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ABSTRACT

We give an overview of the algebraic signal processing theory,
a recently proposed generalization of linear signal processing
(SP). Algebraic SP (ASP) is built axiomatically on top of the
concept of a signal model, which is a triple(A,M, Φ), where
A is a chosen algebra of filters,M an associatedA-module
of signals, andΦ generalizes the idea of az-transform. ASP
encompasses standard time SP (continuous and discrete, infi-
nite and finite duration), but goes beyond it, for example, by
defining meaningful notions of space SP in one and higher di-
mensions, separable and non-separable. ASP identifies many
known transforms as Fourier transforms for a suitably chosen
signal model and provides the means to derive and explain ex-
isting and novel transform algorithms. As one example, the
discrete cosine transform is in ASP the Fourier transform for
the finite space model and possesses general radix Cooley-
Tukey type algorithms derived by the theory.

1. INTRODUCTION
The goal of this paper is to give a short introduction to the
algebraic signal processing (ASP) theory that was recently de-
veloped in a series of papers [1, 2, 3, 4, 5, 6, 7, 8, 9]. ASP is a
novel approach and generalization of linear signal processing
(SP).Algebrahere refers to the theory of groups, rings, and
fields, while linear SPrefers to SP built around a collection
of concepts including signals as elements of vector spaces, fil-
ters as linear operators on signals,z-transform, spectrum, and
Fourier transform. ASP generalizes these concepts and thus
linear SP, to provide a unifying framework for many existing
SP methods. Further, ASP enables the derivation of new SP
methods including new notions ofz-transforms, Fourier trans-
forms, and novel fast transform algorithms in one and higher
dimensions, separable and non-separable.

These advances are made possible through the connection
between SP and algebra that we reveal and explore. Algebra
has to date been only sparsely used in mainstream SP. In the
adjacent fields of system theory and communications, algebra
is a well-established part of the theoretical foundation.

The focus of this paper is on conveying the ideas and show-
ing some of the results obtained so far, rather than on a rigorous
development. Also, we do not give a detailed comparison to
previous work on algebra in signal processing and mathemat-
ics, which is provided in the references above. Here we only
give to examples that are related to ASP. First, the algebraic
methods developed in SP to derive fast Fourier transform al-
gorithms, most notably [10]. Second, the work in mathematics
on Fourier transforms on groups; see [11] for an overview.

Organization. Section 2 explains why algebra naturally
describes the structure in SP and gives details on the general
foundation of ASP, most importantly, the concept of a signal
model on which ASP is built. In Section 3, we then provide
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several examples of signal models for time and space, finite
and finite, separable and non-separable SP. Continuous sig-
nal models and first ideas on general sampling are provided
in Section 4. Section 5 briefly reviews a major application
of ASP: the discovery, concise derivation, and classification
of fast transform algorithms. Finally, we offer conclusions in
Section 6.

2. ASP: MOTIVATION AND FOUNDATION
We focus on discrete SP and on complex signals, but ASP
extends to continuous SP and to other basefields. We repeat
that ASP is a general approach tolinear SP, henceforth simply
called SP.

Motivation for ASP: SP is algebraic. The key observa-
tion underlying ASP is that standard SP is already algebraic in
nature. Namely, while the set of filters is usually assumed to
be a vector space (addition = parallel connection, scalar mul-
tiplication = amplification), it also offers multiplication (serial
connection), an operation outside the vector space framework.
Thus, algebraically, the filter space is more than a vector space:
it is an algebra1 A. In SP, the set of signals is also typically
assumed to be a vector space, and filters are linear operators
on this space. Algebraically, this means that the signal space is
anA-moduleM. As an example, in infinite discrete-time SP,
usually:2

A = {h =
∑

n∈Z

hnxn | h = (hn)n∈Z ∈ ℓ1(Z)}, (1)

M = {s =
∑

n∈Z

snxn | s = (sn)n∈Z ∈ ℓ2(Z)}. (2)

In the above, the filtersh and signalss are expressed after ap-
plying the z-transform; we setx = z−1 for simplicity and
consistency with later developments. Note that coordinate se-
quences (sequences of numbers)h andsare written bold-faced,
whereas elements of algebras and modules are not.

The above discussion naturally places SP into the context
of module theory orrepresentation theory of algebras, a well-
developed mathematical discipline (see [12], for example).

