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Abstract

Traditional linear signal processing is based on viewing signals as sequences or functions in time that flow

in one direction, from past through present into future. Somewhat surprisingly, the assumption that the most

basic operation that can be performed on a signal is a time shift, or “delay,” is sufficient to derive many

relevant signal processing concepts, including spectrum,Fourier transform, frequency response and others.

This observation has led us to search for other linear, shift-invariant signal models that are based on

a different definition of a basic signal shift, and hence havedifferent notions of filtering, spectrum, and

Fourier transform. Such models can serve as alternatives tothe time signal model traditionally assumed

in modern linear signal processing, and provide valuable insights into signal modeling in different areas of

signal processing. The platform for our work is the algebraic signal processing theory, a recently developed

axiomatic approach to, as well as a generalization of linearsignal processing.

In this thesis we present a new class of infinite and finite discrete signal models built on a new basic shift

called the generic nearest-neighbor shift. We construct filter and signals spaces for these new models, and

identify the corresponding signal processing concepts, such as frequency, spectrum, Fourier transform, fre-

quency response, and convolution. We also derive relevant properties of these models, such as the Parseval

equality and the notions of low and high frequencies.

We then consider the problem of subband analysis for the newly constructed signal models. As a corre-

sponding subband analysis tool for infinite signals, we extend the definition of filter banks to the new models,

and construct perfect-reconstruction filter banks for subband decomposition. We also construct filter banks

for robust signal transmission. As a subband analysis tool for finite signals, we study the implementation of

appropriate discrete Fourier transforms. We propose a mathematical approach to the factorization of general

discrete Fourier transform matrices, and apply it to construct fast computational algorithms for the Fourier
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transforms of interest.

Finally, we consider possible applications of the constructed signal models in different areas of signal

processing. For example, we demonstrate that the use of new signal models can be beneficial in such

applications as the compression of ECG signals and the efficient implementation of widely-used discrete

signal transforms, such as the discrete cosine transform.
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Chapter 1

Introduction

1.1 Motivation

Linear signal processing is a well-developed and comprehensive theory. At its core lie fundamental concepts

such as filters and signals, spectrum and frequency,z-transform and Fourier transform. Many advanced

techniques and tools for signal analysis, processing, and reconstruction are developed from these concepts.

Since a few fundamental concepts define the entire theory, signal processing operates under some im-

plicit assumptions. Traditionally, signals are viewed as sequences in time: they go in one direction, from

past through present into future. The basic signal shift is adelay and its inverse is an advance, as shown in

Fig 1.1(a).

s s
tk tk+1

1

(a) Time shift

s s s
tk−1 tk tk+1

1
2

1
2

(b) Space shift

Figure 1.1: Basic shifts for time and space one-dimensionalsignal models.

What if the underlying concepts of a signal model were different from the traditional ones? For example,

there may be no inherent direction in a signal shift, or its action on a signal may somehow modify the signal

contents. How much would it change the whole signal model andthe corresponding signal processing

theory? How can we process such signals?

1



2 CHAPTER 1. INTRODUCTION

Recently, some of these questions have been answered by a rigorous signal processing formalism called

algebraic signal processing(ASP) [1–6]. It offers a structured axiomatic approach to building signal models

based on fundamental general concepts. In particular, the construction of an ASP signal model starts with

identifying a basic shift, which, for example, may reflect the desired relation between signal values in the

model. All other concepts are defined based on this basic shift. As a result, we obtain a signal model with

the desired underlying assumptions and the proper associated tools for signal analysis and processing.

For example, newspacesignal models have been constructed from the so-called space shift, shown in

Fig 1.1(b), and studied in [1–3, 5, 6], as alternatives to thetraditional time model. It was shown that the

signal processing properties of the new models, such as convolution, Fourier transform, and others, are

different from those of the standard time model. In particular, it was demonstrated that discrete cosine and

sine transforms are the counterparts of the discrete Fourier transform for these models.

Both the time and space shifts are examples of one-dimensional (1-D) shifts. Multidimensional time

and space signal models can be constructed from the corresponding 1-D signal models as tensor products

of the underlying vector spaces of signals. Such models are calledseparable, since each dimension can be

analyzed separately from others, as a 1-D signal model.

In addition, there existnon-separablemultidimensional signal models that cannot be representedas

tensor products of 1-D signal models. They are based on shifts that act in multiple dimensions. Examples

include two-dimensionals hexagonal and quincunx signal models. The corresponding shifts are shown in

Fig. 1.2. Such models have been studied in [7–11].

r r

r r r

r r

(a) Hexagonal shift

r

r

r

(b) Quincunx shift

Figure 1.2: Basic shifts for hexagonal and quincunx non-separable two-dimensional signal models. One
shift is indicated with solid lines, the other with dashed ones.



1.2. THESIS CONTRIBUTIONS 3

1.2 Thesis Contributions

The ASP theory introduces many questions about the existence and relevance of alternative signal models

and the corresponding signal processing tools. The main goal of this thesis is to answer two of the most

important of these questions:

1) Do there exist linear, shift-invariant signal models of interest, not studied previously by the traditional

signal processing theory, or by the algebraic signal processing theory? How do we define signal process-

ing concepts for the new models?

2) How do we define and construct appropriate subband analysis tools for signals for the new models, such

as filter banks and finite discrete Fourier transforms?

In this thesis, we answer the above questions by identifyinga new, large family of signal models, and

then developing the theory of subband analysis tools for these models. We list the main contributions of the

thesis below.

New signal models

We introduce a family of signal models that serve as alternatives to the traditional time model. In particular,

we construct and study a family ofgeneric nearest-neighborsignal models, which were originally suggested

in [3]. These models are derived from the notion of the generic nearest-neighbor shift shown in Fig 1.3. In

parallel to the traditional signal processing theory, we define analogs of all relevant concepts for these mod-

els, such as the filter and signal space, the operations of filtering and convolution, spectrum and frequency,

z-transform and Fourier transform. Our goal is to demonstrate that generic nearest-neighbor models are a

legitimate alternative to the time models traditionally assumed in linear signal processing.

s s s
tk−1 tk tk+1

ak

bk

ck

Figure 1.3: Generic nearest-neighbor shift. Coefficientsak, bk, ck ∈ R are real numbers, and satisfy
ak+1ck > 0.
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Subband analysis

We construct the corresponding tools for subband analysis of the newly designed signals, and study their

design and efficient implementation. For infinite discrete signals, a common tool for subband analysis and

processing is a filter bank; for finite discrete signals, it isa (generalized) discrete Fourier transform.

i) Filter banks can be viewed either as arrays of band-pass filters, or as expansions of a signal into properly

designed signal bases or frames. We use an alternative theoretical framework for filter bank construction

based on the combination of the above methods.

We also generalize the concepts of low and high frequencies.Since these concepts depend on the

signal model, we concentrate on the above generic nearest-neighbor model and construct perfect-

reconstruction filter banks for infinite generic nearest-neighbor signals.

ii) For finite discrete signals, the ASP theory establishes that the spectrum, i.e. the set of all frequencies,

is a finite set. Hence, we can computeall frequency components of a signal. The corresponding mech-

anism is the generalized discrete Fourier transform, whichis a so-called polynomial transform defined

by the underlying signal model. The main research challengelies in the efficient implementation of this

transform.

We study the existence and construction of fast algorithms for these generalized Fourier transforms.

Specifically, we develop a novel algebraic method for the recursive decomposition of a general polyno-

mial transform into a series of structured steps. Then, we apply this decomposition to the corresponding

discrete Fourier transform associated with finite generic nearest-neighbor signals and derive efficient

algorithms.

Applications

Although the main focus of this thesis is a theoretical contribution to the foundations of signal processing,

we also consider potential applications of the generic nearest-neighbor models and subband analysis tools.

We consider signal compression, and in particular, we studythe compression of electrocardiographic sig-

nals. We also apply the developed theory for polynomial transform decomposition to the derivation of fast

algorithms for different signal transforms.
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Furthermore, we discuss other potential applications, including the fast computation of Karhunen-Loève

transforms for Gauss-Markov random fields, and the potential use of generic nearest-neighbor models in

climate modeling.

1.3 Thesis Outline

The thesis is organized as follows. We start by introducing the algebraic signal processing theory in Chap-

ter 2, and discuss the algebraic meaning of signal processing concepts, such as a signal model, Fourier

transform, filtering and convolution. We also provide examples of previously studied signal models. Then,

in Chapter 3, we discuss properties and structure of filter banks, as well as existing approaches to the design

and implementation of filter banks. After reviewing the background material, we construct infinite and finite

generic nearest-neighbor models in Chapter 4, and define andderive the corresponding signal processing

concepts for these models. In Chapter 5, we study filter bank design for infinite generic nearest-neighbor

signals, and construct example filter banks for different signal models. Then we derive an algebraic ap-

proach to the derivation of fast algorithm for generalized Fourier transforms in Chapter 6, and demonstrate

how it yields fast computational algorithms for discrete Fourier transforms that correspond to finite generic

nearest-neighbor signal models. After that, we study various applications of the theory developed in this

thesis in Chapter 7. Finally, in Chapter 8, we review the completed work and discuss future directions.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Background: Algebraic Signal Processing

Theory

In this chapter, we provide background on the algebraic signal processing theory. In particular, we explain

the notion of an algebraic signal model and define the corresponding signal processing concepts. We then

discuss infinite and finite discrete signal models and their instantiations as time and space models.

2.1 Main Concepts

The algebraic signal processing theory (ASP) [1–6] is both ageneralization of and an axiomatic approach

to standard linear signal processing theory. ASP is based onthe concept of a signal model defined as a

triple (A,M,Φ), whereA is an algebra of filters,M is anA-module of signals, andΦ is a linear mapping

from the vector space of signals into the signal moduleM that generalizes the concept of az-transform.

Each signal model corresponds to different notions of signal and filter spaces, thez-transform, the shift, the

Fourier transform, and other concepts. We start by defining the signal model and associated basic signal

processing concepts.

7
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g

h

(a) Addition:h+ g

g h

(b) Multiplication: h · g

Figure 2.1: Addition and multiplication of filters.

Algebra (filter space)

A C-algebra is a ring that is simultaneously aC-vector space, such that the addition in the ring and the

addition in the vector space coincide. In other words, an algebra is a vector space that is closed under the

multiplication of its elements, such that the distributivelaw holds. Examples of algebras include the set of

complex numbersC and the set of complex polynomials in one variableC[x].

Consider the vector spaceA of filters in linear signal processing. We denote filters inA with h. If for

two filters h1, h2 ∈ A we associate their parallel connection with the additionh1 + h2, and their serial

connection with the producth1h2, thenA becomes an algebra. These operations are visualized in Fig.2.1.

Among all filters, ashift has a special role. The shift can be viewed as a basic non-trivial filter, and a

common assumption made in linear signal processing is that (in the discrete case) all other filters can be

written as linear combinations or series in multiples of theshift. In ASP, this key assumption leads to the

recognition of shifts as generators of the filter algebra, aswe discuss below.

Module (signal space)

LetA be aC-algebra. AnA-moduleis aC-vector spaceM on whichA operates. This means the operation

of multiplication of elements ofM by elements ofA is well-defined.M is closed under this multiplication
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and the distributive law holds. Formally, for anys, t ∈ M, andh, g, 1 ∈ A, the following holds:

hs ∈ M,

h(s+ t) = hs+ ht,

(h+ g)s = hs+ gs,

(hg)s = h(gs),

1m = m.

In ASP, a signal spaceM is anA-module, whereA is the associated filter space. The corresponding

operation ofA onM is filtering. We denote signals inM with s.

Signal model

Typically, discrete signals are represented as sequences of real or complex numberss= (sk)k∈I ∈ V, where

I is an index domain andV is a vector space. The purpose of a signal model is to define a notion of filtering

for V . This is achieved by bijective mappingΦ that maps each signals ∈ V to a signals ∈ M, for which

filtering is defined as the operation ofA onM.

In summary, asignal modelfor a vector spaceV is a triple(A,M,Φ), whereA is a chosen filter algebra,

M is an associated signalA-module, andΦ is a bijective mapping fromV toM. Φ generalizes the concept

of thez-transform. Namely, for a fixed basis
(
pk
)
k∈I

1of M, Φ has the form

Φ(s) =
∑

k∈I
skpk. (2.1)

An important example of a signal model is the one for which thesignal module and the algebra of filters

are equal as sets. Such a module (and the corresponding model) is calledregular.

As shown in [3,4] and explained next, the concept of the signal model is sufficient to define basic signal

processing concepts including convolution, spectrum, andFourier transform. These concepts take different

forms for different models.

1Hereafter,
(

. . .
)

denotes a list. We view lists as indexed sets; they do not contain duplicate elements.
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p
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n+

Figure 2.2: Representation of a filterh = h(x) =
∑

ℓ hℓx
ℓ as a linear combination or a series of multiples

of shift x.

Shift-invariance

In our research, we will be working only withshift-invariant signal models. In ASP this condition means

that shifting any signals ∈ M with thebasic shiftx ∈ A and then filtering it by a filterh ∈ A be equivalent

to the filtering followed by the shift:

h · (xs) = x · (hs). (2.2)

Assume that every filterh ∈ A can be represented as a linear combination or a series of multiples of

shifts:

h = h(x) =
∑

ℓ

hℓx
ℓ,

as shown in Fig.2.2. In mathematical terms,x acts as ageneratorof the filter algebraA = 〈x〉alg. Since

any filtersh(x), g(x) ∈ A can be written as series inx, the shift-invariance requirement (2.2) implies that

h(x)g(x) = g(x)h(x).

Hence,A is acommutativealgebra.

As explained in [3,4], commutative algebras are generated by the shiftx as follows. For infinite discrete

signals,A = {∑ℓ hℓx
ℓ} is an algebra of series inx, in which addition and multiplication are performed

as usual. For finite discrete signals,A = C[x]/p(x) is an algebra of all polynomials of degree less than

deg p(x), in which addition and multiplication are performed modulofixed polynomialp(x). Such an

algebra is called apolynomial algebra.
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Filter representations

For any filterh ∈ A, we can define a linear mapping onM

s 7→ h · s. (2.3)

With respect to basisb =
(
pk
)
k∈I of M, h can be associated with a|I|× |I| matrixMh. Hence, there exists

an algebra homomorphism between the filter spaceA and the space of|I| × |I| matricesC|I|×|I|:

φ : A → C
|I|×|I|,

h 7→ Mh.
(2.4)

This homomorphism is called thematrix representation ofA afforded by theA-moduleM with basisb.

Hence, filtering can be expressed either as a producth(x)s(x) or as a matrix-vector productφ(h) · s, where

s=
(
. . . s0 s1 s2 . . .

)T

∈ V

is the vector representation of the signals ∈ M.

Spectrum

A vector subspaceM′ ≤ M that is itself anA-module, is called anA-submoduleof M. If M does not

have non-trivial submodules (besides{0} and itself), it is calledirreducible.

In particular, every one-dimensionalA-submoduleM′ of M is irreducible. Furthermore, it is closed

under the operations of anyh ∈ A, and hence is an eigenspace for anyh ∈ A. Namely, for anys ∈ M′,

hs = λhs

for someλh ∈ C.

We can write the set of all irreducible submodules ofM as
(
Mω

)
ω∈W , whereW is a corresponding

index domain. We call the indexω the frequencyandW the spectrumof the signal model. EachMω is

called aspectral componentof M. A subsetW ′ ⊆W is called afrequency band.
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Fourier transform

It may be possible to represent the signal moduleM as a direct sum of its irreducible submodules. In this

case we can define the following mapping:

∆ : M → ⊕
ω∈W Mω,

s 7→ (sω)ω∈W .
(2.5)

This mapping is anA-module homomorphism. Namely, for anyh ∈ A ands, t ∈ M, the following holds:

∆(s+ t) = ∆(s) + ∆(t),

∆(h · s) = h ·∆(s).

In signal processing, Fourier analysis involves the decomposition of signals into spectral components.

Since the homomorphism∆ expressess ∈ M in terms of its spectral componentssω, we call this homo-

morphism theFourier transform.

Since for any signals ∈ M and filterh ∈ A, we have∆(h · s) = h · ∆(s), the general form of the

convolution theorem becomes

h · s = ∆−1(h ·∆(s)),

provided the inverse∆−1 exists.

Frequency response

Similarly to the homomorphism (2.3), we can define a linear mapping on a spectral componentMω for each

filter h ∈ A:

s 7→ h · s. (2.6)
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If we fix a basis
(
qk
)
0≤k<dimMω

in Mω, thenMω affords anirreducible representationφω of A:

φω : A → C
dimMω×dimMω ,

h 7→ φω(h).
(2.7)

The matrixφω(h) is the frequency responseof h at frequencyω. The collection(φω(h))ω∈W is the fre-

quency response ofh.

Suppose we choose basisb =
(
pk
)
k∈I in M, and in eachMω we choose

(
qk
)
0≤k<dimMω

as a basis.

Then we can express∆ in (2.5) in coordinate form as

F : V → ⊕
ω∈W C

dimMω ,

s 7→ (sω)ω∈W .
(2.8)

Filtering in the coordinate form is given by the matrixφ(h). Filtering in the decomposed module
⊕

ω∈W Mω is represented by the direct sum of frequency responses
⊕

ω∈W φω(h), where a direct sum

of two matrices is defined as

A⊕B =



A

B


 .

The Fourier transform maps the modulesM and
⊕

ω∈W Mω to each other. In addition, filtering inM

is equivalent to parallel filtering in the spectral components Mω, as defined by the property∆(h · s) =

h · ∆(s). Hence, we can use the coordinate versionF of the Fourier transform to block-diagonalize the

matrix representationφ(h) of h ∈ A :

F · φ(h) · F−1 =
⊕

ω∈W
φω(h).

2.2 Infinite Discrete Models: Examples

As we explained before, the shift-invariant, infinite discrete signal model correspond to signals and filters

that are series in multiples of the basic shiftx. Depending on the definition of the shift, we obtain different

signal models. The following examples of the (standard) infinite discrete time signal model and infinite
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(a) Time shift

p p p r r r r
x−1 x0 x1 x2

p p p

(b) Time model visualization

Figure 2.3: 1-D infinite discrete time model: shift and visualization.

discrete space model illustrate the above concepts.

2.2.1 Infinite Discrete Time Model

The signal model commonly adopted for the infinite discrete time signal processing is for the space of

finite-energy sequencesV = ℓ2(Z). It is given by

A = {h =
∑

ℓ∈Z hℓx
ℓ | h =

(
. . . , h−1, h0, h1, . . .

)
∈ ℓ1(Z)},

M = {s = ∑
k∈Z skx

k | s=
(
. . . , s−1, s0, s1, . . .

)
∈ ℓ2(Z)},

Φ : ℓ2(Z) → M, s 7→ s =
∑

k∈Z skx
k.

(2.9)

Here,Φ is the standardz-transform (we substitutex = z−1).

This model can be built on the concept of thetimeshift operatorx ∈ A that imposes the direction on

the basis elementspk(x) of M:

p0(x) = 1,

pk+1(x) = x · pk(x). (2.10)

The unique solution to this recurrence ispk(x) = xk, which is used as the basis forM. We also use the

same basis forA. The time shift, its action on the signals, and the visualization of the 1-D infinite discrete

time model are shown in Fig. 2.3.

Eigenfunctions. The associated Fourier transform is constructed by projecting a signal onto spectral

componentsMω. To determine the spectral components, we first need to identify the eigenfunctions ofM.
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An eigenfunctionis a signalEa(x) ∈ M, such that for anyh(x) ∈ A,

h(x) · Ea(x) = c ·Ea(x)

for some constantc ∈ C that depends on filterh(x) and parametera. SinceA is generated byx, it is

equivalent to require only that

x ·Ea(x) = c · Ea(x) (2.11)

for some constantc ∈ C.

Each eigenfunctionEa(x) spans an irreducibleA-submoduleMa of dimension 1:

Ma =
{
c ·Ea(x) | c ∈ C

}
.

For the infinite discrete time model, the eigenfunctions areof the form

Ea(x) =
∑

k∈Z
akxk (2.12)

for anya ∈ C, since

xEa(x) = x ·
∑

k∈Z
akxk = a−1

∑

k∈Z
akxk = a−1Ea(x).

Spectrum. It is not necessary to use the entire spaceC as the spectrum of the infinite time model in

order to obtain an invertible Fourier transform. Instead, it is sufficient to choose the interval of orthogonality

of basis functionsxk. The standard choice of spectrumW is the unit circle|x| = 1. If we parameterize it

by x = ejω, with ω ∈ [0, 2π), then

∫ 2π

0
ejωk(ejωm)∗dω =

∫ 2π

0
ejω(k−m)dω = 2πδk−m.

Fourier transform. Since we parameterized the spectrum asejωk with ω ∈ [0, 2π), we consider only

eigenfunctions (2.12) of the form

Eω(x) =
∑

k∈Z
ejωkxk.
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They satisfy

x ·Eω(x) = e−jωEω(x). (2.13)

Respectively, the Fourier transform and its inverse then are defined as

∆ : S(ω) = 〈s,Eω(x)〉 =
∑

k∈Z
ske

−jωk,

∆−1 : sk =
1

2π

∫ 2π

0
S(ω)ejωkdω.

As expected, this is the standard definition of the discrete time Fourier transform.

Frequency response.From (2.13) we obtain

h(x)Eω(x) = h(e−jω)Eω(x).

Hence, the frequency response of a filterh =
∑

ℓ∈Z hℓx
ℓ at frequencyω ∈ [0, 2π) is given by

h(e−jω) =
∑

ℓ∈Z
hℓe

−jωℓ = H(ω).

Convolution. The filtering associated with the infinite discrete time model (2.9) is defined by the oper-

ation ofh(x) ∈ A on s(x) ∈ M:

hs = h(x)s(x).

This can be written in coordinate form as the standard time convolution ofh ands:

h(x)s(x) =
∑

k∈Z
ŝkx

k,

where

ŝk = (h ∗ s)k =
∑

ℓ∈Z
hℓsk−ℓ. (2.14)

Also, it immediately follows from the definitions of the Fourier transform and the frequency response that
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the convolution corresponds to the multiplication in the frequency domain:

Ŝ(ω) = H(ω)S(ω).

Parseval equality. The Parseval equality establishes the connection between the energy of the signal

and the energy of its Fourier transform. For infinite discrete time signals, it has the form [12–15]

∑

k∈Z
|sk|2 =

1

2π

∫ 2π

0
|S(ω)|2dω.

Frequency domain.We call the space of the Fourier transformsS(ω) for all s(x) ∈ M the frequency

domain. For the infinite discrete time model, the frequency domain is a Hilbert space of continuous finite-

energy functions defined on(−π, π], with the inner product

〈u, v〉 =
∫ 2π

0
u(ω)v∗(ω)dω.

The set
(
ejωk

)
k∈Z, whereω ∈W = [0, 2π), is an orthogonal basis in this frequency domain.

2.2.2 Infinite Discrete Space Model

Infinite discrete space models are derived and defined in [5].They are obtained from a different notion of a

shift operator: the symmetric shift

x · pk(x) =
1

2
(pk−1(x) + pk+1(x)),

visualized in Fig. 2.4(a). The solution to the underlying recurrence

p0(x) = 1,

pk+1(x) = 2xpk(x)− pk−1(x), (2.15)

yields exactly the Chebyshev polynomialspk(x) = Ck(x) [16,17] discussed in Appendix A.

