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Abstract

Traditional linear signal processing is based on viewiggais as sequences or functions in time that flow
in one direction, from past through present into future. 8atmt surprisingly, the assumption that the most
basic operation that can be performed on a signal is a tinig shi“delay,” is sufficient to derive many
relevant signal processing concepts, including specthourier transform, frequency response and others.

This observation has led us to search for other linear,-shiftriant signal models that are based on
a different definition of a basic signal shift, and hence hdiferent notions of filtering, spectrum, and
Fourier transform. Such models can serve as alternativésettime signal model traditionally assumed
in modern linear signal processing, and provide valuatd@hts into signal modeling in different areas of
signal processing. The platform for our work is the algebsgnal processing theory, a recently developed
axiomatic approach to, as well as a generalization of lis@aral processing.

In this thesis we present a new class of infinite and finiterdiscsignal models built on a new basic shift
called the generic nearest-neighbor shift. We construer #ind signals spaces for these new models, and
identify the corresponding signal processing conceptsh a8 frequency, spectrum, Fourier transform, fre-
guency response, and convolution. We also derive relevapepties of these models, such as the Parseval
equality and the notions of low and high frequencies.

We then consider the problem of subband analysis for theynewvistructed signal models. As a corre-
sponding subband analysis tool for infinite signals, wergktae definition of filter banks to the new models,
and construct perfect-reconstruction filter banks for smobdecomposition. We also construct filter banks
for robust signal transmission. As a subband analysis tdirite signals, we study the implementation of
appropriate discrete Fourier transforms. We propose aanattical approach to the factorization of general

discrete Fourier transform matrices, and apply it to castfast computational algorithms for the Fourier



transforms of interest.

Finally, we consider possible applications of the consedisignal models in different areas of signal
processing. For example, we demonstrate that the use of igesal snodels can be beneficial in such
applications as the compression of ECG signals and theesffianplementation of widely-used discrete

signal transforms, such as the discrete cosine transform.
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Chapter 1

Introduction

1.1 Motivation

Linear signal processing is a well-developed and compahetheory. Atits core lie fundamental concepts
such as filters and signals, spectrum and frequend¢sansform and Fourier transform. Many advanced
techniques and tools for signal analysis, processing, ezmhstruction are developed from these concepts.

Since a few fundamental concepts define the entire theg@mwalkprocessing operates under some im-
plicit assumptions. Traditionally, signals are viewed egugences in time: they go in one direction, from

past through present into future. The basic signal shiftdslay and its inverse is an advance, as shown in

Fig[L.1(a).

1 1
1 S S

@oQ— >0 @ <—@——> 0

123 lkt1 le—1 7 lkt1
(a) Time shift (b) Space shift

Figure 1.1: Basic shifts for time and space one-dimensisigalal models.

What if the underlying concepts of a signhal model were d#fefrom the traditional ones? For example,
there may be no inherent direction in a signal shift, or itfoacon a signal may somehow modify the signal
contents. How much would it change the whole signal model thadcorresponding signal processing

theory? How can we process such signals?
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Recently, some of these questions have been answered lyrausgsignal processing formalism called
algebraic signal processin(ASP) [1+6]. It offers a structured axiomatic approach titding signal models
based on fundamental general concepts. In particular,dhstruiction of an ASP signal model starts with
identifying a basic shift, which, for example, may refleat thesired relation between signal values in the
model. All other concepts are defined based on this basit gtdfa result, we obtain a signal model with

the desired underlying assumptions and the proper assdd@dls for signal analysis and processing.

For example, nevgpacesignal models have been constructed from the so-callecesgiaft, shown in
Fig[1.1(b), and studied in [1+3,/5, 6], as alternatives totthditional time model. It was shown that the
signal processing properties of the new models, such asohkdion, Fourier transform, and others, are
different from those of the standard time model. In particuit was demonstrated that discrete cosine and

sine transforms are the counterparts of the discrete Fduaiesform for these models.

Both the time and space shifts are examples of one-dimeals{@rD) shifts. Multidimensional time
and space signal models can be constructed from the condisigol-D signal models as tensor products
of the underlying vector spaces of signals. Such modelsaledseparable since each dimension can be

analyzed separately from others, as a 1-D signal model.

In addition, there exishon-separablemultidimensional signal models that cannot be represeased
tensor products of 1-D signal models. They are based orsghit act in multiple dimensions. Examples
include two-dimensionals hexagonal and quincunx signalletso The corresponding shifts are shown in

Fig.[1.2. Such models have been studied in [7-11].

.\ L]
\
\ °
\ /
\
\
o<—/o ————— —e 0\\
/// \\o
/
.l L]
(a) Hexagonal shift (b) Quincunx shift

Figure 1.2: Basic shifts for hexagonal and quincunx norassge two-dimensional signal models. One
shift is indicated with solid lines, the other with dashe@&®n
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1.2 Thesis Contributions

The ASP theory introduces many questions about the existand relevance of alternative signal models
and the corresponding signal processing tools. The maihajdhis thesis is to answer two of the most

important of these questions:

1) Do there exist linear, shift-invariant signal models mterest, not studied previously by the traditional
signal processing theory, or by the algebraic signal psinggheory? How do we define signal process-

ing concepts for the new models?

2) How do we define and construct appropriate subband asabs for signals for the new models, such

as filter banks and finite discrete Fourier transforms?

In this thesis, we answer the above questions by identifgimgw, large family of signal models, and
then developing the theory of subband analysis tools faemodels. We list the main contributions of the

thesis below.

New signal models

We introduce a family of signal models that serve as alteresito the traditional time model. In particular,
we construct and study a family géneric nearest-neighbaignal models, which were originally suggested
in [3]. These models are derived from the notion of the genagiarest-neighbor shift shown in Fig]1.3. In
parallel to the traditional signal processing theory, wigndeanalogs of all relevant concepts for these mod-
els, such as the filter and signal space, the operationsaitilt and convolution, spectrum and frequency,
z-transform and Fourier transform. Our goal is to demonsttiaat generic nearest-neighbor models are a

legitimate alternative to the time models traditionallg@®ed in linear signal processing.

by,

ako Ck

@Q———@——— 0

tr—1 tg tkt1

Figure 1.3: Generic nearest-neighbor shift. Coefficientsh.,cr, € R are real numbers, and satisfy
ags1ck > 0.
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Subband analysis

We construct the corresponding tools for subband analydiseonewly designed signals, and study their
design and efficient implementation. For infinite discrégmals, a common tool for subband analysis and

processing is a filter bank; for finite discrete signals, d {generalized) discrete Fourier transform.

i) Filter banks can be viewed either as arrays of band-pdsssiilor as expansions of a signal into properly
designed signal bases or frames. We use an alternativeetloabframework for filter bank construction

based on the combination of the above methods.

We also generalize the concepts of low and high frequencBace these concepts depend on the
signal model, we concentrate on the above generic neas@gdthor model and construct perfect-

reconstruction filter banks for infinite generic nearesghieor signals.

ii) For finite discrete signals, the ASP theory establistneg the spectrum, i.e. the set of all frequencies,
is a finite set. Hence, we can compalefrequency components of a signal. The corresponding mech-
anism is the generalized discrete Fourier transform, wisiehso-called polynomial transform defined
by the underlying signal model. The main research challéingén the efficient implementation of this

transform.

We study the existence and construction of fast algorithongHese generalized Fourier transforms.
Specifically, we develop a novel algebraic method for thensige decomposition of a general polyno-
mial transform into a series of structured steps. Then, ytyahis decomposition to the corresponding
discrete Fourier transform associated with finite genegiarest-neighbor signals and derive efficient

algorithms.

Applications

Although the main focus of this thesis is a theoretical dbation to the foundations of signal processing,
we also consider potential applications of the genericastareighbor models and subband analysis tools.
We consider signal compression, and in particular, we stbhdycompression of electrocardiographic sig-
nals. We also apply the developed theory for polynomialgiam decomposition to the derivation of fast

algorithms for different signal transforms.
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Furthermore, we discuss other potential applicationdudhiag the fast computation of Karhunen-Loéve
transforms for Gauss-Markov random fields, and the potensia of generic nearest-neighbor models in

climate modeling.

1.3 Thesis Outline

The thesis is organized as follows. We start by introduchregalgebraic signal processing theory in Chap-
ter[2, and discuss the algebraic meaning of signal proggssincepts, such as a signal model, Fourier
transform, filtering and convolution. We also provide exéasmf previously studied signal models. Then,
in Chaptef B, we discuss properties and structure of filtekfaas well as existing approaches to the design
and implementation of filter banks. After reviewing the bgrdund material, we construct infinite and finite
generic nearest-neighbor models in Chapter 4, and definelene the corresponding signal processing
concepts for these models. In Chapter 5, we study filter basigd for infinite generic nearest-neighbor
signals, and construct example filter banks for differeghal models. Then we derive an algebraic ap-
proach to the derivation of fast algorithm for generalizedifier transforms in Chaptet 6, and demonstrate
how it yields fast computational algorithms for discretaufter transforms that correspond to finite generic
nearest-neighbor signal models. After that, we study varigpplications of the theory developed in this

thesis in Chaptér] 7. Finally, in Chapfér 8, we review the deted work and discuss future directions.
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Chapter 2

Background: Algebraic Signal Processing

Theory

In this chapter, we provide background on the algebraicasigrocessing theory. In particular, we explain
the notion of an algebraic signal model and define the cooretipg signal processing concepts. We then

discuss infinite and finite discrete signal models and tinstantiations as time and space models.

2.1 Main Concepts

The algebraic signal processing theory (ASP) [1-6] is bogierzeralization of and an axiomatic approach
to standard linear signal processing theory. ASP is basetth@cgoncept of a signal model defined as a
triple (A, M, ®), where A is an algebra of filtersM is an.4-module of signals, an@ is a linear mapping
from the vector space of signals into the signal modMethat generalizes the concept otdransform.
Each signal model corresponds to different notions of $ignd filter spaces, the-transform, the shift, the
Fourier transform, and other concepts. We start by defirtiegstgnal model and associated basic signal

processing concepts.
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9|

(a) Addition:h + g (b) Multiplication: h - g

{7 H

Figure 2.1: Addition and multiplication of filters.

Algebra (filter space)

A C-algebrais a ring that is simultaneously @-vector space, such that the addition in the ring and the
addition in the vector space coincide. In other words, aplalg is a vector space that is closed under the
multiplication of its elements, such that the distributiges holds. Examples of algebras include the set of

complex number§& and the set of complex polynomials in one variaBle].

Consider the vector spact of filters in linear signal processing. We denote filtersdirwith h. If for
two filters hy, ho € A we associate their parallel connection with the additigrt- ho, and their serial

connection with the produét; i, then.A becomes an algebra. These operations are visualized i@.Big.

Among all filters, ashift has a special role. The shift can be viewed as a basic naaltfiiter, and a
common assumption made in linear signal processing is ihdhé discrete case) all other filters can be
written as linear combinations or series in multiples of shdt. In ASP, this key assumption leads to the

recognition of shifts as generators of the filter algebrayasliscuss below.

Module (signal space)

Let A be aC-algebra. An4-moduleis aC-vector spaceV on which A operates. This means the operation

of multiplication of elements afM by elements of4 is well-defined. M is closed under this multiplication
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and the distributive law holds. Formally, for apyt € M, andh, g, 1 € A, the following holds:

hs € M,
h(s+t) = hs+ ht,
(h+g)s = hs+gs,

(hg)s = h(gs),

In ASP, a signal spac#1 is an.A-module, whereA is the associated filter space. The corresponding

operation of4 on M is filtering. We denote signals iM with s.

Signal model

Typically, discrete signals are represented as sequefceal or complex numbers= (sx)res € V, where
I is an index domain ant is a vector space. The purpose of a signal model is to defindanraf filtering
for V. This is achieved by bijective mappirgthat maps each signale V to a signals € M, for which
filtering is defined as the operation dfon M.

In summary, aignal modefor a vector spac¥ is atriple(A, M, ®), whereA is a chosen filter algebra,
M is an associated signal-module, andb is a bijective mapping fron” to M. & generalizes the concept

of the z-transform. Namely, for a fixed basgy), _ iof M, ® has the form

() = sipr- (2.1)

kel

An important example of a signal model is the one for whichdligaal module and the algebra of filters
are equal as sets. Such a module (and the corresponding)risociledregular.

As shown in[[3,4] and explained next, the concept of the $igrmadel is sufficient to define basic signal
processing concepts including convolution, spectrum,Foutier transform. These concepts take different

forms for different models.

1Hereafter,( o ) denotes a list. We view lists as indexed sets; they do not@oduplicate elements.
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thx
thwa

Figure 2.2: Representation of a filter= h(z) = ), hez! as a linear combination or a series of multiples
of shift x.

Shift-invariance

In our research, we will be working only witkhift-invariant signal models. In ASP this condition means
that shifting any signa¢ € M with thebasic shiftz € .4 and then filtering it by a filtek € A be equivalent
to the filtering followed by the shift:

h-(zs) =z (hs). (2.2)

Assume that every filteh € A can be represented as a linear combination or a series apteslof

shifts:
h=hz)=> ha',
¢

as shown in Fig.2]2. In mathematical termsacts as ajeneratorof the filter algebrad = (z),. Since

any filtersh(x), g(x) € A can be written as series in the shift-invariance requiremet (R.2) implies that

Hence A is acommutativealgebra.

As explained in[[3,4], commutative algebras are generaydtidshiftz as follows. For infinite discrete
signals, 4 = {3, hex'} is an algebra of series in, in which addition and multiplication are performed
as usual. For finite discrete signald, = Clz]/p(x) is an algebra of all polynomials of degree less than
deg p(z), in which addition and multiplication are performed moddibceed polynomialp(z). Such an

algebra is called polynomial algebra
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Filter representations

For any filterh € A, we can define a linear mapping g

s— h-s. (2.3)

With respect to basis = (py), ., of M, h can be associated with & x |I| matrix M. Hence, there exists

kel
an algebra homomorphism between the filter spd@nd the space df | x |I| matricesCH <!

6. A = CHXII,
h — Mh-

(2.4)

This homomorphism is called thmatrix representation ofd afforded by the4d-module M with basisb.

Hence, filtering can be expressed either as a praducts(z) or as a matrix-vector produgth) - s, where

T
S= < So S1 S2 > eV

is the vector representation of the sigeat M.

Spectrum

A vector subspacél’ < M that is itself an4-module, is called amd-submoduleof M. If M does not
have non-trivial submodules (besidfs and itself), it is calledrreducible
In particular, every one-dimensional-submoduleM’ of M is irreducible. Furthermore, it is closed

under the operations of artlyc A, and hence is an eigenspace for @ang A. Namely, for anys € M/,
hs = \ps

for some);, € C.

We can write the set of all irreducible submodulesidfas (M.,) whereW is a corresponding

weWw?

index domain. We call the index the frequencyand W the spectrumof the signal model. EaciM,, is

called aspectral componendf M. A subsefit’ C W is called afrequency band
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Fourier transform

It may be possible to represent the signal moduleas a direct sum of its irreducible submodules. In this

case we can define the following mapping:

A M — M.,
Deew (2.5)

s = (Sw)wEW-

This mapping is atd-module homomorphism. Namely, for ahye A ands, t € M, the following holds:

A(s+1) = A(s)+ A1),

A(h-s) = h-A(s).

In signal processing, Fourier analysis involves the deasitipn of signals into spectral components.
Since the homomorphisA expresses € M in terms of its spectral components, we call this homo-

morphism thdourier transform

Since for any signak € M and filterh € A, we haveA(h - s) = h - A(s), the general form of the
convolution theorem becomes

h-s=A"Yh-A(s)),

provided the inversé\—! exists.

Frequency response

Similarly to the homomorphisni (2.3), we can define a lineappirag on a spectral componef,, for each
filter h € A:
s— h-s. (2.6)
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If we fix a basis(gy) in M, thenM,, affords anirreducible representatior,, of A:

0<k<dim M,,

¢w . .A N Cdimexdime’

h —  ¢u(h).

2.7)

The matrix¢,, (h) is thefrequency responsef % at frequencyw. The collection(¢,,(h)).ew is the fre-

quency response af

Suppose we choose basis= (p),_, in M, and in eachM,, we choose(qy) as a basis.

kel 0<k<dim M,,

Then we can express in (2.5) in coordinate form as

F: V = (CdimMW,
Duew (2.8)

S = (Sv)wew-

Filtering in the coordinate form is given by the matixh). Filtering in the decomposed module
@D..cww M. is represented by the direct sum of frequency respo@dgsy; ¢.(h), where a direct sum

of two matrices is defined as

A®B=
B

The Fourier transform maps the modulé$ and @, M., to each other. In addition, filtering in1
is equivalent to parallel filtering in the spectral compaseMm,,, as defined by the propertx(h - s) =
h - A(s). Hence, we can use the coordinate versimf the Fourier transform to block-diagonalize the

matrix representatiop(h) of h € A :

Foh) F' =P du(h).

weWw

2.2 Infinite Discrete Models: Examples

As we explained before, the shift-invariant, infinite deder signal model correspond to signals and filters
that are series in multiples of the basic shiftDepending on the definition of the shift, we obtain diffaren

signal models. The following examples of the (standardhitdidiscrete time signal model and infinite
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ty  tkt1 ol g0 gl g2
(a) Time shift (b) Time model visualization

Figure 2.3: 1-D infinite discrete time model: shift and viszetion.

discrete space model illustrate the above concepts.

2.2.1 Infinite Discrete Time Model

The signal model commonly adopted for the infinite discréteetsignal processing is for the space of

finite-energy sequencds = ¢2(Z). Itis given by

A= {h: zeezhgl'é | h= (...,h_l,ho,hl,...) Ggl(Z)},
M= {S = ZkEZ skxk ‘ S= ( ,8_1780781,...) S 62(2)}, (2.9)

D:2(Z) 5> M, S 5= 15K

Here,® is the standard-transform (we substitute = ~—1).

This model can be built on the concept of titae shift operatorz € A that imposes the direction on

the basis elemenis; (z) of M:

pri1(z) = - pi(w). (2.10)

The unique solution to this recurrencepigz) = 2*, which is used as the basis far. We also use the
same basis fad. The time shift, its action on the signals, and the visuétizaof the 1-D infinite discrete

time model are shown in Fif. 2.3.

Eigenfunctions. The associated Fourier transform is constructed by piioget signal onto spectral

componentsM,,,. To determine the spectral components, we first need toifgeiné eigenfunctions ofM.



2.2. INFINITE DISCRETE MODELS: EXAMPLES 15

An eigenfunctionis a signalE, (xz) € M, such that for any:(z) € A,
h(z) - Eq(z) = ¢ Ey(x)

for some constant € C that depends on filtek(x) and parametes. Since A is generated by, it is
equivalent to require only that

x - Eo(r) =c- Ey(x) (2.12)

for some constant € C.

Each eigenfunctio’, (x) spans an irreduciblel-submoduleM,, of dimension 1:
M, = {C-Ea(:n) | ce (C}.
For the infinite discrete time model, the eigenfunctionsddrie form

E,(z)= Zakwk (2.12)

keZ

for anya € C, since

zE,(z) =z - Zakazk =a! Zakwk =a'E,(x).
ke ke

Spectrum. It is not necessary to use the entire spécas the spectrum of the infinite time model in
order to obtain an invertible Fourier transform. Instead sufficient to choose the interval of orthogonality
of basis functions:*. The standard choice of spectruiii is the unit circle|z| = 1. If we parameterize it

by z = /%, with w € [0, 27), then
2w ) 2r
/ eIk (eI * duy = / =) oy = 276,
0 0

Fourier transform. Since we parameterized the spectrume% with w € [0,2n), we consider only

eigenfunctions[(2.12) of the form
E,(z) = Zej“kwk.

keZ
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They satisfy
z-E,(z) = e YE,(z). (2.13)

Respectively, the Fourier transform and its inverse therdafined as

A Sw)=(s,By(x) =) spe 7",
keZ
1 2

ATl g = o/, S(w)elkdw.

As expected, this is the standard definition of the disciigte Eourier transform.

Frequency responseFrom [2.138) we obtain
h(z)E,(z) = h(e /) E,(z).
Hence, the frequency response of a filiee >, hex’ at frequencyw € [0, 27) is given by

h(e ™) =Y hee %! = H(w).
LEL

Convolution. The filtering associated with the infinite discrete time Md@d) is defined by the oper-
ation of h(z) € Aons(z) € M:

hs = h(x)s(z).

This can be written in coordinate form as the standard tinma@ation ofh ands:

h(z)s(z) = Z Sk,

keZ

where

§k = (h * S)k = Z hg.s‘k_g. (2.14)
Lel

Also, it immediately follows from the definitions of the Faéer transform and the frequency response that
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the convolution corresponds to the multiplication in thegitency domain:

Parseval equality. The Parseval equality establishes the connection betweeartergy of the signal

and the energy of its Fourier transform. For infinite dise@ne signals, it has the forr [12-415]

2_i/27r 2
D lsilP =5 [ 1S(@)Pdw.

keZ

Frequency domain. We call the space of the Fourier transfor$igv) for all s(x) € M thefrequency
domain For the infinite discrete time model, the frequency domsia Hilbert space of continuous finite-

energy functions defined gn-, 7], with the inner product

2T
(u,v) :/0 u(w)v* (w)dw.

The set(e“F) wherew € W = [0, 27), is an orthogonal basis in this frequency domain.

kez’

2.2.2 Infinite Discrete Space Model

Infinite discrete space models are derived and defined inff@y are obtained from a different notion of a

shift operator: the symmetric shift

£ p(e) = 5 (Bkr(2) + P (2),

visualized in Fig[ 2.4(@). The solution to the underlyingueence

pO(:L') = 1,

Pe+1(x) = 2axpp(x) — pr—1(2), (2.15)

yields exactly the Chebyshev polynomialgz) = Cx(x) [16,/17] discussed in Appendix| A.

Chebyshev polynomials are defined for> 0. However, Cy(z) for negativek can be computed
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1 1
.4_2 .—>2 ° O—o—o—o—
tk—1 tr trta CoC1 Gy C3
(a) Space shift (b) Space model visualizatiod'(= V)

Figure 2.4: 1-D infinite discrete space model: shift and afigation.

from (2.18) as well. For example, consider the Chebysheynoohials of the third kindC' = V' that
correspond t&@y(z) = 1 andCi(z) = 2z — 1. Fork < 0, we obtainV_(z) = Vi_1(x). In particular,
V_1(z) = Vy(x), which is called thdeft boundary condition In the visualization of the corresponding

signal model in Fid. 2.4(b) it is indicated by the loop at teft boundary.

Chebyshev polynomial® (x) are orthogonal on the interval 1, 1] with respect to the weight function

pla) = 1+a) 21 —a)

! 14 x\1/2
/_1 Vk(x)Vm(w)(l —ac) dx =7 Ok—m.

Also, they satisfy the “symmetric shift” property
1
To(@) - Vi(z) = 5 (Vi—e(z) + Vire(2)),

whereT(x) are the Chebyshev polynomial of the first kind. This propemkes it convenient to choose

the ¢-fold space shiftT;(x)},>o as the basis afl.

As a result we define the following infinite discrete spacaaignodel:

A={h= Zzzo heTy(x) | h = (ho,hl, .. ) € 11(Np)},
M={s= Zkzo spVi(z) | s= (So,sl, .. ) € 62(N0)}, (2.16)

b 52(N0) —+ M, s— Zkzo Ska(CL').

Eigenfunctions. Similarly to the infinite time model, we identify the eigenfttions to define the asso-
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ciated Fourier transform for the infinite space model. Is ttdse, the eigenfunctions are of the form

2) =Y Vi(a)Vi(z), a€R.

k>0

Namely, for anye € R, they satisfy

)=z ZVk )=ua- ZVk aFEy(z).

k>0 k>0

Spectrum. We choose the spectrum as a subgétC R, such that the basis functiorig,(z) are
orthogonal oveiV. As discussed above; 1, 1] is the interval of orthogonality for Chebyshev polynomials
Hence, we set the spectruWi = [—1, 1]. As we show next, this choice makes the corresponding Fourier

transform invertible.

Fourier transform. The considered eigenfunctions for the infinite discretespaodel are

= Z Vie(w) Vi (x

k>0

wherew € [—1, 1]. They satisfy
x - Ey(r) =w- Ey(r). (2.17)

Hence, the associated Fourier transform and its inverseéedirmed as

A Sw)=(s,Eu(x) =) siVi(w)

keZ

1/2
AL /5 Wi (w H“’) dw
l—w

Frequency responseFrom [2.17) we obtain
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Hence, the frequency response of a filier 3, h/T;(x) at frequencyw € [—1, 1] is given by

H(w) = Z hng(w).

>0
Convolution. Similarly to the infinite discrete time model, filtering isoresented by the multiplication
hs = h(x)s(z).
In the coordinate form, it is expressed as a convolutioh afds as

hs = 8 Vi(),

k>0
where
/ /
S + s
R 1 Sk—e k+e
S = (hxs) = E hgf
C€T

Here,hy = 2hg andhy, = hy for £ # 0, ands), = s

It follows from the definitions of the Fourier transform artfrequency response that the convolution

corresponds to the multiplication in the frequency domain:

Parseval equality. We state the Parseval equality as a theorem:

Theorem 2.2.1 The Parseval equality for the 1-D infinite discrete spac@&aignodel for Chebyshev poly-

1 [t 14+ wy1/2
Sst=r [ swr(ie)

nomials of the third kind is
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Proof: Observe that

1 14+ w\1/2
we

k>0 k>0

- L s D) ()

k>0

1 2, (14 wy\1/2
- sl e

Frequency domain. The frequency domain for the infinite discrete time model Kilkhert space of

continuous finite-energy functions defined[erl, 1]. The inner product is defined as

(u,v) = /_1 u(w)v(w)(ii—i) I/de

The set(Vk(w))kEZ is an orthogonal basis in this frequency domain.

Alternative infinite discrete space signal modelsln addition to the signal moddl (2.116), space models

for all four types of Chebyshev polynomials can be definedlaity [5].

2.3 Finite Discrete Models

As we mentioned in Sectidn 2.1, a finite shift-invariant sigmodel(.A, M, ®) with one shift necessarily
hasA = C|z]/p(x). Here, we first discuss the general finite discrete signaleifotlowing [3,/4], and then

show examples of the standard finite discrete time made] ghd the finite discrete space model [5].
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2.3.1 General Finite Discrete Model

Let us fixb = (px(z)) as the basis of the signal moduld = C[x]/p(x), wheren = deg p(x). Then

0<k<n

we can define the following finite discrete signal model:

A =M = Clz]/p(z), (2.18)

®: C" > M, s— zz;é skpk ().
Each such model is shift-invariant. The associated sigrlgssing concepts are presented next.

Fourier transform. Assume that

n—1
p(a) =[]z — )
k=0
is a separable polynomial, i.e. its zeros are distingts~ oy for k £ £. Leta = (ao, . ,an_l). It follows

from the Wedderburn theorern [18,/19] that the regular module= 4 can be decomposed into a direct

sum of irreducible4-modules. This decomposition is accomplished by the Chifesmainder Theorem:

A: Clzl/p(z) — @izoClal/(x — ), 210
T .
s(z) <s(a0) s(ag) ... s(an_1)> .

This is called thayeneralized discrete Fourier transform

Letus choose the bas($) in eachC|z]/(z—ay). Then the matrix that describes the isomorphism {2.19)

is
po(ao)  pila) ... pu-1(ao)
Py po(:Oél) pl(:al) pn—lz(al) _ {W(O‘R)]Oghkn' (2.20)
po(an—1) pi(an—1) ... pp-1(an_1)

This matrix is called golynomial transfornj20,21].

The generalized discrete Fourier transfafriis(z)) in (Z19) of a signak(z) = Y77, sppk(z) € M
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can be computed as the matrix-vector product

A(s(r)) = Pya S, (2.21)

)

T
wheres = <30 S1 ... Sn_1> .

