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We present an efficient algorithm that decomposes a monomial representation of a solv-
able group G into its irreducible components. In contradistinction to other approaches,
we also compute the decomposition matrix A in the form of a product of highly struc-
tured, sparse matrices. This factorization is a fast algorithm for the multiplication with
A. In the special case of a regular representation, we hence obtain a fast Fourier trans-
form for G. Our algorithm is based on a constructive representation theory that we
develop. The term “constructive” signifies that concrete matrix representations are con-
sidered and manipulated, rather than equivalence classes of representations as it is done
in approaches that are based on characters. Thus, we present well-known theorems in a
constructively refined form and derive new results on decomposition matrices of represen-
tations. Our decomposition algorithm has been implemented in the GAP share package
AREP. One application of the algorithm is the automatic generation of fast algorithms
for discrete linear signal transforms.

1. Introduction

Discrete linear signal transforms are the most important computational components in
modern digital signal processing. Mathematically, they are given by a multiplication of a
vector (the sampled signal) by a matrix (the transform). The existence of fast algorithms
reduces the cost of computing the transforms and thus makes them useful for performance
demanding signal processing applications.

The study of the structure and the derivation of these fast algorithms is the motiva-
tion for the work presented in this paper: The constructive decomposition of monomial
group representations. To explain the connection between signal transforms and group
representation theory, we start with the discrete Fourier transform (DFT), the workhorse
in signal processing and arguably one of the most important tools used across scientific
disciplines.

1.1. FOURIER TRANSFORMS

The (complex) DFT decomposes a signal z € C" into a linear combination of expo-
nential functions. The corresponding coefficients are obtained by multiplying = by the
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matrix
DFT,, = [wﬁl |k =0...n—1], w,= e2mi/n

Algebraically, the DFT), can be viewed as the decomposition of the group algebra C[Z,,]
of a cyclic group Z,, into simple algebras isomorphic to C,

DFT, : C[Z,] 5> C&...®C,

with suitable bases chosen. Equivalently, the DFT,, can be interpreted as a decompo-
sition matrix of a regular representation (a certain permutation representation) of Z,,.
This decomposition is an instantiation of Wedderburn’s theorem for semi-simple alge-
bras. The algebraic interpretation provides deep insight into the DFT and has been used
to derive and understand the structure of its fast algorithms. In particular, Auslander
et al. (1984) and, independently, Beth (1984) showed that the most famous fast Fourier
transform (FFT) algorithm, originally discovered by Gaufl (Heideman et al. 1985), and
rediscovered by Cooley and Tukey (1965), is obtained by a stepwise decomposition of
C[Z,,] along a composition series of Z,,. The stepwise decomposition determines a factor-
ization of the DFT,, into a product of structured sparse matrices. This factorization is the
fast algorithm. Using FFT algorithms, the DFT,, is computed in O(nlog(n)) arithmetic
operations compared to O(n?) required by direct evaluation.

Generalization to arbitrary finite groups, or more general classes of groups, created a
new area of research, referred to as “Fourier analysis on groups”, that is concerned with
fast algorithms for decomposing the group algebra C[G]. In contrast to the classical work
on group representations, e.g., Curtis and Reiner (1962), the algorithmic nature of this
research makes it inherently “constructive”, which makes the choice of bases crucial. In
other words, concrete matrix representations are considered and not equivalence classes
of matrix representations, for which characters are the appropriate objects to compute
with.

Important work in the field of Fourier transforms on groups includes Beth (1984),
Clausen (1988), Baum and Clausen (1994), Diaconis and Rockmore (1990), Rockmore
(1990), and Maslen and Rockmore (2000). For an introduction to the area, we refer
the reader to the book of Clausen and Baum (1993), or the survey article by Maslen
and Rockmore (1995). Applications of Fourier transforms on groups can be found in
Rockmore (1995) or Terras (1999).

Unfortunately, most of the linear transforms used in signal processing can not be
captured as Fourier transforms on groups.

1.2. SiGNAL TRANSFORMS AND SYMMETRY-BASED MATRIX FACTORIZATION

To extend the connection between signal transforms and group representation theory,
it is necessary to leave the domain of regular representations. The “symmetry-based”
matrix factorization, introduced by Minkwitz (1993, 1995) and further developed by
Egner and Piischel (2001, 2002), shows that decomposition matrices of non-regular per-
mutation representations, and, more generally, monomial representations occur as signal
transforms. The monomial representation associated with the transform is called “sym-
metry”. A fast algorithm for the transform, given as a sparse factorization, can then
be constructed, as in the case of the DFT, by a stepwise decomposition of this repre-
sentation along a chain of normal subgroups, provided the group is solvable. Thus, the
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symmetry-based sparse matrix factorization of a given matrix M consists of the following
two high-level steps:

1. Find the symmetry of M.
2. Decompose the symmetry.

The first step is a combinatorial search problem and treated in Egner and Piischel (2002).
The second step requires the stepwise decomposition of monomial representations and
is the subject of this paper. Both steps have been implemented in the GAP library
AREP, and, taken together, provide a powerful tool to factor automatically a matrix into
a product of sparse matrices, with potential applications beyond the domain of signal
transforms.

1.3. DECOMPOSING MONOMIAL REPRESENTATIONS
This paper solves the following problem:

Given a monomial representation p of a solvable group, decompose p into a di-
rect sum of irreducible representations. In parallel, compute the corresponding
decomposition matrix as a product of structured sparse matrices.

As sketched above, our original motivation was the application to signal transforms.
This problem embraces the construction of fast Fourier transforms, which arise from the
special case of regular representations . Our approach has its root in Minkwitz (1993)
and is a continuation of the work begun in the author’s thesis (Piischel 1998).

To solve the problem we have to deal with concrete matrix representations and not with
equivalence classes of matriz representations as done in standard books. In this spirit
we refine some well-known theorems and use them to derive results on the structure
of decomposition matrices. The results are, as far as possible, presented as symbolic
manipulations of structured representations and matrices; this is the required form for
implementation in a symbolic computation environment.

The results of the paper have been implemented in the GAP share package AREP
(Egner and Piischel 1998), which provides the data types and infrastructure for symbolic
computation with matrix representations and matrices; in particular, AREP includes the
decomposition algorithm for monomial representations of solvable groups.

1.4. ORGANIZATION

The paper is organized as follows. Section 2 introduces the notation and construc-
tions from representation theory that we use. Section 3 is the mathematical foundation
of this paper, which we refer to as “constructive representation theory” since we com-
pute exclusively with matrix representations. First, we present theorems that allow us to
manipulate and compute with inductions of representations. Then, we apply these theo-
rems to monomial representations. After a short investigation of intertwining spaces, we
present the main mathematical results of this paper on the structure of decomposition
matrices. These results form the basis for the decomposition algorithm for monomial
representations of solvable groups, which is presented in detail in Section 4, including an
example and runtime measurements. A sketched version of the decomposition algorithm
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is on page 25. Section 5 briefly surveys the library AREP, which contains an implemen-
tation of the decomposition algorithm, and concludes the paper.

2. Notation

We briefly review the basics of group representation theory and introduce the notation
we use in the paper. For an introduction to representation theory we refer the reader to
standard books as Curtis and Reiner (1962) or Serre (1977).

A representation ¢ of degree n over a field K is a homomorphism of a group G into the
group GL,(K) of invertible (n x n)-matrices over K. Throughout the paper, the group
G is finite, K is a splitting field for ¢ (which is guaranteed, if G contains an eth root of
unity, where e is the exponent of G), and the characteristic of K does not divide the group
order |G| (Maschke condition). In this case, every representation ¢ can be decomposed
with an invertible matrix A € GL,(KK) into a direct sum of irreducible representations p;
(Maschke’s and Wedderburn’s theorem):

”

¢A:(g|—>A_1-gb(g)-A):@(pi@...@pi), where p; 2 p; for i # j.

=1 ni

The p;’s are called the irreducible components of ¢, and every p;®. . .S p; is a homogeneous
(or isotypic) component of ¢. We say that p; has multiplicity n; in ¢. A representation is
called a permutation representation if all images are permutation matrices. A representa-
tion is called monomial if all images are monomial matrices. A matrix is called monomial
if it contains exactly one nonzero entry in every row and column. Monomial matrices are
invertible.

If ¢ is a representation over K of degree m, then G operates on the vector space
V=K'viagbyv-g=v-é(g), v€V, g€ G, making V a right K|[G]-module. We call
V the representation space of ¢. The decomposition of a representation ¢ into irreducible
or homogeneous components corresponds to the decomposition of the representation
space V into irreducible or homogeneous components, respectively. Whenever possible, we
present results in terms of matrix representations, avoiding the terminology of modules.
We use the following conventions for notation.

Matrices. Matrices are denoted by letters A, B, M, P, .... A matrix with entries a; ; is
written as [a;; |¢ =1...n, j =1...m] or more simply as [a;;];;. A diagonal matrix is
written as diag(z1,...,%), a permutation matrix as [o,n] = [§;=; | i, = 1...n], where
o is a permutation and n the matrix size. [0, (21,...,2,)] = [o,n] - diag(z1,...,zy) is
used to represent a monomial matrix. A primitive nth root of unity is denoted by wy,
1,, is the identity matrix of degree n, 0,, is the (square) all-zero matrix of degree n,
and DFT,, = [w¥ |4,j = 0...n — 1] is the discrete Fourier transform of degree n. The
direct sum of matrices A, B is written as A & B and the tensor or Kronecker product
as A ® B (A determines the coarse structure). A matrix M is called block-permuted, if
M=P-(B;y®...® By)-Q with permutation matrices P and Q.

Sets and Lists. A set is written in the usual way as {¢,...,t,} and a list (i.e., an
ordered set) as (t1,...,t,). Correspondingly, we denote with “U” the union of sets or the
concatenation of lists, respectively.

Groups. Groups are denoted by letters G, H, N, K, .... The set of right cosets of H
in G is written as H\G. If H 4@ is a normal subgroup, we also write G/H. Transversals
(systems of right coset representatives) are denoted by T,S,... and are lists. Group
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elements are written by lower case letters g, h,z,y,s,t,..., E = {1} denotes the trivial
group, and Z,, is the cyclic group of order n.

Representations. Representations are denoted by lower case Greek letters ¢, ¥, p, .. .;
i is a monomial representation and A is a representation of degree 1. Sometimes we
indicate explicitly the represented group as a subscript, e.g., ¢g. We let 1g : g — 1
denote the trivial representation (of degree 1) of G. The degree of ¢ is denoted by deg(¢),
and the character of ¢ is denoted as x.