The foundation of ASP: Signal model.ASP is built on
top of a concept we call asignal model, defined as a triple
(A,M, Φ), whereA is a chosen filter algebra,M an associ-
atedA-module of signals, andΦ a bijective mapping from a
vector spaceV ≤ C

I of signal values3 over some index do-
mainI to M. Φ is best explained through an example: With
M as in (2),

Φ : ℓ2(Z) → M, s 7→
∑

n∈Z

snxn, (3)

1An algebra is a vector space that is also a ring.
2Note that allowingℓ2 coefficients for filters would destroy the

algebra property; the serial connection of twoℓ2 filters is in general
not anℓ2 filter.

3V ≤ CI means thatV is a subspace ofCI .



is the well-knownz-transform. The signal model(A,M, Φ)
defined through (1)-(3) is the one commonly adopted for infi-
nite discrete-time SP. The mappingΦ makes filtering available
in V and defines it through the multiplication of filtersh ∈ A
with signalss ∈ M.

We state the key point in ASP, which also motivates the
definition of a signal model:If a signal model(A,M, Φ) is
given, all the basic ingredients for SP are automatically de-
fined (if they exist) and provided by the representation theory
of algebra.

What this means is that different signal models have differ-
ent notions of filtering or convolution, spectrum, and Fourier
transform, among others. This is well-known for continuous-
time and discrete-time, infinite and finite (duration) SP. For
example, for periodic discrete-time signals (or signals living
on a finite interval periodically extended), SP defines a special
form of filtering calledcircular convolution, since the result of
applying the usual convolution defined for infinitely-supported
sequence to such signals would result in a signal which would
no longer be periodic (or living on the same finite interval). In
SP, it is also well known, that in such a case, the appropriate
Fourier transform to use is the discrete Fourier transform ap-
plied to a period (a finite number of points). However, as we
will demonstrate, many other signal models are possible and
reasonable, leading to different notions of filtering and Fourier
transform that are more appropriate for certain applications.
One such example is the DCT, which, as we show later, is a
Fourier transform for a specific signal model appropriate for
finite “space” signals, for which filtering is defined appropri-
ately.

Shift-invariance and polynomial algebras.At this point
we have many different options on how to do SP arising from
the many possible choices of a signal model. The question is,
which models are the most relevant for applications? To an-
swer this question, we first need the notion of shift-invariance.
Shifts are the generators ofA, i.e., every element inA is a lin-
ear combination of powers of shifts. For example,A in (1) has
one shiftx = z−1 only since it is a 1-D model. A signal model
is shift-invariant if shifts∈ A and filtersh ∈ A commute. We
achieve this by requiringA to be commutative (e.g.,A in (1)
is commutative as expected). For discrete signal models, we
can classify the possible commutative algebras:
• Infinite-dimensional commutative algebrasA arespaces of

seriesin one or more variables (as in (1)).
• Finite-dimensional commutative algebrasA arepolynomial

algebrasin one or more variables. In one variable (i.e., with
one shift), they are written as

A = C[x]/p(x) = {q(x) | deg q < deg p}, (4)

wherep(x) is a fixed polynomial of degreen. In words,
C[x]/p(x) is the set of polynomials of degree less thann;
addition and multiplication are defined modulo the fixed
polynomial p(x). In higher dimensions, more shifts are
available, which leads to polynomial algebras in more vari-
ables.
Generalization of SP Concepts.Above we alluded that

ASP generalizes the fundamental concepts in SP, such as fil-
tering and Fourier transform. This is done by translating the
concepts into the language of algebra, which makes them in a
sense “portable” across different signal models. Then the gen-
eral concepts can be instantiated for important special cases.

We illustrate this approach in Table 1. Columns one and
two translated some basic SP concepts into algebra. The last
column is the special case of a shift-invariant finite 1-D model.

Our starting point is the core concept of a signal model
(A,M, Φ). The reader may keep the “prototype signal model”
of discrete time in mind (given by (1),(2), and (3)). We discuss
columns one and two of Table 1. Filters are elements ofA,
while signals are elements ofM expressed in the basis im-
plicitly chosen byΦ (xn = z−n in discrete time). Filtering
is the (given) operation ofA on the moduleM. Impulses are
the basis vectors ofM, and filtering those gives the impulse
response of that filter. For the Fourier transform, one first has
to identify all irreducible (“smallest”)A-submodulesMω of
M. In discrete time, eachMω is spanned by one element:
∑

ejωnxn for ω ∈ [0, 2π), which is an eigenfunction for all
filters in A. In general, the dimension ofMω may be larger
than one, and the domain of the indexω may be continuous,
discrete, infinite, or finite. The Fourier transform is now the
collection of projections onto these submodules.