Chebyshev polynomials are defined fork ≥ 0. However,Ck(x) for negativek can be computed
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Figure 2.4: 1-D infinite discrete space model: shift and visualization.

from (2.15) as well. For example, consider the Chebyshev polynomials of the third kindC = V that

correspond toC0(x) = 1 andC1(x) = 2x − 1. Fork < 0, we obtainV−k(x) = Vk−1(x). In particular,

V−1(x) = V0(x), which is called theleft boundary condition. In the visualization of the corresponding

signal model in Fig. 2.4(b) it is indicated by the loop at the left boundary.

Chebyshev polynomialsV (x) are orthogonal on the interval[−1, 1] with respect to the weight function

µ(x) = (1 + x)1/2(1− x)−1/2:

∫ 1

−1
Vk(x)Vm(x)

(1 + x

1− x

)1/2
dx = π · δk−m.

Also, they satisfy the “symmetric shift” property

Tℓ(x) · Vk(x) =
1

2
(Vk−ℓ(x) + Vk+ℓ(x)),

whereTℓ(x) are the Chebyshev polynomial of the first kind. This propertymakes it convenient to choose

theℓ-fold space shifts{Tℓ(x)}ℓ≥0 as the basis ofA.

As a result we define the following infinite discrete space signal model:

A = {h =
∑

ℓ≥0 hℓTℓ(x) | h =
(
h0, h1, . . .

)
∈ ℓ1(N0)},

M = {s = ∑
k≥0 skVk(x) | s=

(
s0, s1, . . .

)
∈ ℓ2(N0)},

Φ : ℓ2(N0) → M, s 7→ ∑
k≥0 skVk(x).

(2.16)

Eigenfunctions. Similarly to the infinite time model, we identify the eigenfunctions to define the asso-
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ciated Fourier transform for the infinite space model. In this case, the eigenfunctions are of the form

Ea(x) =
∑

k≥0

Vk(a)Vk(x), a ∈ R.

Namely, for anya ∈ R, they satisfy

xEa(x) = x ·
∑

k≥0

Vk(a)Vk(x) = a ·
∑

k≥0

Vk(a)Vk(x) = aEa(x).

Spectrum. We choose the spectrum as a subsetW ⊆ R, such that the basis functionsVk(x) are

orthogonal overW . As discussed above,[−1, 1] is the interval of orthogonality for Chebyshev polynomials.

Hence, we set the spectrumW = [−1, 1]. As we show next, this choice makes the corresponding Fourier

transform invertible.

Fourier transform. The considered eigenfunctions for the infinite discrete space model are

Eω(x) =
∑

k≥0

Vk(ω)Vk(x),

whereω ∈ [−1, 1]. They satisfy

x · Eω(x) = ω · Eω(x). (2.17)

Hence, the associated Fourier transform and its inverse aredefined as

∆ : S(ω) = 〈s,Eω(x)〉 =
∑

k∈Z
skVk(ω)

∆−1 : sk =
1

π

∫ 1

−1
S(ω)Vk(ω)

(1 + ω

1− ω

)1/2
dω.

Frequency response.From (2.17) we obtain

h(x)Eω(x) = h(ω)Eω(x).
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Hence, the frequency response of a filterh =
∑

ℓ≥0 hℓTℓ(x) at frequencyω ∈ [−1, 1] is given by

H(ω) =
∑

ℓ≥0

hℓTℓ(ω).

Convolution. Similarly to the infinite discrete time model, filtering is represented by the multiplication

hs = h(x)s(x).

In the coordinate form, it is expressed as a convolution ofh andsas

hs =
∑

k≥0

ŝkVk(x),

where

ŝk = (h ∗ s)k =
∑

ℓ∈Z
h′ℓ
s′k−ℓ + s′k+ℓ

2

Here,h′0 = 2h0 andh′ℓ = h|ℓ| for ℓ 6= 0, ands′k = s|k|.

It follows from the definitions of the Fourier transform and the frequency response that the convolution

corresponds to the multiplication in the frequency domain:

Ŝ(ω) = H(ω)S(ω).

Parseval equality.We state the Parseval equality as a theorem:

Theorem 2.2.1 The Parseval equality for the 1-D infinite discrete space signal model for Chebyshev poly-

nomials of the third kind is
∑

k≥0

s2k =
1

π

∫ 1

−1
S(ω)2

(1 + ω

1− ω

)1/2
dω.
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Proof: Observe that

∑

k≥0

s2k =
∑

k≥0

sk ·
1

π

∫

ω∈W
S(ω)Vk(ω)

(1 + ω

1− ω

)1/2
dω

=
1

π

∫

ω∈W
S(ω)

(∑

k≥0

skVk(ω)
)(1 + ω

1− ω

)1/2
dω

=
1

π

∫

ω∈W
S2(ω)

(1 + ω

1− ω

)1/2
dω.

�

Frequency domain. The frequency domain for the infinite discrete time model is aHilbert space of

continuous finite-energy functions defined on[−1, 1]. The inner product is defined as

〈u, v〉 =
∫ 1

−1
u(ω)v(ω)

(1 + ω

1− ω

)1/2
dω.

The set
(
Vk(ω)

)
k∈Z is an orthogonal basis in this frequency domain.

Alternative infinite discrete space signal models.In addition to the signal model (2.16), space models

for all four types of Chebyshev polynomials can be defined similarly [5].

2.3 Finite Discrete Models

As we mentioned in Section 2.1, a finite shift-invariant signal model(A,M,Φ) with one shift necessarily

hasA = C[x]/p(x). Here, we first discuss the general finite discrete signal model following [3,4], and then

show examples of the standard finite discrete time model [3,4] and the finite discrete space model [5].
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2.3.1 General Finite Discrete Model

Let us fixb =
(
pk(x)

)
0≤k<n

as the basis of the signal moduleM = C[x]/p(x), wheren = deg p(x). Then

we can define the following finite discrete signal model:

A = M = C[x]/p(x),

Φ : C
n → M, s 7→ ∑n−1

k=0 skpk(x).

(2.18)

Each such model is shift-invariant. The associated signal processing concepts are presented next.

Fourier transform. Assume that

p(x) =
n−1∏

k=0

(x− αk)

is a separable polynomial, i.e. its zeros are distinct:αk 6= αℓ for k 6= ℓ. Letα =
(
α0, . . . , αn−1

)
. It follows

from the Wedderburn theorem [18, 19] that the regular moduleM = A can be decomposed into a direct

sum of irreducibleA-modules. This decomposition is accomplished by the Chinese Remainder Theorem:

∆ : C[x]/p(x) → ⊕n−1
k=0 C[x]/(x− αk),

s(x) 7→
(
s(α0) s(α1) . . . s(αn−1)

)T

.
(2.19)

This is called thegeneralized discrete Fourier transform.

Let us choose the basis
(
1
)

in eachC[x]/(x−αk). Then the matrix that describes the isomorphism (2.19)

is

Pb,α =




p0(α0) p1(α0) . . . pn−1(α0)

p0(α1) p1(α1) . . . pn−1(α1)

...
...

...

p0(αn−1) p1(αn−1) . . . pn−1(αn−1)




=
[
pℓ(αk)

]
0≤k,ℓ<n

. (2.20)

This matrix is called apolynomial transform[20,21].

The generalized discrete Fourier transform∆(s(x)) in (2.19) of a signals(x) =
∑n−1

k=0 skpk(x) ∈ M
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can be computed as the matrix-vector product

∆(s(x)) = Pb,α · s, (2.21)

wheres=
(
s0 s1 . . . sn−1

)T

.

Spectrum. Each irreducibleA-submodule

Mαk
= C[x]/(x− αk)

in (2.19) is a spectral component ofM. Accordingly, the setW = α of the zeros ofp(x) is the spectrum of

the finite discrete model.

Frequency response.From (2.19) we observe that the projection ofs(x) ∈ M on a spectral component

Mαk
= C[x]/(x− αk) is the evaluations(αk), since

s(x) ≡ s(αk) mod (x− αk).

Similarly,

h(x)s(x) ≡ h(x)s(αk) ≡ h(αk)s(αk) mod (x− αk).

Hence, the frequency response of a filterh(x) ∈ A is given by

H(α) =

(
h(α0) h(α1) . . . h(αn−1)

)T

.

Convolution. SinceA = M = C[x]/p(x), filtering, and hence convolution, in the discrete model is

represented by the product

hs = h(x)s(x) mod p(x).

Filter representation. As explained in Section 2.1, the matrix representation ofA afforded byM with

basisb is a homomorphism

φ : A → Cn×n,

h(x) 7→ φ(h(x)) =Mh.
(2.22)
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x0 x1 x2 xn−3 xn−2 xn−1

Figure 2.5: The visualization of the finite discrete time modelC[x]/(xn − 1) with basis1, x, x2, . . . , xn−1.
The weight of each edge is1.

Here,Mh ∈ C
n×n is defined such that computing the polynomial product

ŝ(x) = h(x)s(x) mod p(x)

is equivalent to computing the matrix-vector product

ŝ=Mh · s

for any signals ∈ M and filterh ∈ A.

The corresponding polynomial transform diagonalizes the matrix representation of anyh(x) ∈ A:

Pb,α · φ(h(x)) · P−1
b,α = diag

(
h(α0), . . . , h(αn−1)

)
. (2.23)

2.3.2 Finite Discrete Time Model

Consider the special case of (2.18) given by the signal modelA = M = C[x]/(xn − 1) with basisb =
(
1, x, x2, . . . , xn−1

)
:

A = M = C[x]/(xn − 1),

Φ : C
n → M, s 7→ ∑n−1

k=0 skx
k.

(2.24)

Observe that this model can be obtained from the infinite timemodel (2.9) by imposing the periodic bound-

ary conditionxn = 1 [3,4]. The model is visualized in Fig. 2.5. The boundary condition is indicated by the

arrow that connects the boundary points of the graph.

Fourier transform. Since the roots ofxn − 1 areαk = ωk
n, whereωn = e−j 2π

n is a primitiven-th

root of unity, the corresponding polynomial transform (2.20) is the well-known discrete Fourier transform
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(DFT):

Pb,α =
[
αℓ
k

]
0≤k,ℓ<n

=
[
ωkℓ
n

]
0≤k,ℓ<n

= DFTn . (2.25)

Spectrum. The spectrum of the finite discrete time model isW =
(
ωk
n

)
0≤k<n

.

Frequency response.The frequency response of a filterh(x) ∈ A is

H(α) =

(
h(ω0

n) h(ω1
n) . . . h(ωn−1

n )

)T

.

Convolution. The convolution is defined as

hs = h(x)s(x) mod (xn − 1),

which is equivalent to the circular convolution ofh ands:

h(x)s(x) mod (xn − 1) =

n−1∑

k=0

ŝkx
k,

where

ŝk = (h ⊛ s)k =
∑

0≤ℓ<n

h(k−ℓ mod n)sk. (2.26)

Frequency domain. The frequency domain of the finite discrete time model can be viewed as the

frequency domain of the infinite discrete time model (2.9) sampled at frequenciesωk = 2πk/n [13,22]. In

particular, the basis functionsejωm, 0 ≤ m < n, sampled atωk, are the orthogonal basis of the frequency

domain. Namely,
(
1, ej2πm/n, . . . , ej2πm(n−1)/n

)

is them-th basis function.

2.3.3 Finite Discrete Space Model

Consider the special case of (2.18) given by the signal modelA = M = C[x]/Vn(x) with basisb =
(
V0(x), V1(x), . . . , Vn−1(x)

)
, where, as before,Vk(x) denotes thek-th Chebyshev polynomial of the third
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1

b b b b b b b b b b b

V0 V1 V2 Vn−3 Vn−2 Vn−1

Figure 2.6: The visualization of the finite discrete space model C[x]/Vn(x) with basis
V0(x), V1(x), . . . , Vn−1(x). The weight of each edge is1/2, except for the loop at the left boundary, where
it is 1.

kind:

A = M = C[x]/Vn(x),

Φ : C
n → M, s 7→ ∑n−1

k=0 skVk(x).

(2.27)

Observe that this model can be obtained from the infinite space model (2.16) by imposing the boundary

conditionVn(x) = 0 [5]. The model is visualized in Fig. 2.6.

Fourier transform. Since the roots ofVn(x) areαk = cos (2k+1)π
2n+1 , the corresponding Fourier trans-

form (2.20) is a scaled discrete cosine transform of type8 (DCT-VIII):

Pb,α =
[
Vℓ(αk)

]
0≤k,ℓ<n

=
[
cos

(k + 1/2)(ℓ + 1/2)π

(n+ 1/2)
/ cos

(k + 1/2)π

2n+ 1

]

0≤k,ℓ<n

= diag
(
1/ cos

(k + 1/2)π

2n+ 1

)
0≤k,ℓ<n

·
[
cos

(k + 1/2)(ℓ + 1/2)π

(n+ 1/2)

]

0≤k,ℓ<n

= diag
(
1/ cos

(k + 1/2)π

2n+ 1

)
0≤k,ℓ<n

· DCT-VIIIn . (2.28)

Spectrum. The spectrum of the finite discrete space model is the list

W =
(
cos

(2k + 1)π

2n + 1

)
0≤k<n

of roots ofVn(x).

Frequency response.The frequency response of a filterh(x) ∈ A is

H(α) =

(
h(cos π

2n+1) h(cos 3π
2n+1) . . . h(cos (2n−1)π

2n+1 )

)T

.
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Convolution. The convolution is defined as

hs = h(x)s(x) mod Vn(x).

Frequency domain. The frequency domain of this finite discrete space model can be viewed as the

frequency domain of the infinite discrete space model (2.16)sampled at frequenciesωk = cos (2k+1)π
2n+1 [22].

In particular, the function

(√
1 + ω0Vm(ω0), . . . ,

√
1 + ωn−1Vm(ωn−1)

)

is them-th basis function of an orthogonal basis of the frequency domain.
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Chapter 3

Background: Subband Analysis

Some of the most important techniques for signal processingare based on the analysis of a signal’s frequency

content. Often, a signal is split into several components occupying different subsets of the spectrumW ,

calledfrequency bands, which are then processed. This technique is calledsubband analysis.

For infinite discrete signal models, such as the time and space models discussed in Section 2.2, the

spectrum is an uncountable set. Hence, it is not possible to perform analysis for each frequency individually.

Instead, signal components that occupy continuous frequency bands are extracted. This can be performed

by processing a signal with several bandpass filters, where each filter extracts a corresponding frequency

band. The most common tool for such processing is afilter bank. In Section 3.1, we discuss the structure of

filter banks, their properties and design techniques.

For finite discrete signals, such as the signal models discussed in Section 2.3, the spectrum is a finite

set. Hence, we can compute each frequency component individually. This is performed by calculating

the corresponding discrete Fourier transform of a signal. For a general discrete signal model (2.18), the

corresponding polynomial transform (2.21) is used. The main challenge in this case is to perform the

calculations efficiently. In Section 3.2, we discuss fast algorithms for polynomial transforms and approaches

to the construction of such algorithms.

29
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3.1 Filter Banks

A filter bank is an array of serially connected filters and down- and upsamplers; each serial connection

constitutes a channel. The properties of the filters and samplers can differ significantly depending on the

purpose of a filter bank. A thorough discussion of filter banks, their structure, design, and applications can

be found in [23–25]. To date, only filter banks for the traditional time model have been studied. In the rest

of Section 3.1, we review filter banks for time signals.

3.1.1 Filter Bank Structure

Filters

Filters used in filter banks are usually designed to attenuate the frequencies present in a processed sig-

nal. This is achieved by carefully constructing the frequency response of each filter. Depending on their

frequency response, most filters can be classified as one of the following:

a) A band-passfilter h(x) has a frequency response that is non-zero only for a specific subbandWs ⊂W :

H(ω) = 0

if ω /∈Ws. In this case,Ws is called the filter’spassband.

b) A band-stopfilter h(x) has a frequency response that is zero only for a specific subbandWs ⊂W :

H(ω) = 0

if ω ∈Ws. In this case,Ws is called the filter’sstopband.

Special cases of the above includeall-passfilters that do not remove any frequencies from a processed

signal, but only attenuate them; andnotchfilters that are band-stop filters with a very small stopband.
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Down- and upsamplers

A downsampleris a device that reduces the number of coefficients in a processed signal. The ratio of the

number of coefficients in the incoming signal to the number ofcoefficients in the outgoing signal is called

thedownsampling rate.

Typical downsamplers with downsampling rateN are implemented by keeping everyN -th coefficient

of a signal and dropping others. If
(
sk
)
k∈Z is the incoming signal, and

(
ŝk
)
k∈Z is the outgoing signal, then

ŝk = skN

for all k ∈ Z.

Upsamplers are defined analogously. Anupsampleris a device that increases the number of coefficients

in a processed signal. The ratio of the number of coefficientsin the outgoing signal to the number of

coefficients in the incoming signal is called theupsampling rate.

Typical upsamplers with upsampling rateN are implemented by insertingN − 1 zeros between the

coefficients of a processed signal:

ŝk =





sk/N , if N |k;

0, otherwise.

Analysis and synthesis parts

Typically, each channel starts with ananalysisfilter. Commonly, this is a bandpass filter that extracts a

component of the processed signal that occupies a desired frequency subband. For efficient processing, the

analysis filter is followed by a downsampler that reduces theoverall number of coefficients to be processed.

Proper downsampling does not result in information loss anddoes not prevent us from reconstructing the

original signal from the remaining coefficients, as we explain in Section 3.1.2.

After the extracted and downsampled components are processed, the signal approximation is recon-

structed by upsampling each component and filtering it with asynthesisfilter, and then combining all recon-

structed components into one signal. This is thesynthesispart of the filter bank.
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Figure 3.1: StandardM -channel filter bank sampled at rateN . h̃k andhk denote analysis and synthesis
filters.

Sampling of filter banks

Fig. 3.1 shows anM -channel filter bank with downsampling and upsampling ratesN . If N =M , the filter

bank is calledcritically sampled: the total number of coefficients computed in the analysis part of the filter

bank is the same as in the original signal. IfN < M , the filter bank is calledoversampled, and the number

of coefficients computed in the analysis part is larger than in the original signal. Finally, ifN > M , the

filter bank is calledundersampled, and the number of coefficients computed in the analysis partis smaller

than in the original signal.

In addition, the downsampling and upsampling rates in a filter bank can be different. In this case, the

filter bank is said to have arational sampling rate[26–29].

3.1.2 Nyquist Theorem and Downsampling

The use of downsampling and upsamping in filter banks can be explained by the Nyquist sampling theo-

rem [30–34], which we re-state here:

Theorem 3.1.1 Suppose an infinite continuous time signals(t) ∈ L2(R), with the Fourier transform

S(ω) =

∫ ∞

−∞
s(t)e−jωtdt,

is bandlimited to the bandwidthB:

S(ω) = 0

for |ω| > B.

Suppose an infinite discrete time signal
(
sk
)
k∈Z is obtained by samplings(t) at sampling pointstk =
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kT :

sk = s(kT ).

Then the original signals(t) can be reconstructed from its samples
(
sk
)
k∈Z as

s(t) =
∑

k∈Z
sk · sinc

(t− kT

T

)
,

where

sinc(t) =
sinπt

πt
,

if the sampling intervalT satisfies

T <
2π

2B
.

Suppose we have a two-channel, critically-sampled filter bank. Assume that analysis filter̃h0 is an ideal

half-band low-pass filter:

H̃0(ω) =





1, if |ω| < π/2,

0, otherwise.

Denote the incoming signal
(
sk
)
k∈Z filtered with h̃0 with

(
ŝk
)
k∈Z. Assume that all signals have been

sampled from continuous signals at pointstk = kT, such that sampling satisfies Nyquist theorem 3.1.1. In

particular,
(
ŝk
)
k∈Z has been sampled from̃s(t).

Then
(
ŝk
)
k∈Z can be downsampled by a factor of 2 without any loss of information, since it can be

recovered from only half of its coefficients as follows:

∑

k∈Z
ŝ2k · sinc

(t− 2kT

T

)
= ŝ(t) =

∑

k∈Z
ŝk · sinc

(t− kT

T

)
.

Similarly, if h̃1 is an ideal half-band high-pass filter with frequency response

H̃1(ω) =





0, if |ω| < π/2,

1, otherwise.

,
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then filtering signal
(
sk
)
k∈Z with h̃1 and downsampling the result by 2 does not result in any loss ofinfor-

mation.

3.1.3 Filter Implementation

Difference equations

Consider a linear shift-invariant system that processes anincoming signals(x) =
∑

k∈Z skx
k and outputs a

signalŝ(x) =
∑

k∈Z ŝkx
k. Suppose, the input and output signals satisfy the relation

Mb−1∑

m=0

bmŝk−m =

Ma−1∑

m=0

amsk−m, (3.1)

whereMa,Mb ∈ N0 are finite non-negative integers, andam, bm ∈ C are constants, such thatb0 6= 0.

The relation (3.1) between a system’s input and output is called a linear constant-coefficient difference

equation[12,14].

If we multiply the left- and right-hand sides of (3.1) byxk and sum over allk ∈ Z, we obtain

b(x)ŝ(x) = a(x)s(x), (3.2)

where

a(x) =

Ma−1∑

m=0

amx
m

and

b(x) =

Mb−1∑

m=0

bmx
m.

Re-writing (3.2) as

ŝ(x) =
a(x)

b(x)
s(x), (3.3)

we obtain thetransfer function

h(x) =
a(x)

b(x)
,

of a linear shift-invariant system that is described by the difference equation 3.1 [12,14].
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FIR and IIR filters

The general form of a filter is

h(x) =

L1∑

ℓ=L0

hℓx
ℓ,

Depending on the values of integersL0, L1 ∈ Z, filters can be separated into two classes:

1) Finite impulse response(FIR) filters have finite support: bothL0 andL1 are finite integers.

2) Infinite impulse response(IIR) filters have infinite support: eitherL0 or L1 (or both) are infinity.

Any FIR filter h(x) can be implemented as a linear shift-invariant system described by the difference

equation 3.1, since we can seta(x) = x−L0h(x) andb(x) = x−L0 in (3.3).

An IIR filter h(x), on the other hand, can be implemented as a linear shift-invariant system described by

the difference equation using a difference equation 3.1 only if it can be written in the form (3.3):

h(x) =
∑

ℓ∈Z
hℓx

ℓ =
a(x)

b(x)
.

Fast convolution

In addition to difference equations, an FIR filterh(x) =
∑L1

ℓ=L0
hℓx

ℓ may also be implemented directly as

a convolution (2.14):

ŝk =

L1∑

ℓ=L0

hℓsk−ℓ,

since the finite number of non-zero filter coefficients, ortaps, allows us to compute the coefficientsŝk in

finite time. IIR filters, on the other hand, have an infinite number of taps, and cannot be implemented directly

as a convolution.

A number of fast computation algorithms exist to compute theabove convolution [12, 14, 20, 35]. Ex-

amples includeoverlap-addand overlap-savemethods that are based on expressing the linear convolu-

tion (2.14) via the circular convolution (2.26) for the finite time model, and computing it using fast algo-

rithms forDFT that we will discuss in Section 3.2.
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3.1.4 Perfect-Reconstruction Filter Banks

An important class of filter banks areperfect-reconstructionfilter banks that allow for an exact reconstruc-

tion of the input signal. Here, we review two main approachesto the design of perfect-reconstruction filter

banks: a filter approach and a signal expansion approach. Both approaches were developed for the tradi-

tional time signal model. The filter approach is a more commonapproach to filter bank design, and can

be found in most signal processing textbooks (see, for example, [12–15]). The signal expansion approach

was developed as an alternative approach for the construction of perfect-reconstruction filter banks [23].