Constructions for representations. We use the following set of constructions for
representations. Let ¢ be a representation of G and A € GL,,(K). Then the conjugated
representation is defined by gzﬁé =g~ A ' -¢c(g) - A. Equivalently, we often write

b 2 ¢

We denote the direct sum of representations ¢, ¥a by ¢a ® v = g — d¢a(g) ® va(g).
In particular we write @3 = ¢g @ ... D ¢g (n summands). The inner tensor product of
representations @g, g of the same group G is denoted by ¢¢ Rvg = g = ¢ (g)Rva(g).
It is again a representation of G. In contrast, the outer tensor product of representations
¢ of G and vy of H is written as ¢g # vy = (9,h) = ¢c(9) ® Yu(h) and is a
representation of the direct product G x H. The linear multiple of ¢ with a representation
A of degree 1 is written as Ag - ¢¢ = g — Ag(9) - ¢ (g)- It is a special case of an inner
tensor product. The restriction of ¢ to a subgroup H < G is denoted by ¢ | H = h —
$c(h). The extension of a representation ¢z to a supergroup G > H is denoted by ¢
Note that the extension of a representation does not exist in general.

We define the inner conjugate of a representation ¢y with an element t € G of a
supergroup G > H by ¢ty = g — ¢u(tgt™t). ¢l is a representation of the conjugated
subgroup H! = t~'Ht. If in particular H is normal in G, then the inner conjugate of any
representation of H is again a representation of H, however, in general, not equivalent
to the original one. The definition of the inner conjugate implies the rule

(¢h)" = 0 = g = dultsgs™'t™"),

i.e., g firstis conjugated by the inverse of the outer exponent.

The most important construction in this paper is the induction. Let H < G be a
subgroup with representation ¢p and T' = (¢1,...,t,) a transversal of H\G of length
n = (G : H). Then the induction of ¢5 to G with transversal T is defined by

outr G = g [bulti-g-t;')|i,j€{l,...,n}], with
: _ ou(zr), x=€H
Pu(e) = { Odi(cpH)v else

Since the equivalence class of ¢ 77 G is independent of the choice of the transversal T,
we omit 7" when calculating only up to equivalence. If in particular ¢ is of degree 1,
then the induction is monomial. If even ¢y = 1p, then the induction is a permutation
representation. A regular representation of a group is the special case of a permutation
representation given by any induction 1g 1 G.

3. Constructive Representation Theory

This section contains the mathematical foundation of the decomposition algorithm.
Section 3.1 presents theorems on the interaction of induction and other representation
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theoretic constructions (direct sum, conjugation etc.). This section serves as a “toolkit”
throughout the paper. In Section 3.2 we investigate monomial representations, showing
that they are essentially direct sum of inductions; this allows us to apply the former
results. After the short Section 3.3 on intertwining spaces, we derive formulas for decom-
position matrices in Section 3.4. This section contains the most important mathematical
results in this paper.

We present most of the results as symbolic manipulation of structured representa-
tions and matrices; they can readily be implemented and serve as building blocks for
doing symbolic computation with representations. We refer to Section 5 for the actual
implementation in the library AREP.

3.1. INDUCTION

In this section we present theorems that explain the interaction of the induction with
other constructions for representations (cf. Section 2).

3.1.1. CHANGE OF TRANSVERSAL

It is known that the equivalence class of an induction of a representation ¢ of H < G
is independent of the choice of transversal, i.e.,

P1rG=o 17 G.

We determine the conjugating matrix, corresponding to the pair (7, T7"), which establishes

equality. Let ¢ be a representation of H, n = (G : H) and T = (¢1,...,t,) an arbitrary

transversal of H\G. First we consider two particular cases of a change of transversal.
Change of coset representatives in 7" leads to the transversal

T = (hltla-">hntn)7 hl € H>

and has the following effect on the induction:
D

= [ci(tiﬂj_l)] 5

2,

(6 1r G)(a) = [d(tiaty )], = [Blhatiat; ;)]

i,j

where D = @7, #(h;'!) is a block diagonal matrix with blocks of size deg(¢).
Permutation of T with o € S,, leads to the transversal
T' =T = (tjo-1,...,t,,-1)

I YnoT

and the induction with T” can be calculated as

610 @)a) = |dltaty )]
[(i)(tifl xtj_"l_l )] i
(fo" 1] ® Laegten)  [9ltiat5 )], - ([0,7] © Lacg(e)

¥
= (@11 G)()l7IPteeso,

The general case of a change of transversal can be composed from these two particular
cases.
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Theorem 3.1 Let H < G be a subgroup and ¢ a representation of H and let T =
(t1,...,tn) and T' = (t|,...,t)) be two transversals of H\G. Assume that o is the

r'n

permutation in Sy, mapping the cosets (Hty, ..., Ht,) on the cosets (HtY,..., Ht)). Then
(¢ TT G)M = (¢ TT’ G)7 with M = ([U ’TL ® ldeg(qb @¢ (t -t by ) :
We call M the matriz corresponding to the change of transversal T — T'.

PrOOF. We have ¢ t7- G = (¢ 17 G)l7"®Las@) according to the calculation above.
The transition from T to T" is only a change of coset representatives, and hence ¢ T
G = (¢ tr- G)P with D =@, (t,.-1 /7). The result follows. O

The change of transversal is the most important basic routine for the computation with
inductions. The following theorems explain the interaction of the induction with other
operations. In most of the cases equality is obtained by choosing a specific transversal.
This makes Theorem 3.1 a central tool for manipulating inductions.

3.1.2. DOUBLE INDUCTION

Induction is a transitive operation. If ¢ is a representation of H and H < K < @ then

$1G=(61K)1G.

Equality is established by an appropriate choice of the transversal.

Theorem 3.2 Let H < K < G be groups and ¢ a representation of H. Suppose T =
(t1,...,tn) and S = (s1,...,8m) are transversals of H\K and K\G respectively. Then

¢1rs G = (617 K) 15 G,

where T'S = (t151, .-, tnS1,t182, - -+, tnS2, .-, t18m, - - -, tnsSm) denotes the complex prod-
uct of the transversals S and T .

PROOF. T'S is a transversal of H\G and
(¢1r K)1s G = @wWwWﬁ)%G

T [qﬁ(t spws, 't 1)]

= ¢11s5G,

(kyi),(6,4)

which proves the result. O

Theorem 3.2 allows us to decompose a given induction into small steps along a chain
of subgroups by switching to a suitable transversal using Theorem 3.1.

3.1.3. DIRECT SUM

Induction is additive, i.e., if ¢; and ¢ are representations of H < G then

(61 ® #2) TG = (61 1G) @ (d21G).

Equality is established by a permutation matrix.
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Theorem 3.3 Let H < G be a subgroup with representations ¢1 and ¢o of degrees dy
and dy, respectively. For brevity we set d = dy + dy. Further let T be a transversal of
H\G of length n. We denote with o the permutation mapping the list

n—1 n—1
U®-d+1,.. . k-d+d) U |Jk-d+di+1,...,(k+1)-d)
k=0 k=0

elementwise onto (1,...,n-d). Then

(¢1 @ ¢2) 10 )™ = (61 17 G) ® (62 11 G).

PROOF. The induced representation is of degree n-d. The first concatenation corresponds
to the indices of the basis vectors of the representation space of ¢1 1 G in (¢1 @ ¢2) T G,
and similarly for the second concatenation. The corresponding change of basis decom-
poses the representation. O

3.1.4. CONJUGATION

Inductions of equivalent representations ¢ and ¢ = ¢ are equivalent. The conjugating
matrix can be stated explicitly.

Theorem 3.4 Let H < G be a subgroup of index n with representation ¢ over K of
degree d and T a transversal of H\G. Assume A € GL4(K), then

(6" 11 G) = (¢ 1r G) 4.

Proor. For x € G we have
@ 1 G)a) = [t h)] = (A7t ) A] = (0 G) ) O,

Z7

as desired. O

In the case in which A is a decomposition matrix for ¢, we can apply Theorem 3.3 to
compute a permutation matrix P such that (1;® A) - P decomposes ¢ 1 G into a direct
sum. However, in general the summand are not irreducible.

3.1.5. OUuTER TENSOR PRODUCT

Assume G1,G4 are groups and Hy < Gy, Hy < G are subgroups with representations
@1, @2, respectively. A well-known theorem (e.g., Curtis and Reiner (1962), p. 316) states

(61 T G1) #(d2 1 G2) = (d1 # ¢2) T (G1 X Ga).

As before we obtain equality by an appropriate choice of a transversal. The following
theorem is the basis for the constructive decomposition of a monomial representation
into an outer tensor product.

Theorem 3.5 Let Hy < G and Hy < G5 be subgroups with representations ¢, and
¢2. Assume Ty = (tgl), . ,tg)) and Ty = (t@, . ,tg)) are transversals of Hi\G1 and
H>\G2, respectively. Then

(f1 T1y G1) #(¢2 1, G2) = (¢1 # ¢2) Trixm (G1 X G2),
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where Ty x Ty = ((tgl), t§2)), (t§1),t§2)), .. ) denotes the Cartesian product of the lists Ty
and Ts.
PROOF. T; x T is a transversal of (H; x H2)\(G1 x G3) and
((¢1 Ty G1) #(d2 T1p G2)) (21, 72)
— [¢1 t(l)xlt(l) )]Z [¢2 (t(2)m2t(2) )} y

»J )

_ 1, 1)~ () 271
= [k o) (@t ) et )]
(1 # d2) T x1y (G1 X G2)) (z1,2),

as desired. O

If the products H; x Hs and G; X G in Theorem 3.5 are inner direct products then
T, x Ty = T1T5 is just the complex product of the transversals. Note that not every rep-
resentation of a direct product is a conjugated outer tensor product of representations of
the factors. In Section 3.2 we present a necessary and sufficient criterion for the existence
of such a decomposition in the particular case of a monomial representation.

3.1.6. INNER CONJUGATION

The induction of a representation ¢ of H to a supergroup G can be expressed as an
induction of an inner conjugate ¢*, which is a representation of H?.

Theorem 3.6 Let H < G be a subgroup, s € G, ¢ a representation of H, and T a
transversal of H\G. Then

¢t G =0 T5-17 G.
Proor. Let T = (t1,...,t,) and € G. Then
(011 G)(@) = [dltiat; )] = [d7(s Hiwt;'s)] = (6" tiir G)(@).
2,

2,

Note that s71T is a transversal of H*\G. O

In particular we have ¢ T G = ¢° T G. Next, we consider the inner conjugate of an
induction.

Theorem 3.7 Let H < K < G be subgroups, ¢ a representation of H, T a transversal
of H\K, and s € G. Then

(@17 K)* = ¢° t1s K?,

where T® = (s™t1s,...,s 't,s) denotes the conjugate of the transversal T = (t1,...,t,)
by s.

