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ABSTRACT

We derive a new, two-dimensional nonseparable signal transform
for computing the spectrum of spatial signals residing on a fi-
nite quincunx lattice. The derivation uses the connection between
transforms and polynomial algebras, which has long been known
for the discrete Fourier transform (DFT), and was extended to
other transforms in recent research. We also show that the new
transform can be computed with O(n? log(n)) operations, which
puts it in the same complexity class as its separable counterparts.

1. INTRODUCTION

It is known that applying a two-dimensional discrete Fourier trans-
form (DFT) to a finite, discrete two-dimensional signal assumes
that the signal resides on a rectangular directed lattice with pe-
riodic boundary conditions (b.c.’s), which effectively makes the
lattice a (directed) torus. Similarly, and less well-known, apply-
ing a two-dimensional discrete cosine or sine transform (DCT or
DST) to the same signal assumes that it resides on an undirected
lattice, shown in Fig. 1, with symmetric or antisymmetric b.c.’s
(that depend on the DCT or DST chosen and are not shown) [1, 2].
Intuitively, “undirected” implies that the associated “Fourier trans-
forms” (the DCTs and DSTSs) are better suited for spatial signals as
for time signals; this is confirmed by the ubiquitous use of DCTs
in image processing.

Fig. 1. Finite n x n lattice associated with the two-dimensional
DCTs and DSTs. The boundary conditions are omitted and de-
pend on the DCT or DST chosen. For a DCT, type 3, the as-
sociated polynomial algebra (explained in the paper) is A =
Cla, y]/(Tn(x), Tn(y)) = Clz]/(Tn(2)) @ Clyl/(Tn(y))-
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In this paper we derive a Fourier transform for spatial signals
residing on the quincunx lattice shown in Fig. 2. The transform is
nonseparable, and, as expected, related to the DCTs. This connec-
tion also enables us to show that the transform can be computed in
roughly 2n? log, (n) operations for a two-power 7.
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Fig. 2. The finite undirected quincunx lattice of size n/2 x
n; it is obtained from Fig. 1 by omitting every other point
in the pattern shown. As derived in the paper, the associ-
ated polynomial algebra is nonseparable and is given by A =
Clu, v, w] /(T2 (), T2 (v), 4w —(u+1) (v+1)). We use Ato
derive the associated Fourier transform.

Our derivation uses the connection between transforms and
polynomial algebras, which has long been known for the DFT, and
recently been extended to the DCTs and DSTs [2, 3]. Using this
connection, we already derived a Fourier transform for the directed
quincunx lattice, which was closely related to the DFT [4], and a
nonseparable transforms for the spatial hexagonal lattice in [5].

Signal processing on arbitrary two- and higher-dimensional
lattices was developed by Mersereau et al. (e.g., [6]), but only
for time signals, i.e., directed lattices. Specifically the quincunx
lattice (also directed and infinite) has been studied in [7].

Organization. In Section 2 we provide the background on the
relationship between polynomial algebras and signal transforms.
In Section 3, we derive the Fourier transform for the spatial quin-
cunx lattice from a polynomial algebra capturing the lattice’s struc-
ture. Finally, we offer conclusions in Section 4.

2. POLYNOMIAL ALGEBRASAND TRANSFORMS

In this section, we provide the necessary background on poly-
nomial algebras and their connection to signal transforms in one
and two dimensions. But first, we recall the definition and some



properties of Chebyshev polynomials, which are necessary to alge-
braically describe spatial transforms such as the DCTs and DSTs
and our new transform.

Chebyshev polynomials. Chebyshev polynomials [8] in one
variable are defined by the recursion

Chn(z) = 22Ch-1(z) — Cph—2(x), n>2. (1)

The exact form of C,, is determined by the initial conditions Cy
and C1, which are chosen as polynomials of degree 0 and 1, re-
spectively; (1) then implies that C,, is a polynomial of degree n
for n > 0. The Chebyshev polynomials of the first kind, denoted
with C' = T arise from

To(z) =1, Ti(z) = .

The (much lesser known) Chebyshev polynomials of the third kind
C = V arise from

Vo(l') = 1, Vl(x) =2x — 1.

Running the recurrence (1) in the other direction yields, for given
initial conditions, Chebyshev polynomials C,, for negative indices
n, and thus for all n € Z.

We will use the following properties:

closed form: T,, = cosnf), x = cosb, 2)
V,, = cos (::S_%l):, x = cos 0, 3)

2
product: TxCy, = (Cpik + Crn-x)/2, C=T,V, (4)
relation: T, + Tho1 = (z + 1)V, (5)
decomposition: Thm = Tk (Tin), (6)
n zeros of T, : ap, = cos(k 4+ 1/2)w/n, 0 < k < n. @)

2.1. Polynomial Algebras (One Variable)

Polynomial algebra. An algebra A is a vector space that is also
aring, i.e., closed under multiplication and the distributivity law
holds. Examples include the set of complex numbers A = C and
the set of polynomials .4 = C[z] in one variable, or in several
variables A = Clz1, ..., k).