In traditional time signal processing, both approaches canbe used interchangeably. In Chapter 5, we will

discuss the generalization of these approaches for other signal models.

Filter approach

Since a filter bank can be characterized by its analysis filters, the original approach to the design of perfect-

reconstruction filter banks was based on the properties of the analysis filters. Consider a two-channel

critically-sampled filter bank in Fig. 3.1, implemented forthe infinite discrete time model (2.9). Let the

input signal be

s(x) =
∑

k∈Z
skx

k,

the analysis filters be

h̃i(x) =
∑

ℓ∈Z
h̃i,ℓx

ℓ,

and the synthesis filters be

hi(x) =
∑

ℓ∈Z
hi,ℓx

ℓ,

for i = 0, 1. Finally, let the output signal be

ŝ(x) =
∑

k∈Z
ŝkx

k.
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It was shown in [36] and later generalized in [37,38] that theoutput signal̃s(x) satisfies the equation

ŝ(x) = s(x)
h̃0(x)h0(x) + h̃1(x)h1(x)

2
+ s(−x) h̃0(−x)h0(x) + h̃1(−x)h1(x)

2
.

Hence, we can obtain the perfect reconstructions̃(x) = s(x) if the following conditions hold:





h̃0(x)h0(x) + h̃1(x)h1(x) = 2,

h̃0(−x)h0(x) + h̃1(−x)h1(x) = 0.

(3.4)

Similar conditions on the analysis and synthesis filters canbe derived for filter banks with more than two

channels [39,40].

Signal expansion approach

An alternative viewpoint on the design of perfect-reconstruction filter banks is to expand a signal

s=
(
. . . , s−1, s0, s1, . . .

)T

into properly constructed bases
(
ϕ
(m)
k

)
k∈Z,

where0 ≤ m < M . The resulting expansion has the form

ŝ=
∑

k∈Z
〈ϕ̃(0)

k , s〉ϕ(0)
k + · · ·+

∑

k∈Z
〈ϕ̃(M−1)

k , s〉ϕ(M−1)
k , (3.5)

where
(
ϕ̃
(m)
k

)
k∈Z,

for 0 ≤ m < M , are the corresponding dual bases1. This leads to the filter bank interpretation shown in

Fig. 3.2.

1A dual basis
(

ϕ̃k

)

is a basis in the dual space of a vector space spanned by the basis
(

ϕk

)

. The basis and its dual are mutually
orthogonal:〈ϕk, ϕ̃m〉 = δk−m. Orthogonal bases are self-dual.
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Figure 3.2: Signal expansion interpretations of anM -channel filter bank sampled byN . Φ̃∗ andΦ are the
analysis and synthesis matrices.

The design criteria for the bases
(
ϕ
(m)
k

)
k∈Z include their frequency content and structure. In particu-

lar, we may view them as signals occupying a particular frequency band. Also, for practical purposes, the

bases are often constructed as periodically shifted sequences of a few prototype signals. All these assump-

tions lead to the filter bank structure shown in Fig. 3.1, since the inner product and time convolution are

interchangeable — one only needs to reverse the order of the coefficients [23]. The expansion approach

can be further generalized by viewing
(
ϕk

)
k∈Z and

(
ϕ̃k

)
k∈Z as frames2, which results in (3.5) being an

overcomplete expansion.

Such signal expansions have been studied in various areas ofsignal processing, including blocked trans-

forms, such as windowed Fourier transform, lapped orthogonal transforms [42] and later lapped tight frame

transforms [43–45]; signal compression and multiresolution analysis [46]; and robust transmission [44, 45,

47,48].

Connection between the approaches

To illustrate the connection between the filter approach andthe signal expansion approach, consider the

M -channel filter bank in Fig. 3.1. Assume that all analysis andsynthesis filters

h̃m = (h̃m,0, . . . , h̃m,L−1)
T

and

hm = (hm,0, . . . , hm,L−1)
T

2A frame
(

ϕk

)

is a redundant set of vectors that span a vector spaceV [41]. Unlike basis vectors, frame vector can be linearly
dependent. Adual frame

(

ϕ̃k

)

is another frame such that any vectorv ∈ V can be expanded asv =
∑

k
〈ϕ̃k, v〉ϕk. A self-dual

frame is calledtight.
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are FIR filters, and have the same lengthL = qN for someq ∈ N0. For a signals, the operation of the filter

bank can be described via matrix-vector products: the transform

S= Φ̃∗s

is filtering followed by downsampling (the analysis part), and the inverse transform

ŝ= ΦS

is upsampling followed by filtering (the synthesis part). Here,Φ has the form

Φ =




. . .
...

...
...

...
...

. . .

. . . Φ0 0 . . . 0 0 . . .

. . . Φ1 Φ0 . . . 0 0 . . .

. . .
...

...
...

...
... . . .

. . . Φq−1 Φq−2 . . . Φ0 0 . . .

. . . 0 Φq−1 . . . Φ1 Φ0 . . .

. . .
...

...
...

...
...

. . .




, (3.6)

where each blockΦr, 0 ≤ r ≤ q − 1, is theN ×M matrix

Φr =




h0,rN . . . hM−1,rN

...
. . .

...

h0,rN+N−1 . . . hM−1,rN+N−1



. (3.7)

The analysis matrix̃Φ is constructed similarly from the reverses of filtersh̃k; the order of the coefficients of

h̃k in the columns of blocks̃Φr is reversed.

Then,ϕ(m)
k in the expansion (3.5) is the(kM + m)-th column ofΦ; and ϕ̃(m)

k is the (kM + m)-th

column ofΦ̃. If M = N , then the columns ofΦ andΦ̃ are bases, dual to each other; ifM > N , then the

columns ofΦ andΦ̃ are mutually dual frames.
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Orthogonal and biorthogonal filter banks

The perfect reconstructions= ŝcorresponds to the condition

ΦΦ̃∗ = I. (3.8)

Consider a perfect-reconstruction, critically sampled filter bank in Fig. 3.1 that satisfies (3.8). If the

corresponding matrixΦ is orthogonal, that isΦ = Φ̃, then the filter banks is calledorthogonal, since the

columns ofΦ form an orthonormal basis. Otherwise, it is calledbiorthogonal.

Example 3.1.2 Consider a two-channel, critically-sampled filter bank with analysis filters

h̃0(x) =
1 + x−1

√
2

, h̃1(x) =
1− x−1

√
2

and synthesis filters

h0(x) =
1 + x√

2
, h1(x) =

1− x√
2
.

The frequency responses of analysis low-pass and high-passfilters h̃0(x) andh̃1(x) are shown in Fig. 3.3(a).

This filter bank is known asHaarfilter bank [23,49].

We can verify that the analysis and synthesis filters satisfythe perfect reconstruction condition(3.4):

h̃0(x)h0(x) + h̃1(x)h1(x) =
1 + x−1

√
2

· 1 + x√
2

+
1− x−1

√
2

· 1− x√
2

= 2,

h̃0(−x)h0(x) + h̃1(−x)h1(x) =
1− x−1

√
2

· 1 + x√
2

+
1 + x−1

√
2

· 1− x√
2

= 0.
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(a) Haar (flatness degree 1). (b) DaubechiesD4 (flatness degree 2).

Figure 3.3: Frequency responses of low-pass and high-pass filters for Haar and DaubechiesD4 filter banks.

Alternatively, we can verify that the matrixΦ in (3.6) is orthogonal, since

Φ =




. . .

Φ0

Φ0

. . .



,

where

Φ0 =
1√
2




1 1

1 −1


 .

Hence, Haar filter bank is an orthogonal filter bank.

Example 3.1.3 Consider a two-channel, critically-sampled filter bank with analysis filters

h̃0(x) =
1 +

√
3

4
√
2

+
3 +

√
3

4
√
2
x−1 +

3−
√
3

4
√
2
x−2 +

1−
√
3

4
√
2
x−3,

h̃1(x) =
1−

√
3

4
√
2

+

√
3− 3

4
√
2
x−1 +

3 +
√
3

4
√
2
x−2 +

−1−
√
3

4
√
2

x−3
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and synthesis filters

h0(x) =
1 +

√
3

4
√
2

+
3 +

√
3

4
√
2
x+

3−
√
3

4
√
2
x2 +

1−
√
3

4
√
2
x3,

h1(x) =
1−

√
3

4
√
2

+

√
3− 3

4
√
2
x+

3 +
√
3

4
√
2
x2 +

−1−
√
3

4
√
2

x3.

The frequency responses of analysis low-pass and high-passfilters h̃0(x) andh̃1(x) are shown in Fig. 3.3(b).

This filter bank is known asDaubechiesD4 filter bank [50,51].

We can verify that the analysis and synthesis filters satisfythe perfect reconstruction condition(3.4):

h̃0(x)h0(x) + h̃1(x)h1(x) = 2,

h̃0(−x)h0(x) + h̃1(−x)h1(x) = 0.

Alternatively, we can verify that the matrixΦ in (3.6) is orthogonal, since

Φ =




. . .

. . . Φ0

Φ1 Φ0

Φ1 Φ0

. . .
. . .




,

where

Φ0 =
1

4
√
2




1 +
√
3 1−

√
3

3 +
√
3

√
3− 3




and

Φ1 =
1

4
√
2




3−
√
3 3 +

√
3

1−
√
3 −1−

√
3


 .

Hence, DaubechiesD4 filter bank is an orthogonal filter bank.
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3.1.5 Applications of Filter Banks

The characteristics and design of perfect-reconstructionfilter banks can vary significantly depending on the

application for which a filter bank is constructed. In this thesis, we consider two potential applications of

perfect-reconstruction filter banks—low/high-frequencyseparation, and robust transmission of signals.

Frequency separation

Consider a two-channel critically-sampled filter bank thatis designed to separate low and high frequencies

of input signals. Ideally, the low-pass analysis filterh̃0(x) would have the frequency response

H̃0(ω) =





1, if |ω| ≤ π/2,

0, if π/2 < |ω| < π.

Similarly, the frequency response of an ideal high-pass filter h̃1(x) would be

H̃1(ω) =





0, if |ω| ≤ π/2,

1, if π/2 < |ω| < π.

Unfortunately, in this case the analysis filtersh̃0(x) andh̃1(x) would have to be IIR filters, which makes

their implementation both impractical and impossible, since they cannot be implemented recursively. For

practical reasons, FIR filters can be used to approximate thebehavior of the ideal IIR filters. One of the

most widely used characteristics of such FIR filters is the degree of flatness.

A degree of flatnessof a low-pass filter is specified by the number of derivatives of its frequency response

that vanish at the highest frequency (respectively, lowestfrequency for a high-pass filter) [24, 46]. For

example, a low-pass filterh(x) with M degrees of flatness satisfies the condition

dm

dωm
H(ω)

∣∣∣
ω=π

= 0

for 0 ≤ m < M , sinceω = π corresponds to the highest frequency in the infinite time model. Equivalently,

(1+ e−jω)M must divideH(ω). A low-pass filter with a greater degree of flatness is a betterapproximation
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Figure 3.4: Frequency response of a low-pass filter((1 + e−jω)/2)M for M = 1, 2, 3.

of an ideal low-pass filter, as illustrated in Fig. 3.4.

Among all filters with the same degree of flatness, the one withthe shortest support length are called

maximally flator maflat. Both orthogonal and biorthogonal filter banks with maxflat filters have been con-

structed for the infinite discrete time signals in [50–54].

Example 3.1.4 Consider the Haar filter bank introduced in Example 3.1.2. Ituses maxflat low- and high-

pass filters of order 1, since

H̃0(π) =
1√
2
(1 + ejπ) = 0,

H̃1(0) =
1√
2
(1− ej0) = 0,

and they have the shortest possible support length 2.

Similarly, the DaubechiesD4 filter bank introduced in Example 3.1.3 uses maxflat low- and high-pass
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filters of order 2, since

H̃0(π) = 0,
d

dω
H̃0(ω)

∣∣∣
ω=π

= 0,

H̃1(0) = 0,
d

dω
H̃1(ω)|ω=0 = 0,

and they have the shortest possible support length 4.

Robust signal transmission

Consider anM -channel oversampled perfect-reconstruction filter bank.As we explained in Section 3.1.4,

in this case the columns of matricesΦ andΦ̃ form mutually dual frames; or in the caseΦ = Φ̃, a tight frame.

An advantage of frames in comparison to bases is their redundancy. After a signal is expanded into a

frame, a loss of several expansion coefficients〈ϕ(m)
k , s〉 in (3.5) may not prevent us from reconstructing the

original signal from the remaining coefficients. In the mostextreme case, for anM -channel oversampled

perfect-reconstruction filter bank that is sampled at rateN < M, we should be able to reconstruct the

original signal from anyN/M fraction of its coefficients. Frames that satisfy this requirement are called

maximally robust to erasures. They have been studied, in particular, in [44, 45, 47, 48]. Filter banks that

correspond to maximally robust to erasures frames can be used for robust storage and transmission of signals

over lossy channels.

3.2 Polynomial Transforms

As we discussed in Section 2.3, the generalized discrete Fourier transform can be computed with the corre-

sponding polynomial transform (2.20). Ifn = deg p(x) in (2.18), thenPb,α ∈ C
n×n is ann × n matrix.

The computation of the generalized discrete Fourier transform as the matrix-vector product (2.21) requires,

in general,O(n2) operations. This cost may become prohibitive for largen in some practical applications.

It brings up the main challenge in the implementation of polynomial transforms: how to construct fast

algorithms for the transforms of interest.
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Here, we briefly review the developments in the theory of fastalgorithms for polynomial transforms.

We discuss the construction of fast algorithms for the most well-known and widely used transforms, such as

DFT and discrete cosine and sine transforms (DCTs and DSTs).We also review existing fast algorithms for

other, less well-known polynomial transforms.

3.2.1 Known Fast Algorithms

Fast Fourier transforms

Over the last decades, fast algorithms have been studied only for a small number of polynomial transforms.

Among them, the DFT is arguably the most famous and well-studied transform. The discovery of the

Cooley-Tukey fast Fourier transform (FFT) algorithm [55],which reduced the computation cost ofDFTn

toO(n log n) operations, led to decades of research and multiple new FFT algorithms (see [6,20,35,56–59]

and references therein).

The majority of FFT algorithms can be interpreted as factorizations of the DFT matrix into a product of

sparse matrices. The goal is to find such a factorization thatthe combined computational costs of these ma-

trices is lower than the cost of a straightforward computation of DFT. The following example demonstrates

this.

Example 3.2.1 The Cooley-Tukey FFT algorithm forDFT4 corresponds to the following matrix decompo-

sition:

DFT4 =




1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j




=




1

1

1

1







1 1

1 −1

1 1

1 −1







1

1

1

−j







1 1

1 1

1 −1

1 −1



.
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The direct computation ofDFT4 requires 12 operations (multiplications by±1 and±i are not consid-

ered). In comparison, the computation of the four matrices in the factorization requires only 8 operations.

In addition, fast algorithms exist for DFT-related signal transforms, including the real DFT and the

disrete Hartley transform, for example [6,60,61].

Fast trigonometric transforms

Another well-known class of signal transforms is the class of discrete trigonometric transforms—discrete

cosine and sine transforms (DCT and DST) of types 1 through 8.Similarly to DFT, fast algorithms for

trigonometric transforms reduce the computational cost from O(n2) to O(n log n) operations (for exam-

ple, see [2, 6, 62–71], as well as references therein). Most of these algorithms can also be interpreted as

factorizations of a transform matrix into a product of sparse matrices, as demonstrated by the following

example.

Example 3.2.2 The Wang fast algorithm forDCT-IV4 [66] corresponds to the following matrix decompo-

sition:

DCT-IV4 =




0.9808 0.8315 0.5556 0.1951

0.8315 −0.1951 −0.9808 −0.5556

0.5556 −0.9808 0.1951 0.8315

0.1951 −0.5556 0.8315 −0.9808




=




1

1

1

1







0.6935 0.1379

0.1379 −0.6935

0.5879 −0.3928

0.3928 0.5879




×




1 1

1 1

1 −1

1 −1







√
2

√
2

1 −1

1 −1



.
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The direct computation ofDCT-IV4 requires 28 operations. In comparison, the computation of the four

matrices in the factorization requires only 20 operations.

Polynomial transforms for orthogonal polynomials

Another class of transforms that have been studied are polynomial transforms that are based on orthogonal

polynomials [72–75]. We introduce orthogonal polynomialsand discuss their properties in Appendix A.

With the exception of DCTs and DSTs, which belong to this group of transforms as well, the fast

algorithms reported in the literature requireO(n log2 n) operations. They include:

a) Algorithms for transforms evaluated at arbitrary nodesαk [74]. However, the exact cost of these algo-

rithms is greater than36n log22 n, which renders them impractical. Moreover, these algorithms are not

numerically stable.

b) Algorithms for transforms evaluated at the rootsαk of Chebyshev polynomialsTn(x) [75]. These algo-

rithms require greater than4n log22 n operations, and are not stable in general.

c) An approximation algorithm for the polynomial transformfor Legendre polynomials evaluated at the

rootsαk of Legendre polynomialPn(x) [72]. Evaluation to the precisionε requiresO(n log 1
ε ) opera-

tions.

In general, reported fast algorithms use the recursion (A.1) for orthogonal polynomials to iteratively

compute the valuePℓ(αk) from Pℓ−1(αk) andPℓ−2(αk). They do not use any information about the points

αk, which, understandably, leads to slower algorithms. As we demonstrate in Section 6, incorporating

information about sampling points allows us to construct fast algorithms for polynomial transforms based

on orthogonal polynomials that requireO(n log n) operations.

3.2.2 Algebraic Approach

Most fast algorithms for polynomial transforms, includingthose discussed in Section 3.2.1, are derived by

clever and often complicated manipulations of matrix coefficients. They provide little insight into why such

decompositions exist and how to extend and generalize them.
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Several algebraic approaches have been developed to explain the derivation of known fast algorithms

and construct new ones. Originally, group algebras were utilized to explain the Cooley-Tukey FFT. For

example,DFTn can be interpreted as a decomposition matrix for the group algebraC[Zn], whereZn is a

cyclic group of ordern [76,77]. SinceC[Zn] is isomorphic to the polynomial algebraC[x]/(xn − 1), it can

be decomposed as

C[Zn] ∼= C[x]/(xn − 1) → C[x]/(x− ω0
n)⊕ · · · ⊕ C[x]/(x− ωn−1

n ), (3.9)

as we showed in Section 2.3. This decomposition can be performed stepwise: first, we decomposeC[x]/(xn−

1) into a direct sum of subalgebras, not necessarily simple ones; then, we further decompose each subalge-

bra. Performed in a very particular way, such stepwise decomposition yields the Cooley-Tukey FFT.

The group point of view was generalized to derive fast Fourier transforms for group algebrasC[G] for

noncyclic finite groupsG [78–84]. Some of the constructed algorithms were based on the induction for

group algebras, an algebraic construction that is analogous to the method we use in Chapter 6.

In parallel to group algebras, polynomial algebras were also used in [20, 85–89] to construct fast algo-

rithms for the DFT. Extension of this approach led to a comprehensive theory of fast algorithms for all 16

types of DCTs and DSTs [2, 6], as well as for complex and real DFT [61]. This generalization led to the

development of the ASP theory [3–5] discussed in Chapter 2.

3.2.3 Orthogonality

Orthogonality is an important and desired property of a polynomial transform, since, in general, the inverse

of a polynomial transform is not a polynomial transform itself. In this case, constructing a fast algorithm for

the inverse becomes a challenging task.

The well-known polynomial transforms (DFT, DCT, and DST) can be made orthogonal by multiplying

them with diagonal matrices. Trivially, the fast implementation of their inverses reduces to transposing the

original algorithm. As we discuss in Section 4.3, the polynomial transforms for finite GNN models can also

be orthogonalized this way.
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Chapter 4

Generic Nearest-Neighbor Models

In this chapter we construct a class of new linear shift-invariant signal models called thegeneric nearest-

neighbor(GNN) models. Originally, these models were introduced in [3]. For the finite model, the associ-

ated discrete Fourier transform and spectrum were identified.

Here, we formally define both infinite and finite discrete GNN models. In both cases, we identify the

corresponding signal processing concepts including spectrum, Fourier transform, convolution, and Parseval

equality.

The infinite and finite space models discussed in Chapter 2 areparticular cases of the infinite and finite

GNN models that use Chebyshev polynomials as basis functions. Nevertheless, we sometimes refer to these

models for comparison, since they have already been extensively studied in [1–3,5,6,22].

4.1 Normalized Orthogonal Polynomials

Before we define the infinite and finite discrete GNN models, weintroduce the concept of normalized

orthogonal polynomials.

Consider the shift defined by the recurrence

x · Pk(x) = ak−1Pk−1(x) + bkPk(x) + ckPk+1(x). (4.1)

We call it thegeneric nearest-neighborshift. If we assume that the coefficientsak, bk, ck ∈ R satisfy the

51
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conditionakck > 0 for k ≥ 0, andP0(x) = 1 andP−1(x) = 0, then the solution to the recurrence (4.1) is

a family
(
Pk(x)

)
k≥0

of orthogonal polynomials[16,17]. An overview of orthogonal polynomials and their

properties is provided in Appendix A.

We assume that polynomials
(
Pk(x)

)
k≥0

are orthogonal over the intervalW ⊆ R with the weight

function functionµ(x): ∫

x∈W
Pk(x)Pm(x)µ(x)dx = µkδk−m.

Furthermore, we assume that theL2
µ-norm ofPk(x) is

||Pk(x)||2,µ =
(
〈Pk(x), Pk(x)〉µ

)1/2
= µ

1/2
k ,

where the norm is induced by the inner product

〈f(x), g(x)〉µ =

∫

x∈W
f(x)g(x)µ(x)dx.

Norm calculation

In order to calculate the norm||Pk(x)||2,µ = µ
1/2
k , we need to know the weight functionµ(x) and the

orthogonality intervalW . However, as we discuss in Appendix A, it may not be feasible to obtainµ(x) and

W directly from the recursion (4.1).

Nevertheless, we can bypass the necessity to determineµ(x), and determine the norms ofPk(x) from

the coefficientsak, bk, andck in recursion (4.1). This is a known result (see, for example,[90,91]), and we

only provide it here for completeness.

Theorem 4.1.1 TheL2
µ-norm of the polynomialsPk(x) that satisfy(4.1) and are orthogonal onW with

respect to the inner product(A.3), is

||Pn(x)||2,µ = µ1/2n = µ
1/2
0 ·

√√√√
n−1∏

i=0

ai
ci
. (4.2)
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Proof: Let

D = diag
(
√√√√

k−1∏

i=0

ai
ci

)
0≤k<n

be ann× n diagonal matrix, and

S =




b0 a0

c0 b1 a1

c1 b2
. . .

. . .
. . . an−2

cn−2 bn−1




be the tridiagonal matrix defined in (A.4). ThenD conjugatesS to the symmetric tridiagonal matrix

DSD−1 =




b0
√
a0c0

√
a0c0 b1

√
a1c1

√
a1c1 b2

. . .

. . .
. . .

√
an−2cn−2

√
an−2cn−2 bn−1




.

On the other hand, using the Christoffel-Darboux formula itwas shown in [3] that the diagonal matrix

E = diag
(
µ
1/2
0 , µ

1/2
1 , . . . , µ

1/2
n−1

)

also conjugatesS to a symmetric tridiagonal matrix.