Proor. With z € K°® we compute
(0 tr K)*(z) = (17 K)(sws™") = gza(tisxsfltj_l)] .
= (9" T+ K°)(2)
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as desired. O
3.1.7. RESTRICTION

Mackey’s subgroup theorem (Curtis and Reiner 1962, p. 324) gives a partial decom-
position of an induction restricted to an arbitrary subgroup. Assume H,K < G are
subgroups and ¢ is a representation of H. Then

Bt IK=P (¢ | (H NK)) 1K,
seS

where S is a system of representatives of the double cosets H\G/K = {HgK | g € G}.
We give transversals for the inductions in order to establish equality.

Theorem 3.8 (Mackey) Let H K < G be subgroups, ¢ a representation of H, and
S = (s1,...,5n) a system of representatives of the double cosets H\G/K . Assume T; =
(ti,---stir), @ =1...m, are transversals of (H* N K)\K. Then the concatenation

T= U s;T; is a transversal of H\G,
i=1

and

(617 G) LK =P (6" | (H* NK)) 11, K.

i=1

ProOF. First we show that T is a transversal. T' has the right length since (G : H) =
S (K : (H**NK)). Assume further that z,y € T,z # y. Then one of the following two
cases applies. (1) z,y € T; for a suitable i, and hence z,y are of the form x = s;t; ;, y =
sitik, J # k, and we get
ZUy_l €EH& Siti,jti,k_13;1 €EH& ti,jti,k_l € H%.
This contradicts that T; is a transversal of (H® N K)\K. (2) z,y are of the form z =
sitik, Y = sjtje, with ¢ # j. We get
a:y_l €EH& Siti7ktj7g_18]-71 € H& Hs; ti7ktj7g_1 = Hs;,
N—_——
€K

which contradicts that s;, s; are elements of different double cosets.
To proof the second assertion, let x € K. We derive

(6 1r Q)a) = [a's(tixt;w ij € {1,...,Zrk}]
k=1

= @ I:(i)(sktk,ixtk,j_lslzl) | 1,] € {1, .. .,Tk}:|
k=1

= @ [¢sk (thil’tk’j_l) | i,j S {1, .. .,T‘k}]
k=1

= D¢ L H* NEK)) 1, K) (2).

k=1
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This completes the proof. O

In the particular case that ¢ = 1 is the trivial representation, i.e., ¢ 1 G is a permutation
representation, Mackey’s theorem yields exactly the decomposition of (15 1 G) | K into
its transitive constituents. We will use the following two special cases of Theorem 3.8.

Corollary 3.9 If N <G, ¢ a representation of N, and T a transversal of G/N then
(¢t G) LN =(Pd¢".

teT

PRrOOF. This follows from Theorem 3.8 using N\G/N = G/N. O

Corollary 3.10 Let H < G, N <G with HN = G, ¢ a representation of H, and T a
transversal of (N N H)\N. Then T is also a transversal of H\G, and

(@17 G) LN =(¢ L (NNH))Tr N.

ProoF. Since H\G/N = HN\G = G\G, there is only one double coset with represen-
tative 1. The rest follows from Theorem 3.8. U

The following theorem computes the induction of a restriction.

Theorem 3.11 Let H < G be a subgroup, ¢ a representation of G, and T = (t1,...,tn)
a transversal of H\G. Then

(6L H) 17 G)P = (1g 117 G) @ ¢, with D = () ¢(b).

=
ProOOF. For z € G we have

(6L H) 17 &) (@) = [o(t) ™ (6 L H)(tiat; M )o(t;)|
[r(tiat;h) - o(@)],
(L 1 @)(@) © (a).

Notice that in the second equality the block ¢(t;)~" - (¢ | H)(tia:t;l) -$(t;) is equal to
¢(x), if ticvtj*1 € H, and else is equal to the all-zero matrix. [

4,3

3.1.8. KERNEL
The kernel of an induction can be computed as follows.

Theorem 3.12 Let H < G be a subgroup with representation ¢. Then the kernel of
¢ tr G, denoted by ker(¢ Tr G), is independent of the choice of transversal T, and is
given by

ker(¢ 1 G) = coreq (ker(@),

where coreg(K) = [),cq K, called the core of K in G, denotes the largest normal
subgroup of G contained in K < G. In particular, ker(1y 1 G) = core(H).
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PROOF. We choose an arbitrary transversal T' of H\G and set d = deg(¢). Then z €
ker(¢p 17 G) & 2t € Hand ¢p(zt” ) =1 forallt € T & 29 € H and ¢p(z9 ) = 14
for all g € G & z € ker(¢)? for all g € G, as desired. O

3.2. MONOMIAL REPRESENTATIONS

Monomial representations are a natural generalization of permutation representations.
A representation ¢ : G — GL,(K) of a group G is called monomial if every image
#(g9), g € G is a monomial matrix, i.e., ¢(g) contains in every row and column exactly
one nonzero entry. While the set of all permutation matrices in GL,,(K) is finite (of size
n!) the same does not hold any longer for the set of monomial matrices (if |K| = 00), not
even for the subset of those of finite order.

Note that questions concerning monomial representations cannot easily be reduced to
permutation representations. E.g., monomial representations of degree > 1 can be irre-
ducible whereas permutation representations are always reducible (since they contain the
trivial representation 1¢). Furthermore, there is a class of groups, called M-groups, (Cur-
tis and Reiner 1962, pp. 357), with the property that every representation is equivalent
to a monomial one. An important class of M-groups consists of the supersolvable groups.
G is supersolvable if it has a composition series in which all subgroups are normal in G.
This property can be exploited to very efficiently construct a complete set of monomial
irreducible representations and a fast Fourier transform for G (Baum and Clausen 1994).

In the following we present the constructive results concerning monomial representa-
tions which we need for their decomposition. We show that a monomial representation
essentially is a direct sum of induction of representations of degree 1 (cf. Theorem 3.15
and Theorem 3.16), hence the results on inductions in the previous section are applicable.

First we generalize some notions concerning permutation representations to monomial
representations. For this purpose we associate with every monomial representation u a
unique permutation representation in the following way.

Definition 3.13 Let u be a monomial representation. The underlying permutation rep-
resentation of u, denoted by fi, is obtained by substituting all nonzero entries by 1 in the
images of p.

Using 1 allows us to transfer many concepts for permutation representations to mono-
mial representations. Standard books on permutation representations and permutation
groups include Wielandt (1964) and Dixon and Mortimer (1996).

Definition 3.14 A monomial representation p of a group G is called transitive, if j is
transitive. The orbits of u on {1,...,deg(u)} are defined as the orbits of & on this set.
The stabilizer stab, (i) of a point ¢ under  is the stabilizer of ¢ under f.

3.2.1. ORBIT DECOMPOSITION

Analogous to a permutation representation, also a monomial representation can be
decomposed by a permutation into its transitive constituents corresponding to its orbits.
For a decomposition into irreducible representations we can thus restrict ourselves to the
transitive case which is investigated in the next paragraphs. We remind the reader that

0] 4, 1 signifies $4 = 9. The following theorem is immediate.
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Theorem 3.15 Let p be a monomial representation of degree n of a group G. Assume
O1,...,0 are the orbits of u on {1,...,n}. Suppose o is the permutation mapping
L=0,U---UOg = (b1,...,¢,) onto (1,...,n), i.e., 9 =i, i =1...n. Then

K3
k
[on]
p 2 @B
i=1
where the p;’s are transitive monomial representations.

3.2.2. DECOMPOSITION INTO AN INDUCTION

Every transitive monomial representation is equivalent to an induction of a represen-
tation A of degree 1 of a subgroup H. We present a constructive proof.

Theorem 3.16 Let p be a transitive monomial representation of a group G over a field
K with representation space V = (vy,...,v,), i.e.,

v; - u(g) = Vjilg) * ai(g);

where a;(g) € K for all g € G. Assume H = stab, (1), and T = (t1,...,t,) is a transver-
sal of H in G. Then there exists a representation A of H of degree 1, such that

7 RS 17 G, where D = diag(a;(t;) ' |i=1...n).

PROOF. Assume H = stab, (1) denotes the stabilizer of 1 under u. Since p is transitive,
(G : H) = deg(p) = n. Let T = (t1,...,t,) be a transversal of H\G with 1#() = g,
For h € H, viu(h) = viai(h). Thus we define the representation A : h + ai(h) of H
of degree 1. The representation space of the induced representation A\ 17 G is given by
VY =(vy®t;|i=1...n). Setting t;g = hity, h; € H, we get

(v1 @)A1t G)(g) = viA(h;) @ty = (v1 ® tir)ag (hy).
We define w; = vy u(t;) = viaq(¢;), for i = 1...n, and compute
w; - p(g) = v1 - pltig) = v1 - plhity) = o1 - ar(hy)p(ty) = wir - ai(hy).
Hence the change of basis v; — ai(t;)v;, @ = 1...n, conjugates pu to X 7 G. The

corresponding conjugation matrix is
D = diag(al(ti)_l | 1=1.. TL)
(the exponent is —1, since G operates from the right). O

If p is a permutation representation, then y is even equal to an induction.

Corollary 3.17 If, under the conditions of Theorem 3.16, i is even a permutation rep-
resentation, and H = stab, (1), then

p=1lgtr G
for every transversal T = (t,...,t,) of H\G with the property 1"(*) =i i=1...n.

PROOF. Since all entries in the images of p are 1 we obtain 1g as the representation
from which p is induced. The correction matrix D hence degenerates to the identity. [
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On the uniqueness of the decomposition into an induction we prove the following
theorem.

Theorem 3.18 Let A; be a representation of H; < G of degree 1 and T; a transversal
of H\G, fori=1,2. If
At G =X T, G,

then Hy, and H> are conjugated subgroups in G, and A1, A2 are inner conjugated repre-
sentations.

Proor. Let u =X\ tr, G = A2 11, G. First, we apply Theorem 3.8 to get (A1 T, G) |
Hy = ...® X\ @ ..., where the summand )\, arises from the double coset H;\G/H;.
Hence H; stabilizes a point under p and so does Hs. Since p is transitive it follows that
H, = HS for a certain s € (. Using Theorem 3.6 we get . = X2 t1, G = A5 T45-11, G,
where A5 is a representation of H;. We consider the transversal elements v € 77 and
v € s Ty, which both are in H;, without loss of generality at the common position j.
Then, for x € Hy,
A (uzut) = A5 (vev ™) & A (z) = A3(z),

and hence A; and \s are inner conjugates. [

The following lemma is obvious.

Lemma 3.19 Let H < G and X a representation of H of degree 1. If y = XA t1 G, then
p=1g1trG.

3.2.3. DECOMPOSITION INTO AN OUTER TENSOR PRODUCT

In this paragraph we prove a necessary and sufficient criterion which determines
whether a transitive monomial representation can be decomposed, using a monomial ma-
trix, into an outer tensor product of monomial representations. The criterion has been
found by Minkwitz for the special case of a permutation representation and is presented
here, for the monomial case, with a shorter proof.