If p(z) € Clz] is given, then the set of polynomials of degree
less than deg(p) with addition and multiplication modulo p,

A = Clz]/p(z) = {q(z) | deg(q) < deg(p)},

is called a polynomial algebra (in one variable). As a vector space,
A has dimension dim(A) = deg(p). Further, A is obviously
generated by z, since every element of A is a polynomial in z.

Polynomial transform. Let A = C[z]/p(x) and assume that
p has pairwise distinct zeros o = («o,...,an—1), Where n =
deg(p). Then the Chinese remainder theorem (CRT) establishes
the (isomorphic) decomposition of A into its spectrum, which is a
direct sum (or Cartesian product with elementwise operations) of
one-dimensional polynomial algebras:

®: Clal/p(z) — Clz]/(z —a0) @ ... & Clz]/(z — an-1),
q(x) — (q(ao), ., q(an-1)).

In particular, ® is a linear mapping. Thus, if we choose a basis
b= (po,...,pn—1) In A, then @ is represented by the matrix

Po.o = [pe(ar)]o<k,e<n,

which we call polynomial transform or Fourier transform for A.

Examples. Let A = C[z]/(z™ — 1) with chosen basis b =
(z°,z',..., 2" ). Then Py, = DFT,, is the discrete Fourier
transform. Letting the generator x of .4 operate on b, namely
x -zt = 2+, yields a directed circle, which is the structure im-
plicitly imposed on a signal, when the DFT is applied. In particu-
lar, ™ — 1 = 0or 2" = 1 captures the cyclic b.c.

If A = Clz]/T(x) with basis b = (1o, T4, ..., Tn-1), then
Pb,o = DCT-3,, is the DCT of type 3 [3, 2]. Letting x operate on
b, using (4) with k = 1, yields Ty = (Ty—1 + Te+1)/2. Visually,
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Since the line graph is undirected, it is the suitable structure
for spatial signals. The left boundary has the b.c. T_1 = T1, and
the right boundary the b.c. T}, = 0, which implies (again from (4))
Tn+1 = —dn-1.

The same algebra A = C[z]/T (), but now with basis b =
(Vo,Vi,...,Vh_1) yields Py, o = D,DCT-4,, with

D, = diagy<jp (1/ cos %) . €)]

The polynomial algebras for all 16 DCTs/DST can be found in
[3, 2], where they are used to concisely derive fast algorithms.

2.2. Polynomial Algebras (Two or more Variables)

Polynomial algebra. Similar to the one variable case, we can
define polynomial algebras in more variables. We consider two
variables as example and define a polynomial algebra as

A = Clz, yl/(p(z,9), a(z,y))- ©)

Note that here we need to compute modulo two or more* polyno-
mials to ensure that the dimension of A is finite.

Polynomial transform. To define a polynomial transform for
the algebra in (9) we assume that the total degrees® of p and g are n
and m, respectively, and that the equations p(z,y) = ¢(x,y) =0
have precisely mn solutions o« = (a, Bk)o<k<mn. The CRT
now becomes the isomorphic decomposition

d: A— @ Clz, y]/{z — ar,y — Br), (10)

0<k<mn

which also implies that dim(.4) = mn. With respect to a basis
b = (pe(z,y)|0 < £ < mn) of A, the polynomial transform for
A is given by the matrix Py o = [pe(ak, Bk)]o<k,e<mn- Asinthe
case of one variable, Py ., can be considered as a Fourier transform
for A.

The separable case. The case of a separable polynomial al-
gebra plays an important role in signal processing. It is the special
case in (9), where p(z,y) = p(z) and q(z,y) = q(y) depend
only on z and y, respectively. In this case, we can choose as basis

LIn contrast to the one-dimensional case, were one polynomial suffices,
more than two polynomials may indeed be necessary [9].

2 The total degree of p(x, y) is defined as the maximum value of i + 5,
as 4 and j range over all summands cz’y? of p(z, y).



in A the product® of bases b and ¢ of C[z]/p(x) and C[y]/q(y),
respectively. Further, the set of solutions of p(z) = ¢(y) = 0is
given by the Cartesian product « x 3 of the zeros « of p and 3 of
q. Mathematically, this shows that

Clz, yl/(p(x),q(y)) = Clz]/p(x) ® Cly]/a(y)  (11)

is the tensor product of one-dimensional polynomial algebras. The
associated polynomial transform is correspondingly the tensor or
Kronecker product

Pb,a & Pc,,@v

where A®Q B = [ak,gB]k,g for A = [akyz].