Since there exists a unique (up to a constant factor) diagonal matrix that conjugates a tridiagonal matrix

to a symmetric tridiagonal matrix, we conclude thatD = cE, and hence

µ
1/2
k = c ·

√√√√
k−1∏

i=0

ai
ci
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for some non-zero constantc ∈ R. In particular, fork = 0 we obtain

c = µ
1/2
0 ,

where

µ0 =

∫

x∈W
µ(x)dx.

�

The following result is an immediate consequence of Theorem4.1.1:

Corollary 4.1.2 If ak = ck for k ≥ 0, thenµk = µ0, and allPk(x) have the same norm

||Pk(x)||2,µ =
√
µ0.

Normalization

In general, orthogonal polynomialsPk(x) have different norms:µk 6= µm for k 6= m. They can be

normalized asµ−1/2
k Pk(x) to have the same norm1 for all k ≥ 0.

To simplify the construction of the infinite and finite discrete GNN signal models in Sections 4.2 and 4.3,

we use the normalized polynomialsµ−1/2
k Pk(x) as the basis of the signal moduleM. Since any family

of orthogonal polynomials can be orthogonalized, hereafter we only consider the families of orthogonal

polynomials
(
Pk(x)

)
k≥0

that have equal norms.

The following theorem establishes which families
(
Pk(x)

)
k≥0

have equal norms, and shows how to

construct normalized polynomials for an arbitrary family.

Theorem 4.1.3 The orthogonal polynomialsPk(x) have the same norm||Pk(x)||2,µ = ||P0(x)||2,µ, if they

satisfy the recursion of the form

x · Pk(x) = ak−1Pk−1(x) + bkPk(x) + akPk+1(x), (4.3)
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withP0(x) = 1 andP−1(x) = 0. That is, the recurrence coefficients in(4.1)satisfy the symmetric condition

ak = ck

for all k ≥ 0.

Furthermore, if the family
(
Pk(x)

)
k≥0

is a solution to(4.1), then the corresponding normalized polyno-

mialsQk(x) = µ
−1/2
k Pk(x) are a solution to the recurrence

x · pk(x) =
√
ak−1ck−1Qk−1(x) + bkQk(x) +

√
akckQk+1(x). (4.4)

Proof: Recall from Appendix A that

µk = µ0 ·
k−1∏

i=0

ai
ci
.

If ak = ck for all k ≥ 0, thenµk = µ0, and hence||Pk(x)||2,µ = ||P0(x)||2,µ.

Next, observe that

µk+1/µk = ak/ck.

Then the family of normalized polynomialsQk(x) = µ
−1/2
k Pk(x) satisfies the recurrence

x ·Qk(x) = x · µ−1/2
k Pk(x)

= µ
−1/2
k

(
ak−1Pk−1(x) + bkPk(x) + ckPk+1(x)

)

= ak−1
µk−1

µk
Qk−1(x) + bkQk(x) + ck

µk+1

µk
Qk+1(x)

=
√
ak−1ck−1Qk−1(x) + bkQk(x) +

√
akckQk+1(x).

�
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Figure 4.1: Infinite discrete GNN signal model: shift and visualization.

4.2 Infinite Discrete Model

Signal model

Hereafter, we only consider the GNN models that are based on thesymmetricGNN shift (4.3). As discussed

in Section 4.1, the basis of the signal moduleM is defined by the corresponding equal-norm orthogonal

polynomialsPk(x).

The basis of the filter algebra, ideally, would be defined byℓ-fold shifts, as in the case of time (2.9)

or space (2.16) models. Unfortunately, for a general familyof orthogonal polynomials there is no obvious

notion of anℓ-fold shift, so it is unclear which basis is appropriate for the filter algebraA. We choose the

same basis as in the signal moduleM.

Hence, we obtain the followinginfinite discrete GNN signal model:

A = {h =
∑

ℓ≥0 hℓPℓ(x) | h =
(
h0, h1, . . .

)
∈ ℓ1(N0)},

M = {s = ∑
k≥0 skPk(x) | s=

(
s0, s1, . . .

)
∈ ℓ2(N0)},

Φ : ℓ2(N0) → M, s 7→ ∑
k≥0 skPk(x).

(4.5)

The symmetric GNN shift (4.3) and the visualization of the infinite discrete GNN signal model (4.5) are

shown in Fig. 4.1.

Eigenfunctions

As discussed in Section 2.2, to construct the associated Fourier transform for the GNN model, we need

to find the eigenfunctions ofM, identify the spectrumW , and project signals on the spectral components
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spanned by the eigenfunctions.

The following theorem identifies the structure of eigenfunctions:

Theorem 4.2.1 The eigenfunctions for the infinite discrete GNN model have the form

Ea(x) =
∑

k≥0

Pk(a)Pk(x).

In particular, they satisfy

x · Ea(x) = a ·Ea(x) (4.6)

for anya ∈ R.

Proof: As follows from (4.3), any function of the form
∑

k≥0 skPk(x) ∈ M satisfies the condition

x ·
∑

k≥0

skPk(x) =
∑

k≥0

(
ak−1sk−1 + bksk + aksk+1

)
Pk(x). (4.7)

Consider the function

Ea(x) =
∑

k≥0

Pk(a)Pk(x).

From (4.7) we obtain

x ·
∑

k≥0

Pk(a)Pk(x) =
∑

k≥0

(
ak−1Pk−1(a) + bkPk(a) + akPk+1(a)

)
Pk(x)

=
∑

k≥0

aPk(a)Pk(x)

= a ·
∑

k≥0

Pk(a)Pk(x).

�

Spectrum

The eigenfunctions in Theorem 4.2.1 satisfy (4.6) for alla ∈ R. However, we restrict the values ofa to the

interval of orthogonalityW only. This restriction is sufficient to make the Fourier transform invertible, as
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we will show later.

Hence, the spectrum is defined precisely as the interval of orthogonalityW .

Fourier transform

Since the Fourier transform is a projection onto the eigenfunctionsEω(x), whereω ∈ W, we define the

GNN Fourier transformas

∆ : S(ω) = 〈s(x), Eω(x)〉 =
∑

k≥0

skPk(ω). (4.8)

Given that we have restricted the spectrum to the interval oforthogonalityW , the correspondinginverse

GNN Fourier transformis

∆−1 : sk =
1

µ0

∫

ω∈W
S(ω)Pk(ω)µ(ω)dω, (4.9)

since

1

µ0

∫

ω∈W
S(ω)Pk(ω)µ(ω)dω =

1

µ0

∫

ω∈W

( ∑

m≥0

smPm(ω)
)
Pk(ω)µ(ω)dω

=
1

µ0

∑

m≥0

sm

( ∫

ω∈W
Pm(ω)Pk(ω)µ(ω)dω

)

=
1

µ0
skµ0

= sk.

Frequency response

From (4.6) we obtain

h(x)Eω(x) = h(ω)Eω(x)
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for any polynomialh(x) ∈ A. Hence, the frequency responseH(ω) of a filterh(x) at frequencyω is simply

its evaluation at this frequency, similarly to the time and space signal models:

H(ω) =
∑

ℓ≥0

hℓPℓ(ω). (4.10)

Convolution

The convolution in the signal domain is defined by the action of a filter h = h(x) ∈ A on a signals =

s(x) ∈ M. ASP defines the convolution as the product

hs = h(x)s(x).

Similarly to the infinite time and space models (2.9) and (2.16), it follows from the definitions of the Fourier

transform (4.8) and the frequency response (4.10) that the convolution corresponds to the multiplication in

the frequency domain. If̂s = ŝ(s) = h(x)s(x), then

Ŝ(ω) = H(ω) · S(ω).

Expressing the convolution directly via the coefficientshℓ andsk of h ands is a tedious task that yields

a complicated formula. For computational purposes, we simply express the producth(x)s(x) in the basis
(
Pk(x)

)
k≥0

; the coefficients of the expansion are preciselyŝk = (h ∗ s)k:

∑

ℓ≥0

hℓPℓ(x) ·
∑

k≥0

skPk(x) =
∑

k≥0

(h ∗ s)kPk(x).

Respectively, the convolution in the frequency domain corresponds to the pointwise multiplication in

the signal domain. Hence,

H(ω) ∗ S(ω) = 1

µ0

∫

θ∈W
S(θ)Gω(θ)µ(θ)dθ, (4.11)
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since

H(ω) ∗ S(ω) =
∑

k≥0

hkskPk(ω)

=
∑

k≥0

hkPk(ω) ·
1

µ0

∫

θ∈W
S(θ)Pk(θ)µ(θ)dθ

=
1

µ0

∫

θ∈W
S(θ)

(∑

k≥0

hkPk(ω)Pk(θ)
)
µ(θ)dθ

=
[
let gω,k = hkPk(ω)

]

=
1

µ0

∫

θ∈W
S(θ)Gω(θ)µ(θ)dθ.

Parseval equality

The following theorem establishes the Parseval equality for infinite discrete GNN signal models.

Theorem 4.2.2 The Parseval equality for the 1-D infinite discrete GNN signal model is

∑

k≥0

s2k =
1

µ0

∫

ω∈W
S2(ω)µ(ω)dω. (4.12)

Proof: Observe that

∑

k≥0

s2k =
∑

k≥0

sk
1

µ0

∫

ω∈W
S(ω)Pk(ω)µ(ω)dω

=
1

µ0

∫

ω∈W
S(ω)

(∑

k≥0

skPk(ω)
)
µ(ω)dω

=
1

µ0

∫

ω∈W
S2(ω)µ(ω)dω.

�
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Frequency domain

The frequency domain for the infinite discrete GNN model is the Hilbert space of all polynomials defined

on intervalW [92,93]. The inner product is defined as

〈u, v〉 =
∫

ω∈W
u(ω)v(ω)µ(ω)dω. (4.13)

The set of polynomials
(
Pk(ω)

)
k≥0

is an orthogonal basis of this space.

Observe that the GNN Fourier transform is an isomorphism between the signal space

ℓ2(N0) = {
(
s0, s1, . . .

)
|
∑

k≥0

s2k <∞}

of semi-infinite sequences with finite energy, and the Hilbert space of polynomials defined on intervalW

with inner product (4.13). In cases whenW = [0,∞) or W = (−∞,∞) is an unbounded interval, the

existence of such isomorphism may seem counter-intuitive.It becomes clear, however, if we recall from

Appendix A that in such cases weight functionµ(ω) decays very quickly. In particular, the decay rate of

µ(ω) is higher than polynomial. Hence, for practical purposes, the interval of orthogonality can be viewed

as finite.

Other infinite GNN models

The infinite discrete GNN model (4.5) can be generalized by allowing other left boundary conditions. All

corresponding signal processing concepts derived in this section can be easily generalized for these models.

Consider the recurrence (4.1). If instead of the zero boundary conditionP−1(x) = 0, we assume

P−1(x) = bP0(x)

for anyb ∈ R, then the recurrence remains the same except we use the coefficientb0 + b instead ofb0. The

solution to the new recurrence is a family of orthogonal polynomials as well. Hence, we can construct an

infinite discrete GNN model based on the GNN shift defined by the new recurrence. We then normalize it

to obtain a new GNN model (4.5).
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We can also assume

P−1(x) = cP1(x)

for anyc ∈ R, such thata0(c0 + c) > 0. The recurrence (4.1) will now have the coefficientc0 + c instead

of c0. The solution to the new recurrence is also a family of orthogonal polynomials, and we can construct

an infinite discrete GNN model based on the GNN shift defined bythe new recurrence.

Example 4.2.3 Consider Hermite polynomialsHk(x) introduced in Appendix A. They satisfy the following

recursion:

x ·Hk(x) = kHk−1(x) +
1

2
Hk+1(x),

withH0(x) = 1 andH1(x) = 2x. They are orthogonal over the entire real lineR with the weight function

e−x2
: ∫ ∞

−∞
Hk(x)Hm(x)e−x2

dx = k!2k
√
π.

Consider the normalized Hermite polynomialŝHk(x). As follows from Theorem 4.1.3, they have the

form

Ĥk(x) =
1√
k!2k

Hk(x),

and satisfy the recursion

xĤk(x) =

√
k

2
Ĥk−1(x) +

√
k + 1

2
Ĥk+1(x), (4.14)

with Ĥ0 = 1 and Ĥ1 =
√
2x. They are orthogonal over the entire real lineR with respect to the weight

functionµ(x) = e−x2
:

〈Ĥk(x), Ĥm(x)〉 =
∫

R

Ĥk(x)Ĥm(x)e−x2
dx = π1/4δk−m.

The infinite discrete GNN signal model that corresponds to the normalized Hermite polynomials is
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Figure 4.2: Infinite discrete normalized Hermite signal model: shift and visualization.

A = {h =
∑

ℓ≥0 hℓĤℓ(x) | h =
(
h0, h1, . . .

)
∈ ℓ1(N0)},

M = {s = ∑
k≥0 skĤk(x) | s =

(
s0, s1, . . .

)
∈ ℓ2(N0)},

Φ : ℓ2(N0) → M, s 7→ ∑
k≥0 skĤk(x).

(4.15)

The shift and model visualization are shown in Fig. 4.2.

The Fourier transform and its inverse are defined as

∆ : S(ω) =
∑

k≥0

skĤk(ω),

∆−1 : sk =
1

π1/4

∫

ω∈R
S(ω)Ĥk(ω)e

−ω2
dω.

The frequency response is

H(ω) =
∑

ℓ≥0

hℓĤℓ(ω).

The Parseval equality is
∑

k≥0

s2k =
1

π1/4

∫

ω∈R
S2(ω)e−ω2

dω.

4.3 Finite Discrete Model

Consider the signal modelA = M = C[x]/Pn(x) with basisb =
(
P0(x), P1(x), . . . , Pn−1(x)

)
, where

the basis polynomialsPk(x) satisfy the recursion (4.3). Recall from Appendix A thatPn(x) has exactlyn

distinct real zerosα =
(
α0, . . . , αn−1

)
, 0 ≤ k < n, and they all lie inside the intervalW .
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Figure 4.3: The visualization of the finite discrete GNN model C[x]/Pn(x) with basis
P0(x), P1(x), . . . , Pn−1(x).

Signal model

We define the followingfinite discrete GNN signal model:

A = {h = h(x) =
∑

0≤ℓ<n hℓPℓ(x)},

M = {s = s(x) =
∑

0≤k<n skPk(x)},

Φ : C
n → M, s 7→ s(x) =

∑
0≤k<n skPk(x).

(4.16)

Observe that this model can be obtained from the corresponding infinite discrete model by imposing the

boundary conditionPn(x) = 0. Fig. 4.3 visualizes the finite discrete GNN signal model. The boundary

conditionPn(x) = 0 is indicated by the absence of an edge at the right boundary point.

Fourier transform

As we explained in Section 2.3, the Fourier transform for themodel (4.16) has the form (2.19):

∆ : C[x]/p(x) → ⊕n−1
k=0 C[x]/(x− αk),

s(x) 7→
(
s(α0) s(α1) . . . s(αn−1)

)T

.

It can be computed in matrix-vector form as

∆(s(x)) = Pb,α · s,

where polynomial transform

Pb,α =
[
Pℓ(αk)

]
0≤k,ℓ<n

. (4.17)
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is called thediscrete GNN Fourier transform.

The transformPb,α in (4.17) can be easily orthogonalized. Namely,

Pb,αPT
b,α = D,

where

D = an−1 · diag
(
Pn−1(αk)P

′
n(αk)

)
0≤k<n

. (4.18)

Hence, the matrix

D−1/2Pb,α (4.19)

is orthogonal. It follows that the inverse of the discrete GNN Fourier transform (4.17) is

P−1
b,α = PT

b,αD
−1.

Spectrum

The spectrum of the finite discrete GNN model is the set

W = α =
(
α0, α1, . . . , αn−1

)

of zeros ofPn(x).

Frequency response

The frequency response of a filterh(x) ∈ A is

H(α) =

(
h(α0) h(α1) . . . h(αn−1)

)T

.

Convolution

The convolution is defined as

hs = h(x)s(x) mod Pn(x).
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Frequency domain

The frequency domain of the finite discrete GNN model can be viewed as the frequency domain of the

infinite discrete space model (2.16) sampled at frequenciesωk = αk [93]. In particular, from (4.19) we

observe that the function
(
Pn−1(ωk)P

′
n(ωk)Pm(ωk)

)
0≤k<n

is them-th basis function of an orthogonal basis in the frequency domain.

Basic shift representation matrix

The matrix representationφ(x) of the basic shift for the model (4.16) is

φ(x) =




b0 a0

a0 b1 a1

. . .
. . .

. . .

an−3 bn−2 an−2

an−2 bn−1




. (4.20)

It follows from Section 2.3 and Appendix A that

Pb,αφ(x)P−1
b,α = diag

(
α0, . . . , αn−1

)
.

Other finite GNN models

The finite discrete GNN model (4.16) can be generalized to themodelA = M = C[x]/Pn(x)− cPn−1(x)

for anyc ∈ R. This is possible since the polynomialPn(x) − cPn−1(x) hasn distinct zeros for any value

of c ∈ R [94]. All concepts for the model (4.16) described above apply to this model as well.

Example 4.3.1 The finite discrete GNN signal model that corresponds to the normalized Hermite polyno-

mialsĤk(x), discussed in Example 4.2.3, is
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Figure 4.4: The visualization of the finite discrete normalized Hermite modelC[x]/Ĥn(x) with basis
Ĥ0(x), Ĥ1(x), . . . , Ĥn−1(x).

A = {h =
∑

0≤ℓ<n hℓĤℓ(x)},

M = {s = ∑
0≤k<n skĤk(x)},

Φ : C
n → M, s 7→ ∑

0≤k<n skĤk(x).

(4.21)

The visualization of this model is shown in Fig. 4.4.

The associated Fourier transform for this model is specifiedby the polynomial transform

Pb,α =
[
Ĥℓ(αk)

]
0≤k,ℓn

, (4.22)

whereα0, α1, . . . , αn−1 are the zeros of̂Hn(x). For example, forn = 6, it has the form

Pb,α =




1 −3.3243 7.1069 −10.9258 12.0053 −8.0754

1 −1.8892 1.8165 −0.4388 −1.1587 1.3714

1 −0.6167 −0.4382 0.6596 0.1761 −0.6385

1 0.6167 −0.4382 −0.6596 0.1761 0.6385

1 1.8892 1.8165 0.4388 −1.1587 −1.3714

1 3.3243 7.1069 10.9258 12.0053 8.0754




.
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The orthogonalized polynomial transform then is

D−1/2Pb,α =




0.0506 −0.1681 0.3593 −0.5523 0.6069 −0.4082

0.2977 −0.5624 0.5408 −0.1306 −0.3449 0.4082

0.6394 −0.3943 −0.2802 0.4217 0.1126 −0.4082

0.6394 0.3943 −0.2802 −0.4217 0.1126 0.4082

0.2977 0.5624 0.5408 0.1306 −0.3449 −0.4082

0.0506 0.1681 0.3593 0.5523 0.6069 0.4082




.



Chapter 5

Perfect-Reconstruction Filter Banks

In this chapter we introduce perfect-reconstruction filterbanks for infinite discrete GNN signal models. We

generalize the notions of low and high frequencies for GNN signals. Then we compare advantages and

disadvantages of filter and signal expansions approaches tothe construction of filter banks. Finally, we

construct two classes of perfect-reconstruction filter banks for infinite discrete GNN signals.

5.1 Flatness

In Section 3.1, we introduced the concept of flatness for filters. Namely, a low-pass filterh(x) is said to

have degree of flatnessM, if
dm

dωm
H(ω)

∣∣∣
ω=ωH

= 0

for 0 ≤ m < M , whereωH is the highest frequency. Respectively, a high-pass filterh(x) is said to have

degree of flatnessM, if
dm

dωm
H(ω)

∣∣∣
ω=ωL

= 0

for 0 ≤ m < M , whereωL is the lowest frequency.

Naturally, in order to introduce the concept of flatness for filters in infinite discrete GNN models, we

must first properly define the low and high frequencies for such models.

69
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5.1.1 Low and High Frequencies

The concept of low and high frequencies, strictly speaking,introduces a partial (weak) order� on the

spectrumW for infinite discrete GNN signal models. We choose the following physical interpretation.

Definition 5.1.1 Let v be a vector or an infinite sequence. Thenumber of oscillationsNT (v) of v over

intervalT ∈ N0 is equal to the number of times the sequence starts decreasing or increasing, i.e.

NT (v) =
∣∣∣{k | 0 ≤ k < T, (vk−1 > vk ∧ vk < vk+1) ∨ (vk−1 < vk ∧ vk > vk+1)}

∣∣∣.

We define the order� on the spectrumW based on the number of oscillations of corresponding eigen-

functionsEω(x).

Definition 5.1.2 Frequenciesω1, ω2 ∈W are said to be in the order

ω1 � ω2,

if the corresponding eigenfunctionEω1(x) has fewer oscillations thanEω2(x) over the same intervalT :

ω1 � ω2 ⇔ NT (Eω1(x)) ≤ NT (Eω2(x)).

The intervalT in Definition 5.1.2 can be chosen empirically. The frequencyωL, such thatωL � ω for

anyω ∈ W , is called thelowest frequency. Respectively,ωH , such thatω � ωH for anyω ∈ W , is called

thehighest frequency.

Example 5.1.3 Let us identify the lowest and highest frequencies for several GNN models.

1) Consider the infinite discrete GNN model based on Chebyshev polynomials of the third type(2.16). The

frequency spectrum of this model isW = [−1, 1]. It follows from Chapter 4 that the eigenfunctions for

this model have the form

Eω(x) =
∑

k≥0

Vk(ω)Vk(x).
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The corresponding coordinate form is

Eω =
(
V0(ω), V1(ω), V2(ω), . . .

)
.

As shown in Fig. 5.1(a), the eigenfunction

E1 =
(
1, 1, 1, . . .

)

is a constant. The number of oscillations ofEω increases asω becomes closer to−1. Hence, the lowest

frequency for the infinite space model based on Chebyshev polynomials of the third kind isωL = 1 and

the highest frequency isωH = −1.

2) Next, consider the infinite discrete GNN model based on Laguerre polynomials. The frequency spectrum

of this model isW = [0,∞). It follows from Chapter 4 that the eigenfunctions for this model have the

coordinate form

Eω =
(
L0(ω), L1(ω), L2(ω), . . .

)
.

As shown in Fig. 5.1(b), eigenfunction

E0 =
(
1, 1, 1, . . .

)

is a constant. The number of oscillations ofEω increases asω increases. Hence, the lowest frequency for

the infinite space model based on Laguerre polynomials isωL = 0 and the highest frequency isωH = ∞.

3) Finally, consider the infinite discrete GNN model based onnormalized Hermite polynomials introduced

in Example 4.2.3. The frequency spectrum of this model isW = (−∞,∞). The eigenfunctions for this

model have the coordinate form

Eω =
(
Ĥ0(ω), Ĥ1(ω), Ĥ2(ω), . . .

)
.

As shown in Fig. 5.1(c), the number of oscillations ofEω decreases asω increases. Hence, the lowest



72 CHAPTER 5. PERFECT-RECONSTRUCTION FILTER BANKS

frequency for the infinite space model based on normalized Hermite polynomials isωL = ∞ and the

highest frequency isωH = −∞.

Observe that in all examples above the order function� is monotonous withω. Namely, if any frequen-

ciesω1, ω2, ω3 ∈W satisfy

ω1 < ω2 < ω3,

then their frequency ordering is either

ω1 � ω2 � ω3

(for the second model), or

ω3 � ω2 � ω1

(for the first and third models).