Spectrum. Each irreducible4-submodule

in (2.19) is a spectral component.6fi. Accordingly, the setV = « of the zeros op(z) is the spectrum of
the finite discrete model.
Frequency responseFrom (2.19) we observe that the projectiorns@f) € M on a spectral component

M., = Clz]/(z — «a) is the evaluatiors(«y,), since
s(z) = s(ag) mod (x — ag).

Similarly,

h(z)s(x) = h(x)s(ag) = h(ag)s(ax) mod (z — ayg).

Hence, the frequency response of a filiér) € A is given by

H(a)=<h(ao) h(ai) ... h(an_1)>T.

Convolution. SinceA = M = C[z]|/p(z), filtering, and hence convolution, in the discrete model is
represented by the product

hs = h(x)s(x) mod p(z).

Filter representation. As explained in Section 2.1, the matrix representatiopl affforded by M with

basisb is a homomorphism

p: A — Crm
(2.22)

h(z) — o(h(z)) = Mp,.
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O—P+ 0 —P 0 ¢ o+ o o o o—m»o—>ro
xO xl 12 xn—3 " 2 xn—l
Figure 2.5: The visualization of the finite discrete time migd[x] /(™ — 1) with basisl, z, 22, ... z" L.

The weight of each edge Is

Here, M), € C™*" is defined such that computing the polynomial product
$(z) = h(x)s(z) mod p(x)
is equivalent to computing the matrix-vector product
§=M,-s

for any signals € M and filterh € A.

The corresponding polynomial transform diagonalizes th&imrepresentation of any(x) € A:
Poo - 6(h(x)) - Py ) = diag (h(ao), ., hlan-1)). (2.23)

2.3.2 Finite Discrete Time Model

Consider the special case 6f (2.18) given by the signal mddel M = Clz|/(z™ — 1) with basisb =
(1,3:,3:2, . ,a:"_l):

A=M=Clz]/(z" — 1), (2.24)

D: C" = M, s 3170 spak
Observe that this model can be obtained from the infinite timoeel [2.9) by imposing the periodic bound-
ary conditionz™ = 1 [3,/4]. The model is visualized in Fifg. 2.5. The boundary dbad is indicated by the
arrow that connects the boundary points of the graph.
Fourier transform. Since the roots of” — 1 areay, = wk, wherew, = ¢~I% is a primitive n-th

root of unity, the corresponding polynomial transfofm _(®.% the well-known discrete Fourier transform
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(DFT):

24

Pho = [ai] - [wn } — DFT,,. (2.25)
0<k,b<n 0<kl<n

Spectrum. The spectrum of the finite discrete time modelis= (wf), _, _ .

Frequency responseThe frequency response of a filtefx) € A is

Convolution. The convolution is defined as
hs = h(x)s(z) mod (z" — 1),

which is equivalent to the circular convolution lofands:

n—1
h(z)s(x) mod (z" —1) = Z gk,
k=0

where

sp=(h®s)y = Z R(k—¢ mod n)Sk- (2.26)
0<l<n

Frequency domain. The frequency domain of the finite discrete time model canibeed as the
frequency domain of the infinite discrete time modell(2.9gked at frequencies;, = 27k /n [13/22]. In
particular, the basis functiong“™, 0 < m < n, sampled aty;,, are the orthogonal basis of the frequency

domain. Namely,

(1’ ej27rm/n’ o ’€j27rm(n—1)/n)

is them-th basis function.

2.3.3 Finite Discrete Space Model

Consider the special case 6f (2.18) given by the signal mgdet M = C|z]/V,,(x) with basisb =
(Vo(z), Vi(@), ..., Va_1(z)), where, as beforéy, (z) denotes thé:-th Chebyshev polynomial of the third
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CVo i W Viez Vo Vi
Figure 2.6: The visualization of the finite discrete spacedehoC[z]/V,,(z) with basis

Vo(x), Vi(x),...,Va—1(x). The weight of each edge 192, except for the loop at the left boundary, where
itis 1.

kind:

D C" = M, s> 070 sk V().
Observe that this model can be obtained from the infinite espacdel [2.16) by imposing the boundary
conditionV,,(z) = 0 [5]. The model is visualized in Fi§. 2.6.

(2k+1)7

a1+ the corresponding Fourier trans-

Fourier transform. Since the roots o¥,,(z) areay = cos

form (2.20) is a scaled discrete cosine transform of §/fBCT-VIII):

B (k+1/2)(¢+1/2)m (k+1/2)m
0<kl<n {CO (n+1/2) / cos 2n+1 }
(k:+1/2)7r) ' [ (k‘+1/2)(€+1/2)7r}

2 +1 Joske<n L0 (n+1/2) o<kt

(k+1/2)m
B )OSM@ DCT-VIIL,, . (2.28)

Pooa = [Vf(ak)]

0<kl<n

= diag <1/ Cos

= diag (1/ cos

Spectrum. The spectrum of the finite discrete space model is the list

(2k + 1)

W = ( cos
( 2n+1 0<k<n

of roots of V,, ().

Frequency responseThe frequency response of a filtefx) € A is

T
H(a) = <h(cos ﬁ) h(cos 2211) ... h(cos (22nn—+11)7r)> .



2.3. FINITE DISCRETE MODELS 27

Convolution. The convolution is defined as
hs = h(x)s(z) mod V,(x).

Frequency domain. The frequency domain of this finite discrete space model eamidwved as the
: P : . 2k+1)w
frequency domain of the infinite discrete space mddel (Z&6)pled at frequencies, = cos (2n+1 [22].

In particular, the function

(VI 4+ woVim(wo), -, v/1 + wn—1Vin(wp—1))

is them-th basis function of an orthogonal basis of the frequenayala.



28

CHAPTER 2. BACKGROUND: ALGEBRAIC SIGNAL PROCESSING THEORY



Chapter 3

Background: Subband Analysis

Some of the most important techniques for signal processi@dpased on the analysis of a signal’s frequency
content. Often, a signal is split into several componentsipging different subsets of the spectrum,

calledfrequency bandswvhich are then processed. This technique is calldaband analysis

For infinite discrete signal models, such as the time andespamdels discussed in Section]2.2, the
spectrum is an uncountable set. Hence, it is not possiblerfonmn analysis for each frequency individually.
Instead, signal components that occupy continuous frasyueands are extracted. This can be performed
by processing a signal with several bandpass filters, wheask #lter extracts a corresponding frequency
band. The most common tool for such processingfiea bank In Sectiorl 3.11, we discuss the structure of

filter banks, their properties and design techniques.

For finite discrete signals, such as the signal models discum Sectiof 213, the spectrum is a finite
set. Hence, we can compute each frequency component indllyd This is performed by calculating
the corresponding discrete Fourier transform of a signak @=general discrete signal model (2.18), the
corresponding polynomial transform (2121) is used. Thennwdiallenge in this case is to perform the
calculations efficiently. In Sectidn 3.2, we discuss fagbathms for polynomial transforms and approaches

to the construction of such algorithms.

29
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3.1 Filter Banks

A filter bankis an array of serially connected filters and down- and up$nsipeach serial connection
constitutes a channel. The properties of the filters and Eampan differ significantly depending on the
purpose of a filter bank. A thorough discussion of filter banksir structure, design, and applications can
be found in[[23=25]. To date, only filter banks for the traafitil time model have been studied. In the rest

of Sectior 3.1, we review filter banks for time signals.

3.1.1 Filter Bank Structure

Filters

Filters used in filter banks are usually designed to attentls frequencies present in a processed sig-
nal. This is achieved by carefully constructing the frequyeresponse of each filter. Depending on their

frequency response, most filters can be classified as one &fltowing:

a) Aband-pasdilter h(z) has a frequency response that is non-zero only for a speaifltanidiV, C W :

Hw)=0

if w ¢ W. In this caseJV; is called the filter'passband

b) A band-stogfilter h(x) has a frequency response that is zero only for a specific adidfia C W :

H(w)=0

if w € Ws. In this case}V; is called the filter'sstopband

Special cases of the above includikpassfilters that do not remove any frequencies from a processed

signal, but only attenuate them; andtchfilters that are band-stop filters with a very small stopband.



3.1. FILTER BANKS 31

Down- and upsamplers

A downsampletis a device that reduces the number of coefficients in a psedesignal. The ratio of the
number of coefficients in the incoming signal to the numbecasfficients in the outgoing signal is called
thedownsampling rate

Typical downsamplers with downsampling rdteare implemented by keeping eveNrth coefficient

of a signal and dropping others. (i§;), _, is the incoming signal, anfk;), _, is the outgoing signal, then
Sk = SkN

forall k € Z.

Upsamplers are defined analogously. #gsampleiis a device that increases the number of coefficients
in a processed signal. The ratio of the number of coefficiemntthe outgoing signal to the number of
coefficients in the incoming signal is called thesampling rate

Typical upsamplers with upsampling rad are implemented by insertingy — 1 zeros between the

coefficients of a processed signal:

Sk/N7 if N|]{7,

0, otherwise

Analysis and synthesis parts

Typically, each channel starts with amalysisfilter. Commonly, this is a bandpass filter that extracts a
component of the processed signal that occupies a desegdeincy subband. For efficient processing, the
analysis filter is followed by a downsampler that reducesthezall number of coefficients to be processed.
Proper downsampling does not result in information loss @wek not prevent us from reconstructing the
original signal from the remaining coefficients, as we eixpia Sectior 3.1.2.

After the extracted and downsampled components are pextetise signal approximation is recon-
structed by upsampling each component and filtering it withrdghesidilter, and then combining all recon-

structed components into one signal. This isgiethesigart of the filter bank.
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Analysis Synthesis

) _ho_|

Figure 3.1: Standard/-channel filter bank sampled at ra®é h;, andh;, denote analysis and synthesis
filters.

Sampling of filter banks

Fig.[3.1 shows ad/-channel filter bank with downsampling and upsampling rafesf N = M, the filter
bank is callectritically sampled the total number of coefficients computed in the analysit gfathe filter
bank is the same as in the original signalMf< M, the filter bank is calledversampledand the number
of coefficients computed in the analysis part is larger tmathé original signal. Finally, itV > M, the
filter bank is calledundersampledand the number of coefficients computed in the analysisiparnaller
than in the original signal.

In addition, the downsampling and upsampling rates in a filemk can be different. In this case, the

filter bank is said to have ational sampling ratg26-29].

3.1.2 Nyquist Theorem and Downsampling

The use of downsampling and upsamping in filter banks can pkieed by the Nyquist sampling theo-

rem [30--34], which we re-state here:

Theorem 3.1.1 Suppose an infinite continuous time sigsél) € £2(R), with the Fourier transform

S(w) = / 7 s(teitar,

—00

is bandlimited to the bandwidtB:

S(w)=0

for |w| > B.

Suppose an infinite discrete time sigr(ak) is obtained by sampling(t) at sampling points;, =

keZ
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kT :
s = s(kT).

Then the original signak(¢) can be reconstructed from its samp(eﬁg) as

keZ

s(t) = Z Sy - sinc (t _TkT),

keZ
where
inmt
sinc(t) = ST ,
it
if the sampling intervall” satisfies
2w
T<—.
2B

Suppose we have a two-channel, critically-sampled filtekb&ssume that analysis filtéy is an ideal
half-band low-pass filter:

1, it jw] <7/2,
0, otherwise

Denote the incoming signdls;.), ., filtered with iy with () Assume that all signals have been

kEZ keZ’

sampled from continuous signals at poityis= k7', such that sampling satisfies Nyquist theotem 3.1.1. In

particular, (31,) ., has been sampled froét).

Then (§k)kez can be downsampled by a factor of 2 without any loss of inféiona since it can be

recovered from only half of its coefficients as follows:

Z'§2k - sinc <t _;kT) =35(t) = ng - sinc (t _TkT).

keZ keZ

Similarly, if i, is an ideal half-band high-pass filter with frequency resgon

0, if jw] <7/2,

1, otherwise
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then filtering signal(sy), _,, with ki and downsampling the result by 2 does not result in any logsforf:

mation.

3.1.3 Filter Implementation
Difference equations

Consider a linear shift-invariant system that processesaming signak(z) = > .., siz® and outputs a

signals(z) = > .cz 5,2%. Suppose, the input and output signals satisfy the relation

Mp—1 Mg—1

Z bmgk—m = Z AmSk—m, (31)
m=0 m=0

where M,, M, € Ny are finite non-negative integers, ang, b,, € C are constants, such tha # 0.
The relation [(3.11) between a system’s input and output ileda linear constant-coefficient difference
equation[12,[14].

If we multiply the left- and right-hand sides ¢f(8.1) by and sum over alk € Z, we obtain

b(x)s(z) = a(z)s(x), (3.2)
where
My—1
a(x) = Z apma™
m=0
and
M,—1
b(x) = Z b z™
m=0
Re-writing [3.2) as
$(0) = 53 s(a) (3.3)
we obtain tharansfer function
h(z) = M

of a linear shift-invariant system that is described by tiifexence equation 311 [12,14].
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FIR and IIR filters

The general form of a filter is

L
- 3% b,

{=Log

Depending on the values of integdrs, L1 € Z, filters can be separated into two classes:
1) Finite impulse respons@-IR) filters have finite support: bothy and L, are finite integers.
2) Infinite impulse respong@lR) filters have infinite support: eithdry or L, (or both) are infinity.

Any FIR filter h(x) can be implemented as a linear shift-invariant system de=tiby the difference
equatiori 311, since we can sétr) = x~ 0h(z) andb(x) = 2~ in 33).
An IR filter h(x), on the other hand, can be implemented as a linear shiftiémtasystem described by

the difference equation using a difference equdtioh 3.¢ ibitlcan be written in the form[(313):

-t =

~

m

N
~

Fast convolution

In addition to difference equations, an FIR filtefz) = ZL:lLO hezt may also be implemented directly as

a convolution[(2.14):

Ly
S = E hesk—e,

t=Lo
since the finite number of non-zero filter coefficients taps allows us to compute the coefficierds in
finite time. IIR filters, on the other hand, have an infinite fn@mof taps, and cannot be implemented directly

as a convolution.

A number of fast computation algorithms exist to computeaheve convolution [12, 14, 20,35]. Ex-
amples includeoverlap-addand overlap-savemethods that are based on expressing the linear convolu-
tion (2.14) via the circular convolution (2.26) for the fimitime model, and computing it using fast algo-

rithms for DFT that we will discuss in Sectidn 3.2.
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3.1.4 Perfect-Reconstruction Filter Banks

An important class of filter banks aperfect-reconstructiofilter banks that allow for an exact reconstruc-
tion of the input signal. Here, we review two main approadiehe design of perfect-reconstruction filter
banks: a filter approach and a signal expansion approacth d&groaches were developed for the tradi-
tional time signal model. The filter approach is a more commpproach to filter bank design, and can
be found in most signal processing textbooks (see, for elgnild+15]). The signal expansion approach
was developed as an alternative approach for the constnuofi perfect-reconstruction filter banks [23].

In traditional time signal processing, both approachesbeansed interchangeably. In Chagtér 5, we will

discuss the generalization of these approaches for otipealsinodels.

Filter approach

Since a filter bank can be characterized by its analysisdijltae original approach to the design of perfect-
reconstruction filter banks was based on the properties eofatialysis filters. Consider a two-channel
critically-sampled filter bank in Fid. 3.1, implemented tbe infinite discrete time model (2.9). Let the

input signal be

s(z) = Z spk,

keZ
the analysis filters be
fli(x) = Z ilz‘,ﬂz,
ez
and the synthesis filters be
hl((ﬂ) = Z h@g(ﬂe,
ez

for i = 0, 1. Finally, let the output signal be
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It was shown in[[36] and later generalized|in|[37, 38] thatdhgut signak(x) satisfies the equation

ho(x)ho(z) + hi(x)hi(z) + s(—2) ho(—z)ho(z) + hl(—x)hl(x)'

5(z) = s(x) 5 5

Hence, we can obtain the perfect reconstrucion) = s(x) if the following conditions hold:

ho((ﬂ)ho(l‘) + hl(x)hl (1‘) = 2,
(3.4)

ho(—x)ho(x) + hi(—x)hi(z) = 0.
Similar conditions on the analysis and synthesis filterskmanlerived for filter banks with more than two
channels[[39, 40].

Signal expansion approach

An alternative viewpoint on the design of perfect-recamndion filter banks is to expand a signal
T
S= (...78_1,80781,...)

into properly constructed bases

(‘Pl(em) ) kez’

where0 < m < M. The resulting expansion has the form

§= Z <¢§CO)7S>90]£O) +--+ Z (@]&M_l)7 S>Q0](CM_1)7 (35)
keZ kezZ
where
~(m)
(‘Pk )keZ’

for 0 < m < M, are the corresponding dual bﬁeﬁis leads to the filter bank interpretation shown in

Fig.[32.

'A dual basis(@y) is a basis in the dual space of a vector space spanned by i€ pas. The basis and its dual are mutually
orthogonal:{yk, Pm) = dx—m. Orthogonal bases are self-dual.
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Analysis @*)  Synthesis ¢)
(@)28) [+ ()l )
s : : :GT—}»ﬁ

(@MY ) A (MY

Figure 3.2: Signal expansion interpretations of\drchannel filter bank sampled by. ®* and® are the
analysis and synthesis matrices.

The design criteria for the baseé@,gm)) include their frequency content and structure. In particu-

keZ
lar, we may view them as signals occupying a particular feegy band. Also, for practical purposes, the
bases are often constructed as periodically shifted seqgesf a few prototype signals. All these assump-
tions lead to the filter bank structure shown in FigJ 3.1, sitlee inner product and time convolution are
interchangeable — one only needs to reverse the order ofodiaents [28]. The expansion approach
can be further generalized by viewirgy), , and (¢x),, as fram% which results in[(3]5) being an
overcomplete expansion.

Such signal expansions have been studied in various arsggal processing, including blocked trans-
forms, such as windowed Fourier transform, lapped orthabtvansforms[[42] and later lapped tight frame

transforms|[[48=45]; signal compression and multiresofutinalysis[[46]; and robust transmission| [44, 45,

47/48).

Connection between the approaches

To illustrate the connection between the filter approach thedsignal expansion approach, consider the

M-channel filter bank in Fig. 3l 1. Assume that all analysis synthesis filters
iLm = (ilm,Oa cee ;ilm,L—l)T

and

hm = (hm,Oa cee ahm,L—l)T

2A frame (ka) is a redundant set of vectors that span a vector spajge]. Unlike basis vectors, frame vector can be linearly
dependent. Alual frame(¢y) is another frame such that any vectoe V' can be expanded as= >, (¢k, v)¢x. A self-dual
frame is calledight.
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are FIR filters, and have the same lenditk- ¢V for someq € Ny. For a signak, the operation of the filter

bank can be described via matrix-vector products: the fivams

S=d*s

is filtering followed by downsampling (the analysis part)ddhe inverse transform

S=®S

is upsampling followed by filtering (the synthesis part).réj@ has the form

P 0 0 O
P, D 0 O
=1... : S I (3.6)
b, 1 Pyo dy 0
0 D, o D

where each block,, 0 <r < ¢ — 1, istheN x M matrix

hornN e har—1,N
B, = : : . 3.7)

hoypN+N-1 - hpm—1rN+N-1

The analysis matri¥ is constructed similarly from the reverses of filtéss the order of the coefficients of

hy in the columns of block®, is reversed.

Then,cp,gm) in the expansion(315) is thg:M + m)-th column of®; and cﬁ,&m) is the (kM + m)-th
column of®. If M = N, then the columns ob and® are bases, dual to each other)if > N, then the

columns of® and® are mutually dual frames.
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Orthogonal and biorthogonal filter banks

The perfect reconstruction= & corresponds to the condition

PP = I. (3.8)

Consider a perfect-reconstruction, critically sampletfibank in Figl 311 that satisfiels (B.8). If the
corresponding matri¥ is orthogonal, that i9 = ®, then the filter banks is calledrthogona) since the

columns of® form an orthonormal basis. Otherwise, it is callédrthogonal

Example 3.1.2 Consider a two-channel, critically-sampled filter bankwéinalysis filters

- 14271 - 11—z 1
ho(z) = 73 hi(z) = 7
and synthesis filters
1+x 1—=x
hO(ZL") = W? hl(f’?) = \/5 .

The frequency responses of analysis low-pass and highfifiessh (z) andh, () are shown in Fig: 3.3%).

This filter bank is known adaarfilter bank [23[49].

We can verify that the analysis and synthesis filters satifyperfect reconstruction conditid.4):

1+a7! 1+oc+1—gc—1 -z _,
V2 V2 V2 2 ’
~ ~ 1—27! 142 14+27 1—2
ho(—x)ho(x) + hi(—2)h = : + : = 0.
o(=2)ho(w) + hi(—z)h1 () 7 7 7 5

ho(2)ho(z) + hi(z)hy (z) =
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Figure 3.3: Frequency responses of low-pass and high-fiiess for Haar and Daubechiés; filter banks.

Alternatively, we can verify that the matrixin (3.8)is orthogonal, since

where

by =

V2

1 1
1 -1

Hence, Haar filter bank is an orthogonal filter bank.

Example 3.1.3 Consider a two-channel, critically-sampled filter bankwéinalysis filters

ey — LEVE 3HVE L 3oV, 1-VE
NG 12 12 2

hi(z) = 1_\/3—1- \/§_3x_1+73+\/§x_2 7_1_\/333_3
! 12 12 1/2 12



42 CHAPTER 3. BACKGROUND: SUBBAND ANALYSIS

and synthesis filters

1+v3 3+vV3 3-V3, 1-V3,
+ T+ 7+ z°,
42 42 442 442
1— — —1 -
\/§+\/§ 3x+3+\/§x2+ 1 \/3333'
42 42 42 42

The frequency responses of analysis low-pass and highfifiessh (z) andh, () are shown in Fig: 3.3(b).

This filter bank is known a®aubechied, filter bank [50[51].

We can verify that the analysis and synthesis filters satifyperfect reconstruction conditid.4):

ho(w)ho(w)+h1(w)h1(w) = 2,

ho(—l’)ho(l’)—l—hl(—l’)hl(lﬂ) = 0.

Alternatively, we can verify that the matrixin (3.6)is orthogonal, since

g
¢ = P, P )
D, B,
where
1 1+v3 1—-3
Dy = ——
W2\ 343 V3-3
and

o L 3-v3 3+V3
BECA T Y

Hence, DaubechieB, filter bank is an orthogonal filter bank.
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3.1.5 Applications of Filter Banks

The characteristics and design of perfect-reconstrudiiten banks can vary significantly depending on the
application for which a filter bank is constructed. In thisgls, we consider two potential applications of

perfect-reconstruction filter banks—Ilow/high-frequersgparation, and robust transmission of signals.

Frequency separation

Consider a two-channel critically-sampled filter bank tfisadesigned to separate low and high frequencies

of input signals. Ideally, the low-pass analysis fiﬁz@(:n) would have the frequency response

1, if Jw| <7/2,

0, if 7/2 <|w| <.

Similarly, the frequency response of an ideal high-pasar filt () would be

0, if jw] <7/2,

1, if 7/2 <|w| <.

Unfortunately, in this case the analysis filtéggz) andh, () would have to be IIR filters, which makes
their implementation both impractical and impossiblegcsithey cannot be implemented recursively. For
practical reasons, FIR filters can be used to approximatéehavior of the ideal IIR filters. One of the
most widely used characteristics of such FIR filters is thgreke of flatness.

A degree of flathessf a low-pass filter is specified by the number of derivativietsdrequency response
that vanish at the highest frequency (respectively, lovirestuency for a high-pass filter) [24,146]. For
example, a low-pass filtér(z) with M degrees of flatness satisfies the condition

d—mH(w) =0

dw™ wW=Tr

for 0 < m < M, sincew = 7 corresponds to the highest frequency in the infinite time ehdéquivalently,

(1+e=7)M must divideH (w). A low-pass filter with a greater degree of flatness is a bafiproximation
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Figure 3.4: Frequency response of a low-pass filter- e=7«)/2)M for M = 1,2, 3.

of an ideal low-pass filter, as illustrated in Hig.13.4.

Among all filters with the same degree of flatness, the one thithshortest support length are called
maximally flator maflat Both orthogonal and biorthogonal filter banks with maxfligfs have been con-

structed for the infinite discrete time signals(in/[50-54].

Example 3.1.4 Consider the Haar filter bank introduced in Example 3.1.2udés maxflat low- and high-

pass filters of order 1, since

(1+¢™) =0,

[\V]

H(0) = —(1-¢°) =0,

V2
and they have the shortest possible support length 2.

Similarly, the Daubechie®, filter bank introduced in Example_3.1.3 uses maxflat low- agt-pass
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filters of order 2, since

_ d -~
— —H —
O(ﬂ-) 07 dw O(W) e 07
N d ~
1(0) =0, @Hl(w)\wzo =0,

and they have the shortest possible support length 4.

Robust signal transmission

Consider anV/-channel oversampled perfect-reconstruction filter bakkwe explained in Sectidn 3.1.4,
in this case the columns of matric@sand® form mutually dual frames; or in the cage= ®, a tight frame.

An advantage of frames in comparison to bases is their rethayd After a signal is expanded into a
frame, a loss of several expansion coefﬁciqmgl),s> in (3.5) may not prevent us from reconstructing the
original signal from the remaining coefficients. In the mestreme case, for af/-channel oversampled
perfect-reconstruction filter bank that is sampled at fste< M, we should be able to reconstruct the
original signal from anyN/M fraction of its coefficients. Frames that satisfy this reeuient are called
maximally robust to erasuresThey have been studied, in particular, inl[44,45] 47, 48ltefFbanks that
correspond to maximally robust to erasures frames can liEfoisebust storage and transmission of signals

over lossy channels.

3.2 Polynomial Transforms

As we discussed in Sectign 2.3, the generalized discretadfdransform can be computed with the corre-
sponding polynomial transforni_(2120). 7f = deg p(z) in (2.18), thenP; , € C™*" is ann x n matrix.
The computation of the generalized discrete Fourier transfis the matrix-vector produét (2121) requires,
in general,0(n?) operations. This cost may become prohibitive for lange some practical applications.
It brings up the main challenge in the implementation of polyial transforms: how to construct fast

algorithms for the transforms of interest.
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Here, we briefly review the developments in the theory of &gbrithms for polynomial transforms.
We discuss the construction of fast algorithms for the madt-kinown and widely used transforms, such as
DFT and discrete cosine and sine transforms (DCTs and DSVesalso review existing fast algorithms for

other, less well-known polynomial transforms.

3.2.1 Known Fast Algorithms
Fast Fourier transforms

Over the last decades, fast algorithms have been studigdarrd small number of polynomial transforms.
Among them, the DFT is arguably the most famous and wellistuttansform. The discovery of the
Cooley-Tukey fast Fourier transform (FFT) algorithm|[5&hich reduced the computation costloFT,,
to O(n log n) operations, led to decades of research and multiple new Fgefitams (see [6,20, 35,56-59]
and references therein).

The majority of FFT algorithms can be interpreted as faz&dions of the DFT matrix into a product of
sparse matrices. The goal is to find such a factorizationtligatombined computational costs of these ma-
trices is lower than the cost of a straightforward compatatif DFT. The following example demonstrates

this.

Example 3.2.1 The Cooley-Tukey FFT algorithm f&FT, corresponds to the following matrix decompo-

sition:
1 1 1 1
I -7 -1
DFT, =

1 -1 1 -1

Ly -1 —j

1 1 1 1 1 1

1 1 -1 1 1 1

1 1 1 1 1 -1
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The direct computation dDFT, requires 12 operations (multiplications Byl and =i are not consid-

ered). In comparison, the computation of the four matricethé factorization requires only 8 operations.

In addition, fast algorithms exist for DFT-related signadnisforms, including the real DFT and the

disrete Hartley transform, for example([6] 60, 61].

Fast trigonometric transforms

Another well-known class of signal transforms is the clalsdiscrete trigonometric transforms—discrete
cosine and sine transforms (DCT and DST) of types 1 througigilarly to DFT, fast algorithms for
trigonometric transforms reduce the computational casnfO(n?) to O(nlogn) operations (for exam-
ple, seel[2, 6, 62-71], as well as references therein). Mioitese algorithms can also be interpreted as
factorizations of a transform matrix into a product of spansatrices, as demonstrated by the following

example.