Theorem 3.20 Let u be a transitive monomial representation of a group G = Ny X Na,
which is the direct product of N1 and N2. Then p is equivalent by a monomial matriz
M to an outer tensor product of two representations p1 of N1 and ps of No (which
necessarily are also monomial and transitive),

M
> pi1 F 2,
if and only if
|H| = |H N Ny|-|HN Ny

Assume p EENSY Tr G with a representation A of degree 1 of H and a diagonal matriz D
(using Theorem 3.16), then

p 22 (NLHN Nt NO)# (AL HNON) b Ny),

where T; is a transversal of (H N N;)\N;, for i = 1,2, and M is a monomial matriz
corresponding to the change of transversals T — T\T»> (see Theorem 3.1).
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PROOF. Let p ELN w1 # po with monomial M. Assume p” = X\ tr G with a repre-
sentation A of H, and ,uiD" = X\ T1, Ni, where )\; is a representation of H;, i = 1,2.
Then (A 7 G)P7'M = (A, 11, Ni)#(As T No))Pr ®P2" | Switching to the under-
lying permutation representation on both sides yields (cf. Lemma 3.19, Theorem 3.5)
(g tr @)Y =1y, m, try1, G (HiHs is a direct product), where P is the underlying per-
mutation matrix of M. Theorem 3.1 allows us to write (1 17 G)¥ = 15 T G with an
appropriate transversal T7”. Using Theorem 3.18 H and Hy H» are conjugated in G by an
element & = x1x2, x; € N;. We get H = (H; H2)"'*2 = H{* Hy?, which is again a direct
product and |[HNN;| = |H'| = |H;|,i = 1,2. Hence |H| = |H,|-|Hz| = |[HNN:|-|HNN,|
as desired.

Conversely, assume H; = HNN;, i = 1,2, and |H| = |H;|-|Hz|. Because of H; < H, i =
1,2, and H1 N H2 = {1}, we get H = H1 X HQ = HlHQ, and hence

AMr G = (AL H)#A L H)) tr G

s (WL HD) ey NO)# (N L Hs) 1, No)

The first equality holds, since A is equal to the outer tensor product of the restrictions to
the factors (because it is irreducible and of degree 1, Dornhoff (1971), p. 54). The second
equality uses Theorem 3.5, with M as the conjugating monomial matrix corresponding
to the change of transversals 7' — T175. We get

2 N trr, G = (AL H) A N # (AL Ha) tr, Na),

and DM is monomial as required. O

Corollary 3.21 If ¢ is a regular representation or a representation of degree 1, then ¢
decomposes into an outer tensor product exactly as the group decomposes into a direct
product.

PROOF. If ¢ is regular, then |H| = 1; if deg(¢) = 1, then H = G. In both cases the
condition |H| = |H N Ny| - |H N Nz| in Theorem 3.20 is satisfied. [

3.2.4. ABELIAN GROUPS

The representation theory of abelian groups is classical and well understood (Curtis
and Reiner 1962, pp. 34). The purpose of this section is to classify the monomial repre-
sentations of abelian groups, which provides an efficient way for their decomposition.

First we recall in the following lemma the relationship between representations of a
group G and representations of a factor group G/N.

Lemma 3.22 Let N <G be a normal subgroup. Then the representations of G/N cor-
respond bijectively to those representations of G, for which N is contained in the kernel.

Proor. Let k: G — G/N, g~ gN denote the canonical homomorphism and let ¢ be
a representation of G/N. Then the composition ¢ o k is a representation of G' containing
N in the kernel. If, conversely, ¢ is a representation of G satisfying N < ker(¢), then
gN — ¢(g) is well-defined and a representation of G/N. U

When convenient, we identify representations of G/N with the corresponding rep-
resentation of G. The representation theory of abelian groups is very simple since all
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irreducibles have degree 1. This implies that any representation ¢ of a subgroup H < G
has an extension ¢ to G (follows from Theorem 3.31). We will show in Lemma 3.32 how
the extension can be done constructively.

Now we can classify monomial representations of abelian groups.

Theorem 3.23 Let p be a transitive monomial representation of an abelian group G
with decomposition uP = A tr G according to Theorem 3.16, where X is a representation
of N < G with extension A to G. Then

pPPr =X (In 17 G), with D, = diag(\(t) |t € T) and X | N = \.

In particular, p is equivalent (by a diagonal matriz) to the product of a representation
of degree 1 and a reqular representation of a factor group of G. Thus, the irreducible
components of p are pairwise distinct.

PROOF. X can be extended to a representation A of G. Using Theorem 3.11 we get

WPP = (Wt G2 = (ML N) 17 G) ™ = (v 17 G) @ X =X (Ix 17 G).

By Lemma 3.22, 15 17 G is a regular representation of the abelian group G/N and hence
contains pairwise different irreducibles and thus the same holds for px. O

Theorem 3.23 shows that, for an abelian group G, the decomposition problem reduces
to the special case of a regular representation. Using Corollary 3.21 we can decompose
the latter into regular representations of cyclic groups of prime power order. This can
even be done without computing the (many) normal subgroups of G.

3.3. INTERTWINING SPACE

Definition 3.24 Assume ¢, are representations of the group G over the field K with
degrees deg(¢) = n, deg(y) = m, respectively. The vector space

Int(p,9)) = {A€K"™™ |VgeG: ¢(g)- A=A -9¥(9)}

is called the intertwining space of ¢ and 1. Further we denote by

(¢,9) = dim(Int(¢, )

the dimension of the intertwining space or intertwining number of ¢ and 1.

If K is of characteristic 0, then the intertwining number of two representations is the
scalar product of the corresponding characters (see Curtis and Reiner (1981), p. 212),
justifying the notation above. The intertwining number depends only on the equivalence
classes of the arguments. Since we consider matrix representations in this paper, we need
some results on the structure of the intertwining space.

Theorem 3.25 Let ¢, ¢1,02...,10,101,%2 ... be representations over K of the group G
with degrees deg(¢) = n,deg(y)) = m. Then the following holds:

(i) For A € GL,(K), B € GL,(K): Int(¢A,9B) = A~1 - Int(p,1)) - B.

(ii) |nt(¢1®¢2;¢1®¢2):{{ﬁ;1 ﬁ;j } |Ai,je|nt<¢i,wj)}.
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(11i) (Schur’s Lemma) If ¢, are irreducible of degree n, then

Int(¢, ) = { K- A, for agnfl € GL,(K), z;z

(iv) Assume ¢ = (Lo, @ $1) & ... & (1, @ 6x) and = (L, ©$1) & .S (L, @ 6,
ni,m; > 1, are two completely decomposed representations with irreducible, pairwise
distinct ¢;. Then

Int(¢, 1) = (K™ ™™ ® lgeg(gy)) @ - - & (K™ ™ @ Laeg(gy,))-

Hence every matriz in Int(p,v) is block-permuted with its structure determined by
the homogeneous components of ¢ and .

PrROOF. (i) and (ii) are straightforward. For (iii) let ¢, be irreducible of degree n. If
¢ 2 1, then (¢,9) = 0, and hence Int(¢, ) = {0,}. If ¢ =2 1), then exists an invertible
matrix A satisfying ¢ = 1, which generates the intertwining space because of (¢, 1)) = 1.
(iv) follows from (ii) and (iii). O

Further results on the intertwining space of inductions and restrictions can be found
in Piischel (1998).

Computing the intertwining space in the general case is expensive, but important in
constructive representation theory. As an example, it can be used to determine a con-
jugating matrix for two arbitrary, equivalent representations. The computation requires
the solution of a system of linear equations.

Assume ¢,1) are representations of the same group G = (gi,...,¢gn). Obviously, a
matrix A = [a; ;] is an element of Int(¢, ) C Kdeg () xdeg(¥) "if and only if the equations

P(gi) - A=A -Y(g:) & ¢(gi) - A— A-9(9i) = Odeg(g),deg(v)s +=1...1m,
are satisfied. Thus we obtain for every generator g the following deg(¢) - deg(v) equations
in the same number of unknowns:

deg(¢) deg(¢)
G(9)ri - aie = Y anj-(9)e =0,
1 j=1

for k=1...deg(¢), £ =1...deg(yp). We restate this in the following theorem.
Theorem 3.26 The intertwining space of two representations ¢, of the group G gen-

erated by {g1,...,g9n} can be computed by solving a system of n - deg(¢) - deg(v) linear
equations in deg(¢) - deg(v) unknowns.

The system of equations is sparse if the representations ¢, are sparse.
3.4. DECOMPOSITION MATRICES

Let ¢ be a representation of the group G. We refer to a decomposition matrix of ¢ as
any matrix A decomposing ¢ into a direct sum of irreducible representations, i.e.,

Pt = @ pi, p;i irreducible fori =1...n.
i=1

Equivalently, this can be stated using the intertwining space.
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Definition 3.27 Let ¢ be a representation of a group G and p an arbitrary decompo-
sition of ¢ into irreducibles p;, i.e., ¢ = p = @?:1 pi- We call every invertible matrix
A € Int(¢, p) a decomposition matriz for ¢.

For the decomposition of the character, i.e., the equivalence class, of a representation,
decomposition matrices are not of importance; their existence is sufficient. For this reason
they rarely appear in the literature. In this paper, decomposition matrices are the central
objects of interest.

In the following we derive the main results of this paper by providing formulas for de-
composition matrices corresponding to construction for representations like outer tensor
product, induction, and extension. Combining these results yields the algorithm for recur-
sively constructing a decomposition matrix for a monomial representation of a solvable
group. The decomposition algorithm is presented in Section 4.

3.4.1. Cvycric GROUPS
Theorem 3.28 Let G = Z,, = (z | ™ = 1) be the cyclic group of order n with regular
representation ¢ : x — [(1,...,n),n]. Then ¢ is decomposed by the matrix DFT, =

[w¥ |i,7=0...n—1] into @?:_01 Ni, where \; : o — Wi,

PRroOOF. It is sufficient to show that the jth column of DFT,, 57 = 0...n — 1, is an

eigenvector of [(1,...,n),n] with eigenvalue w? .
(L, n),n] - (Wi, .., wl DT = (Wbl W) T

— Jo.(,,07 n—1)-j\T
= w) - (w, ,...,wr(L ) ),

as desired. O

The basic building blocks for solvable groups are cyclic groups of prime order p. We
will see that, correspondingly, the matrices DFT), for a prime p, are the basic building
blocks for decomposition matrices of inductions.

3.4.2. DIRECT SUM
The decomposition of a direct sum is obvious.

Theorem 3.29 Let ¢y, ¢ be representations of G with decomposition matrices Ay, As.
Then Ay ® As is a decomposition matriz for ¢ ® ¢po.

3.4.3. OUTER TENSOR PRODUCT

Theorem 3.30 Let ¢1,¢> be representations of Ny, N2 with decomposition matrices
A1, Ay, respectively. Then exists a permutation matriz P such that (A; ® As) - P is
a decomposition matriz for ¢1 # ¢s.