5.1.2 Flatness of Filters and Signals

We have introduced the notion of frequency order for infinitediscrete GNN models. Now we can extend the

definition of flatness to these models.

Definition 5.1.4 Consider an infinite discrete GNN signal model(4.5), with filters of the form

h(x) =

L1−1∑

ℓ=L0

hℓPℓ(x).

Filter h(x) is called a low-pass filter of degreeM with degree of flatnessM, if it satisfies

dm

dωm
H(ω)

∣∣∣
ω=ωH

= 0

for 0 ≤ m < M.

The definition of a high-pass filter with a specific degree of flatness is analogous.

Similarly to filters, we can talk about a degree of flatness forsignals:
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(a) (b)

(c)

Figure 5.1: Eigenfunctions corresponding to different frequenciesω for infinite discrete GNN signal models
based on (a) Chebyshev polynomials of the third kind (P = V ); (b) Laguerre polynomials (P = L); and (c)
normalized Hermite polynomials (P = H̃).
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Definition 5.1.5 Consider an infinite discrete GNN signal model(4.5), with signals of the form

s(x) =

K1−1∑

k=K0

skPk(x).

Signals(x) is called a low-frequency signal withdegree of flatnessM, if it satisfies

dm

dωm
S(ω)

∣∣∣
ω=ωH

= 0

for 0 ≤ m < M.

The definition of a high-frequency signal with a specific degree of flatness is analogous.

Observe that there can exist multiple (in fact, infinitely many) filters and signals with a given degree of

flatness.

5.2 Filter Approach vs. Expansion Approach

In Section 3.1, we discussed two approaches to the design of perfect reconstruction filter banks. One ap-

proach was based on filtering followed downsampling. Another approach was based on expanding signals

into bases (or frames) with desired characteristics.

The equivalence of these approaches is possible for two reasons. First, we assume a particular structure

of the basis/frame elements. Second, the inner product and time convolution are interchangeable; one only

needs to reverse the order of the coefficients [23,46].

Unfortunately, this interchangeability between the convolution and the scalar product may not extend

to other signal models. The convolution operation depends on the underlying signal model and is defined

by the producth(x)s(x) of a filter h(x) ∈ A and a signals(x) ∈ M as follows. Consider an arbi-

trary infinite discrete signal model. Let the basis ofM be
(
. . . , P0(x), P1(x), . . .

)
; and the basis ofA be
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(
. . . , R0(x), R1(x), . . .

)
. Then thek-th element of the convolutionh ∗ s is determined from the product

h(x)s(x) =
∑

ℓ

hℓRℓ(x)
∑

k

skPk(x)

=
∑

k

(h ∗ s)kPk(x).

On the other hand, the definition of a scalar product remains the same. Hence, we have to choose

a preferred approach to the design of filter banks for other signal models, or somehow combine the two

approaches together.

In this section, we investigate the construction of Haar-like filter banks for infinite discrete space mod-

els (2.16). We construct the filter banks using both approaches. We then analyze their advantages and

disadvantages, and identify the most suitable approach forthe construction of filter banks for infinite dis-

crete GNN models.

5.2.1 Signal Expansion Approach

In [95], we use the signal expansion approach to construct Haar-like filter banks for infinite discrete space

signals. Similarly to the standard Haar filter banks for timesignals, our goal is to split a signal into a “coarse”

and a “detailed” components by averaging the signal coefficients and computing the remaining details.

Since we haveM = N = 2 channels, we slightly change the notation from Section 3.1.Instead of

denoting bases with
(
ϕ
(0)
k

)
and

(
ϕ
(1)
k

)
, we useϕ =

(
ϕk

)
andψ =

(
ψk

)
, respectively. The support length

of ϕk andψk isL = 1 ·N = 2.

Consider the infinite discrete space model (2.16) based on Chebyshev polynomials of the third kind.

We seek to construct low- and a high-frequency basesϕ =
(
ϕk

)
k≥0

andψ =
(
ψk

)
k≥0

that have only two

non-zero coefficients in the2k-th and(2k + 1)-th positions:

ϕk =
(
. . . , 0, ak, bk, 0, . . .

)
,

ψk =
(
. . . , 0, ck, dk, 0, . . .

)
.
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We write them as

ϕk(x) = akV2k(x) + bkV2k+1(x)

ψk(x) = ckV2k(x) + dkV2k+1(x).

To ensure the frequency conditions, we require that the spectra of basis functionsϕk andψk disappear at

the highest (ωH = −1) and lowest (ωL = 1) frequencies, respectively:





akV2k(−1) + bkV2k+1(−1) = 0,

ckV2k(1) + dkV2k+1(1) = 0.

(5.1)

Using the properties of Chebyshev polynomials, we solve (5.1) to obtain(4k + 3)bk = (4k + 1)ak and

dk = −ck. Hence,

ϕk(x) = akV2k(x) +
4k + 1

4k + 3
akV2k+1, (5.2)

ψk(x) = ckV2k(x)− ckV2k+1(x). (5.3)

Observe that the basesϕ andψ span independent subspaces ofM, i.e. 〈ϕ〉 ∩ 〈ψ〉 = {0}. Moreover, the

original basis
(
Vk(x)

)
k≤0

can be expressed in terms ofϕ andψ: assumingak = 1 andck = 1 for all k,

V2k(x) =
4k + 3

8k + 4
ϕk(x) +

4k + 1

8k + 4
ψk(x),

V2k+1(x) =
4k + 3

8k + 4
ϕk(x)−

4k + 3

8k + 4
ψk(x).

Hence,ϕ ∪ ψ is a basis for the signal spaceM, and we obtain a critically-sampled perfect reconstruction

filter bank.

To compute the projections of the signals ontoϕ andψ, we construct dual bases̃ϕ andψ̃ that satisfy





〈ϕk, ϕ̃m〉 = 〈ψk, ψ̃m〉 = δk−m,

〈ϕk, ψ̃m〉 = 〈ϕ̃k, ψm〉 = 0.

(5.4)
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Then we compute scalar products〈ϕ̃k, s〉 and〈ψ̃k, s〉 to find the projection coefficients. From (5.2)-(5.4) we

derive the dual bases

ϕ̃k(x) =
4k + 3

(8k + 4)ak
V2k(x) +

4k + 3

(8k + 4)ak
V2k+1(x),

ψ̃k(x) =
4k + 1

(8k + 4)ck
V2k(x)−

4k + 3

(8k + 4)ck
V2k+1(x).

Assuming for simplicity thatak = ck = 1/
√
2, we obtain the analysis and synthesis matrices

Φ̃ =




Φ̃0

Φ̃1

Φ̃2

. . .



, Φ =




Φ0

Φ1

Φ2

. . .



,

where

Φ̃k =
√
2




4k+3
8k+4

4k+1
8k+4

4k+3
8k+4 −4k+3

8k+4


 , Φk =

1√
2




1 1

4k+1
4k+3 −1


 .

Observe that, ask → ∞,

Φ̃k → 1√
2




1 1

1 −1


 , Φk → 1√

2




1 1

1 −1


 .

Hence, we can approximate this filter bank with the standard Haar filter bank for the time signal model

constructed in Example 3.1.2.

Similarly, we have derived Haar filter banks for other space signal models:
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C = T :

ϕk(x) = akT2k(x) + akT2k+1(x)

ψk(x) = ckT2k(x)− ckT2k+1(x)

ϕ̃k(x) =
1

2ak
T2k(x) +

1

2ak
T2k+1(x)

ψ̃k(x) =
1

2ck
T2k(x)−

1

2ck
T2k+1(x)

C = U :

ϕk(x) = akU2k(x) +
2k + 1

2k + 2
akU2k+1(x)

ψk(x) = ckU2k(x)−
2k + 1

2k + 2
ckU2k+1(x)

ϕ̃k(x) =
1

2ak
U2k(x) +

k + 1

(2k + 1)ak
U2k+1(x)

ψ̃k(x) =
1

2ck
U2k(x)−

k + 1

(2k + 1)ck
U2k+1(x)

C =W :

ϕk(x) = akW2k(x) + akW2k+1(x)

ψk(x) = ckW2k(x)−
4k + 1

4k + 3
ckW2k+1(x)

ϕ̃k(x) =
4k + 1

(8k + 4)ak
W2k(x) +

4k + 3

(8k + 4)ak
W2k+1(x)

ψ̃k(x) =
4k + 3

(8k + 4)ck
W2k(x)−

4k + 3

(8k + 4)ck
W2k+1(x)

5.2.2 Filter Approach

In [22], sampling theorems have been formulated for the fourinfinite discrete space models. As follows

from them, the proper downsampling for space signals after filtering with a low-pass half-band filter is the

same as the downsampling for time signals: omitting every other coefficient. Hence, we can attempt to

construct a Haar-like filter bank for space signals using thefilter approach.

The following example illustrates that the convolution andscalar product are not interchangeable for
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Figure 5.2: Haar filter bank for the infinite discrete space model (2.16) constructed using the filter approach.

signal models other than the standard time model. Again, consider the infinite discrete space model (2.16)

based on Chebyshev polynomials of the third kind. Leth̃(x) be a low-pass maxflat filter of degree 1. Its

frequency responsẽH(ω) must vanish at the highest frequencyω = −1, such that

H̃(−1) = 0.

We choose the low-pass filter with the shortest support

h̃(x) = 1 + x = 1 + T1(x).

Similarly, the maxflat high-pass filter̃g(x) of degree 1 must satisfy

G̃(1) = 0.

We choose

g̃(x) = 1− x = 1− T1(x).

Hence, the analysis part of the Haar filter bank has the structure as shown in Fig. 5.2(a).

The constructed analysis partlooks just like the analysis part of the traditional Haar filter bank for the
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infinite time signals. However, notice that the filtered signals are

(1 + x) ·
∑

k≥0

skVk(x) =
3s0 + s1

2
V0(x) +

∑

k≥1

sk−1 + 2sk + sk+1

2
Vk(x),

(1− x) ·
∑

k≥0

skVk(x) =
s0 − s1

2
V0(x)−

∑

k≥1

sk−1 − 2sk + sk+1

2
Vk(x).

After downsampling and upsampling by2, we obtain the signals

s′(x) =
3s0 + s1

2
V0(x) +

∑

k≥1

s2k−1 + 2s2k + s2k+1

2
V2k(x),

s′′(x) =
s0 − s1

2
V0(x)−

∑

k≥1

s2k−1 − 2s2k + s2k+1

2
V2k(x).

The original signals(x) can be reconstructed froms′(x) ands′′(x) as follows:

s2k =
s′k + s′′k

2
,

s1 =
s′0 − 3s′′0

2
, (5.5)

s2k+1 = s′k − s′′k − s2k−1 =

k∑

i=0

(−1)k−i(s′i − s′′i )− 2(−1)ks′′0.

This reconstruction can be implemented recursively using basic building blocks for filter banks, such as

multipliers, adders, and delays. However, there are no filtersh(x), g(x) ∈ A such that

h(x)s′(x) + g(x)s′′(x) = s(x).

Hence, we cannot design a synthesis part of the filter bank that has the structure similar to the standard filter

bank, as shown in Fig. 5.2(b).

We can, however, interpret the reconstruction equations (5.5) through the basis point of view. Consider
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the bases
(
ϕk(x)

)
k≥0

and
(
ψk(x)

)
k≥0

, where

ϕ0(x) =
1

2
V0(x) +

1

2
V1(x) +

∑

m≥1

(−1)mV2m+1(x),

ϕk(x) =
1

2
V2k(x) +

∑

m≥1

(−1)m−1V2m+1(x), k ≥ 1,

and

ψ0(x) =
1

2
V0(x)−

3

2
V1(x) + 3 ·

∑

m≥1

(−1)m−1V2m+1(x),

ψk(x) =
1

2
V2k(x) +

∑

m≥1

(−1)mV2m+1(x), k ≥ 1.

Then, the original signals(x) can be reconstructed as

s(x) =
∑

k≥0

s′kϕk(x) +
∑

k≥0

s′′kψk(x).

5.2.3 Combined Approach

As we mentioned, we cannot construct synthesis parts of filter banks for infinite discrete GNN models that

consist of upsamplers followed by filters. This is the main disadvantage of the filter approach to filter bank

construction for infinite discrete GNN models.

The signal expansion approach to filter bank construction, on the other hand, suffers from an opposite

disadvantage—the construction of signal bases with a desired degree of flatness that define the analysis part

of a filter bank. Consider, for example, a filter bank for an infinite discrete GNN model with the analysis

part corresponding to the bases with flatness degree 3. The search for bases of low- and high-frequency

signals with flatness degree 3, whose union is a basis for the entire signal spaceM, is highly complicated.

In particular, there is no general closed form expression for derivatives of orthogonal polynomials evaluated

at the lowest and highest frequenciesωL andωH , respectively.

As a result, we propose to use a combined approach for the construction of two-channel filter banks for

infinite discrete GNN models that have a desired degree of flatness.
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a) The analysis part of each channel in anM -channel filter bank is constructed as a low-pass or high-pass

filter h̃m with a desired flatness degree, followed by a downsampler.

b) At this point we do not have a general theory of continuous infinite GNN models. As a result, we cannot

formulate an analog of Nyquist sampling theorem for infinitediscrete GNN models that would establish

how a low-pass or a high-pass filtered signal must be downsampled1 . Thus, we choose to downsample

the same way it is done in case of infinite time signals: downsampling at the rateN ≤M means keeping

everyN -th signal coefficient and dropping other ones.

c) The synthesis part of each channel is constructed as a linear combination of basis signals that span a

subspaceMm of the entire signal spaceM. The example of Haar filter bank for infinite space model

constructed in Section 5.2.2 is an illustration of this combined approach.

Depending on the purpose of a filter bank, the proposed combined approach may or may not be the most

suitable one. It is centered around constructing analysis filters first, and is appropriate if the properties of

the analysis filters are the main characteristics of a filter bank. However, if the synthesis part of a desired

filter bank is the main design criteria, our approach may not be optimal, since it requires the construction of

signal bases with infinitely many vectors that must satisfy given criteria.

5.3 Two-Channel Filter Banks

In this section, we study the construction of two-channel filter banks for infinite discrete GNN models based

on different families of orthogonal polynomials. We selectrepresentatives from different classes depending

on the spectrum (see Appendix A for more details), and construct example filter banks of order 1 (Haar-like)

or 2. We also identify certain limitations in the filter bank construction that arise for infinite discrete GNN

models based on Laguerre-like and Hermite-like polynomials.

1In fact, previous research (see, for example, the discussion in [93]) suggests that there may beno continuous GNN signal
models. However, we may try to determine the proper samplingtechnique without direct construction of continuous GNN models.
For example, we can utilize such mathematical techniques asinterpolation, similarly to the way Lagrange interpolation was used to
re-derive the Nyquist sampling theorem in [96] .
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5.3.1 GNN Models Based on Jacobi-Like Polynomials

Infinite discrete GNN models based on Jacobi-like polynomials have the finite spectrumW = [−1, 1]. As

a representative of this class of orthogonal polynomials, we continue to use Chebyshev polynomials of the

third kind.

We have constructed the Haar-like filter bank, which is a filter bank with flatness degree 1, in Sec-

tion 5.2.2. Here, we proceed to construct a two-channel filter bank with flatness degree 2.

In this case, low-pass filter̃h0(x) and high-pass filter̃h1(x) must satisfy

H̃0(−1) =
d

dω
H̃0(ω)

∣∣∣
ω=−1

= 0,

H̃1(1) =
d

dω
H̃1(ω)

∣∣∣
ω=1

= 0,

As the shortest filters with these properties, we choose

h̃0(x) = 6T0(x) + 8T1(x) + 2T2(x),

h̃1(x) = 6T0(x)− 8T1(x) + 2T2(x).

Their frequency responses are shown in Fig. 5.3(b). If we compare them with the frequency responses of the

Haar-like filter bank that are shown in Fig. 5.3(a), we observe that the low-pass and high-pass filters with

flatness degree 2 attenuate, respectively, high and low frequencies more than the corresponding filters in the

Haar-like filter bank.

After filtering input signals(x) =
∑

k≥0 skVk(x) with filter h̃0(x) and downsampling by 2, we obtain

new signal

s′(x) = (10s0 + 5s1 + s2)V0(x) +
∑

k≥1

(s2k−2 + 4s2k−1 + 6s2k + 4s2k+1 + s2k+2)Vk(x)

as the output of the low-pass channel. Similarly, we get

s′′(x) = (2s0 − 3s1 + s2)V0(x) +
∑

k≥1

(s2k−2 − 4s2k−1 + 6s2k − 4s2k+1 + s2k+2)Vk(x)
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(a) Filters with flatness degree 1 (Haar-like). (b) Filters with flatness degree 2.

Figure 5.3: Frequency responses of low-pass and high-pass filters for the infinite discrete GNN model based
on Chebyshev polynomials of the third kind.

as the output of the high-pass channel.

To construct the synthesis part of this filter bank, we must find linearly independent sets
(
ϕk

)
k≥0

and
(
ψk

)
k≥0

, such that their union is a basis of the entire signal spaceM, and

s(x) =
∑

k≥0

s′kϕk +
∑

k≥0

s′′kψk.

To simplify the construction of the basis, we can assume thatthe first four signal coefficients are zero:

s0 = s1 = s2 = s3 = 0. Alternatively, we can attach four zeros to input signals(x). Then, the required

basis functions are

ϕk =
1

8
√
2

∑

m≥0

λmV2k+2m+1(x) +
1

8

∑

m≥0

V2k+2m+1(x),

ψk =
1

8
√
2

∑

m≥0

λmV2k+2m+1(x)−
1

8

∑

m≥0

V2k+2m+1(x),

where

λm = (2
√
2− 3)m+1 + (−1)m(2

√
2 + 3)m+1.

For practical purposes, this reconstruction can be implemented recursively.

Using this approach we can construct filter banks with arbitrary flatness degrees.
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5.3.2 GNN Models Based on Laguerre-Like and Hermite-Like Polynomials

Infinite discrete GNN models based on Laguerre-like polynomials have the semifinite spectrumW =

[0,∞). Infinite discrete GNN models based on Hermite-like polynomials have the infinite spectrumW =

(−∞,∞). In both cases we run into the following problem. Assume

h(x) =

L1−1∑

ℓ=L0

hℓPℓ(x)

is an FIR filter. Since its frequency responseH(ω) = h(ω) is a polynomial in variableω, it is unbounded:

lim
ω→∞

|H(ω)| = ∞.

Thus, all FIR filters for infinite discrete GNN models based onLaguerre-like or Hermite-like polynomi-

als have unbounded frequency responses. For this reason, FIR filters are impractical to use in two-channel

filter banks with a low-pass and a high-pass channels—the attenuation of large frequencies is unbounded.

Instead, we can use IIR filters to construct filter banks. As anexample, we construct a filter bank with

flatness degree 1 for the infinite discrete GNN model based on Laguerre polynomials.

As we discussed in Section 5.1, in this case the spectrum isW = [0,∞), and the lowest and highest

frequencies areωL = 0 andωH = ∞, respectively. As the low-pass and high-pass analysis filters h̃0(x)

andh̃1(x) that satisfy

H̃0(∞) = 0,

H̃1(0) = 0,

we choose

h̃0(x) =
∑

ℓ≥0

(−1)ℓxℓ =
1

1 + x
,

h̃1(x) =
∑

ℓ≥0

(−1)ℓxℓ+1 =
x

1 + x
.



86 CHAPTER 5. PERFECT-RECONSTRUCTION FILTER BANKS

Figure 5.4: Frequency responses of the low-pass and high-pass filters for the infinite discrete GNN model
based on Laguerre polynomials.

Their frequency responses are shown in Fig. 5.4.

First, we must determine the results′(x) =
∑

k≥0 s
′
kLk(x) of filtering input signals(x) =

∑
k≥0 skLk(x)

with filter h̃0(x). As we discussed in Section 3.1.3, we cannot compute the convolution directly, since the

number of taps in the filter is infinite. Instead, we use the differential equations.

Since

s′(x) = h̃0(x) · s(x) =
1

1 + x
s(x),

we obtain

(1 + x)s′(x) = s(x)

⇒
∑

k≥0

s′kLk(x) + x ·
∑

k≥0

s′kLk(x) =
∑

k≥0

skLk(x)

⇒
∑

k≥0

s′kLk(x) +
∑

k≥0

s′k(−kLk−1(x) + (2k + 1)Lk(x)− (k + 1)Lk+1(x)) =
∑

k≥0

skLk(x).

After comparing coefficients at each polynomialLk(x), we obtain the relation

−ks′k−1 + (2k + 2)s′k − (k + 1)s′k+1 = sk
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for k ≥ 0. Assuming, for example,s′1 = 0, we derive the recurrence

s′0 =
1

2
s0,

s′1 = 0,

s′k = 2s′k−1 −
k − 1

k
s′k−2 −

1

k
sk−1, k ≥ 2.

Similarly, the results′′(x) =
∑

k≥0 s
′
kLk(x) of filtering input signals(x) =

∑
k≥0 skLk(x) with filter

h̃1(x) can be calculated recursively as

s′′0 =
s0 − s1

2
,

s′′1 = 0,

s′′k = 2s′′k−1 −
k − 1

k
s′′k−2 +

k − 1

k
sk−2 −

2k − 1

k
sk−1 + sk, k ≥ 2.

After that, we can downsamples′(x) ands′′(x) at rate2, thus keeping only coefficientss′2k ands′′2k.

These are the outputs of the analysis part of the filter bank.

Similarly to the derivation in Section 5.3.1, we construct the synthesis part of this filter bank by finding

linearly independent sets
(
ϕk

)
and

(
ψk

)
, such that their union is a basis of the entire signal spaceM, and

s(x) =
∑

k≥0

s′2kϕk +
∑

k≥0

s′′2kψk.

Due to the complexity of this construction, we omit it here.

5.4 Filter Banks for Robust Transmission

In this section, we study the construction of filter banks forrobust signal transmission. For this construction,

we employ the signal expansion approach. We construct maximally robust frames that allow for a redundant

signal representation, as discussed in Section 3.1.5.
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5.4.1 Maximally Robust Frames from DFT

The construction of maximally robust frames from polynomial transforms was studied in details in [48].

Building on this research, we have designed large families of critically-sampled and oversampled perfect

reconstruction filter banks using the signal expansion approach [44,45]. Such filter banks implement signal

expansions that are robust to coefficient loss, and, as an additional benefit, also eliminate blocking effect. In

addition, they are computationally efficient and allow for straightforward signal reconstruction.

To simplify reconstruction, we consider orthonormal basesand tight frames to obtain critically-sampled

and oversampled filter banks, respectively. Recall from Section 3.1 that both these cases imply self-duality

Φ = Φ̃, and the perfect reconstruction condition (3.8) becomes

ΦΦ∗ = I. (5.6)

To eliminate the blocking effect, we require that the basis and frame functions have overlapping support.

As we indicate in Section 3.1, each basis/frame function hassupport of lengthL = qN for some integer

q ≥ 1. Then, depending on the value ofq, Φ processes the signals either in nonoverlapping (q = 1)

or overlapping (q ≥ 2) blocks, thus leading to eitherblockedor lapped transformsΦ∗. These cases are

illustrated in Fig. 5.5. In this work, we assumeq = 2.

Critically-sampled, perfect reconstruction filter banks with bases of overlapping support are known as

lapped orthogonal transforms (LOTs)[42]. In [43], the frame counterparts of LOTs, called thelapped tight

frame transforms (LTFTs), have been constructed from LOTs using a special form of submatrix extraction.