Example 3.2.2 The Wang fast algorithm fddCT-IV 4 [66] corresponds to the following matrix decompo-

sition:

0.9808  0.8315  0.5556  0.1951
0.8315 —0.1951 —0.9808 —0.5556
DCT-IV, =
0.5556 —0.9808  0.1951  0.8315

0.1951 —0.5556  0.8315 —0.9808

1 0.6935  0.1379
1 0.1379  —0.6935
1 0.5879 —0.3928
1 0.3928  0.5879
1 1 V2
1 1 V2
X
1 ~1 1 -1
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The direct computation dCT-IV 4 requires 28 operations. In comparison, the computatiomefour

matrices in the factorization requires only 20 operations.

Polynomial transforms for orthogonal polynomials

Another class of transforms that have been studied are palial transforms that are based on orthogonal
polynomials [72=75]. We introduce orthogonal polynomiatel discuss their properties in Appendix A.
With the exception of DCTs and DSTs, which belong to this grad transforms as well, the fast

algorithms reported in the literature requidén log® n) operations. They include:

a) Algorithms for transforms evaluated at arbitrary nodgdq74]. However, the exact cost of these algo-
rithms is greater thaf6n log2 n, which renders them impractical. Moreover, these algorittare not

numerically stable.

b) Algorithms for transforms evaluated at the roajsof Chebyshev polynomial%,, (x) [75]. These algo-

rithms require greater tham log3 n operations, and are not stable in general.

c) An approximation algorithm for the polynomial transfofor Legendre polynomials evaluated at the
roots o, of Legendre polynomiaP, (x) [72]. Evaluation to the precision requiresO(n log %) opera-

tions.

In general, reported fast algorithms use the recursion) (frlorthogonal polynomials to iteratively
compute the valué’ («y,) from P,_1 () and P,_s (). They do not use any information about the points
ay, Which, understandably, leads to slower algorithms. As wmealestrate in Sectiopl 6, incorporating
information about sampling points allows us to construst &gorithms for polynomial transforms based

on orthogonal polynomials that requi€¥n log n) operations.

3.2.2 Algebraic Approach

Most fast algorithms for polynomial transforms, includitigpse discussed in Sectibn 3]2.1, are derived by
clever and often complicated manipulations of matrix cogdfits. They provide little insight into why such

decompositions exist and how to extend and generalize them.
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Several algebraic approaches have been developed torespaderivation of known fast algorithms
and construct new ones. Originally, group algebras welizedi to explain the Cooley-Tukey FFT. For
example DFT,, can be interpreted as a decomposition matrix for the grogebehC[Z, ], whereZ, is a
cyclic group of orden [76,77]. SinceC[Z,] is isomorphic to the polynomial algeb&z]/(z™ — 1), it can

be decomposed as

ClZy) = Cla]/(a" — 1) = Cla]/(z — wp) @ -+~ & Clz]/(z — ) 7), (3.9)

as we showed in Section 2.3. This decomposition can be peefibstepwise: first, we decompdsSer]/(z"—
1) into a direct sum of subalgebras, not necessarily simpls;ahen, we further decompose each subalge-
bra. Performed in a very particular way, such stepwise deosition yields the Cooley-Tukey FFT.

The group point of view was generalized to derive fast Fouransforms for group algebrd3G| for
noncyclic finite groups= [78-+84]. Some of the constructed algorithms were based @rinduction for
group algebras, an algebraic construction that is anakgothe method we use in Chagiér 6.

In parallel to group algebras, polynomial algebras were ated in[[20, 85-89] to construct fast algo-
rithms for the DFT. Extension of this approach led to a corhensive theory of fast algorithms for all 16
types of DCTs and DST&][2) 6], as well as for complex and real [l]. This generalization led to the
development of the ASP theory [3-5] discussed in Chapter 2.

3.2.3 Orthogonality

Orthogonality is an important and desired property of a poigial transform, since, in general, the inverse
of a polynomial transform is not a polynomial transform litskn this case, constructing a fast algorithm for
the inverse becomes a challenging task.

The well-known polynomial transforms (DFT, DCT, and DSTip¢ee made orthogonal by multiplying
them with diagonal matrices. Trivially, the fast implemetidn of their inverses reduces to transposing the
original algorithm. As we discuss in Sectionl4.3, the polyie transforms for finite GNN models can also

be orthogonalized this way.
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Chapter 4

Generic Nearest-Neighbor Models

In this chapter we construct a class of new linear shiftiiiawvd signal models called thgeneric nearest-
neighbor(GNN) models. Originally, these models were introduced3jn For the finite model, the associ-
ated discrete Fourier transform and spectrum were ideshtifie

Here, we formally define both infinite and finite discrete GNNdals. In both cases, we identify the
corresponding signal processing concepts including gjmact-ourier transform, convolution, and Parseval
equality.

The infinite and finite space models discussed in Chapter Raatieular cases of the infinite and finite
GNN models that use Chebyshev polynomials as basis fursctiavertheless, we sometimes refer to these

models for comparison, since they have already been ex&ysitudied inl[1=3,%.,/6, 22].

4.1 Normalized Orthogonal Polynomials

Before we define the infinite and finite discrete GNN models,imtmduce the concept of normalized
orthogonal polynomials.

Consider the shift defined by the recurrence
x - Pk(x) = ak_lPk_l(x) + kak(ac) + CkPk_,_l(fL'). (4.1)

We call it thegeneric nearest-neighbahift. If we assume that the coefficients, by, ¢, € R satisfy the

51
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conditionagcy, > 0 for k > 0, andPy(z) = 1 and P_1(x) = 0, then the solution to the recurrene {4.1) is

a family (P (x)), ., of orthogonal polynomial§16,17]. An overview of orthogonal polynomials and their

k>0

properties is provided in Appendix A.

We assume that polynomials’;(z)), ., are orthogonal over the intervdl’ C R with the weight

k>0

function functionu(z):

/ Pe() Pon (2)1() A = 140
xeW

Furthermore, we assume that tﬁﬁhnorm of Py(x) is

1Bl = ((Pele), Pital),) =

where the norm is induced by the inner product
g, = [ f@o@na)ds.
S

Norm calculation

In order to calculate the normPy(z)||2,, = u,lf, we need to know the weight functign(z) and the
orthogonality intervall’. However, as we discuss in Appendix A, it may not be feasiblebtainy(x) and

W directly from the recursiori (4.1).

Nevertheless, we can bypass the necessity to detemmirle and determine the norms &f,(z) from
the coefficientsiy, by, andcy, in recursion[(4.11). This is a known result (see, for exam[9@,91]), and we

only provide it here for completeness.

Theorem 4.1.1 Theﬁﬁ-norm of the polynomiald’.(x) that satisfy(4.1) and are orthogonal oV with

respect to the inner produdd.3), is

a;
1P @)l = i/ = " | TT = (4.2)
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Proof: Let

be ann x n diagonal matrix, and

b() ag
Co b1 aq
S = Cc1 b2
Qp—2
Cn—2 bp_1

be the tridiagonal matrix defined in(A.4). ThénconjugatesS to the symmetric tridiagonal matrix

bo 1/ apCo
\/ apCo bl \/a1C1
DSD™! = Jaie by

v/ an—2Cn—2
\Vn—2Cn—2 bn—l

On the other hand, using the Christoffel-Darboux formulaas shown in[[B] that the diagonal matrix

. /2 1/2 1/2
Ezdl&g(uo/,,ul/,... u/ >

’ Pn—1

also conjugates to a symmetric tridiagonal matrix.

Since there exists a unique (up to a constant factor) didgoatix that conjugates a tridiagonal matrix

to a symmetric tridiagonal matrix, we conclude tiiat= cE, and hence
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for some non-zero constant R. In particular, fork = 0 we obtain

1/2
C::U‘O/v

where

po= [ ulade
zeW

The following result is an immediate consequence of The@ten :

Corollary 4.1.2 If ay, = ¢ for k > 0, thenu, = o, and all P, (z) have the same norm

B ()2, = v/ito-

Normalization

In general, orthogonal polynomialB;(z) have different norms;u, # u,, for k& # m. They can be

normalized am;WPk(w) to have the same norinfor all £ > 0.

To simplify the construction of the infinite and finite disteré&SNN signal models in Sectiohs 4.2 4.3,
we use the normalized polynomiadcimPk(;p) as the basis of the signal modul. Since any family
of orthogonal polynomials can be orthogonalized, hereafte only consider the families of orthogonal

polynomials(Py(z)), . , that have equal norms.

k>0

The following theorem establishes which familigy,(z)), . . have equal norms, and shows how to

k>0

construct normalized polynomials for an arbitrary family.

Theorem 4.1.3 The orthogonal polynomial&, (=) have the same norfhPy(x)||2,, = ||Po(2)]|]2,., if they

satisfy the recursion of the form

x - Pk(:L') = ak—lpk—l(l') + kak(ac) + akP/H_l(CL'), (4.3)
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with Py(x) = 1 and P_1(z) = 0. That s, the recurrence coefficients(@1) satisfy the symmetric condition
ap = Cg,

forall £ > 0.

Furthermore, if the famil;(Pk(x)) is a solution tof4.1), then the corresponding normalized polyno-

k>0

mials Qi (z) = u,:l/sz(:n) are a solution to the recurrence

T pp(r) = ag—16k—1Qk—1() + brQr() + /arckQp41(x). (4.4)

Proof: Recall from AppendiXA that
If ar, = ¢, for all & > 0, thenpy, = 110, and hence| Py (x)||2,, = || Po(x)]|2,u-

Next, observe that
M1/ e = Qg / Ch.

Then the family of normalized polynomiadgy (x) = u,zl/sz(x) satisfies the recurrence

v Qi) = @ Pia)

— ,u,;l/z (ak_lPk_l(ac) + kak(ac) + CkPk+1(x)>
= a1 P Qe () + beQr() + e L Qpp ()
Mk Hk

= Va1 1Qr—1() + bpQr() + arckQpy1(x).
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Figure 4.1: Infinite discrete GNN signal model: shift anduakization.
4.2 Infinite Discrete Model

Signal model

Hereafter, we only consider the GNN models that are basedesymmetricGNN shift (4.3). As discussed
in Section4.11, the basis of the signal modul¢ is defined by the corresponding equal-norm orthogonal
polynomialsPy(x).

The basis of the filter algebra, ideally, would be defined/tfgld shifts, as in the case of timg _(2.9)
or space[(2.16) models. Unfortunately, for a general famiilgrthogonal polynomials there is no obvious
notion of an/-fold shift, so it is unclear which basis is appropriate foe filter algebrad. We choose the
same basis as in the signal mode

Hence, we obtain the followinmfinite discrete GNN signal model

A= {h = ZZZO thg(m) | h= (ho, hl, .. ) € El(NO)},
M = {S = Zkzo skPk(w) ’ S= (80,31, .. ) S 52(N0)}, (4-5)
P EZ(N(]) — ./\/l, S Ekzo SkPk(x)

The symmetric GNN shif (4]13) and the visualization of thénite discrete GNN signal mod€l (4.5) are
shown in Fig[4.1.

Eigenfunctions

As discussed in Sectidn 2.2, to construct the associateddfdransform for the GNN model, we need

to find the eigenfunctions o, identify the spectrun¥¥’, and project signals on the spectral components
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spanned by the eigenfunctions.

The following theorem identifies the structure of eigentfioms:

Theorem 4.2.1 The eigenfunctions for the infinite discrete GNN model hagddrm

Eo(x) =) Py(a)Py().

k>0

In particular, they satisfy

- Ey(x) =a- Ey(x) (4.6)
foranya € R.

Proof: As follows from [4.3), any function of the fory, -, sk Pk () € M satisfies the condition

x - Z skPk(ac) = Z (ak_lsk_l + brsy + akskH)Pk(w). (47)
k>0 k>0

Consider the function

Eo(z) =) _ Pi(a)Pe().

k>0

From [4.7) we obtain

2> Pela)Pi(z) = > <ak—1Plc—1(a) + by Py.(a) + akPk+1(a)>Pk($)
k>0 k>0

= ) aPi(a)Py(x)

k>0

= a- Z Py(a) Py (x).

k>0

Spectrum

The eigenfunctions in Theordm 4.P.1 sati$fy (4.6) forwall R. However, we restrict the values @to the

interval of orthogonalityi?” only. This restriction is sufficient to make the Fourier sfotm invertible, as
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we will show later.

Hence, the spectrum is defined precisely as the intervaltiobgonality 11/.

Fourier transform

Since the Fourier transform is a projection onto the eigections £, (z), wherew € W, we define the

GNN Fourier transformas

A S(w) = (s(@), Bu(@) = > skPe(w). (4.8)

k>0

Given that we have restricted the spectrum to the intervattbibgonalitylV/, the correspondingverse

GNN Fourier transformis

1 1
AL Sp = % /wGW S(w) Py (w)p(w)dw, 4.9
since
% / @B @pw)de = i / W(Zsum(w))Pk(w)u(w)dw
e we m>0
1
_ %mzosm - Pm(w)Pk(w),u(w)dw)
1
= —Splo
= s

Frequency response

From [4.6) we obtain
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for any polynomial.(z) € A. Hence, the frequency respondéw) of a filter h(x) at frequencyw is simply

its evaluation at this frequency, similarly to the time apdcee signal models:

H(w)=>_ hPy(w). (4.10)
>0

Convolution

The convolution in the signal domain is defined by the actiba @lter h = h(z) € A on a signals =

s(z) € M. ASP defines the convolution as the product
hs = h(x)s(z).

Similarly to the infinite time and space modéels {2.9) dnd@p.it follows from the definitions of the Fourier
transform [(4.B) and the frequency resporise (4.10) thatdheotution corresponds to the multiplication in

the frequency domain. = 5(s) = h(z)s(x), then

Expressing the convolution directly via the coefficiehisand s, of h ands is a tedious task that yields
a complicated formula. For computational purposes, we lgimxpress the produdt(z)s(z) in the basis

(Pr(x)),: the coefficients of the expansion are precisgly= (h x s);.:

> hePu(x) Y siPe(x) =Y (0 # 8)pPi(x).

>0 k>0 k>0

Respectively, the convolution in the frequency domain esponds to the pointwise multiplication in

the signal domain. Hence,

H(w) * S(w) = i [5OGO, (4.11)
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since

H(w) x S(w)

Parseval equality

CHAPTER 4. GENERIC NEAREST-NEIGHBOR MODELS

Z hy s Py (w)
k>0
1
kzzo hy, Pr(w) - ol S(0)Py(0)(0)do
1
10 Joew 5(0) ( l;) . Py, (W)Pk(9)> w(0)do
[let Juk = hkPk(w)}
=X S(0)G,,(0)u(6)do.
Ko Joew

The following theorem establishes the Parseval equalitinfonite discrete GNN signal models.

Theorem 4.2.2 The Parseval equality for the 1-D infinite discrete GNN signadel is

Proof: Observe that

D5k

k>0

2_1 2w wjaw.
S st /wews< Jiu(w)d

- (4.12)
Ho
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Frequency domain

The frequency domain for the infinite discrete GNN model & lthlbert space of all polynomials defined

on intervall¥ [92/93]. The inner product is defined as

(u,v) = /eW u(w)v(w)p(w)dw. (4.13)

The set of polynomialiPk(w)) is an orthogonal basis of this space.

k>0

Observe that the GNN Fourier transform is an isomorphisrwéen the signal space

52(N0) = {(80,31,...)‘ ZS% < OO}

k>0

of semi-infinite sequences with finite energy, and the Hilkpace of polynomials defined on intervyél
with inner product[(4.13). In cases whé&i = [0,00) or W = (—o00, o) is an unbounded interval, the
existence of such isomorphism may seem counter-intuitivé&ecomes clear, however, if we recall from
Appendix[A that in such cases weight functipfw) decays very quickly. In particular, the decay rate of
u(w) is higher than polynomial. Hence, for practical purposks,interval of orthogonality can be viewed

as finite.

Other infinite GNN models

The infinite discrete GNN moddl (4.5) can be generalized lmnahg other left boundary conditions. All
corresponding signal processing concepts derived in daiias can be easily generalized for these models.

Consider the recurrence (#.1). If instead of the zero baynctandition P_; () = 0, we assume
P_1(z) = bPy(z)

for anyb € R, then the recurrence remains the same except we use theiemetfy + b instead ofhy. The
solution to the new recurrence is a family of orthogonal polyials as well. Hence, we can construct an
infinite discrete GNN model based on the GNN shift defined leyrtew recurrence. We then normalize it

to obtain a new GNN modd[(4.5).
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We can also assume

P_i(x) = cPy(x)

for anyc € R, such thaty(co + ¢) > 0. The recurrencd_(4.1) will now have the coefficiegtt- ¢ instead
of ¢y. The solution to the new recurrence is also a family of ortimad polynomials, and we can construct

an infinite discrete GNN model based on the GNN shift definethbynew recurrence.

Example 4.2.3 Consider Hermite polynomialE(x) introduced in Appendix]A. They satisfy the following
recursion:

1
X - Hk(ac) = ka_l(ac) + §Hk+1(ac),

with Hy(x) = 1 and H;(x) = 2z. They are orthogonal over the entire real liewith the weight function

2.
e T’

/ Hyy(z)Hyp(z)e™ dz = k128 /7.

Consider the normalized Hermite polynomieil\sc(a:). As follows from Theorein 4.1.3, they have the

form
Fiy(x) = —— Hi(x)
and satisfy the recursion
k + 1~
cHy(z \/7Hk 1( ——Hjp1(2), (4.14)

with }AIO = 1and ﬁl = +/2z. They are orthogonal over the entire real lifewith respect to the weight

functionp(z) = e~ :

(Hi(x), Hn /Hk e dr = 745 .

The infinite discrete GNN signal model that corresponds ¢éaibrmalized Hermite polynomials is
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\/E [k+1
2 2 1 1 3
[ ] o o
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th—1 tk bkl H, H, H,
(a) Shift (b) Model visualization

Figure 4.2: Infinite discrete normalized Hermite signal mloghift and visualization.

A={h=3oheH(@) | h= (ho,l1,...) € (No)},
M= {s =Y 50 56Hi(@) | s= (s0,51,...) € 2(No)}, (4.15)
O 2(No) = M, s g sk Hi().

The shift and model visualization are shown in 4.2.

The Fourier transform and its inverse are defined as

A Sw)= Zskﬁk(w),
k>0
1

-1, —
A . Sk_ﬂ-l/él

kS’(u))lr;T,yf(u))e_“2 dw.
weR

The frequency response is

H(w) = heHy(w).

>0
The Parseval equality is

1 9
g 57 = i S%(w)e™ dw.
E>0 weR

4.3 Finite Discrete Model

Consider the signal model = M = C[z]/P,(z) with basisb = (Py(z), Pi(z),...,Py_1(z)), where
the basis polynomial®; (x) satisfy the recursiori (4.3). Recall from Appendik A ti&i(z) has exactlyn

distinct real zerosx = (ao, . ,an_l), 0 < k < n, and they all lie inside the interval’.
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bn—3 bn—2 bn— 1

bo b1 b
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Figure 4.3: The visualization of the finite discrete  GNN mod€[x]/P,(x) with basis

P(](Qj‘), Pl(ZL'), ce ,Pn_l(ZL').

Signal model

We define the followindinite discrete GNN signal model
A={h=n(z)= ZO§Z<n hePy(z)},

M= {s=3(x) =D gcpepn SkLk(T)}, (4.16)

D: C" = M, s s(z) =D gcpen Sk Lk(T).

Observe that this model can be obtained from the correspgndiinite discrete model by imposing the
boundary conditionP, (x) = 0. Fig.[4.3 visualizes the finite discrete GNN signal model.e Boundary

condition P, () = 0 is indicated by the absence of an edge at the right boundany. po

Fourier transform

As we explained in Sectidn 2.3, the Fourier transform forrttuelel [4.16) has the forrh (2.119):

A: Clal/px) — @i Clzl/(z — ),

T
s(z) — <s(a0) s(ar) ... s(an_1)> :
It can be computed in matrix-vector form as
A(s(z)) = Poa S,

where polynomial transform

Pho = [Pf(o"f)]ogk,kn' (4.17)
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is called thadiscrete GNN Fourier transform

The transforn, , in (4.17) can be easily orthogonalized. Namely,
PoaPro =D,

where

_ R /
D =a,_; -diag <Pn—1(ak)Pn(ak)>O§k<n‘

Hence, the matrix

D_1/2Pb o

is orthogonal. It follows that the inverse of the discrete XERburier transform[(4.17) is
Poa =PiaD7 "

Spectrum

The spectrum of the finite discrete GNN model is the set
W=a= (ao,al,...,an_l)
of zeros ofP, (z).

Frequency response

The frequency response of a filtefx) € A is

H(a)=<h(ao) h(ay) ... h(an_1)>T.

Convolution

The convolution is defined as

hs = h(x)s(x) mod P,(x).

65

(4.18)

(4.19)
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Frequency domain

The frequency domain of the finite discrete GNN model can leeved as the frequency domain of the
infinite discrete space model (2116) sampled at frequengies- oy, [93]. In particular, from[(4.19) we

observe that the function

(Pn—l(wk)Prlz(wk)Pm(wk))ng<n

is them-th basis function of an orthogonal basis in the frequenapaia.

Basic shift representation matrix

The matrix representatiofi(x) of the basic shift for the moddl (4.116) is

bo ag
ap b1

P(x) = . (4.20)

ap—3 bn—2 Ap—2

p—2 bp_1

It follows from Sectio 2.8 and Appendix| A that
Po.at )Py = diag (ag, -, n-1)-

Other finite GNN models

The finite discrete GNN modé€l (4.116) can be generalized tortbéel A = M = C[z]|/P,(z) — cP,—1(2)
for anyc € R. This is possible since the polynomig),(z) — c¢P,,—1(x) hasn distinct zeros for any value

of ¢ € R [94]. All concepts for the model(4.16) described above applthis model as well.

Example 4.3.1 The finite discrete GNN signal model that corresponds to trenalized Hermite polyno-

mials H,(z), discussed in Example 4.2.3, is
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Figure 4.4:  The visualization of the finite discrete normedi Hermite modeC[z]/H,(z) with basis
Ho(z), Hi(2), ..., Hp-1(2).

'A = {h = ZO§Z<7L h[ﬁg(l’)},
M ={s = X pcpen seHi(@)}, (4.21)
d:. C"— ./\/l, S+ 20§k<n Skﬁk(ﬂj)

The visualization of this model is shown in Fig.14.4.

The associated Fourier transform for this model is specifigthe polynomial transform

Poo = [ﬁf(ak)] (4.22)

0<k,fn’

whereqg, aq, . . ., a,_1 are the zeros oﬁn(x). For example, fom = 6, it has the form

1 —3.3243  7.1069 —10.9258 12.0053 —8.0754
1 —1.8892 1.8166 —0.4388 —1.1587  1.3714
1 —-0.6167 —0.4382 0.6596  0.1761 —0.6385
1 0.6167 —0.4382 —0.6596 0.1761  0.6385
1 1.8892 1.8165 0.4388 —1.1587 —1.3714

1 33243  7.1069  10.9258 12.0053  8.0754
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The orthogonalized polynomial transform then is

DVPPy, =

0.0506
0.2977
0.6394
0.6394
0.2977
0.0506

—0.1681
—0.5624
—0.3943
0.3943
0.5624
0.1681

0.3593
0.5408
—0.2802
—0.2802
0.5408
0.3593
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—0.5523
—0.1306
0.4217
—0.4217
0.1306
0.5523

0.6069
—0.3449
0.1126
0.1126
—0.3449
0.6069

—0.4082
0.4082
—0.4082
0.4082
—0.4082
0.4082




Chapter 5

Perfect-Reconstruction Filter Banks

In this chapter we introduce perfect-reconstruction fittenks for infinite discrete GNN signal models. We
generalize the notions of low and high frequencies for GNjfhais. Then we compare advantages and
disadvantages of filter and signal expansions approacht®e toonstruction of filter banks. Finally, we

construct two classes of perfect-reconstruction filteikkisgor infinite discrete GNN signals.

5.1 Flatness

In Section 3.1, we introduced the concept of flatness forgiltddamely, a low-pass filtdi(x) is said to

have degree of flatnegd, if
L Hw)

dw™ =0

w=wp

for 0 < m < M, wherewy is the highest frequency. Respectively, a high-pass filte) is said to have

degree of flatness/, if
dm
dw™
for 0 < m < M, wherewy, is the lowest frequency.
Naturally, in order to introduce the concept of flatness fibers in infinite discrete GNN models, we

must first properly define the low and high frequencies fohsuodels.

69
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5.1.1 Low and High Frequencies

The concept of low and high frequencies, strictly speakingpoduces a partial (weak) ordet on the

spectrumi¥ for infinite discrete GNN signal models. We choose the foltayphysical interpretation.

Definition 5.1.1 Let v be a vector or an infinite sequence. Timember of oscillationsVy(v) of v over

interval T' € Ny is equal to the number of times the sequence starts decgeasincreasing, i.e.
Nr(w) = {k|0<k <T,(vk—1 > vp ANV < V1) V (k=1 < Uk AV > Upg1) -

We define the order on the spectrumi” based on the number of oscillations of corresponding eigen-

functionsE,, ().

Definition 5.1.2 Frequenciesv;,ws € W are said to be in the order
w1 2 wa,
if the corresponding eigenfunctiafi,, (z) has fewer oscillations thah,,, (x) over the same interval :
wi 2w <& Np(Ey (z)) < Np(Ey,(x)).

The intervalT in Definition[5.1.2 can be chosen empirically. The frequengy such thatv;, < w for
anyw € W, is called thdowest frequencyRespectivelywy, such thatv < wy for anyw € W, is called

the highest frequency

Example 5.1.3 Let us identify the lowest and highest frequencies for s¢¥&RN models.

1) Consider the infinite discrete GNN model based on Chebysbignomials of the third typ@.16) The
frequency spectrum of this modelli§ = [—1, 1]. It follows from Chaptef 4 that the eigenfunctions for

this model have the form

Eu(w) = Vi(w)Vi(@).

k>0
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2)

3)

The corresponding coordinate form is

Eo = (Vo(w), Vi(w), Va(w),...).

As shown in Fid. 5.1(&), the eigenfunction
Ei=(1,1,1,...)

is a constant. The number of oscillationsEf increases as becomes closer te 1. Hence, the lowest
frequency for the infinite space model based on Chebyshgragulals of the third kind i/, = 1 and

the highest frequency isgy = —1.

Next, consider the infinite discrete GNN model based omésmg polynomials. The frequency spectrum
of this model igV = [0, o). It follows from Chaptef 4 that the eigenfunctions for thisdeiohave the

coordinate form

Ew = (Lo(w), Ll(w),Lg(w), ‘e )

As shown in Fid. 5.1(b), eigenfunction
Eo=(1,1,1,...)

is a constant. The number of oscillationsgf increases as increases. Hence, the lowest frequency for

the infinite space model based on Laguerre polynomialg is- 0 and the highest frequencyds; = cc.

Finally, consider the infinite discrete GNN model basechormalized Hermite polynomials introduced
in Exampld_4.2]3. The frequency spectrum of this modél is- (—oc, o). The eigenfunctions for this

model have the coordinate form

As shown in Fig. 5.1(F), the number of oscillations=gf decreases as increases. Hence, the lowest
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frequency for the infinite space model based on normalizethide polynomials isu;, = oo and the

highest frequency isg = —oc.

Observe that in all examples above the order functide monotonous witlu. Namely, if any frequen-
cieswi,ws,ws € W satisfy

w < wg < ws,

then their frequency ordering is either

w) w2 =X ws

(for the second model), or

(for the first and third models).

5.1.2 Flatness of Filters and Signals

We have introduced the notion of frequency order for infidiserete GNN models. Now we can extend the

definition of flatness to these models.

Definition 5.1.4 Consider an infinite discrete GNN signal mod&8), with filters of the form
Li—1
h(z) =Y hePy(w).

{=Log

Filter h(x) is called a low-pass filter of degre® with degree of flatnesa/, if it satisfies

ﬁH(w) =0

dw™ w=wgy

for0 <m < M.