PRroOOF. This follows from the distributivity of “#” and the fact that the outer tensor
product of two irreducible representations is again irreducible. The computation of P is
an easy combinatorial task, which we omit here. [
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Note that the corresponding statement does not hold for the inner tensor product. If
¢, ¢ are irreducible representations, then ¢®1 is, in general, not irreducible. Furthermore,

the decomposition of ¢ ® ¢ is difficult and occurs frequently in physics where it is known
as the Clebsch-Gordan-Problem.

3.4.4. INDUCTION

The transitivity of induction (Theorem 3.2),
ou trs G = (¢n 11 K) 15 G,

provides an immediate idea for the stepwise decomposition of an induction. First, deter-
mine a maximal subgroup K between H and G. Second, decompose the lower induction
by recursion (divide) and derive a decomposition of the upper induction (conquer). The
conquer step requires the answers to the following two questions:

1. How do the irreducible components of ¢g 1 G arise from those of ¢ T K7
2. Given a decomposition matrix of ¢ T K. How do we compute a decomposition
matrix of ¢g T G?

Unfortunately, the answers to these questions do not exist in general. In the case that
K <G (and hence of prime index), Clifford’s theorem (Curtis and Reiner 1962, p. 345)
provides an exact answer to the first question. The second question is answered (in a
different form than used in this paper) in the context of Fourier transforms in Rockmore
(1990), which considers the general case of an abelian G/K . In the following, we integrate
the results in our framework by working out the corresponding formulas. We start with
a constructive form of Clifford’s theorem.

P
Theorem 3.31 (Clifford) Let N < G be a normal subgroup of prime index p, T =
(t0,tL, ..., tP71) a transversal of G/N, and p an irreducible representation of N. Then
ezxactly one of the two following cases applies:

1. (cf. Figure 1, Case 1) p = pt' fori = 0...p — 1. Then p has ezactly p pairwise
inequivalent extensions to G. Assume p is one of these, and \; : t — w; is a
representation of G/N,i=0...p— 1. Then all extensions of p are given by \; - p,
i =0...p—1. The induction decomposes into irreducibles according to

p—1

(ptr A =P -7,

i=0
where A = diag(p(t)' | i =0...p—1) - (DFT, ®1,,,).
2. (cf. Figure 1, Case 2) p % p'" for i = 0...p — 1. Then the induction p 1+ G is
irreducible. Further,

p—1
(P17 G)IN =D,
=0

and
Pt G =(ptr Q)P
where B = ([(1,...,0)7",p] ® Laeg(p)) - (L(p—i)-deg(p) ® (1: @ p(tF))) .
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e} AP AP Ap—1-P pTG
p ext ext ext ind ind ind
N P ot ot pt"
Case 1: p = pt' Case 2: p  pt'

Figure 1. Clifford’s Theorem.

Proor. We prove only the three equations. Equation in 1.: Using Theorem 3.11, we get
(ptr @) =(In 17 G)@p, D =diag(p(t)’ |i=0...p—1).

The structure of A follows, since 1y 17 G is the regular representation ¢t — [(1,...,p),p]
of G/N = Z, and thus decomposed by DFT,, into p representations ¢ — w;;, 1=0...p—1,
of degree 1 (Theorem 3.28).

First equation in 2.: Follows from Corollary 3.9. Second equation in 2.: By Theorem 3.6,
pt tr G = p Tyir G. Multiplication of T' with ¢* permutes the cosets as o = (1,...,p) "
The change of transversals from T to #'T,

T = (.. P71 40 ) s 0T = (¢, P e, L ),

is equivalent to a multiplication of the last i transversal elements by ¢?. Using Theorem 3.1
gives the result. O

In the case p = p?, p has an extension to G. This can for instance be calculated using
the Extension Formula of Minkwitz (Minkwitz 1996, Clausen 1997). The formula requires
the determination of an extending character and the evaluation of p for all h € H. In
the particular situation in Clifford’s theorem, there is another method (Rockmore 1990),
which is based on the following lemma.

Lemma 3.32 Assume the situation of Theorem 3.31. In the case p = p* setting p(t) = A
defines an extension of p to G, if and only if A € Int(pt, p) and AP = p(tP).

If the degree of p is small and |N| is large, then this lemma provides a more efficient
way to compute the extension than Minkwitz’ formula. Another advantage is that no
extending character has to be computed. Note that Int(p?, p) is of dimension 1, hence
any generator differs from p(t) only by a scalar multiple.

As a consequence of Theorem 3.31, we can now give an explicit formula for the de-
composition matrix of the induction ¢ T G, if ¢ is a representation of N <1 G of prime
index.

Theorem 3.33 Let N % G be a normal subgroup of prime index p with transversal
T = (°¢%,...,tP~1). Assume ¢ is a representation of N of degree n with decomposition
matriz A such that ¢ = @le pi, where p1,...,p; are exactly those among the p; which
have an extension p; to G (Theorem 3.81, Case 1). Denote by d = deg(p1)+---+deg(p;)
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the entire degree of the extensible p; and set p=p,; ®...®p;. Then exists a permutation
matriz P, such that

M=(1,®A)-P- (@ pt) ® lp(nd)> ) ((DFTP ®1q) ® lp(n*d))
teT

is a decomposition matriz of ¢ T G. If we denote by \; : t — wli,, 1=0...p—1, thep
one-dimensional representations of G/N, then
p—1 j k
6tr M =EPPN-pee P ritrC
i=0 (=1 i=j+1

18 the corresponding decomposition into irreducibles.

Proor. Using Theorem 3.4,

k
(¢ 17 Q)2 = ¢4 47 G = (@ m) tr G.
i=1

Next, we use Theorem 3.3 , with the block decomposition p = p1 ©...D pj,pjtr1,---,Pk
of p, to compute a permutation matrix P such that

(017 G) VP = ptr G@ pj1 17 G @ ... p 11 G-

Since p has an extension p to G, we get, using Theorem 3.11,
(p 17 G)®rer PV = (1y 11 G) @ p.

The representation (1x 17 G) is decomposed by DFT,, into f;ol Ai, where \; : ¢t — wé.
Thus, P, p(t) - (DFT, ®14) is a decomposition matrix for p 17 G with corresponding
decomposition @f;ol 69%:1 Ai - pp. The inductions of the p;, ¢ = j + 1...k, are already
irreducible which completes the proof. [

3.4.5. EXTENSION

In the last section we derived a decomposition of the induction ¢x 1 G from a de-
composition of ¢n (N <G of prime index). In this section we derive in this situation a
decomposition of an extension ¢, (if it exists). The result gives us a second recursive
decomposition method which is necessary to decompose every monomial representation
of a solvable group.

Theorem 3.34 Let N % G be a normal subgroup of prime index p with transversal
T = (t° ¢, ...,t*P7Y), and let ¢ be a representation of N over the field K. Assume that
é has an extension ¢ to G. Further, let A decompose ¢ such that equivalent irreducibles
are equal and adjacent, p* = @le R;, where R; = p'* is a homogeneous component of
multiplicity n;. We set d; = deg(p;). Furthermore, we require that whenever R; = R;e,

then even R; = R;-e and that the R;’s are adjacent, ordered according to R;, R, ... ,Rt»p_l.

(2
Then there exist invertible matrices A; € K *" and a permutation matrixz P, such that

k
M=A- (@Ai@bldi) P
i=1
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A®1y _ D, Ai®1y Q
G Y D,F ) ———— RIr G —— (ptr Q)"
p ext ext ext ext
N R ROR ®...0 R’
Case 1: R = p", p extends to G Case 2: R = p", p T G is irreducible

Figure 2. Decomposing an extension using Theorem 3.34.
is a decomposition matriz of ¢.

PRrOOF. Let p be one of the p; with p 2 p'. According to Theorem 3.31, Case 2, the
direct sum p @ pt & ... @ p" " extends to p T G. Since ¢ has an extension to G, the
multiplicity of p, pt,...,p""  in ¢ is equal.

Now we investigate, how far ¢ is decomposed by A. Obviously, ZA is an extension of
¢“. Extensions of inequivalent extensible p; cannot be equivalent. Also, the extension of
an extensible p; and the induction of a non-extensible p; can not be equivalent (follows

from Theorem 3.31). Hence, ¢ - @f.:l ¥, and for each ¢ = 1;, either ¢) | N = R for

an extensible homogeneous component R, or ) ] N = RG&R' & ... D R for a non-
extensible homogeneous component R. In both cases, the remaining task is to decompose
the blocks ¢ = 1); (cf. Figure 2).

Case 1: v | N = R = p" for an extensible p. Then p has p pairwise inequiv-
alent extensions p;, ¢ = 1...p, and hence ¢ decomposes into @le ﬁfi with certain
ki > 0, Zle k; = n. For the corresponding decomposition matrix B we have B €
Int(y, @Y_, 7i*) < Int(R, R) = K"*™ @ 14, d = deg(p), according to Theorem 3.25, (iv).
Hence B = A ® 14 with an invertible matrix A.

Case 2: ) | N=RO®R'@...® R = R') R = p™ and p Tr G is irreducible.
The direct sum R’ can also be extended by R 7 G (Corollary 3.9), since all the R
have the common multiplicity n (see above). For the corresponding conjugation matrix
we have B € Int(¢,R tr G) < Int(R',R') = @)_ K"™" @ 14, d = deg(p). Hence
B =@"_ | A; ® 1,4 with invertible matrices A;. R t7 G is decomposed into (p 7 G)™ by
a permutation matrix ¢ (using Theorem 3.3).

Taken together, A - (@le A; ® 14,) - P is a decomposition matrix for ¢, where P is
the permutation matrix arising from the direct sum of the matrices ) in Case 2. This
completes the proof. [

Note that the condition R; = R;e = R; = R;e in Theorem 3.34 can be satisfied by a
block diagonal matrix, which can be computed block by block using Theorem 3.26. The
requirements concerning the ordering of irreducibles can be established by a suitable
permutation matrix.

The problem in Theorem 3.34 from an algorithmic point of view is the efficient com-
putation of the matrices A;. In the proof, not the matrices 4; but the matrices A; ® 14,
have been determined which requires the (expensive) computation of the intertwining
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space of representations which are a factor of d; larger than the matrices 4; in which
we are actually interested. In the following we present efficient methods for the compu-
tation of the A; for both cases (see Figure 2) considered in the proof of Theorem 3.34.
We use previous notation. Case 1 is solved in Theorem 3.37, and Case 2 is solved in
Theorem 3.38.

Case 1.9 | N = R = p" for an extensible p. Let B = A ® 14 be the decomposition

matrix with ¢ KN @le ﬁfi. Rather than computing B, we want to directly compute
the smaller matrix A. The following definition provides us with the appropriate “shrink
operator”.