Above, we asserted that if the signal model supports shift-
invariant SP and is for finite discrete signalss ∈ C

n, then the
filter algebraA = C[x]/p(x) is a polynomial algebra (see (4)).
This is an important special case of the general theory and is
shown in the last column of Table 1. We assumeM = A
andΦ as given in the caption. Filtering in this model is the
multiplication of the polynomialsh(x) ∈ A ands(x) ∈ M
modulo the fixed polynomialp(x), and the Fourier transform
∆ is given by the Chinese remainder theorem.4 In fact, ∆,
as a linear mapping, can in this case be expressed as a matrix
containing the evaluations of all basis polynomials in the basis
b = (p0, . . . , pn−1) (n = deg(p)) at all zerosαℓ of p:

∆ ↔ Pb,α = [pk(αℓ)]0≤ℓ,k<n.

For the finite models shown later in Table 3, this construction
connects the polynomial algebras to the actual transforms. For
example, for the DFT,p(x) = xn − 1, pk(x) = xk, αℓ =
exp(−2πjℓ/n), and thus

Pb,α = DFTn = [exp(−2πjkℓ/n)]0≤ℓ,k<n.

3. EXAMPLES OF SIGNAL MODELS
Now we are ready to provide examples of signal models, for
infinite and finite (duration) signals, for 1-D and 2-D, separa-
ble and nonseparable. Some are explicitly used in SP, such as
the infinite discrete-time model discussed above; some are im-
plicitly used and could be argued as missing in the current SP
theory (for example, we provide the signal model that has the
DCT as its Fourier transform); others are novel.

Infinite shift-invariant 1-D models. Table 2 shows three
signal models. The first is the standard time model introduced
before. The basis(xn | n ∈ Z) of M provides the time struc-
ture, that is, the directed operation of the shiftx which cap-
tures the notion of direction (from left to right) and passage of
time (past, present and future). The expressionx · xn = xn+1

implies that applying the shiftx to a point at timen denoted
by the basis elementxn moves that point to a point at time
(n + 1) denoted by the basis elementxn+1. We visualize this
operation by the graph in Fig. 2(a), which, as time, is directed.
(Visualization is an important concept in ASP: it shows the
structure imposed on a signal by the model.)

4We assume thatp(x) has no multiple zeros.



SP concept in ASP shift-invariant finite 1-D model

filter h ∈ A (algebra) h(x) ∈ C[x]/p(x)

signal s =
∑

sibi ∈ M (A-module) s(x) =
∑

0≤k<n skpk(x) ∈ M

filtering h · s h(x)s(x) modp(x)

impulse basis vectorbk ∈ M basis polynomialpk(x) ∈ M

impulse response ofh ∈ A h · bk ∈ M h(x)pk(x) modp(x)

Fourier transform ∆ : M →
⊕

ω∈W Mω ∆ : C[x]/p(x) →
⊕

0≤ℓ<n C[x]/(x − αℓ)

(Mω irreducible submodules ofA) (Chinese remainder theorem,αℓ zero of ofp(x))
spectrum of signal ∆(s) = (sω)ω∈W = ω 7→ sω ∆(s(x)) = (s(α0), . . . , s(αn−1))

Table 1. Correspondence between SP concepts and algebraic concepts, given a (discrete) signal model(A,M, Φ). The last column
shows the special case of a shift-invariant finite 1-D model:A = M = C[x]/p(x), Φ : s 7→

∑

0≤k<n skpk(x). Note thatΦ
implicitly chooses a basis inM.

Concept Time (x = z−1) Space Generalized space

A {
∑

n∈Z
hnxn} {

∑

n≥0 hnTn(x)} {
∑

n≥0 hnQn(x)}

M {
∑

n∈Z
snxn} {

∑

n≥0 snCn(x)} {
∑

n≥0 snPn(x)}

Φ z-transform C-transform (C ∈ {T, U, V, W}) P -transform

shift x x · xn = xn+1 x · Cn = 1
2
(Cn−1 + Cn+1) x · Pn = αnPn−1 + βnPn + γnPn+1

(time shift) (space shift) (general space shift)

F DTFT DSFT ?

Visualization Fig. 1(a) Fig. 1(b) not shown

Table 2. Infinite discrete shift-invariant 1-D signal models(A,M, Φ), associated shift operation, and Fourier transformF . The
space model as well as the general space model are novel.

b b b b b b b b b b b b

x−2 x−1 x0 x1 x2 x3

(a) infinite time model

b b b b b b b b

V0 V1 V2 V3 V4

(b) infinite space model (forC = V )

Figure 1. Visualization of the infinite time and space models.