The definition of a high-pass filter with a specific degree thélas is analogous.

Similarly to filters, we can talk about a degree of flathessignals:
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Figure 5.1: Eigenfunctions corresponding to differentjfrencieso for infinite discrete GNN signal models
based on (a) Chebyshev polynomials of the third kiftd={ 1'); (b) Laguerre polynomialsi{ = L); and (c)
normalized Hermite polynomiald= H).
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Definition 5.1.5 Consider an infinite discrete GNN signal mod&8), with signals of the form

Ki-1

s(x) = Z Sk Py ().

k=Ky

Signals(z) is called a low-frequency signal wittegree of flatnesa/, if it satisfies

dm

dwm W=WpH

for0 <m < M.

The definition of a high-frequency signal with a specific degyf flatness is analogous.

Observe that there can exist multiple (in fact, infinitelynygfilters and signals with a given degree of

flatness.

5.2 Filter Approach vs. Expansion Approach

In Section3.11, we discussed two approaches to the desigerfefgp reconstruction filter banks. One ap-
proach was based on filtering followed downsampling. Ano#pgroach was based on expanding signals

into bases (or frames) with desired characteristics.

The equivalence of these approaches is possible for twomesagirst, we assume a particular structure
of the basis/frame elements. Second, the inner productimedconvolution are interchangeable; one only

needs to reverse the order of the coefficients|[23, 46].

Unfortunately, this interchangeability between the cdution and the scalar product may not extend
to other signal models. The convolution operation depemdhe underlying signal model and is defined
by the producth(z)s(z) of a filter h(z) € A and a signals(z) € M as follows. Consider an arbi-

trary infinite discrete signal model. Let the basistfbe (..., Py(z), Py (x),...); and the basis ofl be
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(...,Ro(z), Ri(z),...). Then thek-th element of the convolutioh x sis determined from the product

ha)s(z) = > heRe(x) Y spPr(z)
4 k
= Y (h#s)Pe(a).

k
On the other hand, the definition of a scalar product remdiassame. Hence, we have to choose
a preferred approach to the design of filter banks for othgmmadimodels, or somehow combine the two

approaches together.

In this section, we investigate the construction of Halee-filter banks for infinite discrete space mod-
els [2.16). We construct the filter banks using both appreschNe then analyze their advantages and
disadvantages, and identify the most suitable approacthéoconstruction of filter banks for infinite dis-

crete GNN models.

5.2.1 Signal Expansion Approach

In [95], we use the signal expansion approach to construat-lile filter banks for infinite discrete space
signals. Similarly to the standard Haar filter banks for tsigmals, our goal is to split a signal into a “coarse”

and a “detailed” components by averaging the signal coefftsiand computing the remaining details.

Since we havel/ = N = 2 channels, we slightly change the notation from Sedfioh h$tead of
denoting bases wit(kpl(f)) and(gp,(:)), we usep = () andy = (i), respectively. The support length
of ppandyp iIsL=1-N = 2.

Consider the infinite discrete space model (2.16) based @bydhev polynomials of the third kind.

We seek to construct low- and a high-frequency bgses (¢), ., andy = (¢4), -, that have only two

k>0

non-zero coefficients in th&k-th and(2k + 1)-th positions:

Spk - ("'707ak7bk707"')7

b = (...,o,ck,dk,o,...>.
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We write them as

or(r) = apVor(w) + b Vary1(z)

Yr(z) = cpVor(z) + diVargi(2).

To ensure the frequency conditions, we require that thetispet basis functions, and+;, disappear at

the highest = —1) and lowestg;, = 1) frequencies, respectively:

apVar(—1) + b Vag41(—1) =0, (5.1)

Ckv%(l) + de%_H(l) =0.

Using the properties of Chebyshev polynomials, we sdlvE) (& obtain(4k + 3)bx, = (4k + 1)ax and

dy = —ci. Hence,

+4k+1
4k + 3

Yp(z) = V() — cxVargr (). (5.3)

op(r) = apVor(x) aiVog+1, (5.2)

Observe that the basgsandi span independent subspaces\f i.e. () N () = {0}. Moreover, the

original basis(V;(z)), ., can be expressed in termsfindy: assumingy, = 1 andc;, = 1 for all £,

k<0

4k + 3 4k +1

V(@) = grgon @+ g (@),
4k + 3 4k + 3

Hence,p U ¢ is a basis for the signal spagdel, and we obtain a critically-sampled perfect reconstrurctio

filter bank.

To compute the projections of the signabnto andy, we construct dual basesand+ that satisfy

<(:0k7¢7m> = <1/}k71/~}m> = 5k—m7

(O m) = (Bhy Ym) = 0.

(5.4)
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e

Then we compute scalar produdt,, s) and(¢y, s) to find the projection coefficients. From (5.2)-(5.4) we

derive the dual bases

4k + 3

4k + 3

Pr(x) = mv%(@ + mvzkﬂ(x),
- 4k + 1 4k + 3
Yr(r) = MV%(&U) BT ok41().

Assuming for simplicity thati;, = ¢ = 1/+/2, we obtain the analysis and synthesis matrices

0%
_ P,
d = 3 ,
D)
where
. 4k+3 4k+1
b, = V2 Bk+4 Bk+4
4k+3 _ 4k+3
Bk+4 Bk+4
Observe that, aB — oo,
5 1 1
k— —F—= ;
V2 1 -1

Hence, we can approximate this filter bank wi

constructed in Example 3.1.2.

Similarly, we have derived Haar filter banks

%)
¢y
P = ,
i)
1 1
o= L
2 441 g
Ik+3
o 1 1 1
k= —=
V2 1 -1

th the standaadrHilter bank for the time signal model

for other spagea models:
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arpTor(x) + apTort1 ()
ciTor () — cxTop41()

1 1
—T: — 1T
e ok(x) + Sar k+1(x)

2k +1

2k + 2

2k +1
- mckU2k+l($)

k+1
(2](: + 1)ak

= apUsy(z) + apUsp41(x)

= ¢ Ua(z)

= —Uyp(z) + Usgk11(7)

2a;p
1 k+1
EU%(%) - MU%H(JU)

akWQk(fL') + akWZk-l-l(l')
4k + 1

CkWQk(x)

4k +3
ng(l') +

Wag(z) —

cWopt1(x)

4k + 3
(8k + 4)ay,
4k + 3
(Sk + 4)Ck

2k+1(96)

Wopt1(x)

In [22], sampling theorems have been formulated for the fofinite discrete space models. As follows

from them, the proper downsampling for space signals afterifig with a low-pass half-band filter is the

same as the downsampling for time signals: omitting evelngrotoefficient. Hence, we can attempt to

construct a Haar-like filter bank for space signals usindittex approach.

The following example illustrates that the convolution awdlar product are not interchangeable for
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(29 =" ]

(a) Analysis part (b) Synthesis part

Figure 5.2: Haar filter bank for the infinite discrete spacelei§2.16) constructed using the filter approach.

signal models other than the standard time model. Agairsidenthe infinite discrete space model (2.16)
based on Chebyshev polynomials of the third kind. ket) be a low-pass maxflat filter of degree 1. Its

frequency responsé(w) must vanish at the highest frequency= —1, such that
H(-1)=0.
We choose the low-pass filter with the shortest support

h(z) =1+xz=1+Ti(x).

Similarly, the maxflat high-pass filtgi(z) of degree 1 must satisfy

G(1) = 0.

We choose

gx)=1—2z=1-T(z).

Hence, the analysis part of the Haar filter bank has the simiets shown in Fig. 5.2(a).

The constructed analysis pambksjust like the analysis part of the traditional Haar filter kdar the
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infinite time signals. However, notice that the filtered sigrare

3s0 + —1+2s +
(L) siVil(e) = “2TVp(a) + 3 BT Sy (g,
k>0 k>1
— 1—2
(1—95)'23ka(9€) = X 5 SlVO(Uﬂ)—z:SILC - ;kJrSkHVk(w)-
k>0 k>1

After downsampling and upsampling Bywe obtain the signals

350 + s Sok—1 + 282 + Soi,
E>1
S0 — $1 Sok—1 — 289k + Sok+41
) = 2@ - Y Sy (),
E>1

The original signak(x) can be reconstructed frog(z) ands”(z) as follows:

s, + 8%,
Sk = 2 )
134l
s; = %7 (5.5)
k
Sokt1 = S — Sp — Sop—1 = Z (=1)* (s} = s7) — 2(=1)"s5.

=0

This reconstruction can be implemented recursively usegdobuilding blocks for filter banks, such as

multipliers, adders, and delays. However, there are nedilter), g(x) € A such that

h(z)s'(x) + g(x)s" (z) = s(x).

Hence, we cannot design a synthesis part of the filter bank#sathe structure similar to the standard filter

bank, as shown in Fi§. 5.2(b).

We can, however, interpret the reconstruction equatior {brough the basis point of view. Consider
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the baseigpk(m))kzo and (qpk(:c))kzo, where

polr) = Vole) + Vi) + 3 (1) Vo (a),
m>1
o) = SVak@) + Y () Vo (@), B> 1,
m>1
and
Yolw) = 3¥ole) = 3Val@) +3 3 (<1 WVama (@),
m>1
1/%(96) = %V2k(x)+2(—1)m‘/2m+1(x), k> 1.
m>1

Then, the original signal(x) can be reconstructed as

s(x) =D sior(@) + D sive(@).

k>0 k>0
5.2.3 Combined Approach

As we mentioned, we cannot construct synthesis parts of fiteks for infinite discrete GNN models that
consist of upsamplers followed by filters. This is the masadivantage of the filter approach to filter bank

construction for infinite discrete GNN models.

The signal expansion approach to filter bank constructiorthe other hand, suffers from an opposite
disadvantage—the construction of signal bases with aatediegree of flatness that define the analysis part
of a filter bank. Consider, for example, a filter bank for annité discrete GNN model with the analysis
part corresponding to the bases with flatness degree 3. Hnehstor bases of low- and high-frequency
signals with flatness degree 3, whose union is a basis fomtire signal spaceé\1, is highly complicated.

In particular, there is no general closed form expressiowéoivatives of orthogonal polynomials evaluated

at the lowest and highest frequencies andwy;, respectively.

As a result, we propose to use a combined approach for théraotign of two-channel filter banks for

infinite discrete GNN models that have a desired degree ofifat
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a) The analysis part of each channel inf@rchannel filter bank is constructed as a low-pass or higk-pas

filter h,,, with a desired flatness degree, followed by a downsampler.

b) At this point we do not have a general theory of continuofigite GNN models. As a result, we cannot
formulate an analog of Nyquist sampling theorem for infikiitgcrete GNN models that would establish
how a low-pass or a high-pass filtered signal must be dowriemﬂmThus, we choose to downsample
the same way it is done in case of infinite time signals: dowrmiag at the ratéV < M means keeping

every N-th signal coefficient and dropping other ones.

c) The synthesis part of each channel is constructed as ar lemnbination of basis signals that span a
subspaceM,,, of the entire signal spac&1. The example of Haar filter bank for infinite space model

constructed in Sectidn 5.2.2 is an illustration of this camel approach.

Depending on the purpose of a filter bank, the proposed cadlapproach may or may not be the most
suitable one. It is centered around constructing analyigésdifirst, and is appropriate if the properties of
the analysis filters are the main characteristics of a filskb However, if the synthesis part of a desired
filter bank is the main design criteria, our approach may eatftimal, since it requires the construction of

signal bases with infinitely many vectors that must satisfenm criteria.

5.3 Two-Channel Filter Banks

In this section, we study the construction of two-channtifibanks for infinite discrete GNN models based
on different families of orthogonal polynomials. We selesiresentatives from different classes depending
on the spectrum (see Appendix A for more details), and cocsexample filter banks of order 1 (Haar-like)
or 2. We also identify certain limitations in the filter bandnstruction that arise for infinite discrete GNN

models based on Laguerre-like and Hermite-like polynasnial

In fact, previous research (see, for example, the discusgi§93]) suggests that there may he continuous GNN signal
models. However, we may try to determine the proper sampéialgnique without direct construction of continuous GNNdels.
For example, we can utilize such mathematical techniquegerpolation, similarly to the way Lagrange interpolatiwas used to
re-derive the Nyquist sampling theorem|in|[96] .
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5.3.1 GNN Models Based on Jacobi-Like Polynomials

Infinite discrete GNN models based on Jacobi-like polyndsiiave the finite spectrui = [—1,1]. As
a representative of this class of orthogonal polynomiaks cantinue to use Chebyshev polynomials of the
third kind.

We have constructed the Haar-like filter bank, which is arfittank with flatness degree 1, in Sec-
tion[5.2.2. Here, we proceed to construct a two-channet fi@k with flatness degree 2.

In this case, low-pass filtéry () and high-pass filteh, (z) must satisfy

]Sfo(—l) = %ﬁo(w)‘w:—l = O,
M) = Ciw| =0,

ho(z) = 6Ty(z)+ 8T (x) + 21%(x),

hl(x) = 6T0(1‘) — 8T} (1‘) + 2T2(1‘).

Their frequency responses are shown in [Fig. 5]3(b). If wepammthem with the frequency responses of the
Haar-like filter bank that are shown in F[g. 5.3(a), we obsehat the low-pass and high-pass filters with
flatness degree 2 attenuate, respectively, high and lowdreges more than the corresponding filters in the
Haar-like filter bank.

After filtering input signals(z) = ;. sk Vi (z) with filter ho(z) and downsampling by 2, we obtain

new signal

s'(x) = (10sg + 5s1 + s2)Vo(w) + Z (Sok—2 4 4so—1 + 659 + 45241 + Sort2) Vi ()
k>1

as the output of the low-pass channel. Similarly, we get

§"(x) = (250 — 351 + $2)Vo(2) + Y _ (s2k—2 — 4sak—1 + 6ok — 4okt + S2x12) Vi (@)
k>1
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— Low-pass
— Low-pass 18 ) hp
— High-pass
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(a) Filters with flatness degree 1 (Haar-like). (b) Filters with flatness degree 2.

Figure 5.3: Frequency responses of low-pass and high-i&ss for the infinite discrete GNN model based
on Chebyshev polynomials of the third kind.

as the output of the high-pass channel.
To construct the synthesis part of this filter bank, we must fiimearly independent se(sok)k>0 and

(z/zk)k>0, such that their union is a basis of the entire signal specend

s(z) =) skpn + ) s

k>0 k>0

To simplify the construction of the basis, we can assumettieafirst four signal coefficients are zero:
so = s1 = s2 = s3 = 0. Alternatively, we can attach four zeros to input sigeét). Then, the required

basis functions are

1 1
o= 575 > A Vaktomia(z) + 3 > Varsama (),

m>0 m>0

1 1
—= > AaVarpami1(@) = 2 > Varsoami1(2),
8\/5 m>0 8 m>0

where

)\m — (2\/5 . 3)m+1 + (_1)m(2\/§+ 3)m+1.

For practical purposes, this reconstruction can be imphtaaerecursively.

Using this approach we can construct filter banks with ahjtflatness degrees.
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5.3.2 GNN Models Based on Laguerre-Like and Hermite-Like Ptynomials

Infinite discrete GNN models based on Laguerre-like polyiatsnhave the semifinite spectrub’ =
[0, 00). Infinite discrete GNN models based on Hermite-like polyralmhave the infinite spectrufy =

(—00, 00). In both cases we run into the following problem. Assume

Li-1

W)= Y hePu(a)

{=Lg

is an FIR filter. Since its frequency resporgéw) = h(w) is a polynomial in variabley, it is unbounded:

wh_)IIC;lO |H(w)| = oo.
Thus, all FIR filters for infinite discrete GNN models based_.aguerre-like or Hermite-like polynomi-
als have unbounded frequency responses. For this read®fiJtEis are impractical to use in two-channel

filter banks with a low-pass and a high-pass channels—tkawtion of large frequencies is unbounded.

Instead, we can use IIR filters to construct filter banks. Asxample, we construct a filter bank with

flatness degree 1 for the infinite discrete GNN model basedaguérre polynomials.

As we discussed in Sectign 5.1, in this case the spectrdiii is [0, 00), and the lowest and highest
frequencies are;, = 0 andwy = oo, respectively. As the low-pass and high-pass analysissfiﬁ@(rm)

andh; () that satisfy

we choose
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Frequency response

Frequency w

— Low-pass
— High-pass

Figure 5.4: Frequency responses of the low-pass and higih{jeers for the infinite discrete GNN model

based on Laguerre polynomials.

Their frequency responses are shown in Eig. 5.4.

First, we must determine the resslitz) = 37, - s}, Li.(z) of filtering input signak(z) = >, sk Lk (2)

with filter Eo(m). As we discussed in Sectign 3.11.3, we cannot compute the kdimro directly, since the

number of taps in the filter is infinite. Instead, we use th&edihtial equations.

Since
~ 1
/ _ ) _
(@) = ho(a) - 5(2) = T5—5(),
we obtain
(1+2)s'(x) = s(x)
= Z spLip(x) + - Z spLp(z) = Z spLi(x)
k>0 k>0 k>0
= > siLe(@) + Y sh(—kLioa(x) + (2k + 1) Li(z) — (b + 1) L1 (2
k>0 k>0

After comparing coefficients at each polynomia|(z), we obtain the relation

—ksj_1 + 2k +2)s}, — (k+ 1)sjq = sk

= spLi(x

k>0
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for k > 0. Assuming, for examples; = 0, we derive the recurrence

sy, = 13
0o — 2 05
sy = 0,
k-1 1
sy = 2844 — 732_2 — 51 k> 2.

Similarly, the results”(z) = >, s}, Lk (z) of filtering input signals(z) = 3, - sk Lk () with filter

hi(x) can be calculated recursively as

n o S0— 381
S0 = T
sf =0,
k—1 k—1 2k — 1
S/k, = 23%_1 - TSZ_Q + Tsk—2 - Lk Sg—1+ sk, k=2

After that, we can downsamplé(z) ands”(z) at rate2, thus keeping only coefficients,, and s, .

These are the outputs of the analysis part of the filter bank.

Similarly to the derivation in Sectidn 5.3.1, we constru synthesis part of this filter bank by finding

linearly independent sets;,) and (¢, such that their union is a basis of the entire signal spetend

s(x) =) shor + ) st

k>0 k>0

Due to the complexity of this construction, we omit it here.

5.4 Filter Banks for Robust Transmission

In this section, we study the construction of filter banksrédiust signal transmission. For this construction,
we employ the signal expansion approach. We construct nalyimobust frames that allow for a redundant

signal representation, as discussed in Se€tion|3.1.5.
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5.4.1 Maximally Robust Frames from DFT

The construction of maximally robust frames from polyndntiansforms was studied in details in [48].
Building on this research, we have designed large familfeitically-sampled and oversampled perfect
reconstruction filter banks using the signal expansionaaagr [44), 45]. Such filter banks implement signal
expansions that are robust to coefficient loss, and, as atoedd benefit, also eliminate blocking effect. In

addition, they are computationally efficient and allow foaghtforward signal reconstruction.

To simplify reconstruction, we consider orthonormal bamas tight frames to obtain critically-sampled
and oversampled filter banks, respectively. Recall fronti&e@.1 that both these cases imply self-duality

® = ®, and the perfect reconstruction conditibn [3.8) becomes

3P* = 1. (5.6)

To eliminate the blocking effect, we require that the basifaame functions have overlapping support.
As we indicate in Section_3.1, each basis/frame functionshg@gort of length, = ¢N for some integer
g > 1. Then, depending on the value @f ® processes the signaleither in nonoverlappingg(= 1)
or overlapping ¢ > 2) blocks, thus leading to eithdilockedor lappedtransforms®*. These cases are

illustrated in Fig[5.b. In this work, we assume-= 2.

Critically-sampled, perfect reconstruction filter bankishWbases of overlapping support are known as
lapped orthogonal transforms (LOTR)Z]. In [43], the frame counterparts of LOTS, called thpped tight
frame transforms (LTFTshave been constructed from LOTs using a special form of sitixrextraction.

In this work, we systematically construct a large class af k©Ts from specific submatrices of DFT matri-
ces. We then construct real LTFTs as properly selected suoesglL OTs. We prove that the corresponding

frames are equal-norm, tight, and that many of them are nalimobust to erasures.

We defer the derivations and proofs to Apperidix B, and ordieshere the main results.
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(@) @ for basis expansion (b) ® for basis expansion
with blocked transform with lapped transformg( =
2)

(c) @ for frame expansion (d) & for frame expansion
with blocked transform with lapped transformg( =
2)

Figure 5.5: The infinite basis/frame matrx in four different scenarios. The columns @éfare the ba-
sis/frame vectors.

Lapped orthogonal transforms

Consider thek x K matrix

1 2kl _y . 2klm
S “+ z " sin

_— CO .
VK K K o<ki<i-1

DFT, k(2) = (5.7)

Let
U,(2) = Vg + 2710,

be anM x M submatrix of
K/M -DFT, g(z),

whereK > M > 2, constructed by selecting the following row and column sets:

rows: {r+kRmodK |0<k<M-1}

columns: {c+/CmodK |0</{< M -1}
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for some constan@ < r,¢, R, C < K.

Assume thafl’ = M ged (K, RC'). Also, assume that one of the following conditions is satfi
() K divides2rC, 4rc, and2M Rc;
(i) K does not dividerC', andK divides both2r(2c+ CM — C)andR(2¢c+ CM — C).

Then the matrix

b = U, T, (5.8)

corresponds to an LOT. Its columns form an orthonormal biasié(Z). The support length o@,im) is
L = 2N and hence overlaps hy with the supports 040,(;’_1)1 andgo,(f"l)l. This LOT can be implemented with
a critically-sampled\/-channel {4 = N) perfect-reconstruction filter bank.

Class of LOTs. Next we give one example of how to construct an entire cladsQdfs for any size
M. In Theoren B.3.2, we choos€ = aM with anya € Ny, r = ¢ = 0, R = 1 andC = a to satisfy

condition (i). Then, for any: € Ny,

2klam 4 sin 2k‘€a7rz_1 (5.9)

1
U, .(2) = Ccos
VM K K 0<k,t<M

is paraunitary, that isP* is an LOT.

Number of new LOTSs. Let us investigate how many/ x M ¥ ,(z) can be derived frolDFT), x(z).
NecessarilyM | K, which implies thatX is not prime. This in mind, Table 5.1 shows the number of new
LOTs generated using our method. For example, there agex28 paraunitary submatrices ofF'T), ¢(2)
and all are found with the theorem. Note that every submatspecified by a row subset and column subset
of DFT, 6(2); the ordering does not matter.

Further, there are 48 x 5 paraunitary submatrices ®&fF'T), 1o that do not arise from Theorem B.B.2.

One such example is the row st 1,3,7,9}, and the column sef0, 2, 4,6,8}. However, we speculate
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M
K 2 3 4 5 6 7 8
4 16
6 17 28
8 128 — 64
9 — 66
10 49 — — 84
40
12 304 384 53 — 96
128 116 176
14 97 — — — — 172
336
15 — 161 — 141
120 376
16 896 — 1216 —_  — — 256
1088 768

Table 5.1: Number of paraunitary/ x M ¥,(z) generated fronDFT, x using Theoreni B.3]2. The
numbers of paraunitary submatric&g(z) that do not satisfy Theorein B.3.2 are shown in italic.

that these matrices are up to permutations the same as atiraagices that are derived from the theorem.
In fact, Theorenh B.31]2 could be extended based on the petionuymmetries of the DFT [2,97] and may

then cover all paraunitary submatrices.

Finally, we must note that empirical tests show that theeerar)M/ x M paraunitary submatrices of

DFT, k(z) for M not dividing K, for K < 16.

Lapped tight frame transforms

Let ¥,,(2) be constructed as above. Assume thaand M RC'/ K are co-prime. Further, let

D,(2) = Do+ 271y

be constructed fron¥,(z) by retainingN < M rows with indices in sef C {0,...,M — 1}, such that
|Z| = N. If (as sets)

Z={d+DkmodM |0<k< N}
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for some0d < d < M andD = (MRC/K)~" mod M, then

o

Dy

corresponds to a lapped tight frame transform. Its colurons fa lapped, tight, equal-norm, maximally
robust to erasures frame f4(7Z) in £2(Z). The support length o,ﬁlgm) is L = 2N and hence overlaps hy
with the supports o@,g"j)l andgo,g"l)l. This LTFT can be implemented with a oversamplddchannel perfect
reconstruction filter bank with sampling rate

Class of LTFTs. GivenanyN < M, anN x M ®,(z) can be constructed by seeding thiex M ¥,,(z)
in (5.9), retainingN rows. Any such frame will be tight and equal norm. Since thestuiction parameters
satisfy Theoreri B.412, and/ RC/K)~! = 1 mod M, ®,(z) also is maximally robust if it results from

consecutive seeding.

5.4.2 Maximally Robust Frames from GNN Transforms

As discussed in Sectién 5.4.1 and Appendix B, as well as ii#El48], tight frames can be constructed from
orthonormal bases by the process called seeding. Henee,efach orthogonalized discrete GNN Fourier
transform we can seed a tight frame. Moreover, a clever sggaocedure may ensure additional desirable

properties of these frames, such as maximal robustnesadares and equal norm.

Seeding by rows

In the rest of this section, we use a seeding procedure tH#tasent from the one used in previous sections.
Namely, instead of removing columns from a matrix, we removes. To distinguish this seeding, we write

it as follows:

Definition 5.4.1 Let A be ann x n matrix. Let0 < ig,1,...,4,_1 < n bem distinct integers. Then matrix
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is said to beseeded by rowBom matrix A, if it is an m x n matrix constructed from row®, i1, . . . , im_1
of matrix A. We write it as

O = A(ig, i1,y im—1)-
Tight frames

In the following theorem we establish a seeding of orthotiped discrete GNN transforms that yields tight

frames inR™.

Theorem 5.4.2 Consider discrete GNN transforf, , that corresponds to the finite discrete GNN mdédel6)
Let
P =D Py,

denote the orthogonalized polynomial transform, whieres defined in(4.18).

Let matrix® be obtained by seedirfg, , by rows:
D =P (ig, i1, im—1)-
Then the columns @b correspond to a real, tight frame of sizelRi".

Proof: Without loss of generality, assume thiat= & for each0 < k < m. Then we can write

P’ ®
v
where
V=P (mm+1,....,n—1)
Since
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we obtain

opT =1,,.

Since® is anm x n matrix, the columns of correspond to a tight frame R™. d

Equal-norm frames

In the following theorem we establish a seeding of orthotiped discrete GNN transforms that yields

equal-norm frames iR™.

Theorem 5.4.3 Consider discrete GNN transfor, , that corresponds to the finite discrete GNN mdgel6)

for which all coefficients$;, = 0 in recursion(4.3). Let
P =D P,
denote the orthogonalized polynomial transform, whieres defined in(4.18) Define

mz[§

Let matrix® be obtained by consecutively seedipg, by rows:
®=7P(0,1,...,m—1)

Then the columns @ all have the same norm.

Proof: First, recall from Appendik’A that orthogonal polynomiatet satisfy recursior_(4.3) with all coef-

ficientsb, = 0, are either even or odd. In particular, roetg aq, . . ., a,—1 of P,(z) satisfy

Qp = —0n_1—k

for0 <k <n.

Assume that: is even, and hence = n /2. It follows from the definition[(4.18) oD that the elements
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of P’ are either symmetric or antisymmetric around the middle ofwhe matrix. In other words, they

satisfy

/ /
Pk,zz = Pn—l—k,zza

/ . /
Proey1i = —Pni—k2e41-

Let
®=7P(0,1,...,m—1)

be constructed from the first = n/2 rows of P’. Then the/-th column of P’ can be written as

/
Po,z @076
/
7)1,@ q)l,ﬁ
/ — q)
m—l,Z m_lve
/ 0
m,e (1) @10
/ l
n—1,¢ (_1) q)O,g

SincePga is an orthogonal matrix, the norm of each of its columng.i§rom this, we can compute the

norm of the/-th column of® as follows:

\/zzowwz L (L)

2
1

V2
Hence, all columns ob have the same norry /2.