Definition 3.35 Let n,d > 1. We define the partial trace operator Ty as
Ty: KM — K", M = [M; ;] = [tr(M )],
where [M; ;] is a division of M into d x d matrices and tr(-) denotes the ordinary trace.

We use the following properties of the operator Ty.
Lemma 3.36 Let M € K> gpnd A € K**™. Then

(i) Ty(M - (A® 14)) = Ta(M) - A,
(i) Ta((A® 1q) - M) = A-Ty(M),
(iii) Ta(MA®1e) = Ty(M)A.

ProOOF. We prove only (i), the other statements are shown analogously. Let A = [a; ;]
and M = [M; ;] with d x d matrices M; ;, where 4,5 = 1...n. Thus, M - (A ® 14) =
[>h_, M, - ax ;]. Applying Ty yields, using the linearity of the trace, [ ,_, tr(M; ) -
ag,;] = Tqy(M) - A as desired. [

The following theorem allows us to efficiently compute the matrix A ® 14 in Case 1
(cf. Figure 2).

Theorem 3.37 We use previous notation. Let ¢ | N = R = p" for an extensible p,
d = deg(p), and let R = @!_, 7Y be a decomposition of 1 into irreducibles. The p;’s are
pairwise inequivalent extensions of p. Then exists g € G\ N (set difference) satisfying

tr(py(g)) #0, and A € {A| Ta(v(g9))-A = A-T4(R)} and A invertible implies v NS

ProOF. We have
Int(¢, R) = {B | ¢(g) - B= B - R(g), for all g€ G}

= {A|¢(g)-(Ag§ 1y) = (A®14) - R(g), forallg e G\ N}

={A4|¢(9)- (A®14) = (A® 14) - R(g), for one g € G\ N}.

The first equality holds, since the structure B = A ® 14 guarantees that B is in the
intertwining space of the restrictions to N. The second equality holds because (G : V)
is prime. We set V, = {A | ¢¥(g9) - (A ® 14) = (A ® 14) - R(g)}. Mapping the equation

defining V, with Ty yields W, = {A | Tu(¢(g9)) - A = A - T4(R(g))} (Lemma 3.36, (i)
and (ii)). We have to show that V;, = W,. Obviously V, < W, and dim(V,) = Y_V_, k?.

i=1"™"

Further, ¥(g) and R are conjugates by a matrix A ® 14, hence Ty(3(g)) and Tq(R) are
conjugates by A (Lemma 3.36, (iii)). Thus W = {A | Tu(R(g)) - A = A-Ta(R(g))} has
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the same dimension as W,. We apply T, an get Ty(R(g)) = @_, tr(p;(9)) - a; - 1x, with
pairwise different a; # 0 (the a; are all powers of w,, Theorem 3.31). Since tr(p,(g)) # 0
by assumption, we get dim(W¢) = Y>°7_, k7 and hence dim(W}) = dim(W,) = dim(V,)
as desired.

It remains to show that a g € G\ N with tr(p;(g)) # 0 exists. Assume tr(p,(g)) = 0 on
all conjugacy classes, which are not in N, and let p; be another, inequivalent, extension
of p. Then p, = - p; with a certain representation of G/N of degree 1 (Theorem 3.31).
Since p; and p; coincide on IV, they have the same character and are thus equivalent, a
contradiction. O

Case 2. The following theorem deals with Case 2 (cf. Figure 2), showing that the de-
composition matrix @?_; 4; ® 14 can be determined without computing an intertwining
space.

Theorem 3.38 We use previous notation. Let ) | N = R& R & ...a& R = R/,
R = p", d = deg(p), and assume that p 17 G is irreducible. We evaluate ¢ at the
transversal T = (t°,t%,...,t?"1) and consider each image to be represented as a p X p

matriz of nd x nd matrices: Y(t') = [M,gzl)z]kg Then each M1(,i2+1’ i=0...p—1, has the
form A; ® 14. Furthermore, 1 AR tr G with A= @) A7' ® 1,4.

PROOF. As in the beginning of the proof of Theorem 3.37 we observe that a matrix
C=60!,C®14 € Int(R 1y G,¢) if and only if (R 17 G)(g) - C = C - ¢(g) for one
g€ G\ N,eg., for g=t.

Let R0 G =N ¥ with C' given as above. We compute

Ond ]-n by ]-d

(R1r G)(t) =
1, ®1y

]-n ® P(tp) Ond

where omitted blocks are = 0,4. In general, the matrix (R 17 G)(¢') has in the first
block row at position i + 1 the matrix 1,4 and 0,4 else, i = 0...p — 1. Correspondingly,
Y(t)) = (R 17 G)(t))° has the matrix C; *C;11 ® 14 at position (1,i+1),i=0...p— 1.
We set A; = C;'C; and A’ = @D)-1 4; ® 14. It remains to show that R t7 G 4 P
and hence 4R tr G with A = A'~'. Because of the remark at the beginning of this
proof, it is sufficient to show this for the image on ¢. It is A’ = (1, ® Crt®1y) - C.

Since the first factor of A’ leaves (R 17 G)(t) (given above) invariant by conjugation,
(R 17 G) ()Y = (Rt G)(t)© = 1(t), which completes the proof. O

Note that the conjugation matrix A in Theorem 3.38 is determined in a similar way
as the diagonal matrix D in Theorem 3.16.

4. Decomposing Monomial Representations

In this section we present and explain in detail the algorithm for decomposing an
arbitrary monomial representation p of a solvable group G (as in the entire paper, we
assume that p is given over a splitting field and that the Maschke condition is satisfied).
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The algorithm computes the irreducible representations contained in g and the corre-
sponding decomposition matrix as a product of highly structured, sparse matrices. This
factorization is a fast algorithm for the multiplication with A. For the special case of a
regular representation of a group G we hence obtain a fast Fourier transform for G. The
algorithm never needs to compute the character table of a group.

For the algorithm we use a stronger definition of decomposition as in Definition 3.27.
Let u be a representation of a group G. By decomposing p, we mean computing a matrix

A with
k

ph = @ pi, where p; is irreducible for ¢ = 1...k.
i=1

In addition, we require equivalent irreducibles to be equal, i.e., p; = p; = p; = p;, and
adjacent, and all irreducibles shall be (partially) ordered with respect to their degrees.

4.1. THE ALGORITHM

Algorithm 4.1 Input: a transitive monomial representation u of degree n of a solvable
group G. Output: a decomposition matrix A of u, given as a product of highly structured
sparse matrices, and irreducible representations p; of G, such that

m
pt = EB pfi, where p; is irreducible for i = 1...m,
i=1
and the following conditions hold

L i#j=pi#pj
2. The p; are ordered by degree.

For the convenience of the reader we first give a rough sketch of the recursive algorithm
and give the detailed version afterwards. In the following, D, P, M denote a diagonal
matrix, a permutation matrix, and a monomial matrix, respectively.

Sketched:

Case 1: p is not faithful.
u induces a representation p' of G/ ker(¢). Recurse with p'.

Case 2: p is irreducible.

There is nothing to do.
Case 3: p is not transitive.

Decompose u Ei 11 P ... P uyg into its transitive components p;. Recurse with the ;.
Case 4: p is a monomial representation of an abelian group.

Decompose p Loe (1g tr G) into a regular representation. Recurse with 15 17 G.
Case 5: p is a conjugated outer tensor product.

Decompose p M, w1 # ... # pg- Recurse with the p;.
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P
Case 6: u” = Ay 17 G and it exists N with H < N < G (induction recursion).

Decompose \g T G M, (Ag T, N) T, G into a double induction. Recurse with
Mg tr, N.

Case 7: uP = Ay 17 G and it exists N with H £ N % G (switch recursion).

Decompose the restriction (Ag 17 G) | N ﬁ) Aann T N into an induction. Recurse
with )\HQN TT’ N.

Detailed:
Case 1: p is not faithful.

1. Compute the kernel K. If p is transitive, decompose pu KEN Ag Tr G using Theo-
rem 3.16 and use Theorem 3.12.

2. Construct a faithful representation u' of G/K and decompose p' 4, @Tzl 0
by recursion. We represent G/K (which is solvable) as an ag group to speed up
computation (cf. GAP 3 manual GAP (1997), pp. 522).

3. Translate every irreducible p; of G/K into an irreducible p; of G.

Case 2: p is irreducible.

The irreducibility is tested with the character of p ({Xpu, Xu) L 1). A=1, is a decom-
position matrix with decomposition pu.

Case 3: p is not transitive.

1. Decompose p A, @le w; using Theorem 3.15. The pu; are transitive and P is a
permutation matrix.

2. Decompose ji; Ay D, pf/ for i = 1...¢ by recursion.

3. Compute a block diagonal matrix D which conjugates equivalent irreducibles of
different p; to be equal. This is done by solving a system of linear equations
according to Theorem 3.26. Note that equivalent irreducibles of the same p; are
already equal. The blocks in D correspond (in the coarsest case) to the degrees of
the Pi,j-

4. Determine a permutation matrix P which sorts the p; ; according to their degrees
such that equals are adjacent.

¢
A=P - (@ Ai> - D - P, decomposes p.
i=1

Case 4: p is a monomial representation of an abelian group.

1. Decompose p L, A¢ - (1g T G) using Theorem 3.23.
2. Decompose 1y 7 G EN @;”:1 p;j by recursion.
D - A decomposes p with decomposition 69;”:1 AG - pj-
Case 5: u is a conjugated outer tensor product.

1. Decompose p M, 1 # ... # e using Theorem 3.30. If G is abelian, then p is
regular (because of Cases 4 and 1) and we can use Corollary 3.21. M is monomial.

Ai i ki 1 - .
2. Decompose p; — @;nzl p;; fori=1...0 by recursion.
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3. Determine a permutation matrix P, such that
kl I\/E j
(6911 1 pl,]il #o# ®]e 1P Mze)
P ek
- @;?1:1 e @jg:l(pl,jl o F )i
P is computed from the degrees of the p; ;.

k
=M - <® Ai> - P is a decomposition matrix for p and

mq Mmye
= EB e @(pl,jl #... #pl7jl)k1,j1"'ké,j£_

Jji=1 Je=1
P
Case 6: If P = Ay tr G and it exists N with H < N < G (induction recursion).

1. Determine N by building the normal closure H of H in G and computing a com-
position series of G/H.

2. Decompose \g T G M, (A T, N) T, G using Theorem 3.1 such that T has
the form Ty = (t°,!,...,#?~1). M is monomial.

Decompose (Ag 17, N) 25 @, p¥ by recursion.

Determine which of the p; have an extension to G (cf. Theorem 3.31) which is
equivalent to pt = p;. We decide this by computing the permutation m; arising
from t permuting the conjugacy classes of N (by conjugation). Then pf = p; if
and only if the list of character values of p; is invariant under 7;. We denote the
extensible representations by oy, £ = 1...r and their direct sum by o.