The second model is novel. We call it aspacemodel,
which means it has an undirected visualization. Intuitively,
undirected models should work better for signals without in-
herent direction, such as images. Indeed, thefinitespace mod-
els introduced below have the 8 DCTs and 8 DSTs [13] as
their Fourier transforms. The undirected structure is achieved
by changing the shift operation and thus the basis of the signal
moduleM as shown in the table. The shift is again denoted
by x and we assume that the basis elements inM are denoted
by Cn. Then we define the “space” shift operation as moving
the pointn denoted byCn half to the left, to the point(n− 1)
denoted byCn−1 and half to the right, to the point(n+1) de-
noted byCn+1. Solving forCn, which are still unknown, we
find that the polynomials satisfyingxCn = 1

2
(Cn−1 + Cn+1)

are exactly the (general) Chebyshev polynomials [14]. Four
special casesC ∈ {T, U, V, W}5 are important: For example,

5These are called Chebyshev polynomials of the first, second, third

for C = V , V0 = 1, V1 = 2x − 1, V2 = 4x2 − 2x − 1, . . .
andV−n = Vn−1. This means the left half depends on the
right half, and the model is for unilateral signals only. The
model forC = V is visualized in Fig. 2(b). The graph is undi-
rected and the extra edge fromV0 to itself is due to the bound-
ary conditionV−1 = V0. The other three types of Chebyshev
polynomials yield other boundary conditions.

Filtering in the space model is the multiplication of series
s ∈ M with h ∈ A using the distributivity law and the prop-
ertyTnCk = 1

2
(Cn−k + Cn+k).

The third model (last column in Table 2) shows that with
ASP it is possible to build a meaningful SP framework for
more general shifts. In this case thePn become arbitrary or-
thogonal polynomials [15].

Finite shift-invariant 1-D models. A strength of ASP is
that it provides a comprehensive framework forfinite signals.
In fact, we have identified signal models (and thus the proper
notions of “z-transform,” convolution, spectrum etc.), for prac-
tically all trigonometric transforms [3, 2]. All these models are
provided by polynomial algebras since they are shift-invariant.
We give a few examples in Table 3.

The finite time model (finite number of signal values with
circular convolution) is associated withC[x]/(xn −1), that is,
filtering is the multiplication of polynomials modulop(x) =
xn − 1, which is equivalent to circular convolution, a well-
known fact [10]. The notion of finitez-transform is novel.
Note that inM, xn − 1 = 0 or xn = 1 holds, which encodes

and fourth kind, respectively.



Concept Time Space (16 cases) Space (special case)

A = M C[x]/(xn − 1) C[x]/p(x) C[x]/(Vn − Vn−1)

Φ s 7→
∑

0≤k<n skxk s 7→ skCk(x) s 7→ skVk(x)

(finite z-transform) (finiteC-transform,C ∈ {T, U, V, W}) (finite V -transform)

F DFT 16 DCTs/DSTs DCT, type 2

Visualization Fig. 2(a) not shown Fig. 2(b)

Table 3. Finite discrete shift-invariant 1-D signal models(A,M, Φ).

b b b b b b b b b b b

x0 x1 x2 xn−3 xn−2 xn−1

(a) finite time model (associated withDFTn)

b b b b b b b b b b b

V0 V1 V2 Vn−3 Vn−2 Vn−1

(b) finite space model (associated withDCT-2n)

Figure 2. Visualization of finite time and space models.

the cyclic boundary condition and yields the visualization as
directed circle. In words, applying the DFT assumes the signal
to be associated with the nodes of a directed circle (equivalent
to being periodic). Time models with different boundary con-
ditions can be built (by changingp(x) = xn − 1 but keeping
the basis).

The finite space models associated with the 16 DCTs and
DSTs [13] are only sketched;p(x) depends on the transform.
The model that has “the” DCT (that is, type 2) as Fourier trans-
form is shown in the last column. The visualizations are all
undirected line graphs but differ in the boundary conditions.

A generalized finite space model (corresponding to the last
column of Table 2) can also be built, as well as the models
corresponding to the various versions of real DFTs and Hartley
transforms [2].