The proof forn = 2m + 1 is analogous. O
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Maximally robust frames

In the following theorem we establish a seeding of orthofiped discrete GNN transforms that yields

maximally robust to erasures framedRfi'.

Theorem 5.4.4 Consider discrete GNN transfor, , that corresponds to the finite discrete GNN mdgel6)

for which all coefficient$,, = 0 in recursion(4.3). Let
P =D Py,
denote the orthogonalized polynomial transform, wheres defined in(4.18) Define

Let matrix® be obtained by consecutively seed’r'{*’t;gCy by rows:
®=7P(0,1,...,m—1)

Then the columns @ correspond to a maximally robust to erasures fram&i.

Proof:. The proof is by contradiction.
Letn = 2m. Let P'(:,¢) denote the/-th column of P/, and ®(:, ¢) denote the/-th column of®. As

follows from the proof of Theorein 5.4.3, we can write

P(:0) = *00 , (5.11)
(1)t T, - ®(:,0)

where

Jm — ’ c Rmxm
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is a complementary diagonal matrix.

Assume that the columns df do not correspond to a maximally robust frame. Then theret exist
anm x m submatrix of® that is singular. Without loss of generality, assume thas ithe submatrix
constructed from first» columns®(:,0), ®(:,1),...,®(:,m — 1). Then®(:,m — 1) can be expressed as a

linear combination ofb(:,0), ®(:,1),...,®(;,m —2) as

O(:,m—1) =do®(:,0) + d1P(:, 1) + dpp—2®(:,m — 2).

In this case, it follows immediately fromh (5.11) that

P'(:;m—1) =doP'(:,0) + diP'(:,1) + dp2P' (:;m — 2),

which implies thatP’ is singular. However, it contradicts the fact thRitis an orthogonal matrix. Hence,

everym x m submatrix of® must be invertible.

The proof forn = 2m + 1 is analogous. O

Filter banks

As follows from Theorembk 5.4.2 through 5.4.4, the columnmafrix

® =P (0,1,...,m—1),

wherem = [ %], correspond to a tight, equal-norm maximally robust fram@&'h Examples of orthogonal
polynomials that satisfy the requirements of these thesieciude Chebyshev polynomials of the first and

second kinds, Legendre polynomials, and normalized Herpgtynomials.

Example 5.4.5 Consider the discrete GNN transform of the finite GNN modstdan normalized Hermite

polynomials that we discussed in Examiple 4.3.1. Since snetkamplen = 2m = 6, we select the first
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m = 3 rows from the orthogonalized transform, and obtain matrix

0.0506 —0.1681  0.3593 —0.5523  0.6069 —0.4082
®=7P(0,1,2) = | 0.2977 —0.5624 0.5408 —0.1306 —0.3449  0.4082
0.6394 —0.3943 —0.2802  0.4217  0.1126 —0.4082

Each column in this matrix has noriln/\/i.

Then = 6 columns of the above matrix are an equal-norm, tight, makymabust to erasures frame in

R™ = R3.

The filter banks that correspond to the constructed franees-ahannel filter banks pictured in Fig. 8.2

(there, we sefi/ = n). Since the frames are tight, the analysis and synthesis fugtions are the same:

o) = G

for 0 < j < n. Hence, the expansion of a signdl) in the coordinate form is

5= (..o,s0,5082,-..) = > (o) 90l + -+ D (o gl (5.12)
k k

The support of,p,(j) is

kE+imk+jm+1,....k+(+1)m—1,

and has length. The correspondingr coefficients are determined by thigh column of matrix®.



Chapter 6

Fast Discrete GNN Transforms

In this section, we introduce a general approach to decomgpasy polynomial transform into a product
of structured matrices involving other polynomial trangis of smaller size. As we show, in some cases
the proposed approach produces novel fast algorithms $orate GNN transforms, as well as for well-
known signal transforms, such as the standard DFT and DCyipef4. This work has been submitted for
publication in [98].

We derive fast algorithms using the algebraic construatimied module induction Induction is based
on the notion of aubalgebraand an associated decomposition that is similar to the cesgimposition in

group theory. Our approach generalizes the decomposilgamidams in [6].
6.1 Subalgebras and Their Structure
In this section we define and discuss the structure of subagefA = Clz|/p(x).

6.1.1 Definition

Choose a polynomial(z) € A, and consider the space of polynomials-{) with addition and multipli-

cation performed modulp(x):

B = {chrk(ac) mod p(z) | ¢x € (C}, (6.1)

99
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where all sums are finite. We c#flthe subalgebraof A generateddy r () and write this as8 = (r(z)) <

A.

6.1.2 Structure

Givenr(z) € A, we first determine the dimension Bf= (r(z)). Then we identify with a polynomial

algebra of the fornC[y]/q(y) with a suitably chosen polynomialy).

Letw = (ap,...,a,—1) be the list of roots ofp(z). The generator(z) mapsa to the list3 =
(ﬁo, e ,ﬁm_l), such that for eachy, € o there is a3; € 3, for whichr (o) = ;. Hence,m < n, since

for somek and/ we may haver(ay) = r(ay).
Theorem 6.1.1 The dimension oB = (r(z)) is dim B = m = |].

Proof: Letd = dimB. SinceB < A, thendim B < dim .4 and the polynomial§1,r(z),...,r" !(z))

span the entirg8. From the isomorphisni_(Z2.119) we obtain

d = rank(A(l),A(r(x)),...,A(r"‘l(w))>

= rank[rﬁ(ak)]

0<k,l<n

Sincer(ay) € B and|3| = m, the above matrix has only. different rows; henced < m. On the other

hand, it contains the full-rank. x m Vandermonde matrix

0<i,6<m

as a submatrix; hencé,> m. Thus, we conclude that= dim B = m. O

Next, we identify5 with a polynomial algebra.

Theorem 6.1.2 The subalgebr# = (r(z)) can be identified with the polynomial algebidy]/q(y), where
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m—1

q(y) = Hj:O (y — B;), via the following canonical isomorphism of algebras:

k: B — Clyl/qy),

r(x) — v

(6.2)

We indicate this canonical isomorphism@s= C[y]/q(y).

Proof: Observe that3 andC[y|/q(y) have the same dimension, andx maps the generatot(x) of B to

the generatoy of Cly]/q(y). Hence, it suffices to show thatr(z)) = 0 mod p(z) in B. From [2.19) we

obtain
T
Aar@) = (afrton) . alrian)
T
S
which implies thaty(r(x)) =0 mod p(z) in A, and hence 8. O

Letc = (qo(y),--.,qm—1(y)) be a basis of[y]/q(y). The polynomial transforni (2.20) that decom-

poses the regular modul®y]/q(y) (and hence the regul&@-moduleB) is given by [2.1D) as

Pep = [QZ(Bi)]ogz’,km :

Example 6.1.3 Consider the polynomial algebtd = C[z]/(«* — 1) witha = (1,—j,—1, ;). The poly-
nomial i (z) = z* generates the subalgebiy = (r1(z)) = Cly]/(y* — 1) of dimension 2, since, (z)
mapsa to 8 = (1,-1).

The polynomialy(z) = (z + 27!)/2 = (z + 2%)/2 generates the subalgebi, = (ro(z)) =

Cly)/(y* — y) of dimension 3, since,(z) mapsato 8 = (1,0, —1).

6.2 Module Induction

In this section we introduce the conceptrmbdule inductionwhich constructs am-module M from a

B-moduleN for a subalgebr#® < A. We will show that every regulad-module is an induction, which is
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the basis of our technique for polynomial transform decositjfum.

6.2.1 Induction

Similar to the coset decomposition in group theaory [18, ¥8,can decompose a polynomial algebta=

C[z]/p(x) using a subalgebr& and associatettansversal

Definition 6.2.1 (Transversal) Let B < A be a subalgebra of4. A transversabf B in A is a list of

polynomialsT’ = (to(x),...,tz—1(z)) C A, such that, as vector spaces,
L-1
A=Ptox)B=to(x)B® - O tr_1(x)B. (6.3)
=0

Later, in Theorem 6.2]6, we establish necessary and sutfficanditions for a list of polynomials to be
a transversal oB in A. In particular, for any3 < A there always exists a transversal.
Given a transversal df in A, we define the module induction, which is analogous to thadtidn for

group algebras in [19].

Definition 6.2.2 (Induction) Let B < A be a subalgebra ofl with a transversall" as in(6.3), and let\/

be aB-module. Then the following construction is Aaamodule:

M = Ptx)N, (6.4)

where the direct sum is again of vector spaces. It is calleditkduction of the B-module N with the

transversall to an.A-module. We write this ag1 = A 11 A.

Here, we are primarily interested in regular modules. Tlasealways inductions, as follows directly

from (6.3) and[(6.4):

Lemma 6.2.3 Let B < A with a transversall’. Then the regular modulél is an induction of the regular
modules:

A=B1r A (6.5)
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6.2.2 Structure of Cosets

We have established ih(6.2) that the subalgdbra A, generated by (x) € A, can be identified with a
polynomial algebraCly]/q(y). Next, we investigate the structure of ea8hmodulet,(z)B in the induc-
tion (6.5).

Consider a polynomiai(x) € A. Asin Theorenl 6.112, let(x) mapa to 3, and letg(y) = H?:‘Ol (y — Bj).

Further, leta/ = (ay | t(ou) # 0) C «a be the sublist oty that consists of those,, that are not roots of

t(x). Finally, letr(z) mapca’ to 5/ C 3, and denotes’| = m/.
Theorem 6.2.4 The dimension of(z)B is dim ¢(x)B = |5| = m/.

Proof: The proof is similar to that of Theorém 6.11.1. The list of pwynials(t(z), t(z)r(z), . .., t(z)r" " (z))

generate$(x)3 as a vector space. Using the isomorphidnmn (2.19) we obtain

dim (t(m)B) = rank<A(t(az)), A(t(x)r(x)),. .. ,A(t(;n)r”_l(aj))>

= rank{t(ak)rf(ak)] (6.6)
0<k,t<n
= rank( diag (t(ag) -[M o ] )
< ( )OS’K" (o) 0§k,z<n>
Theoren 6.1]2 shows th%ﬂ (ak)} has exactlyn = |3| linearly independent rows of the form
0<k,l<n

<1 B B ... ﬁ?*)-

For each3;, the above row contributes exactly 1 to the rank of the m&&ig) if and only if there exists
ay, such that (o) # 0 andr(ax) = B;. Since there are exact|y’| = m’ such values off;, we conclude

thatdim (t(z)B) = m'. O
Next, we identify the3-modulet(z)B with aCly]/q(y)-module.

Theorem 6.2.5 TheB-modulet(x) B can be identified with th€[y] /q(y)-moduleC[y] /¢ (y), whereq' (y) =
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Hﬁjeﬁl (y — B;), via the module isomorphism

n: t(x)B — Clyl/d (v),

t(x)rk(z) — ok

(6.7)

By a slight abuse of notation, we writéx)B = C[y]/¢'(y). This is an isomorphism of modules and should

not be confused with the isomorphism of algebras in Thebré@.6

Proof: It follows from Theoreni6.214 tha(t:(x), t(x)r(z), . .., t(z)r™ ~'(z)) is a basis of(z)B, viewed
as a vector space. On the other ha(ridy, e ,ym"l) is obviously a basis of[y]/¢'(y), also viewed as a
vector space. Hence,in (6.17) is a bijective linear mapping betwe&n:) 5 andC[y]/q¢' (y).

In order forn to be an isomorphism of modules, it must also be a module haramsm—it must
preserve the addition and multiplicationtiftx:) B andC[y]/¢'(y). Namely, forh(z) € B andu(z),v(x) €

t(z)B, the following conditions must hold:

The first condition is trivial. To show that the second coioditholds, leth(x) = ZZL:_Ol hyr*(z) € B and

v(x) = 22’0—1 vit(x)ri(z) € t(x)B. Then

m+m/—2 i m+m/—2 i
n(h@w@) = n( D D hwvipt@ri(@) = D vy’
=0 k=0 =0 k=0

m—1 -1
= Y hh S v’ = wlh(@) - n(o().
k=0 i=0

Hencen is a module isomorphism. O

Note that, depending ariz), the dimension of(x) B8 may be smaller than the dimension®fm’ < m.
This effect is callecannihilation
Also, the definition of; in (6.7) assumes the standard bgdisy, ..., y™ ') in C[y]/¢(y). If another

basis(bo(y), . . ., bi—1(y)) Were desired, the corresponding basig i) B would be(t(x)bo(r(x)), . . . , t(@)byy—1(r(2))).
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As a consequence of Theorém 612.5 and the above discussiocomgosing thés-modulet(x)B with
basis(t(z)qo(r(z)), ..., t(z)gm_1(r(z))) is the same as decomposing tgy]/q(y)-moduleC[y]/¢'(y)
with basisc = (qo(y),-..,gmw—1(y)). The decomposition matrix is the same as for the regular teodu

Cly]/4¢' (y) with the same basis, namely
Pe,s = ae(Bi)lo<io<m - (6.8)

6.2.3 Existence of a Transversal

ConsiderI’ = (to(z), ... ,tr—1(x)) C A, andletdim (t,(z)B) = myfor0 < ¢ < L.Then(ty(x), te(z)r(x), ... te(x)r™e
is a basis of,(z)B, as follows from Theorem 6.2.4. Hen& satisfies[(6.3) if and only ifng+- - -+mp_; =

n and the concatenation of bases

v = <tg(a:), . ,tg(:n)rm@_l(aj)> (6.9)

is a basis ind. The following theorem states this condition in a matrixifior

Theorem 6.2.6 Using previous notatior]" is a transversal if and only if the following is a full-rankx n

matrix:
M’=<DOB0 | DiBy | ... | DL_lBL_1>, (6.10)
where
D, = diag (tg(ak))ogkn,
and

By = [Tz(ak)]0§k<n70§i<mg :

Proof: The proof is similar to the proofs of Theorefns 611.1 and 6.@Hserve that thé-th element of’
in (6.9) is mapped to thk-th column of M’ in (€.10) by the isomorphism in (2.19). Hencel' is a basis
in A if and only if M’ has exactly. columns and ranld/’) = n. O
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It follows from Theoren 6.216 that for any algeh#sand its subalgebrB there always exists a transver-
sal. For example, we can chodfe= (to(),...,tn—1(x)), Wheret,(ay) = 0 for £ # k andt,(ay) # 0.
In this case

M’ = diag (té(o‘f)>ose<n

in (6.10) is a full-rank diagonal matrix.

Example 6.2.7

Consider the subalgebras constructed in Examplel6.1.3.

For B, = (%) of dimension 2, we can choose the transvei$at (1,z), since(1,z?) U (z,z%) is
a basis ford. Sincez mapsa to (1,—j,—1,5), we have’ = (1,—j,—1,5) andg’ = (1,-1). Hence,
q(y) = (y —1)(y + 1) andxB; = C[y]/(y? — 1) is of dimension 2.

For By = ((z +21)/2) of dimension 3, we can choose the transvetsat (1, (z —z~')/2), since

the corresponding matrix

1 11

= | ! J
1 -1 1
1 J

from (6.10) has full rank. Sincér — z~1)/2 mapsa to (0, —4,0, j), we obtaine’ = (— j,5), 3’ = (0),

and thusy' (y) = y. Hence,(z — 27 1)/2 - By = Cly]/y is of dimension 1.

6.3 Decomposition of Polynomial Transforms Using Inductia

In this section we use the induction (6.5) to express thenmotjal transform ofA via the polynomial

transforms of eacly(z)B = Cly]/¢;(y) in (6.3).

6.3.1 Decomposition

As before, we consided = Clz]/p(z), wherep(z) = [[}, (x — ay,). We view it as a regulad-module

with the chosen basis= (po(z), ..., pn—1(z)).
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Let B = (r(z)) < A be a subalgebra generated ki) € A, andB = C[y]/q(y) according to
Theoreni6.112, wherg(y) = [/ (y — B;) andB = (Bo,- .-, Bm—1)-

Supposel’ = (to(z),...,tz—1(z)) is a transversal oB in A. Let eacht,(z)B in (6.3) be identified
with a C[y]/q(y)-module Cly] /¢ (y) according to Theore 6.2.5, whes€(y) = [15,cp0 (v — 5))
andm; = |8©|. The basist® = (b (y),...,0)_|(y)) of Clyl/q"¥)(y) corresponds to the basis

' Ymp—1

(tg(l’)b((f) (r(x)),... ,tg(l’)bgfb)l_l(r(l'))) of t,(z)B. Hence, the corresponding polynomial transforml(6.8)

is Pye) go)-

Theorem 6.3.1 Given the inductior{6.5), the polynomial transforr®, , can be decomposed as

L-1
Pb,oz:<D0M0 | D1M1 | | DL—IML—1> <@Pb(l)ﬁ(l)>3- (611)
£=0

Here, B is the base change matrix from the baki® the concatenation of bases

L—1
U (@) (r(@)), ..., te(@)s) _ (r(2)).
=0

Each

D, = diag (tz(oék))

0<k<n

is a diagonal matrix. Eacld/, is ann x m, matrix whosgk, i)-th element i if («y) is equal to the-th

element

8y

of 5, and0 otherwise.& denotes the direct sum of matrices:

Py p0)
L-1
Py g
D P g0 =
=0
Pyz-1) gr-1

Proof: We prove the theorem fab = 2; that is, for A = ty(x)B & t1(z)B. The proof for arbitraryL is
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analogous.

Let B = C[y]/q(y) according to Theore 6.1.2, where)) = [1/"5" (v — 8;) andB = (Bo, - - ., Bm—1)-
For¢ € {0,1}, letty(x)B = Cly]/q') (y) according to Theorem 6.2.5, whey€) (y) = [14 <50 (v — Bi)
andm, = [80]. Lets® = (b5 (y),...,b%) _|(y)) be a basis of[y]/¢“) ().

Let to(2)bO (r(z)) = (te(2)b) (r(2)),. .., te(x)b{) _ (r(x))). As we established in Theorem 612.6,
V = to(x)b® (r(z)) Uti(x)b™M (r(2)) is a basis ofd. The original basi$ can be expressed in the new
basist’ aspy(z) = 3% ! Beto()b” (r(z)) + 7L Cpsta (1)) (r(2)). Hence, ifB is the base

change matrix frond to v, then

Pb,a = Pb’,a - B. (612)

The(-th column of B is (Bog, - - - , Bimg—1.6: Co.ts - - - » Comy—1.0) "

Next, observe that

Py.a = <Pto( 1O (r@)a | Py @b (r(a), a> (6.13)

For eact?, the (k, i)-th element ofP,, ,y,0) (1)), IS tg(ak)by) (r(ag)). Hence,
Pro@p® (r(@)),a = P - Mo - Py gy (6.14)

where M, is ann x m, matrix whose(k, i)-th element isl if () equals to theé-th element of3(), and

0 otherwise; and

D, = diag <t£(ak)>ogkgn—1'

Hence, from[(6.12-6.14) we obtain the desired decompaositio

Pb,a = <DOMO ‘ D1M1> : </Pb(o)’ﬁ(o) D Pb(l)’ﬁ(1)> - B. (615)

O

Corollary 6.3.2 Consider the: x m matrix M whose(k, i)-th element id if 7(«y) = ; and0 otherwise.

Then

1. M contains exactly: 1s andn(m — 1) Os .
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2. Each matrixM, in Theoreni 6.311 is a submatrix 8f. It contains thei-th column ofM if and only
if 8; € B,

3. If the number of non-zero elements in ikt column ofM is ¢;, then there are precisely; matrices

amongMy, ..., M4 that contain this column.

6.3.2 Discussion

The three factors i (6.11) correspond to the decomposi@f9) of the regular modulel = M =
C[x]/p(z) in three steps:

Step 1.A is represented as an inductign (6.5) by changing the basistinthe concatenation of bases
b of t,(x)B, using the base change matik

Step 2. Eacht,(x)B is decomposed into a direct sum of irreduciifesubmodules, using the corre-
sponding polynomial transform.) ).

Step 3.The resulting direct sum of irreducibl&-modules is decomposed into a direct sum of irreducible
A-modules, using the matrik/.

The factorization[(6.11) is a fast algorithm By, ,, if the matricesB and A/ have sufficiently low costs,
since the recursive nature of the second step allows foategeapplication of Theorem 6.8.1. We illustrate

this with two examples of novel algorithms derived using tthieorem in Sectidn 6.4.

6.3.3 Special Case: Factorization of p(x)

A special case of Theorem 6.B.1 has been derived in [2, 5]. éiarmassume thatl = C[z]/p(x), and we
can decomposg(z) = ¢(r(z)). ThenB = (r(z)) = C[y]/q(y), and any basis = (1,¢1(z),. .., tx—1(z))

of Clz]/r(z) is a transversal 0B in .A. This leads to the following resullt.

Corollary 6.3.3 Choose: = (co(y), - - -, cm—1(y)) as the basis of[y]/q(y). Denote the roots of(z) — 5;
asy® = ( ((]i), .. ,7,(21). Notice that J" ' (yéi), . ,7,(21) is simply a permutation ofc, . .., an-1),
and denote the corresponding permutation matri¥’ag hen, the polynomial transform decomposit{6ril1)

has the form

Poo =P ( 2_91 Pt,w))L% (Ik ® PC,B)B. (6.16)
=0
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Here,® denotes the tensor product of matrices.

Corollary[6.3.B has been used to derive a large class of lfgmtithms for real and complex DFTs, and
DCTsand DSTs<[2,5,61]. Theorém 6.13.1 further generalizissapproach, and, as we show in the following
example and in Sectidn 6.4, also yields fast algorithms aeet on Corollary 6.3.3.

Example 6.3.4

Consider the polynomial algebtd = Clz]/(z* — 1) with basisb = (1,z,22,2%). As we showed in
Sectior{ 2.B, the corresponding polynomial transfori®js, = DF T .

We continue from Example6.2.7. First, considdr = (2?) and the inductiond = B; @ zB;. Let
us choosé®) = (1,y) as the basis of[y]/(y* — 1) = By; it corresponds to the bas{4, z2) of B;. We
then choosé!) = (1,y) as the basis of[y]/(y? — 1) = zBy; it corresponds to the basfs, z°) of 213;.
According to Theoreh 6.3.1,

Dy = diag (1, 1,1, 1), D, = diag (1, _j, —1,j>,
and

My = My = s Py gy = Py) gy = = DFT,,

1

andB is the base change matrix froft, z, z%, 2*) to (1,2?) U (z,2?). Hence,

1 —j DFT, 1
DFT, = . (6.17)

1 -1 DFT9 1

As we show in Section 6.4.2, (6]17) is exactly the CooleyeyukFT forDFT, [55].
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Next, consideiB, = {(z + 2~1)/2) and the inductiomd = By & (z —2~1)/2- Bs. Let us choosé®) =
(To(y), T (y), Tx(y)) = (1,y,2y* — 1) as the basis of[y]/(y> — y) = Bo; it corresponds to the basis
(1, (z +27Y)/2, (2 + 272)/2) of B,. We then choos&!) = (1) as the basis 6E[y]/y = (z—2~1)/2-Bo;
it corresponds to the bas{¢z — 27!)/2) of (z — 27')/2 - B,. According to Theorerh 6.3.1,

Do = diag (1,1,1,1), Dy =diag (0,-4,0,5), Py g = (1) = DST-Iy,

and
1

1 1 1

1 1

MO = 7M1 - ,’Pb(o)75(0) - 1 —1 = DCT-Ig,
1

1 -1 1

1 1

and B is the base change matrix frof, z, 22, 2%) to (1, (z + 271)/2, (2* + 27%)/2) U ((z — 27 1) /2).
Hence,
1 —j DCT-I; 1 1
DFT, = . (6.18)
1 DST-I; 1
1 j 1 -1

As we show in Section 7.1.1, (6]18) is the Britanak-Rao atlgor for DFT, [59].

6.4 Examples

In this section we derive fast algorithms for the discretere and cosine transforms. We apply Theo-
rem[6.3.1 to express the transform as a product6.11). Bmsforms in the resulting decomposition all

haveO(nlogn) cost, and all other matrices hat&n) cost. Hence, the overall algorithm costién log n).

6.4.1 Notation

Hereafter, we use the following special matrices:

I, is the identity matrix of size.
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Jn, is the complementary identity matrix of sizeits (k,n — 1 — k)-th element id for 0 < k£ < n, and

0 otherwise.
T
1, = <1 1 ... 1) is a column vector ofi ones.

Z, is then x n circular shift matrix:

L}, wherek dividesn, is ann x n permutation matrix that selects element9of, ..., n — 1 at the
stridek; the corresponding permutationits+ j — jm + i, where0 < i < mand0 < j < k. The(i, j)-th

element ofL} is 1 if j = | 24U | mod n, and0 otherwise.

K} = In® Jn® I, @ ...)LE, wherek dividesn, is another permutation matrix.

T = diag ((wif |0<i<k0<l< m)) where the index runs faster, and = km, is a twiddle

factor matrix used in the Cooley-Tukey FFT.

Complementary direct sum:

6.4.2 Cooley-Tukey FFT

In this section, we derive the general-radix Cooley-Tuk&y Eising Theorerh 6.3.1. As was shownlin [2],

Corollary[6.3.3 is sufficient in this case.

Considerd = M = C[z]/(z" — 1). Letb = (1,z,...,2""!) be the basis of\l. As we showed in
Section 2.8, the corresponding polynomial transfornd8T,,. Assumen = km. Letr(z) = ¥, and
B = (r(z)). Thena’B = C[y]/(y™ — 1), for £ = 0...k — 1, and A = @}—;2*B. Choosing the same basis
b = {1,y,...,y™ '} in eachCly]/(y™ — 1) = z'B yields Py 4 = DFT,, . By Theoreni6.3l1, we
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obtain

DFT., = M-(I;®DFT,,)-B.

Here,B = L¥™ andM = (DoMy|...|Dy_1My), whereMy = 1, ® I,,, and D, = diag (Wf;im>0<. .
<i1<km
for 0 < ¢ < k. Hence, we can rewrite
M = L¥™ (I, ® DFTy) TFm LA™,
to obtain the well-known general-radix Cooley-Tukey FFgaaithm [B/55]:
DF Ty = L™ (I, ® DFTy) TF™LE™ (I, ® DFT,,) L¥™
= L¥"(I,, ® DFTy) T}™ (DFT,, ®1}) . (6.19)

6.4.3 Good-Thomas FFT

In this section, we derive the general-radix Good-Thoma$ &§ing Theorend 6.311. Similarly to Sec-
tion[6.4.2, Corollary 6.313 is sufficient in this case.

ConsiderA = M = Clz]/(z" — 1). Letb = (1,z,...,2"!) be the basis of\{. As we showed in
Sectior 2.8, the corresponding polynomial transfor®¥sl,,. Assumen = km, such thaged(k,m) = 1.
Letr(z) = ¥ andB = (r(z)). Thenz™B = C[y]/(y™ — 1), for £ = 0...k — 1, and A = &} z'™B.
Choosing the same basié) = {1,y,...,y™ '}ineachC[y]/(y™—1) = 2“"ByieldsPyu) z¢) = DF T, .
By Theoreni 6.3]1, we obtain

DFTy, = M-(I;®DFT,,)-B.

B is the permutation matrix that maps the I{§t 1,...,km — 1) into (ixk + i,,m), Where indices) <
ir < m,0 <1, < k,andi, runs faster. This mapping is known Bsiritanianor Good's mapping [99].
Further,

M = (DoMy|...|Dy—1Mpy),
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whereMy = 1; ® I,,, andD, = diag (w,‘f |0<i< km> for 0 < /¢ < k. We can rewrite
M = PLE™ (DFT), ®1,,),

where P is the permutation matrix for th€RT mapping [57] that maps the li§D, 1, ..., km — 1) into
(irk™'k +imm~tm); here, indiced) < iy < m, 0 < i,, < k, andij, runs fasterk~! is the multiplicative
inverse ofk modulom; andm ! is the multiplicative inverse afh modulok.

Hence, we obtain the Good-Thomas (or prime-factor) FFTralga [99]:

DFTy,, = PLY™(DFT,®l,)(Ix ® DFT,,) B

= PL*"(DFT,®DFT,,) B.