Conjugate the non-extensible p; such that the following holds: If p; =2 pg-k then
even equality holds. This is done by using Theorem 3.26 and gives rise to a block
diagonal matrix D;. We denote a (complete) direct sum of inner conjugate non-
extensibles by 7, = p@...@p®pt® ... ®ptd...@p" ®...@p" forl=1...s

(Note that the multiplicities of the ptk are not equal in general).

6. Compute a permutation matrix Py such that (Ag T, N) BDR son®. DT

We apply Theorem 3.33 to obtain a decomposition matrix A’ for (Ag 11, ) trn G

A= (1,®B-Dy-P)-P- (@, c0@t) ®1yma)-
((DFTp ®14) © 1p(n*d)) )

where d = deg(o) and the extension of ¢ is computed by extending the its sum-
mands oy with Lemma 3.32. The corresponding decomposition into irreducibles
can easily be computed using Theorem 3.33.

7. Consider a summand p of 7,. We conjugate each ptlc tr, G onto p T, G using
Theorem 3.31, Case 2. Altogether this gives rise to a block diagonal matrix D, of
size p(n — d). Now equivalent irreducibles are equal and we sort them by degree
with a permutation matrix Ps.

- w

ot

A=D- A" (1,48 D) - P> is a decomposition matrix for p with decomposition

(@@A Uz@@TngTz >P2,

i=0 (=1

where \; = (t — w!) and n; is the number of summands of 7.
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Case 7: uP = Ay 17 G and it exists N with H £ N % G (switch recursion).

1. Decompose p 2> Ag T G using Theorem 3.16.

2. Determine a normal subgroup N % G using a composition series of G. It is H £ N
since Case 4 did not apply and hence G = HN.

3. Decompose (Ag t7 G) | N ELR (Aan~n T, N) by Corollary 3.10 (Agnn = Ag |
HNN) and Agny T, N B, @D, Ri, Ri = pf by recursion.

4. Determine which of the p; have an extension to G (cf. Theorem 3.31) which is
equivalent to p; = p;. We decide this by computing the permutation m; arising
from t permuting the conjugacy classes of N (through conjugation). Then p} = p;
if and only if the list of character values of p; is invariant under ;.

5. Conjugate the non-extensible p; such that p; = p§k implies equality. This is done
by using Theorem 3.26 and gives rise to a block diagonal matrix D;.

6. Compute a permutation matrix P that orders the homogeneous components R =
R; such that inner conjugate non-extensible components are ordered adjacently as
R,Rt,...,Rt" .

7. Decompose Ag T, G @;’il ¢;. For each j, either (1) ¢; | N = R,

R = p" for an extensible p or (2) ¢ | N = R® R! S...eR" ", R=p"for a
non-extensible p = p; (cf. Theorem 3.34).

8. Case (1), ¢; | N = R. Extend R = p" by @5’:1 ﬁff = 4); using Lemma 3.32. The
multiplicities ¢; can be determined from the character of ;. Decompose v; with
A; = C; @ Lgeg(p) into @?:1 ﬁf.j using Theorem 3.37. Set Qi = Lyeg(R)-

9. Case (2), i | N=R®R' & ... R" ', R = p". Decompose t; with 4; =
(@?:1 Cj ® laeg(p)) - Qi into (p 7 G)™ using Theorem 3.38. Q; is a permutation
matrix.

10. Order the irreducibles by degree with a permutation matrix Ps.

M-B-Dy P - (@Zl Ai) - @ - Py is a decomposition matrix for u, where @ is the
direct sum of the @Q;.

B-D.-Py

The first thing to note on the algorithm is that the essential steps are given by the

Cases 2, 3, 6, and 7. Case 3 reduces to the transitive case in which u L, Ag T G can
be written as an induction. Since G is solvable, we now find a normal subgroup N < G
of prime index p with either H < N and use induction recursion (Case 6) to recurse,
or H £ N and use switch recursion (Case 7) to recurse. Induction recursion reduces the
degree of the representation and the size of the group, switch recursion reduces only the
size of the group. Hence, invoking only these four cases, the algorithm terminates.
Decomposing into an outer tensor product, if possible, yields a simpler decomposition
matrix, however requires the computation of all normal subgroups (in the non-abelian
case). In the actual implementation, this case can be deactivated on calling the func-
tion. In Section 4.3) we show the influence of this on runtime. Reduction to a faithful
representation (Case 1) speeds up decomposition by restricting to the smallest possi-
ble group represented by a given representation. Abelian groups have a large number
of subgroups, which makes the decomposition into an outer tensor product inefficient.
Case 4, together with Case 1, reduces the abelian case to regular representations, which
decompose into an outer tensor product, as the group into a direct product (Corol-
lary 3.21). The latter decomposition can be done efficiently (cf. the GAP 3 function
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IndependentGeneratorsAbelianPermGroup). The correctness of the algorithm follows
from the theorems on which it is based and we get:

Theorem 4.1 Algorithm /.1 terminates and is correct.

Note that by far the most expensive part of the algorithm is the switch recursion,
Case 7, because the “conquer part” requires to perform a conjugation (in Step 7). In
all other cases, the irreducibles as well as the decomposition matrix are determined by
mere construction, dealing only with small matrices (compared to the degree of the
representation). Switch recursion is needed for the decomposition of Ay 1 G if and only
if H is not subnormal in G, i.e., H is not contained in any composition series of G.

The algorithm is implemented in the function DecompositionMonRep contained in the
package AREP (cf. Section 5).

4.2. AN EXAMPLE

As an example we consider the group G' = SL(2,3), which is a semidirect product of
Z; = (r | r* = 1) with the quaternion group Qg = (s,t | s* = t* =1, s' = s71) defined
by SL(2,3) = (r,s,t | s" = t71,¢" = st). Let u = 1g T G be the regular representation
with transversal

T = (1,r,72,7%s,s,rs,rt,r’t,t,sr,s>t,rsr,rs2,
2.2

r2s2, 82, rtr, st,tr,rts,ts,sr2,33,tr2,str).
Decomposing p with Algorithm 4.1 leads to Case 6 (induction recursion). We work out
this case following its seven steps as explained in Algorithm 4.1.

1. The trivial subgroup E is the normal closure of itself and we compute N = Qg as the
only normal subgroup of prime index, p = 3.

2. Using Theorem 3.2 we decompose p into a double induction 1g 17 G % (I Ty
N) tr, G with transversals Ty = (1, s,t, s%t, 52, st, ts, s®), T> = (1,7,7%) and conjugat-
ing matrix

M =[(2,9,3,17,6,15,5)(4, 20,7, 16,24, 14, 21, 18, 11) (8, 22)(12, 23, 19), 24].

3. The lower induction is decomposed recursively (not shown here) as (1g t7, N) RN

p1 D p2 @ p3 B py D p? with decomposition matrix

B = [(2,5,3)(6,8,7),8]
(12 ® ((DFT2 ®12) . dlag(l, ]., 1,LU4) . (12 ® DFT2)))
[(37 5)(4)87 7;6)7 (1; 1,1,1,1,1,-1, )]
(DFT; ®1,) © 14) - [(2,4), 8],

and irreducible components p; = 1y, p2 : s—= —1, t = =1, p3: s— —1, t — 1,
pe: s> 1, t— =1 and p5: s—[(1,2),(-1,1)],t — diag(ws, —w4).

4. A system of representatives of the conjugacy classes of N is given by C' = (1, s, t, s, st).
The permutation induced by r on C' is 7, = (2,3,5). Let x; denote the character of
pi given by values on C. We have x; = (1,1,1,1,1), xo = (1,-1,-1,1,1), x5 =
(1,-1,1,1,-1), x4 = (1,1,-1,1,-1), x5 = (2,0,0,—2,0), and it is easily seen that x;
and x5 are invariant under 7, and hence have an extension to G. We set 0 = p; @ pZ2.
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5. p2, p3, pa are inner conjugates with ps = pb, p3 = pb . Equality holds since they are of
degree 1. Thus D, is the identity.

6. We have to permute the irreducibles into the order p; @ p2 & pa & ps @ p3, which is
accomplished by P; =[(2,6,3,8,5)(4,7), 8]. The permutation

P =[(6,16,23,21,15,20, 14,17, 11, 8,22, 18,12,9)(7, 19, 13, 10), 24]

maps (o @ pa B ps B p3) T1, G onto the direct sum of the inductions o 1, G ® p2 T,
G ® ps T, G ® p3 T, G (Theorem 3.3). An extension of p; is given by p; = 1g, an
extension of p5 by

Gy = | 212w 12417200
Pl =1 _1/241/2 wy —1/241/2-w,

which determines & = p, @ p2 and hence the matrix A’. The 3 irreducible representa-
tions arising from the factor group G/N =2 Z3 are given by \; : r— w}, i =0,1,2.

7. We conjugate pg tr, G onto pa T, G, @ = 1,2 using Theorem 3.31, Case 2, which
gives rise to Dy = [(19,20,21)(22, 24, 23), 24] (note that p»(r®) = 1). The irreducibles
are already sorted by degree.

After simplifications we obtain (with M = p5(r))

A = [(2,9,6,15,3,17,5,4,24,13,11,8,21,20,7,10, 12, 23,22)(14, 19, 16, 18), 24]-
(13 ® ((12 X ((DFT2 ®12) . dlag(l, ]., 1,LU4) . (12 X DFT2)))
[(3,5)(4,8,7,6),(1,1,1,1,1,1,-1,1)] - (DFT2 ®13) ® 14)))-
[(2,20,18,19,23,14,8,5)(3,24,15,9,6)(4, 16,10,21,12,17,11,22,13,7), 24]-
(le®MOM D1, & M?> B M? D 1y) - (DFT3®15) D 1g)-
[(2,12,4,14,6,3,13,5,15,7,8,9,10,11), 24]

as a decomposition matrix for pu (and hence a Fourier transform for G) with corresponding

decomposition

B 1eeM OO ® (M P5)° D (N 75)° @ (o2 11, G).

G =SL(2, 3) is the smallest group which is not an M-group, i.e., it has an irreducible rep-
resentation which cannot be conjugated to be monomial. A Fourier transform for SL(2, 3)
can also be found in Maslen and Rockmore (2000) where a different approach—based on
double coset factorizations—is used and applied to certain classes of non-solvable groups.

Decomposing p with the implemented function DecompositionMonRep (cf. Section 5)
takes 0.4 seconds CPU time on an Athlon, 1100 MHz, running Linux. The decomposition
matrix A is generated in exactly the presented form. We present further timings in the
next section.

4.3. RUNTIMES

We implemented Algorithm 4.1 as part of the GAP package AREP (cf. Section 5) in the
function DecompositionMonRep. GAP (1997) is a computer algebra system that provides
a high level language, data types, and a library targeted for symbolic computation with
groups.