In this work, we systematically construct a large class of real LOTs from specific submatrices of DFT matri-

ces. We then construct real LTFTs as properly selected submatrices LOTs. We prove that the corresponding

frames are equal-norm, tight, and that many of them are maximally robust to erasures.

We defer the derivations and proofs to Appendix B, and only state here the main results.
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


b

b

b

b

b

b




(a) Φ for basis expansion
with blocked transform




b

b

b

b

b

b

b

b

b

b

b

b




(b) Φ for basis expansion
with lapped transform (q =
2)



b

b

b

b

b

b




(c) Φ for frame expansion
with blocked transform




b

b

b

b

b

b

b

b

b

b

b

b




(d) Φ for frame expansion
with lapped transform (q =
2)

Figure 5.5: The infinite basis/frame matrixΦ in four different scenarios. The columns ofΦ are the ba-
sis/frame vectors.

Lapped orthogonal transforms

Consider theK ×K matrix

DFTp,K(z) =
1√
K

[
cos

2kℓπ

K
+ z−1 sin

2kℓπ

K

]

0≤k,ℓ≤K−1

. (5.7)

Let

Ψp(z) = Ψ0 + z−1Ψ1

be anM ×M submatrix of
√
K/M · DFTp,K(z),

whereK ≥M ≥ 2, constructed by selecting the following row and column sets:

rows: {r + kR modK | 0 ≤ k ≤M − 1}

columns: {c+ ℓC modK | 0 ≤ ℓ ≤M − 1}
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for some constants0 ≤ r, c,R,C < K.

Assume thatK =M gcd(K,RC). Also, assume that one of the following conditions is satisfied:

(i) K divides2rC, 4rc, and2MRc;

(ii) K does not divide2rC, andK divides both2r(2c+ CM −C) andR(2c+ CM − C).

Then the matrix

Φ =




. . .

. . . Ψ0

Ψ1 Ψ0

Ψ1
. . .

. . .




(5.8)

corresponds to an LOT. Its columns form an orthonormal basisin ℓ2(Z). The support length ofϕ(m)
k is

L = 2N and hence overlaps byN with the supports ofϕ(m)
k−1 andϕ(m)

k+1. This LOT can be implemented with

a critically-sampledM -channel (M = N ) perfect-reconstruction filter bank.

Class of LOTs. Next we give one example of how to construct an entire class ofLOTs for any size

M . In Theorem B.3.2, we chooseK = aM with anya ∈ N0, r = c = 0, R = 1 andC = a to satisfy

condition (i). Then, for anya ∈ N0,

Ψp,a(z) =
1√
M

[
cos

2kℓaπ

K
+ sin

2kℓaπ

K
z−1

]

0≤k,ℓ<M

(5.9)

is paraunitary, that is,Ψ∗ is an LOT.

Number of new LOTs. Let us investigate how manyM ×M Ψp(z) can be derived fromDFTp,K(z).

Necessarily,M | K, which implies thatK is not prime. This in mind, Table 5.1 shows the number of new

LOTs generated using our method. For example, there are 283× 3 paraunitary submatrices ofDFTp,6(z)

and all are found with the theorem. Note that every submatrixis specified by a row subset and column subset

of DFTp,6(z); the ordering does not matter.

Further, there are 405 × 5 paraunitary submatrices ofDFTp,10 that do not arise from Theorem B.3.2.

One such example is the row set{0, 1, 3, 7, 9}, and the column set{0, 2, 4, 6, 8}. However, we speculate
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M

K 2 3 4 5 6 7 8

4 16

6 17 28

8 128 — 64

9 — 66

10 49 — — 84
40

12 304 384 53 — 96
128 116 176

14 97 — — — — 172
336

15 — 161 — 141
120 376

16 896 — 1216 — — — 256
1088 768

Table 5.1: Number of paraunitaryM × M Ψp(z) generated fromDFTp,K using Theorem B.3.2. The
numbers of paraunitary submatricesΨp(z) that do not satisfy Theorem B.3.2 are shown in italic.

that these matrices are up to permutations the same as other submatrices that are derived from the theorem.

In fact, Theorem B.3.2 could be extended based on the permutation symmetries of the DFT [2,97] and may

then cover all paraunitary submatrices.

Finally, we must note that empirical tests show that there are noM ×M paraunitary submatrices of

DFTp,K(z) for M not dividingK, forK ≤ 16.

Lapped tight frame transforms

LetΨp(z) be constructed as above. Assume thatM andMRC/K are co-prime. Further, let

Φp(z) = Φ0 + z−1Φ1

be constructed fromΨp(z) by retainingN < M rows with indices in setI ⊆ {0, . . . ,M − 1}, such that

|I| = N. If (as sets)

I = {d+Dk modM | 0 ≤ k < N}
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for some0 ≤ d < M andD ≡ (MRC/K)−1 modM , then

Φ =




. . .

. . . Φ0

Φ1 Φ0

Φ1
. . .

. . .




(5.10)

corresponds to a lapped tight frame transform. Its columns form a lapped, tight, equal-norm, maximally

robust to erasures frame inℓ2(Z) in ℓ2(Z). The support length ofϕ(m)
k isL = 2N and hence overlaps byN

with the supports ofϕ(m)
k−1 andϕ(m)

k+1. This LTFT can be implemented with a oversampledM -channel perfect

reconstruction filter bank with sampling rateN .

Class of LTFTs. Given anyN < M , anN×M Φp(z) can be constructed by seeding theM×M Ψp(z)

in (5.9), retainingN rows. Any such frame will be tight and equal norm. Since the construction parameters

satisfy Theorem B.4.2, and(MRC/K)−1 ≡ 1 modM , Φp(z) also is maximally robust if it results from

consecutive seeding.

5.4.2 Maximally Robust Frames from GNN Transforms

As discussed in Section 5.4.1 and Appendix B, as well as in [44,45,48], tight frames can be constructed from

orthonormal bases by the process called seeding. Hence, from each orthogonalized discrete GNN Fourier

transform we can seed a tight frame. Moreover, a clever seeding procedure may ensure additional desirable

properties of these frames, such as maximal robustness to erasures and equal norm.

Seeding by rows

In the rest of this section, we use a seeding procedure that isdifferent from the one used in previous sections.

Namely, instead of removing columns from a matrix, we removerows. To distinguish this seeding, we write

it as follows:

Definition 5.4.1 LetA be ann×nmatrix. Let0 ≤ i0, i1, . . . , im−1 < n bem distinct integers. Then matrix
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is said to beseeded by rowsfrom matrixA, if it is anm× n matrix constructed from rowsi0, i1, . . . , im−1

of matrixA. We write it as

Φ = A(i0, i1, . . . , im−1).

Tight frames

In the following theorem we establish a seeding of orthogonalized discrete GNN transforms that yields tight

frames inRm.

Theorem 5.4.2 Consider discrete GNN transformPb,α that corresponds to the finite discrete GNN model(4.16).

Let

P ′ = D−1/2 · Pb,α

denote the orthogonalized polynomial transform, whereD is defined in(4.18).

Let matrixΦ be obtained by seedingP ′
b,α by rows:

Φ = P ′(i0, i1, . . . , im−1).

Then the columns ofΦ correspond to a real, tight frame of size inRm.

Proof: Without loss of generality, assume thatik = k for each0 ≤ k < m. Then we can write

P ′ =



Φ

Ψ


 ,

where

Ψ = P ′(m,m+ 1, . . . , n− 1).

Since

In = P ′(P ′)T =



ΦΦT ΦΨT

ΨΦT ΨΨT


 ,
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we obtain

ΦΦT = Im.

SinceΦ is anm× n matrix, the columns ofΦ correspond to a tight frame inRm. �

Equal-norm frames

In the following theorem we establish a seeding of orthogonalized discrete GNN transforms that yields

equal-norm frames inRm.

Theorem 5.4.3 Consider discrete GNN transformPb,α that corresponds to the finite discrete GNN model(4.16),

for which all coefficientsbk = 0 in recursion(4.3). Let

P ′ = D−1/2 · Pb,α

denote the orthogonalized polynomial transform, whereD is defined in(4.18). Define

m = ⌊n
2
⌋.

Let matrixΦ be obtained by consecutively seedingP ′
b,α by rows:

Φ = P ′(0, 1, . . . ,m− 1)

Then the columns ofΦ all have the same norm.

Proof: First, recall from Appendix A that orthogonal polynomials that satisfy recursion (4.3) with all coef-

ficientsbk = 0, are either even or odd. In particular, rootsα0, α1, . . . , αn−1 of Pn(x) satisfy

αk = −αn−1−k

for 0 ≤ k < n.

Assume thatn is even, and hencem = n/2. It follows from the definition (4.18) ofD that the elements
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of P ′ are either symmetric or antisymmetric around the middle rowof the matrix. In other words, they

satisfy

P ′
k,2ℓ = P ′

n−1−k,2ℓ,

P ′
k,2ℓ+1 = −P ′

n−1−k,2ℓ+1.

Let

Φ = P ′(0, 1, . . . ,m− 1)

be constructed from the firstm = n/2 rows ofP ′. Then theℓ-th column ofP ′ can be written as




P ′
0,ℓ

P ′
1,ℓ

...

P ′
m−1,ℓ

P ′
m,ℓ

...

P ′
n−1,ℓ




=




Φ0,ℓ

Φ1,ℓ

...

Φm−1,ℓ

(−1)ℓΦm−1,ℓ

...

(−1)ℓΦ0,ℓ




.

SinceP ′
b,α is an orthogonal matrix, the norm of each of its columns is1. From this, we can compute the

norm of theℓ-th column ofΦ as follows:

√√√√
m−1∑

i=0

Φ2
i,ℓ =

√∑m−1
i=0 Φ2

i,ℓ +
∑m−1

i=0 Φ2
i,ℓ

2

=

√∑m−1
i=0 (P ′

i,ℓ)
2 +

∑n−1
i=m (P ′

i,ℓ)
2

2

=
1√
2
.

Hence, all columns ofΦ have the same norm1/
√
2.

The proof forn = 2m+ 1 is analogous. �
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Maximally robust frames

In the following theorem we establish a seeding of orthogonalized discrete GNN transforms that yields

maximally robust to erasures frames inRm.

Theorem 5.4.4 Consider discrete GNN transformPb,α that corresponds to the finite discrete GNN model(4.16),

for which all coefficientsbk = 0 in recursion(4.3). Let

P ′ = D−1/2 · Pb,α

denote the orthogonalized polynomial transform, whereD is defined in(4.18). Define

m = ⌊n
2
⌋.

Let matrixΦ be obtained by consecutively seedingP ′
b,α by rows:

Φ = P ′(0, 1, . . . ,m− 1)

Then the columns ofΦ correspond to a maximally robust to erasures frame inR
m.

Proof: The proof is by contradiction.

Let n = 2m. Let P ′(:, ℓ) denote theℓ-th column ofP ′, andΦ(:, ℓ) denote theℓ-th column ofΦ. As

follows from the proof of Theorem 5.4.3, we can write

P ′(:, ℓ) =




Φ(:, ℓ)

(−1)ℓ · Jm · Φ(:, ℓ)


 , (5.11)

where

Jm =




1

. .
.

1

1




∈ R
m×m
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is a complementary diagonal matrix.

Assume that the columns ofΦ do not correspond to a maximally robust frame. Then there must exist

anm × m submatrix ofΦ that is singular. Without loss of generality, assume that itis the submatrix

constructed from firstm columnsΦ(:, 0),Φ(:, 1), . . . ,Φ(:,m− 1). ThenΦ(:,m− 1) can be expressed as a

linear combination ofΦ(:, 0),Φ(:, 1), . . . ,Φ(:,m − 2) as

Φ(:,m− 1) = d0Φ(:, 0) + d1Φ(:, 1) + dm−2Φ(:,m− 2).

In this case, it follows immediately from (5.11) that

P ′(:,m− 1) = d0P ′(:, 0) + d1P ′(:, 1) + dm−2P ′(:,m− 2),

which implies thatP ′ is singular. However, it contradicts the fact thatP ′ is an orthogonal matrix. Hence,

everym×m submatrix ofΦ must be invertible.

The proof forn = 2m+ 1 is analogous. �

Filter banks

As follows from Theorems 5.4.2 through 5.4.4, the columns ofmatrix

Φ = P ′(0, 1, . . . ,m− 1),

wherem = ⌊n2 ⌋, correspond to a tight, equal-norm maximally robust frame inR
m. Examples of orthogonal

polynomials that satisfy the requirements of these theorems include Chebyshev polynomials of the first and

second kinds, Legendre polynomials, and normalized Hermite polynomials.

Example 5.4.5 Consider the discrete GNN transform of the finite GNN model based on normalized Hermite

polynomials that we discussed in Example 4.3.1. Since in this examplen = 2m = 6, we select the first
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m = 3 rows from the orthogonalized transform, and obtain matrix

Φ = P ′(0, 1, 2) =




0.0506 −0.1681 0.3593 −0.5523 0.6069 −0.4082

0.2977 −0.5624 0.5408 −0.1306 −0.3449 0.4082

0.6394 −0.3943 −0.2802 0.4217 0.1126 −0.4082



.

Each column in this matrix has norm1/
√
2.

Then = 6 columns of the above matrix are an equal-norm, tight, maximally robust to erasures frame in

R
m = R

3.

The filter banks that correspond to the constructed frames aren-channel filter banks pictured in Fig. 3.2

(there, we setM = n). Since the frames are tight, the analysis and synthesis basis functions are the same:

ϕ
(j)
k = ϕ̃

(j)
k

for 0 ≤ j < n. Hence, the expansion of a signals(x) in the coordinate form is

s=
(
. . . , s0, s1, s2, . . .

)
=

∑

k

〈ϕ(0)
k , s〉ϕ(0)

k + · · ·+
∑

k

〈ϕ(n−1)
k , s〉ϕ(n−1)

k . (5.12)

The support ofϕ(j)
k is

k + jm, k + jm+ 1, . . . , k + (j + 1)m− 1,

and has lengthm. The correspondingm coefficients are determined by thej-th column of matrixΦ.



Chapter 6

Fast Discrete GNN Transforms

In this section, we introduce a general approach to decomposing anypolynomial transform into a product

of structured matrices involving other polynomial transforms of smaller size. As we show, in some cases

the proposed approach produces novel fast algorithms for discrete GNN transforms, as well as for well-

known signal transforms, such as the standard DFT and DCT of type 4. This work has been submitted for

publication in [98].

We derive fast algorithms using the algebraic constructioncalledmodule induction. Induction is based

on the notion of asubalgebraand an associated decomposition that is similar to the cosetdecomposition in

group theory. Our approach generalizes the decomposition algorithms in [6].

6.1 Subalgebras and Their Structure

In this section we define and discuss the structure of subalgebras ofA = C[x]/p(x).

6.1.1 Definition

Choose a polynomialr(x) ∈ A, and consider the space of polynomials inr(x) with addition and multipli-

cation performed modulop(x):

B =
{∑

k≥0

ckr
k(x) mod p(x) | ck ∈ C

}
, (6.1)

99
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where all sums are finite. We callB thesubalgebraof A generatedby r(x) and write this asB =
〈
r(x)

〉
≤

A.

6.1.2 Structure

Givenr(x) ∈ A, we first determine the dimension ofB =
〈
r(x)

〉
. Then we identifyB with a polynomial

algebra of the formC[y]/q(y) with a suitably chosen polynomialq(y).

Let α =
(
α0, . . . , αn−1

)
be the list of roots ofp(x). The generatorr(x) mapsα to the list β =

(
β0, . . . , βm−1

)
, such that for eachαk ∈ α there is aβj ∈ β, for which r(αk) = βj . Hence,m ≤ n, since

for somek andℓ we may haver(αk) = r(αℓ).

Theorem 6.1.1 The dimension ofB =
〈
r(x)

〉
is dimB = m = |β|.

Proof: Let d = dimB. SinceB ≤ A, thendimB ≤ dimA and the polynomials
(
1, r(x), . . . , rn−1(x)

)

span the entireB. From the isomorphism (2.19) we obtain

d = rank

(
∆(1),∆(r(x)), . . . ,∆(rn−1(x))

)

= rank

[
rℓ(αk)

]

0≤k,ℓ<n

.

Sincer(αk) ∈ β and |β| = m, the above matrix has onlym different rows; hence,d ≤ m. On the other

hand, it contains the full-rankm×m Vandermonde matrix

[
βℓi

]

0≤i,ℓ<m

as a submatrix; hence,d ≥ m. Thus, we conclude thatd = dimB = m. �

Next, we identifyB with a polynomial algebra.

Theorem 6.1.2 The subalgebraB =
〈
r(x)

〉
can be identified with the polynomial algebraC[y]/q(y), where
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q(y) =
∏m−1

j=0 (y − βj), via the following canonical isomorphism of algebras:

κ : B → C[y]/q(y),

r(x) 7→ y.
(6.2)

We indicate this canonical isomorphism asB ∼= C[y]/q(y).

Proof: Observe thatB andC[y]/q(y) have the same dimensionm, andκ maps the generatorr(x) of B to

the generatory of C[y]/q(y). Hence, it suffices to show thatq(r(x)) ≡ 0 mod p(x) in B. From (2.19) we

obtain

∆(q(r(x))) =

(
q(r(α0)) . . . q(r(αn−1)

)T

=

(
0 . . . 0

)T

,

which implies thatq(r(x)) ≡ 0 mod p(x) in A, and hence inB. �

Let c =
(
q0(y), . . . , qm−1(y)

)
be a basis ofC[y]/q(y). The polynomial transform (2.20) that decom-

poses the regular moduleC[y]/q(y) (and hence the regularB-moduleB) is given by (2.19) as

Pc,β = [qℓ(βi)]0≤i,ℓ<m .

Example 6.1.3 Consider the polynomial algebraA = C[x]/(x4 − 1) with α =
(
1,−j,−1, j

)
. The poly-

nomial r1(x) = x2 generates the subalgebraB1 =
〈
r1(x)

〉 ∼= C[y]/(y2 − 1) of dimension 2, sincer1(x)

mapsα to β =
(
1,−1

)
.

The polynomialr2(x) = (x + x−1)/2 = (x + x3)/2 generates the subalgebraB2 =
〈
r2(x)

〉 ∼=

C[y]/(y3 − y) of dimension 3, sincer2(x) mapsα to β =
(
1, 0,−1

)
.

6.2 Module Induction

In this section we introduce the concept ofmodule induction, which constructs anA-moduleM from a

B-moduleN for a subalgebraB ≤ A. We will show that every regularA-module is an induction, which is
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the basis of our technique for polynomial transform decomposition.

6.2.1 Induction

Similar to the coset decomposition in group theory [18, 19],we can decompose a polynomial algebraA =

C[x]/p(x) using a subalgebraB and associatedtransversal:

Definition 6.2.1 (Transversal) Let B ≤ A be a subalgebra ofA. A transversalof B in A is a list of

polynomialsT =
(
t0(x), . . . , tL−1(x)

)
⊂ A, such that, as vector spaces,

A =

L−1⊕

ℓ=0

tℓ(x)B = t0(x)B ⊕ · · · ⊕ tL−1(x)B. (6.3)

Later, in Theorem 6.2.6, we establish necessary and sufficient conditions for a list of polynomials to be

a transversal ofB in A. In particular, for anyB ≤ A there always exists a transversal.

Given a transversal ofB in A, we define the module induction, which is analogous to the induction for

group algebras in [19].

Definition 6.2.2 (Induction) LetB ≤ A be a subalgebra ofA with a transversalT as in (6.3), and letN

be aB-module. Then the following construction is anA-module:

M =
L−1⊕

ℓ=0

tℓ(x)N , (6.4)

where the direct sum is again of vector spaces. It is called the induction of theB-moduleN with the

transversalT to anA-module. We write this asM = N ↑T A.

Here, we are primarily interested in regular modules. Theseare always inductions, as follows directly

from (6.3) and (6.4):

Lemma 6.2.3 LetB ≤ A with a transversalT . Then the regular moduleA is an induction of the regular

moduleB:

A = B ↑T A. (6.5)
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6.2.2 Structure of Cosets

We have established in (6.2) that the subalgebraB ≤ A, generated byr(x) ∈ A, can be identified with a

polynomial algebraC[y]/q(y). Next, we investigate the structure of eachB-moduletℓ(x)B in the induc-

tion (6.5).

Consider a polynomialt(x) ∈ A. As in Theorem 6.1.2, letr(x)mapα toβ, and letq(y) =
∏m−1

j=0 (y − βj).

Further, letα′ =
(
αk | t(αk) 6= 0

)
⊆ α be the sublist ofα that consists of thoseαk that are not roots of

t(x). Finally, letr(x) mapα′ to β′ ⊆ β, and denote|β′| = m′.

Theorem 6.2.4 The dimension oft(x)B is dim t(x)B = |β′| = m′.

Proof: The proof is similar to that of Theorem 6.1.1. The list of polynomials
(
t(x), t(x)r(x), . . . , t(x)rn−1(x)

)

generatest(x)B as a vector space. Using the isomorphism∆ in (2.19) we obtain

dim
(
t(x)B

)
= rank

(
∆(t(x)),∆(t(x)r(x)), . . . ,∆(t(x)rn−1(x))

)

= rank

[
t(αk)r

ℓ(αk)

]

0≤k,ℓ<n

(6.6)

= rank
(
diag

(
t(αk)

)
0≤k<n

·
[
rℓ(αk)

]

0≤k,ℓ<n

)
.

Theorem 6.1.2 shows that

[
rℓ(αk)

]

0≤k,ℓ<n

has exactlym = |β| linearly independent rows of the form

(
1 βi β2i . . . βn−1

i

)
.

For eachβi, the above row contributes exactly 1 to the rank of the matrix(6.6) if and only if there exists

αk such thatt(αk) 6= 0 andr(αk) = βi. Since there are exactly|β′| = m′ such values ofβi, we conclude

thatdim
(
t(x)B

)
= m′. �

Next, we identify theB-modulet(x)B with aC[y]/q(y)-module.

Theorem 6.2.5 TheB-modulet(x)B can be identified with theC[y]/q(y)-moduleC[y]/q′(y), whereq′(y) =
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∏
βj∈β′ (y − βj), via the module isomorphism

η : t(x)B → C[y]/q′(y),

t(x)rk(x) 7→ yk.
(6.7)

By a slight abuse of notation, we writet(x)B ∼= C[y]/q′(y). This is an isomorphism of modules and should

not be confused with the isomorphism of algebras in Theorem 6.1.2.

Proof: It follows from Theorem 6.2.4 that
(
t(x), t(x)r(x), . . . , t(x)rm

′−1(x)
)

is a basis oft(x)B, viewed

as a vector space. On the other hand,
(
1, y, . . . , ym

′−1
)

is obviously a basis ofC[y]/q′(y), also viewed as a

vector space. Hence,η in (6.7) is a bijective linear mapping betweent(x)B andC[y]/q′(y).

In order forη to be an isomorphism of modules, it must also be a module homomorphism—it must

preserve the addition and multiplication int(x)B andC[y]/q′(y). Namely, forh(x) ∈ B andu(x), v(x) ∈

t(x)B, the following conditions must hold:

η
(
u(x) + v(x)

)
= η(u(x)) + η(v(x)),

η
(
h(x)v(x)

)
= κ(h(x)) · η(v(x)).