Example. The two-dimensional DCT-3,, ® DCT-3,, is a
polynomial transform for A = Clz, y]/(Tn(x), Tn(y)), with ba-
sis

b= (Ti(z)T;(y) | 0 < 4,5 <n). (12)
If we assume b to be arranged into an n. x n lattice, then the op-
eration of the generators x (horizontal) and y (vertical) yields the
undirected structure in Fig. 1. The nodes in Fig. 1 can be consid-
ered as being indexed by the elements in b.

3. SPATIAL QUINCUNX LATTICE AND TRANSFORM

Using the theory of polynomial algebras, we construct the Fourier
transform for the spatial quincunx lattice as follows. We start with
a suitable (explained below) two-dimensional DCT and its polyno-
mial algebra A for the lattice in Fig. 1 and identify the subalgebra
B < A corresponding to the quincunx lattice in Fig. 2. Then we
put 5 into the form (9), and read off the spectrum and the transform
using (10). Finally, we discuss the complexity of the transform.
Constructing the algebra. We start with a two-dimensional
DCT, type 3 of size n x n, and its associated polynomial algebra
A = Clz,y]/{Tn(x), Tn(y)) and basis shown in (12). Further,
we assume that n is even. Omitting the basis polynomials in (12)
that do not reside on the quincunx lattice in Fig. 2 leaves exactly

b= (Ti_’j(l', y) = Tl(x)T](y) | 1+5=0 mod 2)7 (13)

which we assume to be ordered in row-major order. Obviously, b
spans a subvector space B of A of dimension n? /2. But is B also
an algebra, i.e., closed under multiplication? The answer is yes
because of the b.c.’s associated to this DCT; namely, T_1 = T
and T,,+1 = —T,—1 preserve the defining condition in (13). For
example, products like T2 (z) - T1(2)T1(y) = (T-1(z)T1(y) +
Ts(x)T1(y))/2 (using (4)) are again in B.*

To bring B into the form (9), we need to find a set of genera-
tors, which then become our variables. Natural choices are

w="To(z) =2z -1, v="Ta(y) =2y —1,

but their spanned algebra does not contain
w=Ti(2)T1(y) = zy,

which thus we choose as the third generator. Since we have three
polynomials u, v, w in two variables, they cannot be independent.

3The product of two lists (c1, ..., cn) and (dy, ..
all products (c1d1, c1da, .. .) of length mn.

4In fact, using this argument, one can show that exactly 4 of the 16
DCTs/DSTs can be used as a starting point, namely the DCTs/DSTs of
type 1 and 3. This yields 4 types of quincunx transforms. We consider
only the DCT, type 3, since it is the best-known among those and due to
lack of space.

., dm) is the list of

Indeed, they satisfy the polynomial relation 4w?— (u+1)(v+1) =
0. Further, from (6), T}, /2(u) = Tn(x) = 0 in A. Analogously,
T, /2(v) = 0. Thus, we obtain the polynomial algebra

B = (C[u,v,w]/(Tn/z(u),Tn/g(v),4w2 —(u+1)(v+1)). (14)

Using Hilbert’s method [9, ch. 9], we confirm that dim(B) =
n?/2, i.e., B is indeed the entire algebra spanned by b in (13).
Note that this algebra is not separable.

It is interesting to observe the operation of w, v, w on the quin-
cunx lattice, i.e., the elements T ; € b in (13). Namely, using (4),
uTly; = (Ti—2,5+Tiv2,5)/2, which is visualized as (1/2 omitted)

[ ] [ ] [ ]
Ti—2,j Ti,j Ti+2,j
Hence w acts on the quincunx lattice horizontally. Similarly,
v acts vertically. The action of w, using again (4), is given by
wl;; = (Ti—1,j-1+Tic1,j41 + Tit1,j—1 + Tit1,5+1) /4, which
is visualized as (the weights 1/4 are omitted)

Ti1,j-1 ® ® Ti_1,j4+1

A4

e T j
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To compute the Fourier transform for 3, we need to 1) express
the basis b in (13) in u, v, w, and 2) compute the spectrum of 3,
i.e., the solutions of

T yo(u) = Tnya(v) = 4w” — (u+1)(v +1) = 0. (15)

Basis. Let T; ;(z,y) € bin (13). Then either both ¢, j are
even or both are odd. If i = 2i’ and j = 24, then, using (6),
Ti7j (33, y) =T (u)le(v). Ifi=2¢ + 1,] = 2]/ + 1, then
(T (w) + Tiyr 1 (W) (T (v) + Tjr41(v))
(u+1)(v+ Ve (u)Vjr (v)
4w Vi (u)Vjr (v)

dwT; j(z,y)

using (5) and (14). It follows that T ; (x, y) = wVi/ (u)Vj: (v).
In summary, scanning the lattice in Fig. 2 in row major order,
we get for rows with even index s = 2i’, 0 < i’ < n/2,

