.
Moura, J. M. F., Johnson, J., Johnson, R. W., Padua, D., Prasanna, V., Püschel, M., Veloso, M. M.

(1998). SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing Algorithms.
http://www.ece.cmu.edu/∼spiral/.

Parker, R. (1984). The Computer Calculation of Modular Characters (the MeatAxe). In M. D. Atkin-
son (ed.), Computational Group Theory, Proceedings LMS Symposium on Computational Group
Theory, Durham 1982, Academic Press.

Püschel, M. (2002). Decomposing Monomial Representations of Solvable Groups. Journal of Symbolic
Computation, 34(6):561–596.

Püschel, M., Moura, J. M. F. (2001). The Algebraic Approach to the Discrete Cosine and Sine Transforms
and their Fast Algorithms. Submitted for publication.

Rao, K. R., Yip, P. (1990). Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic
Press.

Wedderburn, J. H. M. (1907). On Hypercomplex Numbers. Proceedings of the London Mathematical
Society.