6.5 Fast Discrete GNN Transforms

In this section, we apply Theorem 6.8.1 to construct decaitipas of discrete GNN Fourier transforms.
In particular, we identify classes of finite discrete GNN ralsdof the form4 = M = C[x]/p(z) that can
be decomposed into the induction of the fardn= B & t(x)B, whereB itself is a polynomial algebra that
corresponds to a finite discrete GNN model. We then use thigction to decompose the corresponding
polynomial transforniP, , of A into the direct sum of two polynomial transform Bf which are discrete
GNN transforms as well. We demonstrate thatdifsatisfies specific conditions, then the cost of such
decomposition is linear.

We then derive the conditions that the polynomial algebtzas to satisfy such that Theorém 613.1 can
then be applied recursively. As a result, we identify a ct#dmite discrete GNN models that possess a fast

O(nlogy n) computational algorithm for their corresponding polynahtiansforms.

6.5.1 Preliminaries

Let (Py(z)), ., be a family of orthogonal polynomials that satisfy the regom

k>0

2 Py(z) = ag—1Pr—1(x) + bp P () + ap Pry1(z), (6.20)
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with P(](l’) =1 andPl(x) = (l’ — bo)/ao.

Consider the finite discrete GNN model

A= M =Clz]/Pu(x), (6.21)

and letb = (Py(z)) be the basis oM. The corresponding polynomial transform (4.17Fs, . Let

0<k<n

us denote the corresponding shift matfix (4.20) as

S =¢(x) = e : (6.22)

Lemma 6.5.1 Letbh, = O0forall 0 < k < K in (6.20) Then for any constant € R polynomialsPk(z),

0 < k < | K/2], can be expressed as

Py () = Qr(2” — d), (6.23)

where polynomialg)(y) are also orthogonal polynomials that satisfy the recursion

YQr(y) = age—202k—1Q—1(y) + (a3y_1 + a3y — d)Qr(Y) + a2kazk+1Qu+1(y), (6.24)

with Qo(y) = 1and Q1 (y) = (y — aj + d)/aas.

Proof: The proof is by induction. By definition,

PQ(I‘) = 1:Q0(1‘2—d,

Py(x) = (2% a3)/aar = Qu(a” — d).
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Assume that[(6.23) hold for all < k. Then, from[(6.20) we obtain
(% — d) Pay (%) = azky—202kg—1 Porg—2() + (a3,_1 + a3y, — d) Pao (%) + a2k aako 11 Pakot2(2)

and hence,

(2% = d) — (a3y,_, + a3y, — d) A2k —202%k0—1
Popyya(z) = . . Pojy (2) — ——"——"—Pop, ()
A2ko A2k +1 A2ko A2ko+1
2 2 2
_ (% —d) - (a2k0—1 +ag, — d) Or (w2 —d) - A2k —292ko—1 Qy 1(352 —d)
A2ko A2k +1 ¢ A2ko A2k +1 0

= Quet1(a® —d),

since from[(6.24) we have

2 2
y — (agy,_; +ay, —d) A2k —202k—1
Qrly) — ———

A2k A2k +1 A2k A2k+1

Qrs1(y) = Qr—q(y)-

6.5.2 Decomposition of Discrete GNN Fourier Transforms of Een Sizes

We identify a class of finite discrete GNN models of the fodm= M = C[z|/p(z), wheredeg p(x) = 2m
is even, that can be decomposed into the induction of the #demB @ t(x)B. Here,B itself is a polynomial

algebra that corresponds to a finite discrete GNN model; @heré(z) = x ort(z) = v~ 1.

Decomposition using transversal1,z™!)

Theorem 6.5.2 Letb, = 0 for 0 < k < nin (6.20) Consider the corresponding signal modél21), and

assume that = 2m.

Let P, 3 be the polynomial transform corresponding to the signal ehadth the polynomial algebra

C[y]/Qm(y) with basisg = (Qk(y))0§k<m'
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Then the polynomial transforf, , can be decomposed as follows:

I —JIm
Ppo = (1, @ di ~1 A LeP - B. 6.25
b, Im Im ( ® 1ag (ak )m§k<n) ( 2® qﬁ) ( )
Here,
B= <Im@s’> L,
whereS’ is the submatrix of in (6.22) constructed from its even rows (with indicg<,...,n — 2) and

odd columns (with indices, 3, ..., n — 1).

Proof: It follows from Lemmd6.511 that, fai = 0, P,(z) = Q. (z?), whereQy,(z) satisfy the recursion

YQi(y) = agk—202k—1Qr—-1(y) + (a3p_1 + a3) Qi (y) + a2ka2k11Qr41(y),

with Qo(y) = 1 andQ+(y) = (y — a3)/apay. In particular,P,(z) contains only even powers of

Letap < ag < ... < ay—1 be then distinct roots ofP, (x) (since it is a separable polynomial). Then
ap = —ay,—1- for 0 < k < n. Moreover,0 is not a root ofP, (x): P,(0) # 0.

Consider the polynomial(z) = z* € A and the subalgebiid = (r(x)) generated by this polynomial.
r(x) mapsa = (ar)ycpopn 108 = (Bi)geicn, Wheres; = o = a7, _;, By Theoren{6.112, we obtain
B = Cly)/Qm(y). Let b = (Qi(Y))y<p-,, be the basis oC[y]/Qm(y). It corresponds to the basis
(P%(x))oglmm of B.

Furthermore, consider the polynomidlk:) = (P,(0) — P,(z))/xzP,(0) € A. Observe that(z) is

indeed a polynomial, ant{ay,) = ;. ! for anyay,.. Thus,
t(x)=2~! mod Py,(z).

In the remainder of the proof, we will ugéxr) =z~ 1.
We can use Theoref 6.2.6 to verify tHat= (1,¢(x)) is a transversal oB in A, such thatd =
B & t(x) - B. From Theoreni 6.215 we obtatitz) 5 = Cly]/Qm(y). Letb) = (¢(x)Qx(r(z))) s, bE

the basis ofC[y]/Q,, (y). It corresponds to the basfs ! P (z)) of t(x)B.

0<k<m
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Hence, from Theorein 6.3.1 we obtain the following decontposi
Poo = M - Pyo), D Po),5 - B-
Here, B is the base change matrix frabrio 4(*) U b(1). Observe that
Popi1 = agex™ ' Py, + agp12” " Pago-

Hence,

B:(Im@s')- n

whereS’ is the submatrix of5 in (6.22) constructed from its even rows (with indide®, ...,n — 2) and

odd columns (with indices, 3,...,n — 1).

SinceB; = a? = a2 _,_,, it follows from the construction of the matrix/ in Theoreni6.3]1 that
—J
M= """ (1 @ diag (o) ).
Finally, by constructionPyo) 5 = Py) 5 = Pyp- d

Decomposition using transversal1, z)

Alternatively, we can use a different transvergal ) for the subalgebrd8 < A constructed in Theo-
rem[6.5.2. This approach leads to a different decompostfoR; ., as we demonstrate in the following

theorem.

Theorem 6.5.3Letb, = 0 for 0 < k < nin (6.20) Consider the corresponding signal mo@él21), and

assume that = 2m.
Let P, 3 be the polynomial transform corresponding to the signal ehadth the polynomial algebra

C[y]/Qm(y) with basisg = (Qk(y))0§k<m'
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Then the polynomial transforf, , can be decomposed as follows:

Pha = j: _Imm - (L ® ding (ak)mgm) (LeP,s) B (6.26)

Here,
m—1
B= ( I1 Bi> LD,
i=0
Here, B; is an identity matrix except itSn + 1 + i, m + 1 + ¢)-th and(m + i, m + 1 + i)-th elements are

equal tol/ag, and —asgy_1/asg, respectively.

Proof: The proof is identical to the proof of Theorém 615.2. The dtifference is that for the construction

of B we use the property

We use this property to compute the bases change ntainisteps that correspond to the matriégs By, . .., By,—1.
O

Generalization to other finite discrete GNN models

The factorizations of, , constructed in Theoremis 6.5.2 dnd 6.5.3 can be generabzadarger class of

finite discrete GNN models.

Theorem 6.5.4Letb, = d for 0 < k < nin (6.20) whered € R is an arbitrary constant. Consider the
corresponding signal mod¢6.21) and assume that = 2m.

In addition, consider another family of orthogonal polyrialn (Pk(x)) x>0 that satisfy(6.20) with
b = 0for 0 < k < n, and the same,, as for P, (x) above. Denote the corresponding signal md@eZ1)

asA = M = Clz]/P,(z), and fix the basid = (P;(z)), < k < n. Denote the zeros af,(z) as

0
&= (do,...,an-1).

Then the polynomial transforf, , can be computed as follows:

o P (an) By (o) P
Ppa = diag W TR T d)) Ps o (6.27)
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Proof: Observe that the shift matri% in (6.22) for the signal modefl = M = C|[z|/P,(x) and the shift

matrix S for the signal moded = M = C[z]/P,(z) are related as

S =S +dI,.

Next, observe that is symmetric. Hence, it has an orthogonal eigenvector mitrand can be factored
as

S =V -diag (ao,...,an_1> VT,

It follows from Sectior 4.3 that
vV =Pl D2,

where

D =di .
diag (Pn—l(ak)Pé(ak))OSK"

The same applies t6. It also has an orthogonal eigenvector matrixand can be factored as

S =V - diag (do,...,dn_1> VT

where

and

It follows from S = S + dI,, thatV = V anday, = a, + d for all & [100,101]. Hence
ProD'? =Pl D2,

from which we immediately derivé (6.27). O
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Operational cost analysis. The computation of the matrice® and B in Theorem$ 6.512 arld 6.5.3
requires3n /2 operations each. In addition, the computation of the diagamatrix D in Theoren{ 6.514
requiresn operations. Hence, the factorizati¢n (6.27) allows us toateP;, ,, in 4n+2C(n/2) operations
(additions and multiplications), wher&(n/2) denotes the number of operations required to compute the

polynomial transforn, g of sizen/2.

In general, we cannot apply Theorém 615.4 recursively t@uigoseP, 5, since, in general, the cor-

responding orthogonal polynomia(s)m(y) may not satisfy the conditions of the theorem anymore.

)mZO

However, we can identify a class of finite GNN models, for whitheoren 6.5]4 can be applied recursively

all the way ton = 2, thus yielding a fast algorithm. We specify these modeksy lat Sectiorh 6.5]4.

Example 6.5.5 Consider the normalized Hermite polynomiﬁsg(:c) discussed in Example 4.8.1. Let the
model(6.21)be A = M = C[z]/H,(x) with basisb = (Hy, ..., H,_1), and assume = 2m.

Since the normalized Hermite polynomials satisfy the souar

k?+ 1~
wHy(x \/7ch 1( ——Hp (2

andn = 2m is even, we can apply either Theorem 6.5.2 or Thedrem|6.5.3.
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Let us apply the former, for example, in the case when 6. We obtain the decomposition

1 —=3.3243  7.1069 —10.9258 12.0053 —8.0754
1 —1.8892 1.81656 —0.4388 —1.1587  1.3714

1 —-0.6167 —0.4382 0.6596 0.1761 —0.6385
Pba =

)

1 06167 —04382 —0.6596 0.1761  0.6385
1 1.8892  1.8165 0.4388 —1.1587 —1.3714

1 3.3243  7.1069 10.9258 12.0053  8.0754

1 —0.4254
1 —0.7486
1 —-0.4382 0.1761
1 —2.2932
= e | 1 1.81656 —1.1587
1 2.2932
1 71069 12.0053
1 0.7486
1 0.4254
1
1
1
X
0.7071
1 1.2247

1.4142 1.5811

6.5.3 Decomposition of Discrete GNN Fourier Transforms of @d Sizes

We now identify a class of finite discrete GNN models of thefot = M = C|z]/p(z), wheredeg p(x) =
2m + 1 is odd, that can be decomposed into the induction of the fdres B @ ¢(z)B. Here, B itself is
a polynomial algebra that corresponds to a finite discretédN@hbdel; andt(x) = x. The results and

decompositions are analogous to those in Settion|6.5.2.
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Decomposition using transversal1, z)

Theorem 6.5.6 Letb, = 0 for 0 < k < nin (6.20) Consider the corresponding signal mo@él21), and
assume that = 2m + 1.

Let P, 5 be the polynomial transform corresponding to the signal ehadth the polynomial algebra
Cly]/Qm-+1(y) with basisq = (Qk(Y)) o<, pms1-

LetP, g be the polynomial transform corresponding to the signal eh@dth the polynomial algebra

Cly]/z~ ' Qma1(y) with basisq’ = (Qk(y))ogle. Observe thaty’ = 5\ {0}.

Then the polynomial transform, , can be decomposed as follows:

Ppa= |1 (L @ diag (o) ) (Pup@Pyy) B (6.28)

m+1<k<n

Here,
m—1
B= ( I1 Bi> LD,
i=0
Here, B; is an identity matrix except itSn + 1 + ¢, m + 1 + i)-th and(m + i,m + 1 + i)-th elements are

equal tol/ag, and —asgy_1/asg, respectively.

Proof: The proof is identical to the proof of Theordm 6]5.3. The odifference is that nowr3 =
Cly]/*  Qm+1(y), sincea,, = 0 is a zero ofP,(z), andt(0) = 0. Hence, by Theorem 6.2.5, the di-

mension ofrB is m. O

Generalization to other finite discrete GNN models

Similarly to the generalization in Sectibn 6.5.2, we canddze a larger class of finite discrete GNN models.

Theorem 6.5.7 Letb, = d for 0 < k < n in (€.20), whered € R is an arbitrary constant. Consider the
corresponding signal mod¢6.21) and assume that = 2m + 1.
In addition, consider another family of orthogonal polyriate (P (z)) 4> that satisfy(6.20) with

b = 0 for all ¥ > 0, and the same,, as for P;(x) above. Denote the corresponding signal mg@e21)
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asA = M = Clz]/P,(z), and fix the basid = (Py(z)), < k < n. Denote the zeros af,(z) as

0
&= (do,...,an-1).

Then the polynomial transforf, , can be computed as follows:

e Pr—1 (o) Py (o) P
Pho = i (\/ﬁn—l(ak — d) By (o — d)> Foa (6:29)

Proof: The proof is identical to the proof of Theorém 615.7. O

Operational cost analysis.Similarly to the discussion in Sectién 6.5.2, the compatwl cost ofP;,
consists of the costs of matricd$ and B, which add up t®n operations; the cost of diagonal matiix
which isn operations; the cost &%, g, which isC((n + 1)/2); and the cost 0Py 4.

Now, observe that the signal moddl = M = C[z]/x~'Qy+1() is not a finite GNN model of the

form (6.21). In this case, it may not be clear how to comjes . However, observe that

Qo(0) Q1(0) Q2(0) ... Qum(0)
P, Qm (1)
Py a :
Qm(Bm)

Hence, we can compute a matrix-vector prodbgts - sby appending & to the input vectos, multiplying
it with P, 3, and then dropping the first output:
/quvﬁl ' S S

= Pq,ﬁ )

Since we can us®, s instead ofP, s, the total operational cost of computif® , is 4n + 2C((n +
1)/2) operations.

Similarly to the discussion in Sectidn 6.6.2, we should rtbt#, in general, we cannot apply The-
orem[6.5.7 recursively to decompo$g s, since, in general, the corresponding orthogonal polyatsmi

(Qm(y))m>0 may not satisfy the conditions of the theorem anymore. Heweve can identify a class of
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finite GNN models, for which Theorem 6.5.7 can be applied rsealy all the way ton = 2, thus yielding

a fast algorithm.

Example 6.5.8 Consider the normalized Hermite polynomiﬁsg(x) discussed in Example 4.8.1. Let the
model(6.21)be A = M = C[z]/H, (=) with basisb = (Hy, ..., H,_1), and assume = 2m + 1.

Since the normalized Hermite polynomials satisfy the souar

k7+ 1A
wHy(x \/7Hk 1( ——Hp(z

andn = 2m + 1 is odd, we can apply Theordm 6/5.6. In the case of, for exampie 5, we obtain the

decomposition

1 —28570 50645 —6.0210  4.2150
1 —1.3556  0.5924  0.6432 —0.9490
Poo = 1 0 —0.7071 0 0.6124
1 13556  0.5924 —0.6432 —0.9490

1 28570 5.0645  6.0210  4.2150

1 —2.0202
1 —0.9586 1 —0.7071 0.6124
1 0.5924
= 1 : 1 0.5924 —0.9490 | &
1 5.0645
1 0.9586 1 5.0645 4.2150
1 2.0202
1 1
1 1
X 1 1
1.4142 1 —0.8165

1 0.8165
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6.5.4 Fast Algorithm for Discrete GNN Fourier Transforms

As we demonstrated in Sections 6]5.2 and 6.5.8, i d for 0 < k < n in (6.20), then we can factorize
polynomial transforniP, , for the finite discrete GNN model (6.21) using Theoréms 6emd[6.5.V. The

factorization allows us to compuf®, ., using at most

n+1

4n +20(| 5

1)

operations, wher€'(| “+!|) is the operational cost of computifg, s of sizen/2 or (n + 1)/2 (hence,
[552)).
Recursive decomposition

If we can recursively apply the theorems from Sectibns 6am@[6.5.8 to the resulting two polynomial

transformsP, 5 of size| 41 |, we can further reduce the computational cosPgf, to, at most,

gn 4+ 4c(| "

1)

operations. Now{ (| 2t |) indicates the cost of discrete GNN transforms of gizg! |.
The question is what the necessary conditions are that aitoilw decompos®, g recursively into two

smaller discrete GNN transforms. The following lemmas mes such conditions.

Lemma6.5.9 Letn = 2m. Consider the modg6.21) and assume that Theordm 615.4 applies to the
correspondingP; ., such that

Poo=M- (I®Pys) - B.

Then we can apply Theordm 6J5.4R9 3, if the coefficientsy;, in (6.20)satisfy the conditions
ag = a3,y + a3 (6.30)

for1 <k < |(n—1)/2].
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Proof: Consider the polynomial$, constructed in Theorefn 6.5.4, and the corresponding mddet
M = C[z]/Py,(x). The subalgebr# = C[z]/Q.(y) has the basig = (Qo(y), .- ., Qm-1(y)) of orthog-

onal polynomials that satisfy

YQr(y) = ask—2a2k-1Qx—1(y) + (a3,_ + a3,)Qk(y) + askas+1Qr+1(y),

with Qo (y) = 1 andQ1(y) = (y — a3)/apa; (we setd = 0 in Lemmd6.5.1L).

If we now re-definez,, andb,, in (€.20) as

ap = A2kA2k+1,
2
bO = CL(),
2 2
bp = ay_y + ay.

and assume that the condition (8.30) holds, we immediatedgiwve that Theoren 6.5.4 applies to the model
B = C[x]/Qm(y) with basisq = (Qo(y), - -, Qm-1(y))- O

An identical lemma applies in the case= 2m + 1. We state it here without a proof.

Lemma 6.5.10 Letn = 2m + 1. Consider the moddl.21) and assume that Theorém 6]5.7 applies to the
correspondingP,, , such that

Poa =M - (Pq,ﬁ & Pq’,ﬁ’) - B.

Then we can apply Theorém 6J5.7R9 3, if the coefficients., in (6.20)satisfy the conditions
ag = ajy,_y + aj, (6.31)
forl1<k<|[(n—1)/2].

Fast algorithms

Suppose we can recursively construct such factorizatimneviery polynomial transform of ever decreasing

sizes, until we reach polynomial transforms of sizelet us indicate the operational cost of a discrete
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GNN transform obtained at theth decomposition step with';(n), wheren is the size of this transform.
Then, by constructing the factorization Bf, , until we reach polynomial transforms of sizewe obtain a

computational algorithm that requires approximately

n—+1

2

)
= sn a0y ")

Co(n) = 4n + QCl(L

~ 4nlogyn

operations.

It is now a straightforward task to identify the finite GNN natsl for which such factorizations can
be performed. Here, we provide the simplest scenario whéna power of 2. This example gives an
idea of how these conditions are derived. Similar cond#ioan be derived for other sizessince at each
decomposition step we can apply Theotem 6.5[4 0r16.5.7 ndiapg on the parity of the size of polynomial
transforms in the factorization.

The following theorem identifies a class of finite discreteNGiodels, for which we can compuf®, ,

in 4n log, n operations.

Theorem 6.5.11 Consider the finite discrete GNN modéI21) Letn be a power of, i.e. log,n € Ny.
Assume that

Po(z) = (2% — dg) o+ 0 (2% — diogy n—1), (6.32)

whereo denotes the composition of polynomials:

Then the corresponding discrete GNN transfdpy, can be computed using log, n operations.

Proof: The proof follows immediately from the recursive applicatiof Theoreni_6.5]4 that is justified by

Lemmd6.5.b. O
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Observe that the GNN models described in Thedrem 8.5.1Gdedlbut are not limited to) the models
for the discrete cosine and sine transforms. Moreover, lg@rithms can be made numerically stable by
orthogonalizing the corresponding polynomial transfqrassexplained in Sectidn 4.3.

Finally, notice that polynomial transforms associatedhwihite discrete GNN models described in
Theoreni 6.5.71, can also be decomposed using other meBjotiofvever, this is only possible in the case
whenn is a power of 2. As mentioned above, our approach allows usristrauct fast algorithms for finite
GNN transforms of other sizes as well.

Sulfficient condition. The necessary condition in Theorem 6.5.11 is also a suffic@mdition. Namely,
for any polynomialP,, (=) that can satisfie§ (6.82), there exists a list of orthogoobrm)mials(Pk(x))0<k<n

that satisfy the recursioh (6.J20) with = 0. To find the recursion coefficients, we solve the followingtieys

of equations for the given values df, . . . , diog, n—1:

logon—1 2¢1 201 20_1

U { H a;c; = dg,{ H Aot41py 0 1+ iCol1p, oty + H At+1py 4 i Cot1lpy i = d£}1<m<n/2[+1 }
(=0 =0 i=0 i=0
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Chapter 7

Applications

In this chapter, we discuss potential applications of tkety of GNN signal models developed in Chaptérs 4
through(®.

7.1 Fast Signal Transforms

We can apply the module induction approach to constructlrfasealgorithms for various discrete signal
transform that correspond to different signal models. ¢¢othat the choice of models is not limited to only
the time model and various GNN models.

7.1.1 General-Radix Britanak-Rao FFT

We derive a novel fast general-radix algorithms®drT,,. It requiresO(n log n) operations. To the best of
our knowledge, this algorithm has not been reported in teedliure.

In [59], Britanak and Rao derived a fast algorithm foFTs,,, that can be written as the factorization
DFTs,, = X2™ (Im ® Z,;Ll)D,%Lm ( DCT-Lypyq & DST-Ly_ )B,%Lm.

MatricesD2™, B2™ and X 2™ are specified il (CI#-C.6) by settihg= 1.

In AppendixC.1, we derive the following general-radix wersof this algorithm:

131
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Theorem 7.1.1

DFTo = L2 (Lo @ DFTy ) XA L3 (L @ 257 @ Do 1y ) D™

x ( DCT-Lpsy @ DST-Iy_y &1_1 ® (DCT-IL,, & DST-Hm)) Bkm,

Here, D2 is a diagonal matrix, and32*™ and X2 are 2-sparse matrices (that is, with each row
containing only two non-zero entries) specifiedin {C.4)C.6

This factorization is obtained by inducing a subalgetfa= ((z* + 27*)/2) of an algebrad =
C[z]/(z*™ —1) with transversaty(z) = 1, t1(z) = (2% —27F) /2, t9;(v) = 27 (zF+1)/2, andty;j41(z) =

I (xF —1)/2for1 <j < k.

DFT} requiresO(k log k) operationsDCT-1,,,.1, DST-1,,,_1, DCT-11,,,, andDST-11,,, requireO (m log m)
operations each [2,5]D2F™ requiresn = 2km operations and32*™ and X 2*™ each requir&n operations.

Hence, the algorithm foDFT,, in Theoreni7.1]1 required(n log n) operations.

7.1.2 General-Radix Wang Algorithm for DCT-4

We also derive a novel fast general-radix algorithmsd¢iT-1V,,. It requiresO(n logn) operations. To

the best of our knowledge, this algorithm has not been redart the literature.

In [66], Wang derived a fast algorithm fa¥CT-1V 4, that can be written as the factorization

m—1 2m—2j5—1 ] 2j+1-2m
cos L —m —1)7 cos o —="7
DCT-IVar, = K3™- P o ( ) -
j=0 \cos ZEL2ma(_1)jH] gog 2 2] 1
1
x (DCT-IIL,, ® L) (K2™)T - L2 I, @ DFT,

In Appendix C.2, we derive the following general-radix versof this algorithm:
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Theorem 7.1.2

DCT-1Vop, = KZFM(K3™ @ DCT-IV,)Y,2k™ . (DCT-111,, ® L) (K5)T
1
<hew | L™V L, @DFT, | (K3

Here,Y;2*™ is a2-sparse matrix specified {€.10)
This factorization is obtained by inducing a subalgebra-= (T (z)) of an algebrad = C[z]/Topm (z)

with transversaks;(z) = Vj(x) andty;1(z) = Wj(z)(Vag—1(z) — Vag(z))/2 for 0 < j < k.

DCT-1V}, requiresO(k log k) operations, antDCT-II1,,, requiresO(m log m) operations([2,5]Y;2F™
requires3n operations, where = 2km. Hence, the algorithm foDCT-1V,, in Theoren{7.1]2 requires

O(nlogn) operations.

7.2 Compression of ECG Signals

In [102], we use the finite GNN model based on normalized Heerpolynomials to efficiently compress

electrocardiographic signals.

7.2.1 Processing of ECG Signals

Many signals encountered in electrophysiology often harecén be assumed to have) a compact sup-
port. These signals usually represent the impulse resparseaystem (organ) to an electrical stimulation
recorded on the body surface. Examples include electrimgaaphic (ECG), electroencephalographic, and
myoelectric signals.

Visual analysis of long-term repetitive electrophysidtag signals, especially in real time, is a tedious
task that requires the presence of a human operator. Corjaged systems have been developed to facil-
itate this process. For efficient storage, automatic arsalysd interpretation, electrophysiological signals
are usually represented by a set of features, either hieussth as duration and amplitude, or formal, such

as coefficients of the expansion in an orthogonal basis. driatter case, a continuous basis can be used,
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Figure 7.1: (a) ECG structure. Reprinted from LabVIEW for&Signal Processing, National Instruments,
http://zone.ni.com/devzone/cda/tut/p/id/6349. (b)fEgpée of a QRS complex (centered around the peak).

and the projection and reconstruction of a compact-supponal are computed using numerical methods
for integral approximation, such as a numerical quadratilernatively, a discrete basis can be used, and a
discrete signal transform, such as DFT or DCT, can be apieddigitized signal—obtained by sampling
a continuous one.

In both continuous and discrete cases, usually only a feyegtion coefficients are used for the storage
and reconstruction of a signal, leading to a reconstruaioor. The goal of the compression optimization is
to minimize the error while achieving the greatest compoesgor example, by using the fewest coefficients
possible).

We study the compression of QRS complexes, which are the ahastcteristic waves of ECG sig-
nals [103]. The structure of an ECG signal and an example QR®lex are shown in Fig. 4.1. In par-
ticular, we examine the expansion of QRS complexes into #stskof Hermite functions. Such functions,
in their continuous form, provide a highly suitable basis thte representation and compression of QRS
complexes([103—-106]. However, as we discuss in SeCtioB, 7% reported computer implementations of
such expansion suffer from certain limitations, such asihbility to obtain an exact reconstruction of a

signal, large computational cost, and an a priori seleatfaroefficients for reconstruction.
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We propose an improved compression algorithm for QRS coraplthat expands digitized signals into
the basis ofliscreteHermite functions, obtained by sampling the continuousntiter functions at specific
points, not necessarily on a uniform grid. This approachaisel on the results obtained Chapiérs 4[and 6.
The proposed algorithm achieves the perfect reconstrudficignals, has a lower computational cost, and
allows us to choose coefficients for reconstruction fromrgdapool of coefficients. Experiments comparing
the approximation accuracy demonstrate that the new #igogperforms on par with other algorithms for

low compression ratios (less thdrg), and outperforms them for higher compression ratios.