Finite shift-invariant 2-D models. The above discussion,
and thus ASP, generalizes to higher dimensions by allowing
more than one shift operator. We give examples for the finite
case, where we get polynomial algebras in at least two vari-
ables. Four models are visualized (without boundary condi-
tions) in Fig. 3, shown with their associated Fourier transform.
The first two are separable, the last two are novel nonseparable
space models [6, 8].

As examples, the signal models underlying the 2-D DFT
and the DTT (discrete triangle transform) are, respectively:

A = M = C[x, y]/〈xn − 1, yn − 1〉,

Φ : s 7→
∑

0≤k,ℓ<n

sk,ℓx
kyℓ; (5)

A = M = C[x, y]/〈C0,n(x, y), Cn,0(x, y)〉,

Φ : s 7→
∑

0≤k,ℓ<n

sk,ℓCk,ℓ(x, y). (6)

In (6), Ck,ℓ(x, y) are the the little-known Chebyshev polyno-
mials in two variables [16].

NonseparabledirectedSP in two and higher dimensions
has been developed in the work of Mersereau et al. [17, 18].

Using ASP, a similar theory ofundirectedor spatial SP is pos-
sible including further generalizations (for example, the last
column of Table 2).

4. CONTINUOUS MODELS AND SAMPLING
ASP encompasses continuous and discrete SP. A particular
task is to identify the continuous signal models underlying the
discrete ones via sampling. We briefly discuss the situation in
1-D time and 1-D space.

1-D time. In 1-D time SP, it is standard to consider four
cases of signal models visualized in Figure 4. The discrete
ones (bottom row) were discussed before. The infinite con-
tinuous model (top left) is forV = L2(R) (viewed as vector
space) and given byA = L1(R), M = L2(R) with the stan-
dard convolutionh ⋆ s(t) =

∫

h(τ)s(t − τ)dτ , andΦ is the
identity mapping.6 The finite continuous model (top right) is
more interesting. It is for the vector spaceV = L2[0, I], and
given byA = L1(C), M = L2(C), whereC = R/IZ is
the circle with a circumference of lengthI. Φ is the natural
mapping fromV ontoM, that is, it extends a signal on[0, I]
periodically. Thus, the visualization is a directed circle. The
sampling theorems associated with Figure 4 are well known.

1-D space.The corresponding situation for the DCT, type
2, is shown in Figure 5. The small circles in the visualiza-
tions signify a symmetric extension. The discrete models were
discussed before. The key in these models is to start with a
different notion of convolution in the infinite continuous case,
namely with

h ⋆ s(t) =

∫

h(τ)(
1

2
(s(t − τ) + s(t + τ))dτ. (7)

This definition makes sense only for right-sided filters and
signals, considered to be symmetrically extended to the left.
So the signal model is forV = L2(R+), andA = L1(S),
M = L2(S), whereS is the structure shown in Figure 5 (top
left). Φ is the natural mapping fromV ontoM, that is,Φ ex-
tendss ∈ V symmetrically. One can easily verify that (7) is
well-defined onS.

The eigenfunctions for (7) arecos(ωt), ω ∈ [0, π], which
yields the Fourier transformS(ω) =

∫

s(t) cos(ωt)dt for the
continuous space model.

In the finite continuous case (top right in Figure 5), the
signal module consists ofL2 functions on a symmetrically ex-
tended interval of lengthI, visualized as shown.

We derived a sampling theorem for the right column in
Figure 5 in [9]. A complete treatment is in preparation [19].

6The only thingΦ does is change the viewpoint:s ∈ L2(R) is
viewed as an element of a vector space, whereasΦ(s) is an element of
a module. This is somewhat different from thez-transform, but seems
to make the most sense in the current state of this research.
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Figure 3. Visualizations of 2-D signal models (without boundary conditions) underlying the transform in the subtitle. (a) is a time
model, (b)–(d) are space models; (c) and (d) are nonseparable.

b b b b b b

FT FS

b b b b b b b b b b b b b b b b b b b b b

DTFT DFT

Figure 4. Standard continuous (top) and discrete (bottom), infinite (left) and finite (periodically extended, right) 1-D time SP
including the associated Fourier transforms. All the signal models are directed. The bottom row is obtained through sampling the
top row. The right column is obtained by sampling the spectrum of the left column.

5. FAST TRANSFORM ALGORITHMS

One crucial application of ASP is in the discovery, derivation,
and classification of transform algorithms. There are more
than 100 publications on this topic, but with few exceptions
their derivation is based on manipulating the transform coeffi-
cients, giving no insight into the structure of these algorithms
nor reasons for their existence. Most importantly, it is not clear
whether all important algorithms have been found.