Determining the cost of Algorithm 4.1 is a difficult task, since it frequently uses high
level subroutines, which, in the actual implementation, are provided by GAP. Examples
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include the computation of the normal closure of a subgroup, a composition series, the
stabilizer of a point, the character of a representation, or evaluating homomorphisms.
The cost of these routines is usually not provided in the GAP manual. For this reason we
restrict ourselves to providing results that illustrate the algorithm’s asymptotic runtime
behavior and the efficiency of our approach.

Since we want to consider a variety of groups, we use the only common monomial
representation (apart from the trivial one) among groups—the regular representation—
for our experiment, which implies the construction of a fast Fourier transform. Note that
this excludes the use of the “switch recursion” (Algorithm 4.1, Case 7). The computing
platform is an Athlon, 1100 MHz, running Linux.

Before we state the runtime results we make the following important remarks.

e Our implementation is in GAP, not in a lower level language like C or Fortran. This
naturally impacts the runtimes by one or two orders of magnitude. On the other hand,
GAP allows us to readily consider arbitrary groups, which are provided in a GAP data
base. In fact, to our best knowledge, we are not aware of experimental results on fast
Fourier transform construction that consider such a broad range of groups as shown
below.

e The algorithm is not optimized for regular representations, which constitute a very
special case, or for special classes of groups, and it makes no assumptions on the base
field of the monomial representation to be decomposed (as long as GAP permits the
representation).

e The implementation works for every computer representation of the group (e.g.,
power commutator or permutation representation) that is permitted by GAP.

e The algorithm not only computes the irreducible components for the given monomial
representations, but also the decomposition matrix in a structured form. Generating a
complete set of irreducible representations can also be done with AREP and is faster than
decomposing a corresponding regular representation.

e The decomposition matrix is simplified during construction using certain rules. As
an example, the matrix A in the example in Section 4.2, Step 7, has been generated
automatically in precisely the presented form (including the conversion to Latex). The
simplification is included in the runtime.

e The series of normal subgroups used for the decomposition is constructed step by
step in order to make the algorithm fully recursive. In other words, the algorithms takes
as input only the monomial representation. Nothing is precomputed.

Taken together, the design goal was to create an implementation that works under gen-
eral conditions and can be easily used in the GAP/AREP environment. We proceed with
experimental results that illustrate the efficiency of the implementation. As explained
above, we decompose regular representations of solvable groups.

In a first experiment, we consider for each n = 1...500 all solvable groups of size n, or
a random sample of 100, if there are more than 100, and determine the average runtime
for decomposing their regular representation. The result is presented in Figure 3 a). The
abscissa carries the group size n, and the ordinate the average runtime in seconds. The
outliers of the mainstream correspond to numbers n with a large number of prime factors,
e.g. 16, 32, 64, 128, or 48, 96, 192, 384, and are due to Case 5 in Algorithm 4.1, which
computes the set of all normal subgroups. As mentioned at the end of Section 4.1, this
case can be disabled in the implementation (using a flag), which leads to the somewhat
smoother Figure 3 b). The vein below the main stream corresponds to prime numbers n.
In this case only one group, Z,, exists, whose regular representation is handled efficiently.



32 M. Piischel

o
o

50

IN
&)
T

45r

I
[=)
T

401

w
o
W
o

W
o
T
(]
o
T

) o ¥ %
@ Q
E 25 * * £25 4
1 * < *
2 20¢ . ** et 220+ o
.
15¢ i 15} . s ww :ﬁ’%ﬁ
* ﬁi y ﬁ;*“i e ;@ﬁﬁi@' w7 X if?: £ P Cx
o 43?**** i 10} B IR
Frer *%"W&ﬁg** * * ﬁg%& ¥ *
“" .-k Wﬁ* e *id 5P PR
et add N— e e
300 400 500 0 100 200 300 400 500
group size group size
a) with outer tensor product b) without outer tensor product

Figure 3. Average runtime (sec) for decomposing a regular representation of a solvable
group of size n.

In a second experiment, we repeat the same procedure but restricted to solvable groups
G, which are not supersolvable (G is supersolvable if G has a composition series in
which all subgroups are normal in G). Constructing Fourier transforms for these groups
(in the sense of creating a complete set of suitable irreducible representations) is, with
current methods, more expensive: O(n? log(n)p) (p the largest prime factor of n, Clausen
and Miiller (2002)) versus O(nlog®(n)) for supersolvable groups (Baum and Clausen
(1994), corrected in Clausen and Miiller (2002)). These groups only exist for 63 sizes
n € {1...500}. In contrast to the previous experiment, we consider, for each n, all these
groups, independent of their number. The average runtimes for each n are shown in
Figure 4, the maximum runtimes are given in Figure 5. In Figure 5 a) we omitted a
runtime of 610 seconds for a group of size n = 384. As mentioned before, this runtime is
due to computing a large number of normal subgroups. Note that the scales in Figure 3
and Figure 4 are equal, whereas Figure 5 has a larger range on the ordinate. Comparing
Figure 4 a) and b) shows that using the outer tensor decomposition method can also
speed up the decomposition.

Finally, we give an idea of the asymptotic behavior. Figure 6 a) shows the runtimes of
Figure 3 a) divided by n?, and Figure 6 b) shows the runtimes of Figure 5 b) divided by
n?log(n)p (motivated by the upper bound given in Clausen and Miiller (2002)), where p
is the largest prime factor of n.

We conclude that our algorithm (and its implementation) provides an efficient tool for
decomposing monomial representations.

5. AREP—a Package for Constructive Representation Theory

The results of this paper and in particular the algorithm for decomposing monomial
representations of solvable groups (cf. Section 4) have been realized in the package AREP
(1998) created by Sebastian Egner and the author. AREP is implemented in the language
GAP v3.4.4 (1997), a computer algebra system specialized on computational group the-
ory, and is a refereed GAP share package. AREP also has been integrated into the SPI-
RAL system (Moura et al. 1998), a library generator for signal processing transforms.



Decomposing Monomial Representations of Solvable Groups 33
50 T T T T 50 T T T T
45¢ 1 451 1
40¢ 1 40¢ 1
*

35- R 35F R

30" {1 @30¢ 1
3 3

£25¢0 R £257 R
< 1S

Soof .1 S0t L

N * . *
15t 1 15t .
* *

10 1 10 N,

* *

L P %, * * L * b w R |

5 ;%* N o+ *I *i* . 5 ) **t;*** PR #;* *
0 s g e O G R ey * . 0 PP bl * .
0 100 200 300 400 500 0 100 200 300 400 500
group size group size

a) with outer tensor product

b) without outer tensor product

Figure 4. Average runtime (sec) for decomposing a regular representation of a solvable,
but not supersolvable, group size of n.

180 T T T T 180 : . . . -
160+ e 160} |
1401 - 140t B
*
= 1201 * 1 120F * i
jg: 1001 * 9 %1007 4
5 S
=1 =
80f 1 Eoeof . |
60r - 60k |
*
40r . 1 401 . .
20l * | N * N
0 PR P * " 208 * . x5 * *
.
o P T P T L S S * 0 “mmﬁ%**w**t*** . e oaod ok
0 100 200 300 400 500 o 100 200 300 400 500
group size group size

a) with outer tensor product

b) without outer tensor product

Figure 5. Maximum runtime (sec) for decomposing a regular representation of a solvable,
but not supersolvable, group size of n.

The connection to SPIRAL allows the user to translate the algorithms (e.g., fast Fourier
transforms) generated by AREP into C or Fortran code (Egner et al. 2001).

The goal of AREP is to provide the data types, infrastructure, and functions for the
efficient symbolic computation with structured matrix representations. We briefly survey
the main components of AREP.

The main components of AREP are the recursive data types ARep and AMat to represent
structured representations and matrices, respectively, and the necessary infrastructure
for their manipulation. Using this platform, several algorithms, including Algorithm 4.1,
have been implemented in AREP. In the following we briefly survey the main ideas used
in the design of AREP.

An ARep is a GAP record representing a matrix representation. The record contains a
number of fields which uniquely characterize a matrix representation, e.g. degree, char-
acteristic, and the represented group always have to be present. There are a number of
elementary constructors that allow the user to create an ARep, e.g., by specifying the im-



34 M. Piischel

5x 10 ‘ i i . 1 x 10
45F *x 0.9
41 0.8
* *
3.5r « =07
o 3tk * ﬁ
- LR %0.6 *
(=
QE’Z 5 * (\;—30_5,
£ L. < '
32" o, 204 *
15} % . Soal -«
- * * 2Y
*”** *xoo* ko ox * * * *
ik é% L .
o + ok
051" et mgﬁﬁ Jé %&%& 04l . L
*
o M“‘me* Wﬁ*m&ﬁ*w*m**wm%w**mm 0 & s *ﬁ***& M **w%** o W K
0 100 200 300 400 500 0 100 200 300 400 500
group size n group size n
a) Figure 3 b) normalized by n? b) Figure 5 b) normalized by n? log(n)p

Figure 6. Normalized average runtime (sec) for decomposing a regular representation of
size n (left) and normalized maximum runtime for a solvable, but not supersolvable,
group of size n (right).

ages on a set of generators of the represented group (ARepByImages). Furthermore, there
are constructors building a higher structured ARep from given AReps (e.g. DirectSumARep,
InductionARep). The idea is not to immediately evaluate such a construction, but to
build an ARep representing it. E.g., an ARep representing a direct sum has a field summands
containing the list of summands. Conversion to an (unstructured) matrix representation
is performed by calling the appropriate function. On the other side there are functions
converting an unstructured, e.g., monomial ARep, into a highly structured ARep, e.g., a
conjugated induction of a representation of degree 1 (cf. Theorem 3.16), which is mathe-
matical identical to the original one. Permutation and monomial representations has been
given special attention in the package since they are efficiently to store and to compute
with and they were the central object of our interest. The decomposition algorithm in
Section 4 is realized in the function DecompositionMonRep which takes a monomial rep-
resentation and returns a conjugated direct sum of irreducibles, which is mathematical
identical to the input. The highly structured decomposition matrix is represented by an
AMat, which we explain next.

The data type AMat has been created according to the same principle as ARep, as a GAP
record representing a matrix. Again, there are elementary constructors to create an AMat,
e.g., AMatPerm takes a permutation, a degree, and a characteristic and builds an AMat
which efficiently represents a permutation matrix. Higher constructors build the product,
direct sum, tensor product, etc., of AMats and are not evaluated until the appropriate
function is invoked. Thus, AMat allows the user to construct structured matrices which
are efficiently stored and easier to handle than the (mathematical identical) represented
matrices, e.g., determinant, trace and inverse can be computed efficiently by using well-
known mathematical rules.

For a description of further capabilities of AREP, in particular symmetry-based matrix
factorization, we refer the reader to Egner and Piischel (2002) and the AREP manual and
web page (Egner and Piischel 1998).
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