The first condition is trivial. To show that the second condition holds, leth(x) =
∑m−1

k=0 hkr
k(x) ∈ B and

v(x) =
∑m′−1

i=0 vit(x)r
i(x) ∈ t(x)B. Then

η
(
h(x)v(x)

)
= η

(m+m′−2∑

i=0

i∑

k=0

hkvi−kt(x)r
i(x)

)
=

m+m′−2∑

i=0

i∑

k=0

hkvi−ky
i

=

m−1∑

k=0

hky
k ·

m′−1∑

i=0

viy
i = κ(h(x)) · η(v(x)).

Hence,η is a module isomorphism. �

Note that, depending ont(x), the dimension oft(x)B may be smaller than the dimension ofB: m′ ≤ m.

This effect is calledannihilation.

Also, the definition ofη in (6.7) assumes the standard basis
(
1, y, . . . , ym

′−1
)

in C[y]/q′(y). If another

basis
(
b0(y), . . . , bm′−1(y)

)
were desired, the corresponding basis int(x)B would be

(
t(x)b0(r(x)), . . . , t(x)bm′−1(r(x))

)
.
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As a consequence of Theorem 6.2.5 and the above discussion, decomposing theB-modulet(x)B with

basis
(
t(x)q0(r(x)), . . . , t(x)qm′−1(r(x))

)
is the same as decomposing theC[y]/q(y)-moduleC[y]/q′(y)

with basisc =
(
q0(y), . . . , qm′−1(y)

)
. The decomposition matrix is the same as for the regular module

C[y]/q′(y) with the same basis, namely

Pc,β′ = [qℓ(βi)]0≤i,ℓ<m′ . (6.8)

6.2.3 Existence of a Transversal

ConsiderT =
(
t0(x), . . . , tL−1(x)

)
⊂ A, and letdim

(
tℓ(x)B

)
= mℓ for 0 ≤ ℓ < L. Then

(
tℓ(x), tℓ(x)r(x), . . . , tℓ(x)r

mℓ−

is a basis oftℓ(x)B, as follows from Theorem 6.2.4. Hence,T satisfies (6.3) if and only ifm0+· · ·+mL−1 =

n and the concatenation of bases

b′ =
L−1⋃

ℓ=0

(
tℓ(x), . . . , tℓ(x)r

mℓ−1(x)
)

(6.9)

is a basis inA. The following theorem states this condition in a matrix form.

Theorem 6.2.6 Using previous notation,T is a transversal if and only if the following is a full-rankn× n

matrix:

M ′ =

(
D0B0 | D1B1 | . . . | DL−1BL−1

)
, (6.10)

where

Dℓ = diag
(
tℓ(αk)

)
0≤k<n

,

and

Bℓ =
[
ri(αk)

]
0≤k<n,0≤i<mℓ

.

Proof: The proof is similar to the proofs of Theorems 6.1.1 and 6.2.4. Observe that thek-th element ofb′

in (6.9) is mapped to thek-th column ofM ′ in (6.10) by the isomorphism∆ in (2.19). Hence,b′ is a basis

in A if and only ifM ′ has exactlyn columns and rank(M ′) = n. �
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It follows from Theorem 6.2.6 that for any algebraA and its subalgebraB there always exists a transver-

sal. For example, we can chooseT =
(
t0(x), . . . , tn−1(x)

)
, wheretℓ(αk) = 0 for ℓ 6= k andtℓ(αℓ) 6= 0.

In this case

M ′ = diag
(
tℓ(αℓ)

)
0≤ℓ<n

in (6.10) is a full-rank diagonal matrix.

Example 6.2.7

Consider the subalgebras constructed in Example 6.1.3.

ForB1 =
〈
x2

〉
of dimension 2, we can choose the transversalT =

(
1, x

)
, since

(
1, x2

)
∪
(
x, x3

)
is

a basis forA. Sincex mapsα to
(
1,−j,−1, j

)
, we haveα′ =

(
1,−j,−1, j

)
andβ′ =

(
1,−1

)
. Hence,

q′(y) = (y − 1)(y + 1) andxB1
∼= C[y]/(y2 − 1) is of dimension 2.

ForB2 =
〈
(x+ x−1)/2

〉
of dimension 3, we can choose the transversalT =

(
1, (x − x−1)/2

)
, since

the corresponding matrix

M ′ =




1 1 1

1 −j

1 −1 1

1 j




from (6.10) has full rank. Since(x − x−1)/2 mapsα to
(
0,−j, 0, j

)
, we obtainα′ =

(
− j, j

)
, β′ =

(
0
)
,

and thusq′(y) = y. Hence,(x− x−1)/2 · B2
∼= C[y]/y is of dimension 1.

6.3 Decomposition of Polynomial Transforms Using Induction

In this section we use the induction (6.5) to express the polynomial transform ofA via the polynomial

transforms of eachtℓ(x)B ∼= C[y]/q′ℓ(y) in (6.3).

6.3.1 Decomposition

As before, we considerA = C[x]/p(x), wherep(x) =
∏n−1

k=0 (x− αk). We view it as a regularA-module

with the chosen basisb =
(
p0(x), . . . , pn−1(x)

)
.
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Let B =
〈
r(x)

〉
≤ A be a subalgebra generated byr(x) ∈ A, andB ∼= C[y]/q(y) according to

Theorem 6.1.2, whereq(y) =
∏m−1

j=0 (y − βj) andβ =
(
β0, . . . , βm−1

)
.

SupposeT =
(
t0(x), . . . , tL−1(x)

)
is a transversal ofB in A. Let eachtℓ(x)B in (6.3) be identified

with a C[y]/q(y)-moduleC[y]/q(ℓ)(y) according to Theorem 6.2.5, whereq(ℓ)(y) =
∏

βj∈β(ℓ) (y − βj)

andmℓ = |β(ℓ)|. The basisb(ℓ) =
(
b
(ℓ)
0 (y), . . . , b

(ℓ)
mℓ−1(y)

)
of C[y]/q(ℓ)(y) corresponds to the basis

(
tℓ(x)b

(ℓ)
0 (r(x)), . . . , tℓ(x)b

(ℓ)
mℓ−1(r(x))

)
of tℓ(x)B. Hence, the corresponding polynomial transform (6.8)

isPb(ℓ),β(ℓ).

Theorem 6.3.1 Given the induction(6.5), the polynomial transformPb,α can be decomposed as

Pb,α =

(
D0M0 | D1M1 | ... | DL−1ML−1

)( L−1⊕

ℓ=0

Pb(ℓ),β(ℓ)

)
B. (6.11)

Here,B is the base change matrix from the basisb to the concatenation of bases

L−1⋃

ℓ=0

(
tℓ(x)b

(ℓ)
0 (r(x)), . . . , tℓ(x)b

(ℓ)
mℓ−1(r(x))

)
.

Each

Dℓ = diag
(
tℓ(αk)

)
0≤k<n

is a diagonal matrix. EachMℓ is ann×mℓ matrix whose(k, i)-th element is1 if r(αk) is equal to thei-th

element

β
(ℓ)
j

of β(ℓ), and0 otherwise.⊕ denotes the direct sum of matrices:

L−1⊕

ℓ=0

Pb(ℓ),β(ℓ) =




Pb(0),β(0)

Pb(1),β(1)

. . .

Pb(L−1),β(L−1)



.

Proof: We prove the theorem forL = 2; that is, forA = t0(x)B ⊕ t1(x)B. The proof for arbitraryL is
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analogous.

LetB ∼= C[y]/q(y) according to Theorem 6.1.2, whereq(y) =
∏m−1

i=0 (y − βi) andβ =
(
β0, . . . , βm−1

)
.

For ℓ ∈ {0, 1}, let tℓ(x)B ∼= C[y]/q(ℓ)(y) according to Theorem 6.2.5, whereq(ℓ)(y) =
∏

βi∈β(ℓ) (y − βi)

andmℓ = |β(ℓ)|. Let b(ℓ) =
(
b
(ℓ)
0 (y), . . . , b

(ℓ)
m0−1(y)

)
be a basis ofC[y]/q(ℓ)(y).

Let tℓ(x)b(ℓ)(r(x)) =
(
tℓ(x)b

(ℓ)
0 (r(x)), . . . , tℓ(x)b

(ℓ)
m0−1(r(x))

)
. As we established in Theorem 6.2.6,

b′ = t0(x)b
(0)(r(x))

⋃
t1(x)b

(1)(r(x)) is a basis ofA. The original basisb can be expressed in the new

basisb′ aspk(x) =
∑m0−1

ℓ=0 Bk,ℓt0(x)b
(0)
ℓ (r(x)) +

∑m1−1
ℓ=0 Ck,ℓt1(x)b

(1)
ℓ (r(x)). Hence, ifB is the base

change matrix fromb to b′, then

Pb,α = Pb′,α · B. (6.12)

Theℓ-th column ofB is (B0,ℓ, . . . , Bm0−1,ℓ, C0,ℓ, . . . , Cm1−1,ℓ)
T .

Next, observe that

Pb′,α =

(
Pt0(x)b(0)(r(x)),α

| Pt1(x)b(1)(r(x)),α

)
. (6.13)

For eachℓ, the(k, i)-th element ofPtℓ(x)b(ℓ)(r(x)),α
is tℓ(αk)b

(ℓ)
i (r(αk)). Hence,

Ptℓ(x)b(ℓ)(r(x)),α
= Dℓ ·Mℓ · Pb(ℓ),β(ℓ), (6.14)

whereMℓ is ann ×mℓ matrix whose(k, i)-th element is1 if r(αk) equals to thei-th element ofβ(ℓ), and

0 otherwise; and

Dℓ = diag
(
tℓ(αk)

)
0≤k≤n−1

.

Hence, from (6.12-6.14) we obtain the desired decomposition:

Pb,α =

(
D0M0 | D1M1

)
·
(
Pb(0),β(0) ⊕ Pb(1),β(1)

)
·B. (6.15)

�

Corollary 6.3.2 Consider then×m matrixM whose(k, i)-th element is1 if r(αk) = βi and0 otherwise.

Then

1. M contains exactlyn 1s andn(m− 1) 0s .
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2. Each matrixMℓ in Theorem 6.3.1 is a submatrix ofM . It contains thei-th column ofM if and only

if βi ∈ β(ℓ).

3. If the number of non-zero elements in thei-th column ofM is ci, then there are preciselyci matrices

amongM0, . . . ,ML−1 that contain this column.

6.3.2 Discussion

The three factors in (6.11) correspond to the decomposition(2.19) of the regular moduleA = M =

C[x]/p(x) in three steps:

Step 1.A is represented as an induction (6.5) by changing the basis inA to the concatenation of bases

b(ℓ) of tℓ(x)B, using the base change matrixB.

Step 2. Eachtℓ(x)B is decomposed into a direct sum of irreducibleB-submodules, using the corre-

sponding polynomial transformPb(ℓ),β(ℓ).

Step 3.The resulting direct sum of irreducibleB-modules is decomposed into a direct sum of irreducible

A-modules, using the matrixM.

The factorization (6.11) is a fast algorithm forPb,α if the matricesB andM have sufficiently low costs,

since the recursive nature of the second step allows for repeated application of Theorem 6.3.1. We illustrate

this with two examples of novel algorithms derived using this theorem in Section 6.4.

6.3.3 Special Case: Factorization of p(x)

A special case of Theorem 6.3.1 has been derived in [2, 5]. Namely, assume thatA = C[x]/p(x), and we

can decomposep(x) = q(r(x)). ThenB =
〈
r(x)

〉 ∼= C[y]/q(y), and any basist =
(
1, t1(x), . . . , tk−1(x)

)

of C[x]/r(x) is a transversal ofB in A. This leads to the following result.

Corollary 6.3.3 Choosec =
(
c0(y), . . . , cm−1(y)

)
as the basis ofC[y]/q(y). Denote the roots ofr(x)−βi

asγ(i) =
(
γ
(i)
0 , . . . , γ

(i)
k−1

)
. Notice that

⋃m−1
i=0

(
γ
(i)
0 , . . . , γ

(i)
k−1

)
is simply a permutation of

(
α0, . . . , αn−1

)
,

and denote the corresponding permutation matrix asP . Then, the polynomial transform decomposition(6.11)

has the form

Pb,α = P−1
(m−1⊕

i=0

Pt,γ(i)

)
Ln
m

(
Ik ⊗ Pc,β

)
B. (6.16)
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Here,⊗ denotes the tensor product of matrices.

Corollary 6.3.3 has been used to derive a large class of fast algorithms for real and complex DFTs, and

DCTs and DSTs [2,5,61]. Theorem 6.3.1 further generalizes this approach, and, as we show in the following

example and in Section 6.4, also yields fast algorithms not based on Corollary 6.3.3.

Example 6.3.4

Consider the polynomial algebraA = C[x]/(x4 − 1) with basisb =
(
1, x, x2, x3

)
. As we showed in

Section 2.3, the corresponding polynomial transform isPb,α = DFT4 .

We continue from Example 6.2.7. First, considerB1 =
〈
x2

〉
and the inductionA = B1 ⊕ xB1. Let

us chooseb(0) =
(
1, y

)
as the basis ofC[y]/(y2 − 1) ∼= B1; it corresponds to the basis

(
1, x2

)
of B1. We

then chooseb(1) =
(
1, y

)
as the basis ofC[y]/(y2 − 1) ∼= xB1; it corresponds to the basis

(
x, x3

)
of xB1.

According to Theorem 6.3.1,

D0 = diag
(
1, 1, 1, 1

)
, D1 = diag

(
1,−j,−1, j

)
,

and

M0 =M1 =




1

1

1

1



, Pb(0),β(0) = Pb(1),β(1) =




1 1

1 −1


 = DFT2,

andB is the base change matrix from
(
1, x, x2, x3

)
to

(
1, x2

)
∪
(
x, x3

)
. Hence,

DFT4 =




1 1

1 −j

1 −1

1 j







DFT2

DFT2







1

1

1

1



. (6.17)

As we show in Section 6.4.2, (6.17) is exactly the Cooley-Tukey FFT forDFT4 [55].
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Next, considerB2 =
〈
(x+ x−1)/2

〉
and the inductionA = B2⊕(x−x−1)/2 ·B2. Let us chooseb(0) =

(
T0(y), T1(y), T2(y)

)
=

(
1, y, 2y2 − 1

)
as the basis ofC[y]/(y3 − y) ∼= B2; it corresponds to the basis

(
1, (x+ x−1)/2, (x2 + x−2)/2

)
of B2.We then chooseb(1) =

(
1
)

as the basis ofC[y]/y ∼= (x−x−1)/2·B2;

it corresponds to the basis
(
(x− x−1)/2

)
of (x− x−1)/2 · B2. According to Theorem 6.3.1,

D0 = diag
(
1, 1, 1, 1

)
, D1 = diag

(
0,−j, 0, j

)
, Pb(1),β(1) = (1) = DST-I1,

and

M0 =




1

1

1

1



,M1 =




1

1



,Pb(0) ,β(0) =




1 1 1

1 −1

1 −1 1




= DCT-I3,

andB is the base change matrix from
(
1, x, x2, x3

)
to

(
1, (x + x−1)/2, (x2 + x−2)/2

)
∪
(
(x− x−1)/2

)
.

Hence,

DFT4 =




1

1 −j

1

1 j







DCT-I3

DST-I1







1

1 1

1

1 −1



. (6.18)

As we show in Section 7.1.1, (6.18) is the Britanak-Rao algorithm for DFT4 [59].

6.4 Examples

In this section we derive fast algorithms for the discrete Fourier and cosine transforms. We apply Theo-

rem 6.3.1 to express the transform as a product (6.11). The transforms in the resulting decomposition all

haveO(n log n) cost, and all other matrices haveO(n) cost. Hence, the overall algorithm cost isO(n log n).

6.4.1 Notation

Hereafter, we use the following special matrices:

In is the identity matrix of sizen.
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Jn is the complementary identity matrix of sizen: its (k, n− 1− k)-th element is1 for 0 ≤ k < n, and

0 otherwise.

1n =

(
1 1 . . . 1

)T

is a column vector ofn ones.

Zn is then× n circular shift matrix:

Zn =




1

In−1


 .

Ln
k , wherek dividesn, is ann × n permutation matrix that selects elements of0, 1, . . . , n − 1 at the

stridek; the corresponding permutation isik+ j 7→ jm+ i, where0 ≤ i < m and0 ≤ j < k. The(i, j)-th

element ofLn
k is 1 if j = ⌊ ik(n+1)

n ⌋ mod n, and0 otherwise.

Kn
k = (Im ⊕ Jm ⊕ Im ⊕ . . . )Ln

k , wherek dividesn, is another permutation matrix.

T n
k = diag

((
wiℓ
n | 0 ≤ i < k, 0 ≤ ℓ < m

))
, where the indexi runs faster, andn = km, is a twiddle

factor matrix used in the Cooley-Tukey FFT.

Complementary direct sum:

⊘m−1
i=0 Ai =




A0

. .
.

Am−1



.

6.4.2 Cooley-Tukey FFT

In this section, we derive the general-radix Cooley-Tukey FFT using Theorem 6.3.1. As was shown in [2],

Corollary 6.3.3 is sufficient in this case.

ConsiderA = M = C[x]/(xn − 1). Let b =
(
1, x, . . . , xn−1

)
be the basis ofM. As we showed in

Section 2.3, the corresponding polynomial transform isDFTn. Assumen = km. Let r(x) = xk, and

B =
〈
r(x)

〉
. ThenxℓB ∼= C[y]/(ym − 1), for ℓ = 0 . . . k− 1, andA = ⊕k−1

ℓ=0x
ℓB. Choosing the same basis

b(ℓ) = {1, y, . . . , ym−1} in eachC[y]/(ym − 1) ∼= xℓB yieldsPb(ℓ),β(ℓ) = DFTm . By Theorem 6.3.1, we
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obtain

DFTkm = M · (Ik ⊗DFTm) ·B.

Here,B = Lkm
k andM = (D0M0| . . . |Dk−1M0) , whereM0 = 1k ⊗ Im, andDℓ = diag

(
ωℓi
km

)
0≤i<km

for 0 ≤ ℓ < k. Hence, we can rewrite

M = Lkm
k (Im ⊗DFTk)T

km
k Lkm

m .

to obtain the well-known general-radix Cooley-Tukey FFT algorithm [5,55]:

DFTkm = Lkm
k (Im ⊗DFTk)T

km
k Lkm

m (Ik ⊗DFTm)Lkm
k

= Lkm
k (Im ⊗DFTk)T

km
k (DFTm⊗Ik) . (6.19)

6.4.3 Good-Thomas FFT

In this section, we derive the general-radix Good-Thomas FFT using Theorem 6.3.1. Similarly to Sec-

tion 6.4.2, Corollary 6.3.3 is sufficient in this case.

ConsiderA = M = C[x]/(xn − 1). Let b =
(
1, x, . . . , xn−1

)
be the basis ofM. As we showed in

Section 2.3, the corresponding polynomial transform isDFTn. Assumen = km, such thatgcd(k,m) = 1.

Let r(x) = xk andB =
〈
r(x)

〉
. ThenxℓmB ∼= C[y]/(ym − 1), for ℓ = 0 . . . k − 1, andA = ⊕k−1

ℓ=0x
ℓmB.

Choosing the same basisb(ℓ) = {1, y, . . . , ym−1} in eachC[y]/(ym−1) ∼= xℓmB yieldsPb(ℓ),β(ℓ) = DFTm .

By Theorem 6.3.1, we obtain

DFTkm = M · (Ik ⊗DFTm) ·B.

B is the permutation matrix that maps the list
(
0, 1, . . . , km− 1

)
into

(
ikk + imm

)
, where indices0 ≤

ik < m, 0 ≤ im < k, andik runs faster. This mapping is known asRuritanianor Good’smapping [99].

Further,

M = (D0M0| . . . |Dk−1M0) ,
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whereM0 = 1k ⊗ Im, andDℓ = diag
(
ωℓi
k | 0 ≤ i < km

)
for 0 ≤ ℓ < k. We can rewrite

M = PLkm
m (DFTk ⊗Im) ,

whereP is the permutation matrix for theCRT mapping [57] that maps the list
(
0, 1, . . . , km− 1

)
into

(
ikk

−1k + imm
−1m

)
; here, indices0 ≤ ik < m, 0 ≤ im < k, andik runs faster.k−1 is the multiplicative

inverse ofk modulom; andm−1 is the multiplicative inverse ofm modulok.

Hence, we obtain the Good-Thomas (or prime-factor) FFT algorithm [99]:

DFTkm = PLkm
m (DFTk ⊗Im) (Ik ⊗DFTm)B

= PLkm
m (DFTk ⊗DFTm)B.

6.5 Fast Discrete GNN Transforms

In this section, we apply Theorem 6.3.1 to construct decompositions of discrete GNN Fourier transforms.

In particular, we identify classes of finite discrete GNN models of the formA = M = C[x]/p(x) that can

be decomposed into the induction of the formA = B ⊕ t(x)B, whereB itself is a polynomial algebra that

corresponds to a finite discrete GNN model. We then use this induction to decompose the corresponding

polynomial transformPb,α of A into the direct sum of two polynomial transform ofB, which are discrete

GNN transforms as well. We demonstrate that ifA satisfies specific conditions, then the cost of such

decomposition is linear.

We then derive the conditions that the polynomial algebraB has to satisfy such that Theorem 6.3.1 can

then be applied recursively. As a result, we identify a classof finite discrete GNN models that possess a fast

O(n log2 n) computational algorithm for their corresponding polynomial transforms.

6.5.1 Preliminaries

Let
(
Pk(x)

)
k≥0

be a family of orthogonal polynomials that satisfy the recursion

xPk(x) = ak−1Pk−1(x) + bkPk(x) + akPk+1(x), (6.20)
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with P0(x) = 1 andP1(x) = (x− b0)/a0.

Consider the finite discrete GNN model

A = M = C[x]/Pn(x), (6.21)

and letb =
(
Pk(x)

)
0≤k<n

be the basis ofM. The corresponding polynomial transform (4.17) isPb,α. Let

us denote the corresponding shift matrix (4.20) as

S = φ(x) =




b0 a0

a0 b1 a1

. . .
. . .

. . .

an−3 bn−2 an−2

an−2 bn−1




. (6.22)

Lemma 6.5.1 Let bk = 0 for all 0 ≤ k < K in (6.20). Then for any constantd ∈ R polynomialsP2k(x),

0 ≤ k < ⌊K/2⌋, can be expressed as

P2k(x) = Qk(x
2 − d), (6.23)

where polynomialsQk(y) are also orthogonal polynomials that satisfy the recursion

yQk(y) = a2k−2a2k−1Qk−1(y) + (a22k−1 + a22k − d)Qk(y) + a2ka2k+1Qk+1(y), (6.24)

withQ0(y) = 1 andQ1(y) = (y − a20 + d)/a0a1.

Proof: The proof is by induction. By definition,

P0(x) = 1 = Q0(x
2 − d,

P2(x) = (x2 − a20)/a0a1 = Q1(x
2 − d).
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Assume that (6.23) hold for allk ≤ k0. Then, from (6.20) we obtain

(x2 − d)P2k0(x) = a2k0−2a2k0−1P2k0−2(x) + (a22k0−1 + a22k0 − d)P2k0(x) + a2k0a2k0+1P2k0+2(x)

and hence,

P2k0+2(x) =
(x2 − d)− (a22k0−1 + a22k0 − d)

a2k0a2k0+1
P2k0(x)−

a2k0−2a2k0−1

a2k0a2k0+1
P2k0−2(x)

=
(x2 − d)− (a22k0−1 + a22k0 − d)

a2k0a2k0+1
Qk0(x

2 − d)− a2k0−2a2k0−1

a2k0a2k0+1
Qk0−1(x

2 − d)

= Qk0+1(x
2 − d),

since from (6.24) we have

Qk+1(y) =
y − (a22k−1 + a22k − d)

a2ka2k+1
Qk(y)−

a2k−2a2k−1

a2ka2k+1
Qk−q(y).