Using ASP, we have identified a few principles that ac-
count for practically all transform algorithms and also found
many new ones. This was possible by working with the sig-
nal model, or polynomial algebra, underlying the transform.
For example, Table 4 shows general-radix Cooley-Tukey type
algorithms for the DFT, real DFT, and all 16 DCTs/DSTs in
Kronecker product notation [20, 21].7 All these algorithms are
based on only one general theorem; thus, the similarities in
their structure.

Namely, assume that a 1-D transform is a Fourier trans-
form for a signal model of the form in the last column in Ta-
ble 1 and assume that the polynomialsp(x) = q(r(x)) de-
composes.8 Then, a stepwise application of the Chinese re-
mainder theorem yields the following result. For full details
see [4, 22, 23].

Theorem 1 (General Cooley-Tukey Type Algorithms)We use pre-
vious notation and assume thatp(x) = q(r(x)). Then

Pb,α = P
(

⊕

0≤i<k

Pd,α′

i

)

(Pc,β ⊗ Im)B,

whereB is a base change matrix andP a permutation matrix.

7The exact form of all the matrices is not of importance here and is
omitted due to lack of space.

8Which is different from a factorization.

The algorithm derivation generalizes to signal models in
higher dimensions such as those in (5) and (6) and Fig. 3 (see,
for example, [7]). Similar theorems generalize split-radix and
Rader type algorithms (see [22] for first results).

6. CONCLUSIONS

We hope we could convey the scope and the relevance of ASP,
which is work in progress. To summarize:
• ASP aims to be a general, consistent, axiomatic framework

for SP with many instantiations that include but go beyond
standard time (directed) SP.

• In particular, ASP generalizes many concepts that are fun-
damental to SP including filtering/convolution,z-transform,
and Fourier transform. Many existing transforms become
Fourier transforms for suitable signal models in ASP and
thus have associated convolutions and “z-transforms.”

• By bringing algebra into SP, ASP offers a new set of tools.
Examples include a comprehensive theory of transform al-
gorithms and new signal models and transforms for nonsep-
arable 2-D SP.

• Shift-invariance simplifies the algebra used to working with
series and polynomials only. This makes ASP accessible
without special algebra education.

ASP provides insights and results beyond the above. For de-
tails we refer to the cited papers.
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b b b

no name no name

b b b b b b b b b b b b b b b b b b

no name DCT, type 2

Figure 5. Situation for 1-D space SP, analogous to Table 4, and underlying the DCT, type 2. All the signal models are undirected.
The associated Fourier transforms have no specific names.

DFTn = Ln
m(Ik ⊗ DFTm)T n

m(DFTk ⊗Im) (8)

RDFTkm = P km
m

(

RDFTm ⊕

(

⊕

1≤i<k/2

rDFT2m(i/k)

)

⊕ RDFT-3m

)

(RDFTk ⊗Im) (9)

rDFT2km(u) = (Kkm
m ⊗ I2)

(

⊕

0≤i<k

rDFT2m(U(k, i, u))

)

(rDFT2k(u) ⊗ Im) (10)

Tn = Kn
m

(

⊕

i

Tm(
i+1/2

k
)
)

(DCT-3k ⊗ Im)B
(∗)
n,k, T ∈ {DCT-3/4, DST-3/4} (11)

Tn = P
(∗)
k,m(Tm ⊕

(

⊕

i

Tm( i
k
)
)

(DST-1k−1 ⊗ Im))B
(∗)
k,m, T ∈ {DCT-1/2, DST-1/2} (12)

Tn = P
(∗)
k,m(

(

⊕

i

T2m+1( 2i+1
k

)
)

(DST-5(k−1)/2 ⊗ I2m+1) ⊕ Tm)B
(∗)
k,m, T ∈ {DCT-5/6, DST-5/6} (13)

Tn = P
(∗)
k,m(

(

⊕

i

T2m+1( 2i+1
k

)
)

(DST-7(k−1)/2 ⊗ I2m+1) ⊕ Tm)B
(∗)
k,m, T ∈ {DCT-7/8, DST-7/8} (14)

Table 4. General radix Cooley-Tukey type algorithms for the DFT, real DFT (RDFT), the auxiliary transformrDFT, and the 16
types of DCTs and DSTs, organized into four groups.L, K, P are permutations, andB is sparse.P, B are different for different
transforms. All algorithms are based on Theorem 1.
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