7.2.2 Expansion into Hermite Functions
Hermite functions

Consider the family of normalized Hermite polynomiﬁ@(t), ¢ > 0, discussed in Example 4.3.1. Recall

that they satisfy recursion (4.114), and hence can be cansttdor? > 2 as

H(t) = \/%tHé—l(t) - K_TlHZ—z(t),

with Hy(t) = 1 and Hy(t) = v/2t. These polynomials are orthogonal on the real Rneith respect to the

weight functione =" :

/ Hy(t)Hp(t)e P dt = /T 6p—m. (7.1)
R

It immediately follows that functions
we(t,o) = 7T_1/4€_t2/202ﬁ[g(t/0') (7.2)
are orthonormal oiR with respect to the inner product
(pult, ). 0m(0:0)) = [ et 0Vt 0t = b1 73)

These functions are callddermite functionsThe set of Hermite function§p,(t, o) }¢>0 is an orthonormal

basis in the Hilbert space of continuous functions defined®d82,/93]. Any such functions(t) can be
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represented as

s(t) = cuplt, 0), (7.4)

>0

where

¢ = (s(t), ult, o)) = /R S(O)pe(t, o)t

The first four Hermite functions are shown in Hig.l7.2. Noticat eachy, (¢, o) quickly approaches zero
as the value oft| increases, sincH,(t/o) is a polynomial of degre& and, ast| — oo, e=*/2" Hy(t /o) —
0. Hence, we can assume that each Hermite function has a comsygport. In particular, we assume
that first L Hermite functions have the same compact suppef,, 7], such thatp,(t,0) = 0 for ¢ ¢
[-T,,Ty], where0 < ¢ < L, andTy is a suitably chosen constant that depends and L. If s(¢) also has

a compact support df-7,, T,], then we can compute the coefficientswith a finite integral:

T
Cg:/]RS(t)QOg(t,O')dt:/ s(t)pe(t, o)dt. (7.5)

—T,

Compression

In practical applications, only a finite numbgf of Hermite functions are used to represent the sig(@|

in (7.4). Accordingly, only a fewa priori selected coefficients,,...,cs,, , are computed. Herey,
corresponds tgy, (t,0) in (Z.3). Alternatively, a larger pool of coefficients candmmputed, from which
M ones are selected. It is well-known that for an orthonornaaisselecting coefficients with the largest
magnitude minimizes the approximation error computed asttergy of the difference between the signal

s(t) and its approximation witd/ basis functions.

Digital implementation

A computer-based computation of the coefficiéntl(7.5) ardtarmite expansion (71.4) has to be performed
in the discrete form. The integral in_(¥.5) can be computetth @winumerical quadrature using, for example,

arectangle rule:
K

Ty
cp = /—Ta s(t)pe(t,o)dt =~ Z s(T)0e(Th, o) (t — tr_1). (7.6)

k=—K
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Figure 7.2: First four Hermite functions (plotted for thereascaler).

Here,-T = t_ g 1 < t_g < ... <tig_1 < tg = T, and eacht,_; < 7, < t;. The signal is then

approximated with\/ Hermite functions as

M—1
Clp Pl (Thy O (7.7)

m=0

Lett, be such that, — t;_; = A for all k. Then [7.6) and (7]7) can be expressed in the matrix-vector

notation. Let

s(T_K) co 8(T-k)
s= , c= , &=
s(TK) CM—1 5(TK)
Then
c=Ad"s and §= &c, (7.8)

where® ¢ RECK+DXM “gych that itsn-th column is thet,,-th Hermite function sampled at the points
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T_KyT—K+41y+--3yTK

Dk = o, (Tk, 0)

for —-K <k<K,0<m<M.

Observe that for perfect reconstructiee: s, ® must be an orthogonal matri®e®’ = Iy ;.

Compression of QRS complexes: Previous work

The compression of QRS complexes using the expansion intthcous Hermite functions has been studied
in [L03-+106]. It was originally motivated by the visual slarity of QRS complexes, centered around their
peaks, and Hermite functions, as can be observed from[Efjant{ 7.2. Varying the value of allows us

to “stretch” or “compress” the Hermite functiogs(t, o) to optimally match a given QRS complex.

Since ECG signals are usually available as discrete sigagiiglistantly sampled af, = kA, previous
works used, = 7, = kA in (Z.8). In addition, they proposed to use only fiist A/ Hermite functions
wo(t,o),...,onm—1(t, o) for the approximation of QRS complexes.

In Section 7.2.3, we propose an improved compression #fgorihat re-samples ECG signals at non-

equidistant points, and us@g Hermite functions that have thargestcoefficientsc,.

Hermite polynomial transforms

Recall from Examplé 4.3l1 that the polynomial transforn22% for normalized Hermite polynomials satis-
fies the condition

Ppo=PhaD, (7.9)

whereD € R"*" is a diagonal matrix whosk-th diagonal element i/2/n/P,_1(ax) P! ().

Using the decomposition algorithms for polynomial tramsfe derived in Section 6.5, a matrix-vector
product withPp,, can be computed with approximatey. + n2/4 operations for small values of, and
3n + 21.5nlog3(n/2) operations for large:, instead ofn? and43n log3 n, respectively[[74]. As a result,
the cost is reduced approximately by a factor of 2. Simijaslg can us€ (719) to compute a matrix-vector
product withP}, !, with only 4n + n?/4 and4n + 21.5n log5(n/2) operations instead of. This reduction

of the computational cost is especially significant for ¢avglues ofn.
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7.2.3 Proposed Algorithm

The compression algorithm based on the expansion intoragmis Hermite functions has several important
limitations. It does not achieve the perfect reconstructiba signak, since®®” +# I | for 7, = kA. As

a result, s will not converge tes, regardless of the numbér of Hermite functions used for the construction
of an approximation. This problem could be solved by setfifig= 2K + 1 and usingd ! instead ofd”

to computec in (7.8). However, the matrix-vector produét s requiresO((2K + 1)?) operations. This
cost can be prohibitive for largk’, and makes this approach impractical. Finally, the solusieggested in
previous works, that uses tlfiest M/ Hermite functions, may not be the optimal choice for the trmesion

of Swith M basis functions.

Algorithm modifications. In Section 7.2.R the parameterwas used to “stretch” and “compress” the
Hermite functionsypy (¢, o) relatively to the signak(t). Alternatively, we can fixcr = 1, and introduce a
parameten to “stretch” and “compress” signal¢)\). In this case the numerical quadrature7.6) becomes

K

Ty
cp = / S(t)\)(pg(t, 1)dt ~ Z S(Tk)\)QOg(Tk, 1)(tk — tk—l)-
—T k=—K

Furthermore, we use different, non-equispaced samplilgpd.etr, = ax+x, —K < k < K, be the

roots of the Hermite polynomiall,x 11 (t), and define polynomial®(¢t) = \/%H’f(t)' Then® in (7.8)
has the form
d =1 VA WPp,, (7.10)
whereWW = diag (e—aiﬂ) is a diagonal matrix, an®p , is given in [2.2D).
0<k<2K+1

Finally, if M = 2K + 1, then it follows from [7.9) that the columns @& form an orthogonal basis:

®dT = 7~ 12W2D~ = A. (7.11)

Thus, to account for the vector norms, we must pre-multipé/ihput signak with the weight matrixA—".

Proposed algorithm. The proposed compression algorithm operates as followst, Kie sample ECG
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signals(t) at sampling pointsy,. x A, —K < k < K, to obtain a vector of samples

T
S= (S(OZOA% s(a1A), ... >S(Q2K>\)> :
Then we compute vector of expansion coefficients
c=AdTA s,

where® andA are given in[(7.10) and (7.111). Finally, we construct vectby keeping onlyL coefficients

with the largest magnitudes dand setting others to zero. Then we @ge obtain signal approximation
§=A"'oc

Advantages. The proposed algorithm addresses all limitations of thgiwal compression algorithms
based on continuous Hermite functions. The exact recastgiruof signals can be achieved by using all
L = 2K + 1 coefficients to obtair€. Further, to minimize the approximation error, we can corapalt
coefficientse, for 0 < ¢ < 2K + 1, and only after that pick a few to obtaén This is a practical approach,

since the computational cost of bathand®” is now smaller, as explained in Sectlon 712.2,

7.2.4 Experiments
Setup

In order to analyze the performance of the proposed conipreafgorithm, we study the compression of
QRS complexes extracted from ECG signals obtained from tiieBYH ECG Compression Test Database [107].
A total of N = 29 QRS complexes are used. Each complex is available as atdistgmal of length

2K + 1 = 27, and represents a continuous signal of duration 104 ndthisds sampled at 250 Hz.

For the original compression algorithm that uses contisudarmite functions, we compu¥ + 1

coefficientscy, . . ., cag. Among them, we select < L < 27 coefficients with the largest magnitude,
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Figure 7.3: A QRS complex and its approximations with 10% B%derrors.

construct the approximatiaghusing the transpose df, and compute the approximation error

IS — sl
Ep = ———
[Is{]2

For the new compression algorithm, we have to re-sample R® €@mplexes at points A proportional
to the rootsry, of Pox+1(t). To do so, we interpolate the available discrete signals siitbfunctions, and
sample it at pointso. Then we comput@ K + 1 coefficients, select ones with the largest magnitude,

construct the approximation using the inverse transfomd,@mpute the approximation error.

In addition, we study the accuracy of compression algosthiased on two widely-used orthogonal dis-
crete signal transforms—DFT and DCT. As above, we applyrdrestorms tc, selectl largest coefficients,

and compute the approximation error of the reconstru@ion

The purpose of the experiment is to obtain average appraximarrors ofl0% and5% with the fewest
coefficients possible. We assume that approximations #y@aue90% or 95% of the energy of a QRS

complex is sufficient to represent its important featurestorect analysis and interpretation. Fig.]7.3 gives



142 CHAPTER 7. APPLICATIONS

an example of such approximations.

Results

The average approximation errors that were computed dtimmgxperiments are plotted in Fig.7.4. Here,
Fig.[7.4(a) shows all approximation errors, and Fig. 7]4{mws only the ones less tha6%. The x-axis
shows the number of coefficients used for reconstructiod tlam y-axis shows the errors.

To obtain the average reconstruction erroi 0%, our algorithm requires only. = 5 coefficients out
of 2K + 1 = 27 (compression ratié.4), while the original Hermite algorithm requires 6 coeffitig, and
DFT and DCT-based algorithms require 7 coefficiedts @nd3.86, respectively). To obtain the error of
5%, our algorithm, as well as the ones based on DFT and DCT, nex8i coefficients (compression ratio

3.5), while the original Hermite algorithm requires 17 coe#iuis (.6).

Discussion

As we observe from Fig.7.4, the new compression algorithei1tha lowest approximation error among
all algorithms if the compression ratio is5 or higher; i.e. if we use up to 6 out of 27 coefficients for
reconstruction. For lower compression ratios, it perfoonspar with the algorithms based on DFT and
DCT, and significantly outperforms the original Hermiteaithm.

The choice of the values for parameterand is crucial for optimal representation of signals. We have
obtained the best results using= A = 0.017 for all N = 29 test signals (these values are for variables
t and 7, measured in seconds). However, in computer-based systesss parameters can be adjusted

automatically for each ECG signal to achieve a yet higheui@my of compression and approximation.

7.3 Gauss-Markov Random Fields

In this section, we discuss the connection of finite discé&N models and Gauss-Markov random fields
that was originally suggested in [3]. In particular, we deistoate that generalized discrete Fourier transform
for the finite GNN model is precisely the Karhunen-Loevensfarm matrix for a suitably defined first-

order Gauss-Markov random fields. This link provides an atlonal insight into the similarities of the
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deterministic and stochastic signal processing pointseaf.v

Considern random variablesy, . . . , &,_1 that satisfy the difference equation
§k = ap—18k—1 + bk + arbpr1 + vk, (7.12)
wherev;, is a zero-mean Gaussian nois@f.k)0<k<n are called dirst-order Gauss-Markov random field

defined on the finite lattic6 < k < n. We assume zero (Dirichlet) boundary conditighs = 0 and
fn = 0.

The Karhunen-Loeve transform diagonalizes the covasianatrixX of the above Gauss-Markov ran-
dom fields, as well as its inverse. As demonstrated_in![108], e inverse of the covariance matdX

called thepotential matrix is

bp agp
ap b1

yl= : (7.13)

p—3 bp—o ap—2

ap—2 bp_1

Observe that it corresponds to the matrix representatitimedfasic shiff(4.20) of the finite GNN model(4.16).
As immediately follows from Sectioh 4.3, the Karhunen-kedransform of the Gauss-Markov random

fields [7.12) is exactly the orthogonalized discrete GNNriewuransformD /2P, , defined in[[2.19).

7.4 Climate Modeling

In this section, we briefly discuss the need for fast compuriat algorithms for discrete GNN transforms
that arises in the climate modeling. For more detailed dason of climate modeling we refer readers

to [L10/111].
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Many computational climate models include integrals offtikowing form:

/7r f(cosw)Py(cosw)dw,
0

where0 < ¢ < n, andP;(x) are Legendre polynomials discussed in Appefdix A. Parameterresponds

to the lattitude of a location.

It has been shown that for the functiofiér) of interest to the climate modeling, such integrals can be

computecexactlyusing the Gaussian quadrature

1 n—1
/ f@)Po(w)dz =y arPy(an),
-1 k=0

whereqy, are roots ofP, (x) anday, are properly selected coefficients that depend @n.

Hence, we need to calculate the following matrix-vectomdpic:

f_ll f(x)Po(x)dx Po(ao) Po(al) e Po(an_l) ag
f_ll f(x)Pl (x)dx _ Pl(ao) Pl (041) e Pl (an_l) ' ay
JL F@)Poa(@)de)  \Paoa(ao) Paci(@1) oo Paci(an-1)) \ano

The matrix above is precisely the transpose of the discrétBl @ansform of the finite discrete GNN
modelA = M = Clz]/P,(z) with basis(Py(z), Pi(z),..., P,—1(z)). Using the module induction ap-

proach developed in Chaptédr 6, we can reduce the compuhtiost of this transform.

7.5 Other Application

In addition, the infinite and finite GNN signal models can bpligl in other areas. We discuss two examples

below.
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Signal compression

Efficient signal representation and compression may reguauitable signal expansion basis. In addition to
the examples and applications discussed throughout #sssttother applications include the use of Hermite
polynomials for image coding and processing [112-+114];uese polynomials for signal compression of

exponentially decaying signals [115] and speech coding][11

Birth-death processes

Consider a discrete-state system or process with stgtésts,.... Suppose that a state can change from
ti only toty_1, tx, Ort;41. Let the change from statg to ¢, occur at ratey;_;; the change from statg
to t;1 Occur at ratey,; and staying in statg, occur at ratey, .

For example, in population modeling, statgsare associated with the population quantity, and can be
set tot, = k. Then, if the current population countitig, a death occurs at ratg._, and a birth occurs at
ratec;. For this reasons, such processes are often chitdtdeath processes

Another example can be drawn from the queuing theory. Censidserver with a buffer that accepts
and processes data packets every discrete moment of tifikden at each momenmnt we assume that the
rate at which packets arrive ig, and the rate at which packets are processed_is.

We can associate a family of orthogonal polynom(dls(x), Pi(x),... ) with such processes. Namely,

we require that they satisfy the recursion

x - Pk((ﬂ) = ak_lPk_l(x) + kak(x) + ckPkH(w).

Recall that this is precisely the recursidn (A.1) for ortbogl polynomials.
Such polynomial are sometimes callbiuith-death polynomials They have been used as convenient
tools for modeling birth-death processés [117-+119]. SIB&N signal models are based on the same

recursion[(A.1L), they can also be interpreted as modelgd#sribe birth-death processes.
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Conclusion

8.1 Summary

In this thesis, we have answered important questions thdtibote to the fundamentals of the signal pro-

cessing theory:

1) Do there exist linear, shift-invariant signal models mtierest, not studied previously by the traditional
signal processing theory, or by the algebraic signal psasggheory? How do we define signal process-

ing concepts for the new models?

2) How do we define and construct the appropriate tools fobanth analysis of signals from the new

models, such as filter banks and analogs of the discretedfdransform?

We constructed a new, large family of signal models calletege nearest-neighbor models, and defined
and derived all relevant signal processing concepts faetineodels. Furthermore, we developed the theory
of subband analysis tools for these models that descrileeddabign and implementation of filter banks for
infinite discrete generic nearest-neighbor signals, dindexit implementation of associated discrete Fourier

transforms for finite discrete generic nearest-neighlmads.

8.2 Main Contributions

The main contributions of this thesis include:

147
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e Generic nearest-neighbor signal models.

We constructed the infinite and finite discrete generic retareighbor signal models. These models are
based on the notion of the generic nearest-neighbor skhiftdignificantly differs from the traditional
time shift. We identified the relevant signal processingceqts for these models, including the filter and
signal spaces;-transform, the spectrum, the corresponding Fourier toams the frequency response,

the convolution, and the frequency domain.

We also generalized the notions of low and high frequeneigesyell as the degree of flatness, beyond the
domain of traditional time signals to the generic nearesgimbor signals. The proposed generalization

extends to other models as well.

The proposed infinite and finite discrete generic nearaghber signal models can serve as legitimate
alternatives to the infinite and finite discrete time modeé&t are traditionally assumed in modern linear

signal processing.

o Filter banks.

We extended the theory of perfect-reconstruction filterkisaio the infinite discrete generic nearest-
neighbor signal models. Prior to this thesis, design andeémentation of filter banks was only studied

in the context of traditional time signal model.

We also introduced a combined approach to the design of ileks that combines two different ap-
proaches that consider filter banks either as arrays of pasd-ilters, or as expansions of a signal into
properly designed signal bases or frames. The proposedagpcan be further extended to future signal

models.

As a demonstration of the developed theory, we construetedctasses of perfect-reconstruction filter
banks for infinite discrete generic nearest-neighbor $sgriairst, we designed two-channel filter banks
that extract low-frequency and high-frequency componefitan input signal. Second, we designed
multichannel filter banks for robust signal transmissicat ttan tolerate partial coefficient loss and allow

for exact signal reconstruction from a subset of all coefits.

The contribution of this work is two-fold. The more obviousadjis to construct perfect-reconstruction fil-
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ter banks for the infinite discrete generic nearest-neigklgmals. However, a more general contribution
is the extension of the ASP theory with new, advanced cordbpt have not been considered previously.
These concepts include the notions of low and high frequedeyree of flatness, and, most importantly,

the notion of filter banks for alternative signal models.

e Fast signal transforms.

We introduced a generalized framework for the factorizatibarbitrary polynomial transforms into prod-
ucts of sparse matrices. The approach is based on moduletimuis-an algebraic structure that allows
us to decompose a signal module into smaller signal modiéas;e expressing the original polynomial
transform via polynomial transforms of smaller sizes. Sdebomposition, applied recursively to all
polynomial transforms in the factorization of an originalynomial transform, can lead to a significant

reduction of the computational cost of the polynomial tfans.

We applied the developed theory to the factorization ofréigcgeneric nearest-neighbor Fourier trans-
forms. We identified conditions, under which such factdraralead to a reduction in the computational
cost of the transforms. As an ultimate result, we identifierlags of discrete generic nearest-neighbor
Fourier transforms of size x n that can be computed only i®(nlog, n) operations, rather than in
O(n?).

We also demonstrated that the developed approach can béousederive existing and discover novel
fast algorithms for signal transforms that have alreadyhliberoughly studied, such as discrete Fourier

transform and discrete cosine transform.

e Applications.

We studied the applications of generic nearest-neighlgrasimodels in several areas of signal pro-
cessing. In particular, the use of finite signal models inabepression of electrocardiographic signals
resulted in improvements in the compression accuracy coedp@® traditional compression methods.
Also, we used the developed theory for polynomial transfdenomposition to discover fast algorithms
for widely-used signal transforms, including DCT and DFihdHy, we discussed other potential appli-
cations, including the fast computation of Karhunen-leo&ansforms for Gauss-Markov random fields,

and the use of generic nearest-neighbor models in climateling.
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8.3 Future Work

Throughout the thesis, we identified several outstandirestipns that still remain to be answered. They

can serve as indicators of potential directions for futeearch on generic nearest-neighbor signal models.

Continuous generic nearest-neighbor model€One of the most challenging questions is whether we can
construct infinite and finiteontinuousgeneric nearest-neighbor signal models. These modelseoonie
hand, must be linear and shift-invariant. On the other hémely must yield infinite and finite discrete
generic nearest-neighbor models after sampling. Unfatily the results reported in the literature to
date hint that, unlike for time and space models, there mayexigt shift-invariant continuous generic

nearest-neighbor models [93].

Downsampling. Another intriguing question is connected to the existerfaaantinuous models: What is

a proper way to downsampled discrete generic nearestim@igiignals that have been band-pass filtered?
Certainly, a connection between the continuous and dessonetdels could have lead to the identification of
proper sampling techniques and sampling theorems. Hownveabsence of continuous models requires
us to search for other approach. For example, we may try évmé@ie a proper sampling technigue without
direct construction of continuous GNN models by using jpbémtion theory. This approach, was used to

re-derive the Nyquist sampling theorem with the help of laage interpolation ir [96]

Filter bank construction. In this thesis, we introduced an approach for filter bank tangon for infinite
generic nearest-neighbor signals. However, at its presatat, this approach requires laborious calculations
to construct even a simple filter bank, such as a Haar-like Arwetter approach, such as one that avoids

the need to derive equations for each coefficient separaelgry much needed.

Fast algorithms. In this thesis, we identified a class of discrete genericagareighbor Fourier trans-
forms, for which a fast algorithm can be constructed usimgnttodule induction technique. The resulting
algorithms require(n log, n) operations. A discovery of fast algorithms for other transfs that are not

included in the reported class, will be an important and alalie extension of the developed theory.

Applications. As we discussed in Chapfér 7, there exist numerous applitsatif generic nearest-neighbor

signal models in different areas of signal processing. kangple, we can further explore the connection
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between finite discrete generic nearest-neighbor moddl&anss-Markov random fields. In particular, we
can construct fast algorithms for the Karhunen-Loévedtfiam of certain Gauss-Markov random fields.
It would be of interest to investigate how to approximate aisdaMarkov random fields, for which we do
not have a fast algorithms, with another Gauss-Markov ranfields, for which we have one. Another
example is to study classes of signals, which can be efflgiespresented and compressed using various

generic nearest-neighbor signal models.

Each of the above questions represents a considerableateséallenge. Answering it will be a valu-

able contribution to the fundamental signal processingrihes well as a deep insight into signal modeling.
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Appendix A

Orthogonal Polynomials

A.1 Definition and Properties

There is a large body of literature dedicated to orthogomromials and their properties. A thorough
discussion can be found in [90,191] 94, 120,/121]. Here, weudss and, if necessary, derive only those

properties that are later used in this thesis.

Definition

PolynomialsP = {P(x)}r>o that satisfy the three-term recursion

T P(r) = ap—1Pe1(x) + bp Pp(v) + cx Pry1(z), (A1)

Po(l’) = 1, P_1(:U) = 0,

whereay,, b ¢, € R satisfy the conditiorc;, > 0 for £ > 0, are calledbrthogonal polynomials
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Orthogonality

By Favard theorem, there exists an interldlC R and a weight function(z), non-negative o/, such

that P, are orthogonal oveld” with respect tqu(z):

/ Py () Pon (2) () = 1. (A2)
zeW

Here,

1P@la = (@) Pute)) = il

IS theci—norm of P, (x) induced by the inner product

(f(2), g(@))u = / _ @@ (A3)

Note that ally, are finite, which holds iff, _,,, p(z)u(z)dz < oo is finite for any polynomiap(z) of an

arbitrary degree.

Basis of orthogonal polynomials

The set of orthogonal polynomia{s’; (x) } >0 is an orthogonal basis in the Hilbert space of all polynomial

defined on the intervdll’, with the inner producf(Al3). Respectively,

{122 Pe(@) }iso

is an orthonormal basis in the above space .

Roots of P, (x)

Orthogonal polynomiaP, (x) has exactly real, distinct rootsyy < ... < «,—; that lie within the interval
of orthogonalityW :

ap €W

forall 0 < k£ < n. Hence,P,(z) is a separable polynomial of degree
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Polynomial P,(x) is a characteristic polynomial (up to a scalar factor) of fbéowing tridiagonal

matrix:
bo ag
co b a
g o by , (A.4)
(p—2
Cn—o bn_1
This meansy, ..., a,—1 are exactly the eigenvalues 8f This property allows us to straightforwardly

compute the roots af,, ().

Even and odd polynomials

In the special case, when &}l = 0 in the recursion[(Al]l), each polynomi&}.(x) is an even polynomial

for evenk = 2m: Py, (—x) = Py, (), and odd for odde = 2m + 1: Popyy1(—2) = — Poppy1 ().

Interval of orthogonality

The orthogonality intervall’ C R can be finitd? = [A, B], semi-infiniteW = [A, c0), or infiniteW = R.

Hereafter, we assume thif is one of the following:

-wW=[-1,1]
- W =0,00);
-W=R

Any family of orthogonal polynomialéPk(m)) can be scaled and shifted to be orthogonal on one of the

k>0

above intervals using a linear transformation

T — ax + b,

wherea andb are appropriately selected constants.
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The orthogonality intervall’ can be determined by computing lower and upper bounds orotis of
polynomials Py () for increasingk. These bounds can be estimated using the recursion coeffiaigrby,
andc;, in recursion[(A.1L). If both lower and upper bounds are firthen orthogonality intervall’ is finite.

If only one bound is finite, the interval is semi-infinite. Ibtth bounds are infinite, the interval is the entire
real lineR.

This is a valid technique, since the roots of orthogonal poigials satisfy the following “expansion”

property: if o, min @Nday, ma, are, respectively, the smallest and largest roots,@fc), thena,, 11 min <

On, min andan—l—l,max > On mazx-

Decay ofu(x)

In general, it is non-trivial to determine the weight functj.(x) solely from the recursion (Al1). Neverthe-
less, we can still estimate its behavior in certain casesnéllg if W is a semi-infinite or infinite interval
[0, 00) or R, respectively, them(z) decreases rapidly for large It follows from the requirement that each

. must be finite:

| P@nta)dn = < oo
zeW

even though

lim |Py(z) P (z)| = oc.

T—00

Hence, the decrease rate of weight functidm) is faster than polynomial:
p(x) = o(z ") (A.5)

foranyk > 0.

A.2 Chebyshev Polynomials

Among all orthogonal polynomialszhebysheypolynomials are arguably the most well-studied ones [16,

17).
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Cq Closed form forC,, Weight functionu(x)  Symmetry
T = cos (nh) (1—x2)~1/2 T_,=1T,
U 2z sin (nt1)¢ (1 —22)1/? U_p=—Ups
Voop—1 bl A+2) 21— 2) V2 Vo, =V,
W2z 41 ‘“+*;25)9 1—2) 21 +2)" V2 Wy =—Wny

Table A.1: Chebyshev polynomials and their properties.

Chebyshev polynomial§’;(x) satisfy the recursion
1 1
2Chi1(z) = 5@;—1(33) + §Ck+1(95)

for k > 1. They are orthogonal on intervél’ = [—1, 1].

Polynomial Cy(z) = 1 is fixed. However, depending on the choice®f(x), different orthogonal
polynomials may be constructed. They are known as Chebysbigmomials of first, second, third, and
fourth kind; they are denotes @%(x), Ux(z), Vi(z), andWy(z), respectively.

A crucial distinction of Chebyshev polynomials from othethmgonal polynomials is that there exist
closed-form expression for their roots. They have beerveenising the following property of Chebyshev
polinomials: settingr = cos 6 allows us to express Chebyshev polynomials in their trigogtvic closed
form C,,(cos ) as functions of cosines and sinesjof

Main properties of Chebyshev polynomials are listed in @&%fl.