Ty (u)TO (U)7 Ty (U)Tl (U)7 s 7Ti/ (u)Tn/271(’U)7 (16)
and for rows with odd index i = 2" + 1,0 < i’ < n/2,
wVir (u)Vo(v), wVir (u)Vi(v), ..., wVi(u)Vyj2—1(v).  (17)

The basis b in (13) is the concatenation of these lists.
The spectrum of 3. The spectrum of B is determined by the
solution of (15). Using (7), we get the n? /2 solutions

T — COS%W, 0<k<n/2,
ve = cos 2 2n 0<l<n/2, (18)

n/2

Wk,e,+ = i% (1+uk)(1+vg).

Using (1 + cos(z)) = (cos(m/4 +x/2) +sin(n/4 +x/2))?, the
latter can be simplified to

W0+ = :I:%(cos% + sin k) (cosye + sinye), (19)



Table 1. The discrete quincunx transform DQT for computing the spectrum of a signal given on an n/2 x n spatial quincunx lattice.

n2/2 DCT'3n/2 ® DCT'3n/2

DQTn/2><n = Ln2/4 DCT'3n/2 ® DCT-3"/2

D,2,,(DCT-4,,/5 ® DCT-4,,5)
—D,2,,(DCT-4,,/> ® DCT-4,,/3)

2
= L'2(DFT2®1,2,4) (DCT-3,)2 ® DCT-3,,/2) ® D2 ,4(DCT-4, /5 @ DCT-4,,)5)) (L} ®1,/5)

n2/4

with 1
= AT T (20)

Transform. To determine the Fourier transform for the spatial
quincunx lattice in Fig. 2, we evaluate the n? /2 basis polynomials
(given by concatenating alternately (16) and (17) for 0 < i’ <
n/2)) at the zeros in (18). We order the zeros lexicographically
indexed as (k,¢,=x), where &= € {+, —} runs fastest, and 0 <
k. <mnj/2.

Evaluating all the even indexed rows (16) at all zeros indexed
(k, £, +) yields precisely a DCT-3,, ), ® DCT-3,, /5. The same is
true for (k, ¢, —) since (16) does not depend on w.

Evaluating the odd indexed rows (17) at all zeros indexed (&, ¢,
yields D2/, (DCT-4,,/,®DCT-4,,/5), where D,,2 ,, is a scaling
diagonal arising from (8) and w in (17) evaluated at (19):

(cos i + sinyk)(cosye + sinye)

)
k+1/2 [ESVPI.
n n

D24 = diago<y pcny2

2 cos T COoS

where ~, is defined in (20). Evaluating (17) at all zeros indexed
(k,¢,—) yields —D,2 ,,(DCT-4, ,, ® DCT-4,,/5).

Definition 1 (Discrete quincunx transform) The discrete quincunx
transform (DQT) is defined for an n/2 x n signal given in row ma-
jor order on the spatial quincunx lattice in Fig. 2. The exact form
is given in the first equation in Table 1.

The stride permutation, or perfect shuffle, L3* interleaves the
rows and columns to achieve the desired order of basis polynomi-
als (alternating (16) and (17)); Ly, , is the inverse of L3". The
definition is

L3 i(B) +J— 25 +1,

Fast algorithm and complexity. A straightforward decompo-

sition of the DQT,, /5, Yields the form in the second equation in
Table 1, where

0<i<2,0<j<m

ron=[t ).

This implies that the DQT can be computed using fast DCT-3 and
DCT-4 algorithms. We analyze the complexity for a two-power
n. In this case, DCT-3,, can be computed using 2nlog,(n) —
n + 1 operations, and D'DCT-4,,, independent® of the diagonal
matrix D’, using 2n log,(n) + n operations [10]. Straightforward
computation now yields the following lemma.

Lemma 1 (Complexity of the DQT) If n is a two-power, then the
DQT,, /5., can be computed using

2n*log,(n) +n°/2 —n

operations.

5This is because there are best known algorithms, which have n multi-
plications in the end, which allows for fusion of a post-scaling.

Note that this bound assumes that the two-dimensional DCTSs are
computed using the row-column method, which is known to be
suboptimal.

Lemma 1 shows that the DQT is with O(n?log(n)) in the
same complexity class as its separable counterparts.

4. CONCLUSIONS

We derived a new spatial signal transform, the DQT, for comput-
ing the spectrum of a signal given on a finite quincunx lattice. The
construction uses the connection between signal transforms and
polynomial algebras, and is part of a larger effort to work towards
an algebraic theory of signal processing (see [11]). The algebra
also yields important properties of the DQT, such as the appropri-
ate notion of filtering and diagonalization properties, which will
be derived in a longer version of this paper.
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