A.3 Other Orthogonal Polynomials

As we discussed above, all orthogonal polynomials haveedlosed, semi-infinite, or infinite intervals of
orthogonality. Furthermore, these intervals can be saahedshifted to bé—1, 1], [0, o), or R.

This property of orthogonal polynomials allows researsterorganize families of orthogonal polyno-
mials into three large classes based on the interval of gothality. Each of these classes are named after

one of their well-known representatives.

1) Jacobi-like polynomialsre orthogonal polynomials with orthogonality intervahtttan be scaled and
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shifted to[—1, 1]. These polynomials have the general form

plad) () = _ Llatnt1) . z": <n> T(a+b+n++k+1) <m— 1>k‘

 nll(a+b+n+ = \k T(a+k+1) 2

They are orthogonal over-1, 1] with respect to weight function
@ (z) = (1 - 2)2(1 + )"

as follows:

2001 T(k+a+ 1)I(k+b+1)

2% +a+b+1 KLD(k+a+b+1) Ok=m

1
[ PP @P @t (@)ds -

BesidesJacobipolynomials, other well-known polynomials of this clase &egenbauepolynomials,

Legendrepolynomials, and four kinds types of Chebyshev polynomials

2) Laguerre-like polynomialare orthogonal polynomials with orthogonality intervadtican be scaled and

shifted to[0, oo). These polynomials have the general form
£ = Y (M)
n T n—k) k"

They are orthogonal oved, co) with respect to weight function

as follows:

> (a a a IN'k+a+1
| 1@ @ e = 2 D,

PonnomiaIsL,(f) (x), for a = 0, are known as.aguerrepolynomials. They are usually denoted simply

asL,(zx).

3) Hermite-like polynomialgare orthogonal polynomials with orthogonality intervatitan be scaled and
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Polynomials Recursion Weight(z) Norm || Py (x)||2,.
Legendre 2P = 5" Py + ok Py 1 ST
Laguerre xLlp = —kLy_1+ 2k + 1)Ly — (k+1)Lpyq e * 1

Hermite eHy = kHy—1 + SHyp e~ NN

Table A.2: Orthogonal polynomials and their properties.

shifted toR. These polynomials have the general form

. . [n/2] _1)k V2 n—2k
H (@) = (20) ™l kzzo k!(( —)2l<:)!( \/5> '

They are orthogonal ovék with respect to weight function

Iu(a) (m) _ e—:v2/2a

as follows:

/ H (@) HE (1) (2)dz = a~F+m D2 k1/2761,
R

PonnomiaIstll/Q) (z), for a = 1/2, are known adHermite polynomials. They are usually denoted

simply asH,,(z).

In Table[A.2, we list the properties of several families dhogonal polynomials that are used or men-
tioned in this thesis. Recall that, in general, there ardaosed-form expressions for orthogonal polynomials

and their roots.
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Appendix B

Lapped Tight Frame Transforms

First, observe that we can rewrife_(5.6) in thelomain using polyphase analysis. Namely, we define the

N x M polyphase matrixp,(z) a

Dp(z) = ) @277, (B.1)

with @, as defined in[(3]7). We say,(z) has degreg — 1, since any polynomial i@, (z) has degree at
mostq — 1. Using [B.1), [(5.6) is equivalent #,(z) being paraunitary:

D, (2)P(2) = 1. (B.2)

Here, ®;(z) represents the Hermitian transpose of a polyphase matrix(of, in which coefficients are
complex-conjugated; ! is replaced by, and the matrix is transposed. A paraunitary square marix i
unitary on the unit circle.

As mentioned in Sectidn 3.1, oversampled filter banks cpaed to frames if?(Z), whose elements
form the columns ofb in (3.6). The converse is also true. This class of framesliedtfilter bank frames

We have three equivalent representations of filter bankdsarand, by slight abuse of notation, we will

use them interchangeably as convenient and refer to alkeofi ths frames:

e aset of vector§y; }icz spanning’?(Z);

1The subscripp will always denote a polyphase matrix and should not be @@twith subscripts denoting submatrices as in

@9).
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e an infinite matrix® as in [3.6);
e apolyphase matri®,(z) as in [B.1).

We will also encounter finite frames, that is, spanning se&"bor R, and will view them equivalently as
N x M matrices,M > N. A finite basis hence corresponds to a square matrix.
Hereafter, we often emphasize the special case of a basiertntidg® with ¥. Correspondingly, the

base vectors are denoted witlfor frames or) for bases.

B.1 Basis Expansions

Basis Expansions with Blocked Transforms.In a critically-sampled filter bankM/ = N) with filters of

length equal to the sampling factbr= N = M (¢ = 1),
\I’zdiag(...,\lfo,\lfo,...) (B.3)

is a block-diagonal matrix with copies &f, on the diagonal, as visualized in Hig.[5.5(a). In this cds&)(
is equivalent tal W = Iy, that is,¥ is an orthonormal basis i@M. The filter bank processes an infinite
signalz € ¢2(Z) by applying¥, to successive nonoverlapping blocksdfsignal elements. Since signal
blocks are processed as independent signals, and thesraseilthen concatenateldpcking effectccur
due to boundary discontinuities. A well-known example of@cked transform use® = DFT,; others
include the use of discrete cosine and sine transforms atisiceete Hartley transform.

In the case of the DFT,

Vo =DFTy = \/Lﬂ[wﬁk]ogm,kqw, wy = e 2mIM,

Basis Expansions with Lapped Transforms. To avoid blocking artifacts, basis vectors with longer
support can be used, as is the case with LOTs. They can bed/iasva class ofi/-channel critically-
sampled filter banks, originally developed for filters ofddm. = 2N = 2M and later generalized to

arbitrary integer multiples oV [42].
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In this work, we focus on LOT®* with basis vector suppoit = 2N = 2M (¢ = 2) whose base¥ are
visualized in FigL55(b). The only nonzero blocks[in {3.6) &, and¥; hence,[(B.11) yields a polyphase
matrix of degreey — 1 = 1:

Uy(z) = Ug + 2710, (B.4)

SinceV,(z) is square,[(BI2) is equivalent to

DoUs + Uy Ut =1, (B.5a)

U = Uy Tk = 0. (B.5Db)

We use these conditions later to show that the new transfa@sonstruct are indeed LOTSs.

B.2 Frame Expansions

In the previous section we explained how critically-sardiiéter banks compute basis expansions. Simi-
larly, oversampled filter banks compute frame expansions.
For frames, the property (5.6p®* = I, is calIedtightness[lZZ]H Tight frames can be constructed

from orthonormal bases using the Naimark theorieml[123,124]

Theorem B.2.1 A set{p; };c7 is a tight frame for a Hilbert spacél if and only if there exists another
Hilbert spaceK D H with an orthonormal basi$v; };c7, so that the orthogonal projectioR of K ontoH

satisfies:Py; = y;, forall i € 7.

One example of an orthogonal projection is the canonicgkption that simply omits coordinates and is
calledseedind48].

In the finite case, seeding yields a framé & A matrix) ® for CV by omitting rows from a basis
(M x M matrix) ¥ of CM. Conversely, every finite frame can be obtained thisH/ay.

To seed in the infinite case considered here, we extend thieagh to polyphase matricés,(z).

2Note that in general, a tight frame is also one for whieh* = cI; however, since can be pulled inta@, we consider only
c =1 here.
3Just extendp with rows to an invertible square matrix.
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Definition B.2.2 A frame®,(z) is obtained byseedingrom a basisV,(z), if it is constructed fromb,,(z)
by preserving only a subset of the rowslgf(z). This is written asb,(z) = ¥,(z)[Z], whereZ is the set of

indices of the retained rows.

In particular, forq = 1, seeding constructs frames of the form in Figl 5.5(c) fromelsaof the form in
Fig.[5.3(a). Conversely, every such frame can be constiuhts way.

Forq > 1, seeding constructs frames of the form in Eig] 5.5(d) froselsaf the form in Fidg. 515(b) (the
example in the figure is fay = 2). However, in this case, it is unclear whether the convessaue.

The following result is a special case of Theolflem B.2.1:

Lemma B.2.3 Seeding an orthonormal basis (paraunitaty),(z) yields a tight frameb,,(z).

Next, we discuss the blocked and lapped frame expansiongstiE5(c) and (d) in greater detail.

Frame Expansions with Blocked Transforms.If ¢ = 1, then, as visualized in Fig. 5.5(c),
@:diag(...,<1>0,<1>0,...). (B.6)

The difference from{BI]3) is thak is now rectangular®, ¢ CN*M and can be viewed as ai-element
frame inC". Hence, if it is tight, it can be constructed from an orthagjdmasis inC by seeding.

Frame Expansions with Lapped Transforms.Projecting signals onto frame vectors with nonoverlap-
ping support leads to similar blocking artifacts as for orthrmal bases. We thus use the same approach as
for orthonormal bases in SectibnB.1 and consider framé¥(ifi) with vector support, = 2N, visualized
in Fig.[5.5(d).

As in (B.4), the resulting polyphase matrd,(z) has degree 1:

®,(2) = Bg + 271y,

and the tightness conditioh®* = I is equivalent tab,(z) being paraunitary (Bl2).

In [43], LTFTs were constructed by seeding the polyphaseirit,(z) of an LOT basis:

Dy(2) = Up(2)[Z]. (B.7)
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By the Naimark theorem, the constructed frames are tigh;ishwhy we named them lapped tight frame
transforms. We will follow later the same procedure here dove LTFTs from LOT bases. First, we

introduce the frame properties we consider.

B.3 Construction of New Real LOTs

In Section B.1L we showed that a real LOT basis correspondseal&quare paraunitary polyphase matrix
U, (=) of degree; — 1. Although in generall ,(z) is paraunitary if and only if it is unitary on the entire unit

circle|z| = 1, for areal¥,(z) of degreeg — 1 = 1, it suffices to check only two conditions:

Lemma B.3.1 Let ¥, (z) be arealM x M polyphase matrix of degrek that is, ¥,,(2) = ¥ + 21Uy,

where¥, ¥, € RM*M_ Then,,(z) is paraunitary if and only iff,,(1) and ¥, () are unitary.

Proof: “="1isimmediate. To prove<", let ¥,,(1) = ¥(+ ¥ and¥,(j) = ¥ — j¥; be unitary, that is,

(Wo + W) (¥ +¥7) = I
(Wo = jU1)(¥G +49T) = Iu
VUl + 0 0T + v 0t + v vl = 1y

PN (B.8)
ToUl + 00T + (00T — 0, U7 = Iy

Subtracting the two equations yields

WU + W 0g — j(UoU] — U1 ¥F) = On
& WUl + v, 0] =0y and W 0! — w0l =0y,

= \I’O\I’{ =0p and\Ill\I'g =0p

Inserting into [B.8) yieldslo ¥ + ¥, U1 = 1,,; all requirements(B.5a)-(B.bb) for a paraunitaby(»)

are satisfied. O



166 APPENDIX B. LAPPED TIGHT FRAME TRANSFORMS

DFT, (2) submatrix U, (2) seed B, (2)

Figure B.1: Construction of frames for= 2.

Lemma[B.3.1l chooses 1 andas evaluation points. Using a very similar proof, we can gaize to
arbitrary roots of unityv; andws, providedws # +w;, £wi.

As an example application of Lemrha B.3.1, considerkhe K polyphase matrix

1 2 2k
DFT, k(z) = —= |cos 2ktm + 2z L sin 2kbm

. (B.9)
VK K K |o<ki<k-1

Both DFT), x(j) = DFTx andDFT), k(1) = DHTk (the discrete Hartley transform [125]) are unitary;
hence, by LemmaB.3.DFT, k(=) is paraunitary.
In Theoreni B.3.2, we show that specific submatricd31T',, x () are paraunitary, and thus correspond

to LOTs. In Sectiof B4 we will seed these matrices to obtdiRLs (this algorithm is depicted in Fig. B.1).

Theorem B.3.2 Let ¥,,(z) be anM x M submatrix of\/K/M - DFT, k(z), K > M > 2, constructed

by selecting the following row and column sets:

rows: {r+kRmodK |0<k<M—1}

columns: {c+/CmodK |0</¢{< M —1}

for some constan8 < r, ¢, R, C < K.
Then,¥,(z) is paraunitary if K = M ged (K, RC) (in particular, M dividesK) and one of the follow-

ing is satisfied:
() K divides2rC, 4rc, and2M Rc;

(i) K does not dividerC, and K divides boter(2c + CM — C)and R(2¢ + CM — C).

Proof: According to LemmaB.3I1, to show thét, (=) is paraunitary, it is enough to show thij(j) and

U, (1) are unitary.
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The elements of the matrik, (=) are

1 < cos (27r(r +EkR)(c+ KC'))

VM K

2n(r + kR)(c + ¢C) )z_l)
K )

Yre(2) =

+ sin(

0<kf{<M-landO<r,c,R,C<M—1.

We first find the conditions foW,(j) to be unitary. Thek, £)th element o, ()5 (4) is given by

M-
T (- . (r+kR)(c+mC)—(r+£R)(c+mC)
(\ij(j)qu(j))k,é - M Z

m=0

(k— —~ ORCm
Wit Z
m=

—_

k=1{;

(k—0)Re 1— w(k O)RCM

MwK 1— (k ORC k:;éﬁ,

W,(4) is unitary if and only if (W, (5)¥5(j))x,e = 0 for anyk # ¢, or, equivalently, if and only ifK" is
divisible by the producRC M, but not divisible by(k — ¢)RC for anyk — ¢ # 0 such thatl < |k —¢| <
M — 1. This is possible if and only ik" = M ged(K, RC). Thus,¥,(j)¥;(j) = In, and¥,(j) is unitary
if and only if K = M ged(K, RC).

We next investigate conditions fdr,(1) to be unitary. Thém, ¢)th element ofl’,,(1) is

ﬁ(cos (271'(7' + k‘]}%{)(c + EC’))
21 (r + kR)(c + £C) )>
K
_ 1 (ﬂw(wm)(ww)
vM\ 2 K
11—y —(r+kR)(c+EC))

+TWK

Yre(l) =

+ sin (
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The (k, £)-th element o ,(1) W7 (1) is

M-
* (r+kR)(c+mC
(W (D)W1) Z[lﬂ ()

1—j —(r-i-kR)(c-i—mC))
2

—j —(r+fR)(c+mC r+4R)(c+mC
Lot PHIETO) | 1 (RO

k—0)R(c+kC {—k)R(c+mC
= oM (wie ROy (fEmMRlermaD)

SinceK = M ged(K, RC), then for any0 < k,¢ < M — 1 with k& # ¢, K is not divisible by(k — ¢)RC.

Thus
S 2, k=t
E(l) _ (k O Re1-w (k ORCM
ke T YWk W
1) Re 1—w(ERRCM
+W§< ) cl_wf(zw, k#4;
K
2M, k=1
0, kAL

To make¥,(1) a unitary matrix, we choose to impose the conditFn,(ﬁZ =0forany0 < k, ¢/ < M — 1.

Here, we consider the two cases specified by the theorem:
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Case (i).If K divides2rC, 4rc, and2M Rc, then for anyk, ¢

M-1
(2) 2r+(k+€ )e @2r+(k+0)R
Xpe = Z YK
=0
M-1
2r+(k+€ )e Z w (2r+(k+£)R)Cm
m=0
M (w2 — wz?) k+ 1 =0;
K K ’ Y
M( %c-l—MRc _ w[—(2rc—MRC)’ k40 = M;
2rc+(k+é)Rcl w(k+l)RCIVI
Wg 1 (k+£)RC
(k+£)RCM
—2rc—(k+£€)Rep 1—wp, .
—w —Lre,  Otherwise;
K 1_w;{(k+£)RC )
= 0.

Case (ii). If K does not dividerC, thenE,(jz, = (0 is equivalent to

w§r+(k+£)R)(2c+CJ\/[—C) —1

for anyk, ¢. This is possible ifK" divides both2r(2¢ + CM — C) andR(2¢ + CM — C).
Thus, in either of the two casds,(1)¥; (1) = I, andV¥,(1) is unitary.
Since the above conditions ma¥g,(j) andW, (1) unitary, LemmaB.3]1 implies that,(z) is parauni-

tary. O
SinceDFT), x(z) is symmetric, we can interchange the row and column indexise¢he theorem:

Corollary B.3.3 W, (z) constructed as in Theordm B.B.2 is paraunitary if and ony,ifz)7 is paraunitary.

Note that in Theorerh B.3.2 we work with index sets insteadst$ Isince permutations of rows and
columns preserve paraunitarity.
Each paraunitary matris,(z) obtained with Theorern B.3.2 defines a baBisthe associated LOT is

U*. Next, we complete the theory and discuss the seeding of &£Tilem the above LOTY.
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B.4 Construction of New LTFTs from LOTSs

In this section we seedl/ x M LOT matrices¥,(z), constructed as in Theordm B.B.2, to obtainx M

frames®,(z) and establish their properties.
Tightness. Any seeding of al,(z) obtained with Theorerh B.3.2 yields a tight franig(z) by
LemmdB.2.B.

Equal Norm. Every element of,,(z) constructed with Theorem B.3.2 has the nadrfs/M. Hence,
the columns of any seeded x M matrix ®,(z) have the same norry N/M.

Maximally Robust Frames. In general, maximal robustness for frames is a propertycdiffto prove
since one has to check that eve¥y x N submatrix of®,(z) is invertible. The good news is that it is

sufficient to ensure that each such submatrix is nonsindoitat least one valué [126]:

Lemma B.4.1 A square polyphase matrit,(z) is nonsingular if and only if there existg € C such that

det Ap(29) # 0.

We will use this fact in the proof of the following theorem.

Theorem B.4.2 Let U,,(z) be a paraunitary polyphase matrix constructed using The@Be3.2 such that

M and M RC'/K are co-prime. Further, we seed a frame,

by retainingN' < M rows. Ther®,(z) is maximally robust to erasures if (as sets)
Z={d+ DkmodM |0 < k< N}

for somed < d < M andD = (MRC/K)~! modM.

Proof: We use LemmBRB.4l1 withy = j, which makes?l,(j) a submatrix of,/K/M DFT . We fix the
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order of rows and columns and get

. 1 (r+kR)(c+LC)
00 = ]
p(J) LK 0<k,0<M
_ 1 rc ckR rlC kZRC:|
T [WK WKWK YK e
I kCRC
\/MWK LYk 0<k,l<M 2
Here,Q; = di ( C’“R) andQ, = di ( "’ZC) are full-rank diagonal matrices, and¢
L= BBAYK ) et 27 MK ) ociem g age #

0. Hence, we can omit them in studying the seeding of MR frames.

SettingM RC /K = Ayields
= (wiiy). (B.10)

Sinceged(M, A) =1, wﬁ[ is a primitive Mth root of unity, and thus

1
[wszc

N — P-DFTy, -PT, (B.11)

}ng,égM—l

whereP is the M x M permutation matrix:

1, if¢=Ak mod M
Py = . (B.12)

0, otherwise

Further, letD = (MRC/K) 'modM, 1 < D < M, and consider alN x M submatrix of [B.11)

constructed by selecting rowls= {d + Dk modM | 0 < k < N}. Then
(P-DFTy -P") [I] = DFT i [J] - PT, (B.13)

whereJ = {dA+ kmodM | 0 < k < N}. SinceDFTy/[J] is an N x M submatrix of DFT
constructed from adjacent rows (possibly looping aroumdbiiitom of the matrix), eacN x N submatrix

of it is invertible [48]. It follows that eacliV x N submatrix of®,(j) is also invertible.

Hence, by Lemma B.4.1, evedy x N submatrix of®,(z) is nonsingular, and,(z) is maximally
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robust to erasures. d
As an example, consider the following family of maximallyoust LTFTSs:

Corollary B.4.3 If ¥,(z) is constructed as in Theordm B3.2 with=1, C = K/M, andr = ¢ = 0, then

any consecutive seeding (retaining of consecutive row$),0f) yields a maximally robust LTF®,,(z).

Note that the LTFTs constructed as in Corollary B.4.3 andiséestarting with the first row (i.eZ =
{0,1,..., M — 1}) are Weyl-Heisenberg frames [127].
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Proofs of Theorems in Chapter 7

C.1 Proof of Theorem 7.1.1

Considerd = M = C[z]/(z*™ — 1), with basis(1, z, ..., z%*™~1) anday, = wk, . The corresponding

polynomial transform i®©FTog,,.

By Theoreni6.12, the polynomia(x) = (z* + 27*)/2 generates the subalgebra

B = (r(z)) = Clyl/2(y* — )Um-1(y).

If we ChOOSG(Tg(y)) as the basis , the polynomial transform is

0<l<m+1

|:Tg(COS k—ﬂ) =DCT-I,41 -

m }ng,é<m+1

By Theoreni6.2]5, thB-module(z*—z %) /2-B = Cly] /U,,—1(y). If we choose the basid/,(y))

0<l<m—1'

then the polynomial transform is

(k+ 1)71')
m 0<k<m—2

[Ug(COS k—ﬂ)

—di (1 .
m }ng,é<m—1 iag (1/sin

-DST-I,,_1 = DST-L,,_;. (C.1)

Similarly, the B-modulex? (z* +1)/2 - B = C[y]/2(y — 1)Up_1(y) forany1 < j < k. If we choose

173
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the basigV;(y)) then the polynomial transform is

0<l<m’

= diag <1/ Cos L

-DCT-11,, = DCT-I1,,. C.2
2m)0§k<m ( )

o

Finally, theB-modulex’ (z* — 1)/2 - B = Cly]/2(y + 1)U,,—1(y) for any1 < j < k. If we choose the

basis(We(y)),<,-,,» then the polynomial transform is
(k+1)m L _(k+Dr J—
[Wg(cos Wwrm }ng’km — diag (1 /sin T)ggkm DST-IL,,, = DST-L,,.. (C.3)

Using Theorer 6.216, we can verify thgfz) = 1, t1(z) = (2% —27%) /2, t9;(z) = 29(2* +1)/2, and
taj+1(x) = 2¥(z% — 1)/2 for 1 < j < k, is a transversal oB in .A. Hence, by Theoref 6.3.1, we obtain

the factorization

DFT, = M(DCT—Im+1 ®DST 1 @ I ® (DCTIL,, ® DST-IIm)>Bf,fm.

Here, B2™ is the base change matrix frofu*) | to the concatenation of basestgfz)B, 0 < j <

0<t<n—

2k, and by construction

I, Im— Ijv—1 I
Bfr{fm: m—1 m—1 @Ik_1® m—1 m—1 L%km (C4)

Im—l —JIm—1 Im—l —JIm—1

Let My (jo, - - - , jr) be the subset of columns &1, with indicesjo, . . ., j,; and letD; = diag (tj(ai)>0< ,
<i<n
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for0 < j < 2k. Then
M= <D0Mo | DiMy | DoMsy | - - - | D2k—lM2k—1> )

whereM; = My(1,...,m — 1); Myj = My(0,...,m — 1) andMyj11 = Mo(1,...,m) for1 < j < k.

We can further rewrité/ as
M = L™ (Iyp @ DETR) X ™ L™ (I @ Zi" @ La(e—1ym)-

Here, matrixX 2™ has the structure

Iy,
B emlc;  @nslD,
Xmm: J J ’ (CS)
F
o2m-1 1
Jmm+1C ®m D
where
= veding (ul, (), 1)/2)
Cj ® diag | wWapm (Wom +1)/ L<e<k’
J 2m om Zkm 1 2m 1<e<k’

F = ladi (— j) .
@ diag Wy, <k

After the substitution obST-1,,,_,, DCT-11,,,, andDST-II,,, with DST-1,,,_;, DCT-I1,,,, andDST-I1,,

using [C.1-C.B), and simplification, we obtain the factatian

DFTopn = L3 (Iom ® DFTy) X2 LM Iy & Zp' @ In(go—1ym) Dak™

: ( DCT-Iy41 & DST-Iy_y BI_1 ® (DCT-IL,, & DST-Hm)) p2km,
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whereB2™ and X 2™ are defined in(C]4) and(C.5), and

(j+ )
m 0<j<m—1

@ diag (1/sin U+ 1)7T>0<j<m>. (C.6)

1)m

Df,fm = Iy @ diag <1/sin

Ol_1 ® (diag (1/ coS ﬂ)
2m

0<j<m 2m

C.2 Proof of Theorem 7.1.2.

Considerd = M = C[z]/2Topn, (x) with basis(Vy(z), Vi(z), ..., Vagm—1(z)). The corresponding poly-

nomial transform is

(k+1/2)m

diag 1 )
iag {1/ cos 4km 0<k<2km

- DCT-IVopy = DCT-IV g (C.7)
By Theoreni 6.112, the polynomialx) = T, (x) generates the subalgebra

B = (r(z)) = Clyl/2Tn(y).

By Theoreni 6.2]5, th¢s-moduleV;(z)B = Cly|/2T,,(y) for any0 < j < k. If we choose the basis

(‘/g(y))OS£<m, then the polynomial transform is

= DCT-I11,, .

kE+1/2
[Mcos (k+1/2)m ]
m 0<kf<m

Similarly, the B-moduleW; (x)(Var—1(z) — Var(x))/2 - B = Cly]/2T,,(y) for any0 < j < k. If we

choose the basis If we choose the béﬁfﬁ(y)) then the polynomial transform is

0<t<m’

Usfoos EF 1/, — ding (1/sin EHL2TY

m 0<k,f<m—1

-DST-II,, = DST1I,,. (C.8)

We can verify using Theorefn 6.2.6 that = V;(z) andtyj1 = Wj(z)(Vag—1(x) — Var(x))/2 for

0 < j < k,is atransversal 0B in A. Hence, by Theorefn 6.3.1, we obtain the decomposition

DCOT-Vop = M (I ® (DCT-IL,, & DST-IIL,,,)) B.
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Here, B is the base change matrix fro(m?) | to the concatenation of basestgfz)B, 0 < j < 2k,

0<l<n—

and by construction

B=1I;® Lg(m_l) L1 @ DFT> (K227/;m)T

1
M is constructed as follows. Let
m
M(] = 1k (039
Im,
Let D; = diag (;(a:)) __for0 <j < 2k. Then
0<i<n
M = <D0M0 | D1Moy | DoMg | -- - | D2k—1MO> :
We can simplify matrix}/. Let us introduce matrices
Co Sk_1 Co —Sk—1
C4 ° . . ° ’ S4 ’ ° . . ° ’
XY = - , X)) = o . (C.9)
S0 Ce_1 —30 Cl—1
Here,c; = cos % ands, = sin %. These matrices are used for the so-cakkdw

DCT and DSTI[5]. Further, let us definé) = (2i + 1)/(4m) and

() 19 L
0 Tt if j is even
ry =

G TP YR
2 if jis odd
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r() 1

for0 <j< L%J. In casek is odd, we also define,fz1 = + 1. Finally, let us define diagonal matrices

c4), (i i i
D}g )(7,()) = dlag(1/COS(TJ(')7T/2)>OSJ<k7

S i . . i i
D,(C B (r®) = diag <Sln (21@7"](- )71')/ cos (7‘]( )7T/2))0§]<k.

ThenM = K,?MLQW wherelM =

@7 DY (r) DCT-IVL(r@) XV (D) @7 ' DY (r0) DST-IV, (r) X 5 ()
@21 DY (1) DCT-IV, (r) X Y (7)) @271 DI (0) DST-IV, (rD) X5 ()

We can further simplifyl(C]7) by substitutingCT-1Vy,,, andDST-III,,, with DCT-1Vg,,, DST-III,,
using [C.7) and (C]8). Then we use the equalities

Xy = xPVa-n),
] — diae ((—1) . DOT-IIL.. -
DST-IIL, = diag (( 1) >0Sj<m DCT-IIL, -y,

DST-IV, = diag ((—1)j>0<j<k-DCT-IVk.Jk,

to obtain the decomposition

DCT-IVop,, = K*™(K3™ @ DCT-IV,,)Y,2P™(DCT-I11,, @ L3%) (Kakm)T
1
Tve |  rLdmY.r.  @DFT, | (KGR,

where

y2im _ X (e (- 0) ©.10)
" =0 \ X1 —r@) (=1t g x 9D (p0))

and X “Y (r) is defined in(CD).
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