�

6.5.2 Decomposition of Discrete GNN Fourier Transforms of Even Sizes

We identify a class of finite discrete GNN models of the formA = M = C[x]/p(x), wheredeg p(x) = 2m

is even, that can be decomposed into the induction of the formA = B⊕t(x)B.Here,B itself is a polynomial

algebra that corresponds to a finite discrete GNN model; and either t(x) = x or t(x) = x−1.

Decomposition using transversal
(
1, x−1

)

Theorem 6.5.2 Let bk = 0 for 0 ≤ k < n in (6.20). Consider the corresponding signal model(6.21), and

assume thatn = 2m.

Let Pq,β be the polynomial transform corresponding to the signal model with the polynomial algebra

C[y]/Qm(y) with basisq =
(
Qk(y)

)
0≤k<m

.



6.5. FAST DISCRETE GNN TRANSFORMS 117

Then the polynomial transformPb,α can be decomposed as follows:

Pb,α =



Jm −Jm
Im Im


 ·

(
Im ⊕ diag

(
α−1
k

)
m≤k<n

)
·
(
I2 ⊗ Pq,β

)
·B. (6.25)

Here,

B =
(
Im ⊕ S′

)
· Ln

2 ,

whereS′ is the submatrix ofS in (6.22)constructed from its even rows (with indices0, 2, . . . , n − 2) and

odd columns (with indices1, 3, . . . , n− 1).

Proof: It follows from Lemma 6.5.1 that, ford = 0, Pn(x) = Qm(x2), whereQk(x) satisfy the recursion

yQk(y) = a2k−2a2k−1Qk−1(y) + (a22k−1 + a22k)Qk(y) + a2ka2k+1Qk+1(y),

with Q0(y) = 1 andQ1(y) = (y − a20)/a0a1. In particular,Pn(x) contains only even powers ofx.

Let α0 < α1 < . . . < αn−1 be then distinct roots ofPn(x) (since it is a separable polynomial). Then

αk = −αn−1−k for 0 ≤ k < n. Moreover,0 is not a root ofPn(x): Pn(0) 6= 0.

Consider the polynomialr(x) = x2 ∈ A and the subalgebraB =
〈
r(x)

〉
generated by this polynomial.

r(x) mapsα =
(
αk

)
0≤k<n

to β =
(
βi
)
0≤i<m

, whereβi = α2
i = α2

n−1−i, By Theorem 6.1.2, we obtain

B ∼= C[y]/Qm(y). Let b(0) =
(
Qk(y)

)
0≤k<m

be the basis ofC[y]/Qm(y). It corresponds to the basis
(
P2k(x)

)
0≤k<m

of B.

Furthermore, consider the polynomialt(x) = (Pn(0) − Pn(x))/xPn(0) ∈ A. Observe thatt(x) is

indeed a polynomial, andt(αk) = α−1
k for anyαk. Thus,

t(x) ≡ x−1 mod Pn(x).

In the remainder of the proof, we will uset(x) = x−1.

We can use Theorem 6.2.6 to verify thatT =
(
1, t(x)

)
is a transversal ofB in A, such thatA =

B ⊕ t(x) · B. From Theorem 6.2.5 we obtaint(x)B ∼= C[y]/Qm(y). Let b(1) =
(
t(x)Qk(r(x))

)
0≤k<m

be

the basis ofC[y]/Qm(y). It corresponds to the basis
(
x−1P2k(x)

)
0≤k<m

of t(x)B.
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Hence, from Theorem 6.3.1 we obtain the following decomposition:

Pb,α =M · Pb(0),β ⊕ Pb(1),β ·B.

Here,B is the base change matrix fromb to b(0) ∪ b(1). Observe that

P2k+1 = a2kx
−1P2k + a2k+1x

−1P2k+2.

Hence,

B =
(
Im ⊕ S′

)
· Ln

2 ,

whereS′ is the submatrix ofS in (6.22) constructed from its even rows (with indices0, 2, . . . , n − 2) and

odd columns (with indices1, 3, . . . , n− 1).

Sinceβi = α2
i = α2

n−1−i, it follows from the construction of the matrixM in Theorem 6.3.1 that

M =



Jm −Jm
Im Im


 ·

(
Im ⊕ diag

(
α−1
k

)
m≤k<n

)
.

Finally, by construction,Pb(0),β = Pb(1),β = Pq,β. �

Decomposition using transversal
(
1, x

)

Alternatively, we can use a different transversal
(
1, x

)
for the subalgebraB < A constructed in Theo-

rem 6.5.2. This approach leads to a different decompositionof Pb,α, as we demonstrate in the following

theorem.

Theorem 6.5.3 Let bk = 0 for 0 ≤ k < n in (6.20). Consider the corresponding signal model(6.21), and

assume thatn = 2m.

Let Pq,β be the polynomial transform corresponding to the signal model with the polynomial algebra

C[y]/Qm(y) with basisq =
(
Qk(y)

)
0≤k<m

.
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Then the polynomial transformPb,α can be decomposed as follows:

Pb,α =



Jm −Jm
Im Im


 ·

(
Im ⊕ diag

(
αk

)
m≤k<n

)
·
(
I2 ⊗ Pq,β

)
·B. (6.26)

Here,

B =
(m−1∏

i=0

Bi

)
· Ln

2 ,

Here,Bi is an identity matrix except its(m+ 1 + i,m+ 1 + i)-th and(m+ i,m+ 1 + i)-th elements are

equal to1/a2k and−a2k−1/a2k, respectively.

Proof: The proof is identical to the proof of Theorem 6.5.2. The onlydifference is that for the construction

of B we use the property

P2k+1(x) =
x

a2k
P2k(x)−

a2k−1

a2k
P2k−1(x).

We use this property to compute the bases change matrixB in steps that correspond to the matricesB0, B1, . . . , Bm−1.

�

Generalization to other finite discrete GNN models

The factorizations ofPb,α constructed in Theorems 6.5.2 and 6.5.3 can be generalized to a larger class of

finite discrete GNN models.

Theorem 6.5.4 Let bk = d for 0 ≤ k < n in (6.20), whered ∈ R is an arbitrary constant. Consider the

corresponding signal model(6.21), and assume thatn = 2m.

In addition, consider another family of orthogonal polynomials
(
P̃k(x)

)
k≥0

that satisfy(6.20) with

bk = 0 for 0 ≤ k < n, and the sameak as forPk(x) above. Denote the corresponding signal model(6.21)

as Ã = M̃ = C[x]/P̃n(x), and fix the basis̃b =
(
P̃k(x)

)
0
≤ k < n. Denote the zeros of̃Pn(x) as

α̃ =
(
α̃0, . . . , ˜αn−1

)
.

Then the polynomial transformPb,α can be computed as follows:

Pb,α = diag
(√ Pn−1(αk)P ′

n(αk)

P̃n−1(αk − d)P̃ ′
n(αk − d)

)
· Pb̃,α̃. (6.27)
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Proof: Observe that the shift matrixS in (6.22) for the signal modelA = M = C[x]/Pn(x) and the shift

matrix S̃ for the signal modelÃ = M̃ = C[x]/P̃n(x) are related as

S = S̃ + dIn.

Next, observe thatS is symmetric. Hence, it has an orthogonal eigenvector matrix V , and can be factored

as

S = V · diag
(
α0, . . . , αn−1

)
· V T .

It follows from Section 4.3 that

V = PT
b,αD

1/2,

where

D = diag
( 1

Pn−1(αk)P ′
n(αk)

)
0≤k<n

.

The same applies tõS. It also has an orthogonal eigenvector matrixṼ , and can be factored as

S̃ = Ṽ · diag
(
α̃0, . . . , α̃n−1

)
· Ṽ T ,

where

Ṽ = PT
b̃,α̃
D̃1/2,

and

D̃ = diag
( 1

P̃n−1(α̃k)P̃ ′
n(α̃k)

)
0≤k<n

.

It follows from S = S̃ + dIn thatV = Ṽ andαk = α̃k + d for all k [100,101]. Hence

PT
b,αD

1/2 = PT
b̃,α̃
D̃1/2,

from which we immediately derive (6.27). �
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Operational cost analysis. The computation of the matricesM andB in Theorems 6.5.2 and 6.5.3

requires3n/2 operations each. In addition, the computation of the diagonal matrixD in Theorem 6.5.4

requiresn operations. Hence, the factorization (6.27) allows us to computePb,α in 4n+2C(n/2) operations

(additions and multiplications), whereC(n/2) denotes the number of operations required to compute the

polynomial transformPq,β of sizen/2.

In general, we cannot apply Theorem 6.5.4 recursively to decomposePq,β, since, in general, the cor-

responding orthogonal polynomials
(
Qm(y)

)
m≥0

may not satisfy the conditions of the theorem anymore.

However, we can identify a class of finite GNN models, for which Theorem 6.5.4 can be applied recursively

all the way ton = 2, thus yielding a fast algorithm. We specify these models later in Section 6.5.4.

Example 6.5.5 Consider the normalized Hermite polynomialŝHk(x) discussed in Example 4.3.1. Let the

model(6.21)beA = M = C[x]/Ĥn(x) with basisb =
(
Ĥ0, . . . , Ĥn−1

)
, and assumen = 2m.

Since the normalized Hermite polynomials satisfy the recursion

xĤk(x) =

√
k

2
Ĥk−1(x) +

√
k + 1

2
Ĥk+1(x),

andn = 2m is even, we can apply either Theorem 6.5.2 or Theorem 6.5.3.
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Let us apply the former, for example, in the case whenn = 6. We obtain the decomposition

Pb,α =




1 −3.3243 7.1069 −10.9258 12.0053 −8.0754

1 −1.8892 1.8165 −0.4388 −1.1587 1.3714

1 −0.6167 −0.4382 0.6596 0.1761 −0.6385

1 0.6167 −0.4382 −0.6596 0.1761 0.6385

1 1.8892 1.8165 0.4388 −1.1587 −1.3714

1 3.3243 7.1069 10.9258 12.0053 8.0754




=




1 −0.4254

1 −0.7486

1 −2.2932

1 2.2932

1 0.7486

1 0.4254




·



I2 ⊗




1 −0.4382 0.1761

1 1.8165 −1.1587

1 7.1069 12.0053







×




1

1

1

0.7071

1 1.2247

1.4142 1.5811




.

6.5.3 Decomposition of Discrete GNN Fourier Transforms of Odd Sizes

We now identify a class of finite discrete GNN models of the formA = M = C[x]/p(x), wheredeg p(x) =

2m + 1 is odd, that can be decomposed into the induction of the formA = B ⊕ t(x)B. Here,B itself is

a polynomial algebra that corresponds to a finite discrete GNN model; andt(x) = x. The results and

decompositions are analogous to those in Section 6.5.2.
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Decomposition using transversal
(
1, x

)

Theorem 6.5.6 Let bk = 0 for 0 ≤ k < n in (6.20). Consider the corresponding signal model(6.21), and

assume thatn = 2m+ 1.

Let Pq,β be the polynomial transform corresponding to the signal model with the polynomial algebra

C[y]/Qm+1(y) with basisq =
(
Qk(y)

)
0≤k<m+1

.

LetPq′,β′ be the polynomial transform corresponding to the signal model with the polynomial algebra

C[y]/x−1Qm+1(y) with basisq′ =
(
Qk(y)

)
0≤k<m

. Observe thatβ′ = β \ {0}.

Then the polynomial transformPb,α can be decomposed as follows:

Pp,α =




Jm −Jm
1

Im Im




·
(
Im+1 ⊕ diag

(
αk

)
m+1≤k<n

)
·
(
Pq,β ⊕ Pq′,β′

)
· B. (6.28)

Here,

B =
(m−1∏

i=0

Bi

)
· Ln

2 ,

Here,Bi is an identity matrix except its(m+ 1 + i,m+ 1 + i)-th and(m+ i,m+ 1 + i)-th elements are

equal to1/a2k and−a2k−1/a2k, respectively.

Proof: The proof is identical to the proof of Theorem 6.5.3. The onlydifference is that nowxB ∼=

C[y]/x−1Qm+1(y), sinceαm = 0 is a zero ofPn(x), andt(0) = 0. Hence, by Theorem 6.2.5, the di-

mension ofxB ism. �

Generalization to other finite discrete GNN models

Similarly to the generalization in Section 6.5.2, we can factorize a larger class of finite discrete GNN models.

Theorem 6.5.7 Let bk = d for 0 ≤ k < n in (6.20), whered ∈ R is an arbitrary constant. Consider the

corresponding signal model(6.21), and assume thatn = 2m+ 1.

In addition, consider another family of orthogonal polynomials
(
P̃k(x)

)
k≥0

that satisfy(6.20) with

bk = 0 for all k ≥ 0, and the sameak as forPk(x) above. Denote the corresponding signal model(6.21)
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as Ã = M̃ = C[x]/P̃n(x), and fix the basis̃b =
(
P̃k(x)

)
0
≤ k < n. Denote the zeros of̃Pn(x) as

α̃ =
(
α̃0, . . . , ˜αn−1

)
.

Then the polynomial transformPb,α can be computed as follows:

Pb,α = diag
(√ Pn−1(αk)P ′

n(αk)

P̃n−1(αk − d)P̃ ′
n(αk − d)

)
· Pb̃,α̃. (6.29)

Proof: The proof is identical to the proof of Theorem 6.5.7. �

Operational cost analysis.Similarly to the discussion in Section 6.5.2, the computational cost ofPb,α

consists of the costs of matricesM andB, which add up to3n operations; the cost of diagonal matrixD,

which isn operations; the cost ofPq,β, which isC((n+ 1)/2); and the cost ofPq′,β′ .

Now, observe that the signal modelA = M = C[x]/x−1Qm+1(x) is not a finite GNN model of the

form (6.21). In this case, it may not be clear how to computePq′,β′ . However, observe that

Pq,β =




Q0(0) Q1(0) Q2(0) . . . Qm(0)

Qm(β1)

Pq′,β′

...

Qm(βm)



.

Hence, we can compute a matrix-vector productPq′,β′ · sby appending a0 to the input vectors, multiplying

it with Pq,β, and then dropping the first output:



Pq′,β′ · s

·


 = Pq,β ·




s

0


 .

Since we can usePq,β instead ofPq′,β′ , the total operational cost of computingPb,α is 4n + 2C((n +

1)/2) operations.

Similarly to the discussion in Section 6.5.2, we should notethat, in general, we cannot apply The-

orem 6.5.7 recursively to decomposePq,β, since, in general, the corresponding orthogonal polynomials
(
Qm(y)

)
m≥0

may not satisfy the conditions of the theorem anymore. However, we can identify a class of
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finite GNN models, for which Theorem 6.5.7 can be applied recursively all the way ton = 2, thus yielding

a fast algorithm.

Example 6.5.8 Consider the normalized Hermite polynomialŝHk(x) discussed in Example 4.3.1. Let the

model(6.21)beA = M = C[x]/Ĥn(x) with basisb =
(
Ĥ0, . . . , Ĥn−1

)
, and assumen = 2m+ 1.

Since the normalized Hermite polynomials satisfy the recursion

xĤk(x) =

√
k

2
Ĥk−1(x) +

√
k + 1

2
Ĥk+1(x),

andn = 2m + 1 is odd, we can apply Theorem 6.5.6. In the case of, for example, n = 5, we obtain the

decomposition

Pb,α =




1 −2.8570 5.0645 −6.0210 4.2150

1 −1.3556 0.5924 0.6432 −0.9490

1 0 −0.7071 0 0.6124

1 1.3556 0.5924 −0.6432 −0.9490

1 2.8570 5.0645 6.0210 4.2150




=




1 −2.0202

1 −0.9586

1

1 0.9586

1 2.0202




·







1 −0.7071 0.6124

1 0.5924 −0.9490

1 5.0645 4.2150




⊕



1 0.5924

1 5.0645







×




1

1

1

1.4142

1




·




1

1

1

1 −0.8165

0.8165




.
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6.5.4 Fast Algorithm for Discrete GNN Fourier Transforms

As we demonstrated in Sections 6.5.2 and 6.5.3, ifbk = d for 0 ≤ k < n in (6.20), then we can factorize

polynomial transformPb,α for the finite discrete GNN model (6.21) using Theorems 6.5.4and 6.5.7. The

factorization allows us to computePb,α using at most

4n+ 2C(⌊n+ 1

2
⌋)

operations, whereC(⌊n+1
2 ⌋) is the operational cost of computingPq,β of sizen/2 or (n + 1)/2 (hence,

⌊n+1
2 ⌋).

Recursive decomposition

If we can recursively apply the theorems from Sections 6.5.2and 6.5.3 to the resulting two polynomial

transformsPq,β of size⌊n+1
2 ⌋, we can further reduce the computational cost ofPb,α to, at most,

8n+ 4C(⌊n+ 1

4
⌋)

operations. Now,C(⌊n+1
4 ⌋) indicates the cost of discrete GNN transforms of size⌊n+1

4 ⌋.

The question is what the necessary conditions are that allowus to decomposePq,β recursively into two

smaller discrete GNN transforms. The following lemmas provides such conditions.

Lemma 6.5.9 Let n = 2m. Consider the model(6.21), and assume that Theorem 6.5.4 applies to the

correspondingPb,α, such that

Pb,α =M ·
(
I2 ⊗ Pq,β

)
· B.

Then we can apply Theorem 6.5.4 toPq,β, if the coefficientsak in (6.20)satisfy the conditions

a20 = a22k−1 + a22k (6.30)

for 1 ≤ k ≤ ⌊(n− 1)/2⌋.
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Proof: Consider the polynomials̃Pk constructed in Theorem 6.5.4, and the corresponding modelA =

M = C[x]/P̃n(x). The subalgebraB ∼= C[x]/Qm(y) has the basisq =
(
Q0(y), . . . , Qm−1(y)

)
of orthog-

onal polynomials that satisfy

yQk(y) = a2k−2a2k−1Qk−1(y) + (a22k−1 + a22k)Qk(y) + a2ka2k+1Qk+1(y),

with Q0(y) = 1 andQ1(y) = (y − a20)/a0a1 (we setd = 0 in Lemma 6.5.1).

If we now re-defineak andbk in (6.20) as

ak := a2ka2k+1,

b0 := a20,

bk := a22k−1 + a22k.

and assume that the condition (6.30) holds, we immediately observe that Theorem 6.5.4 applies to the model

B ∼= C[x]/Qm(y) with basisq =
(
Q0(y), . . . , Qm−1(y)

)
. �

An identical lemma applies in the casen = 2m+ 1. We state it here without a proof.

Lemma 6.5.10 Letn = 2m+ 1. Consider the model(6.21), and assume that Theorem 6.5.7 applies to the

correspondingPb,α, such that

Pb,α =M ·
(
Pq,β ⊕ Pq′,β′

)
·B.

Then we can apply Theorem 6.5.7 toPq,β, if the coefficientsak in (6.20)satisfy the conditions

a20 = a22k−1 + a22k (6.31)

for 1 ≤ k ≤ ⌊(n− 1)/2⌋.

Fast algorithms

Suppose we can recursively construct such factorizations for every polynomial transform of ever decreasing

sizes, until we reach polynomial transforms of size1. Let us indicate the operational cost of a discrete
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GNN transform obtained at thei-th decomposition step withCi(n), wheren is the size of this transform.

Then, by constructing the factorization ofPp,α until we reach polynomial transforms of size1, we obtain a

computational algorithm that requires approximately

C0(n) = 4n + 2C1(⌊
n + 1

2
⌋)

= 8n + 4C2(⌊
n + 1

4
⌋)

...

≈ 4n log2 n

operations.

It is now a straightforward task to identify the finite GNN models, for which such factorizations can

be performed. Here, we provide the simplest scenario whenn is a power of 2. This example gives an

idea of how these conditions are derived. Similar conditions can be derived for other sizesn, since at each

decomposition step we can apply Theorem 6.5.4 or 6.5.7, depending on the parity of the size of polynomial

transforms in the factorization.

The following theorem identifies a class of finite discrete GNN models, for which we can computePb,α

in 4n log2 n operations.

Theorem 6.5.11Consider the finite discrete GNN model(6.21). Letn be a power of2, i.e. log2 n ∈ N0.

Assume that

Pn(x) = (x2 − d0) ◦ · · · ◦ (x2 − dlog2 n−1), (6.32)

where◦ denotes the composition of polynomials:

f(x) ◦ g(x) = f(g(x)).

Then the corresponding discrete GNN transformPb,α can be computed using4n log2 n operations.

Proof: The proof follows immediately from the recursive application of Theorem 6.5.4 that is justified by

Lemma 6.5.9. �
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Observe that the GNN models described in Theorem 6.5.11 include (but are not limited to) the models

for the discrete cosine and sine transforms. Moreover, the algorithms can be made numerically stable by

orthogonalizing the corresponding polynomial transforms, as explained in Section 4.3.

Finally, notice that polynomial transforms associated with finite discrete GNN models described in

Theorem 6.5.11, can also be decomposed using other methods [6]. However, this is only possible in the case

whenn is a power of 2. As mentioned above, our approach allows us to construct fast algorithms for finite

GNN transforms of other sizes as well.

Sufficient condition. The necessary condition in Theorem 6.5.11 is also a sufficient condition. Namely,

for any polynomialPn(x) that can satisfies (6.32), there exists a list of orthogonal polynomials
(
Pk(x)

)
0≤k<n

that satisfy the recursion (6.20) withbk = 0. To find the recursion coefficients, we solve the following system

of equations for the given values ofd0, . . . , dlog2 n−1:

log2 n−1⋃

ℓ=0

{ 2ℓ−1∏

i=0

aici = dℓ,
{ 2ℓ−1∏

i=0

a2ℓ+1m−2ℓ+ic2ℓ+1m−2ℓ+i +
2ℓ−1∏

i=0

a2ℓ+1m+ic2ℓ+1m+i = dℓ
}
1≤m<n/2ℓ+1

}
.
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Chapter 7

Applications

In this chapter, we discuss potential applications of the theory of GNN signal models developed in Chapters 4

through 6.

7.1 Fast Signal Transforms

We can apply the module induction approach to construct novel fast algorithms for various discrete signal

transform that correspond to different signal models. Notice that the choice of models is not limited to only

the time model and various GNN models.

7.1.1 General-Radix Britanak-Rao FFT

We derive a novel fast general-radix algorithms forDFTn. It requiresO(n log n) operations. To the best of

our knowledge, this algorithm has not been reported in the literature.

In [59], Britanak and Rao derived a fast algorithm forDFT2m that can be written as the factorization

DFT2m = X2m
m

(
Im ⊕ Z−1

m

)
D2m

m

(
DCT-Im+1 ⊕DST-Im−1

)
B2m

m .

MatricesD2m
m , B2m

m , andX2m
m are specified in (C.4-C.6) by settingk = 1.

In Appendix C.1, we derive the following general-radix version of this algorithm:

131
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Theorem 7.1.1

DFT2km = L2km
k

(
I2m ⊗DFTk

)
X2km

m L2km
2m

(
Im ⊕ Z−1

m ⊕ I2(k−1)m

)
D2km

m

×
(
DCT-Im+1 ⊕DST-Im−1 ⊕Ik−1 ⊗ (DCT-IIm⊕DST-IIm)

)
B2km

m .

Here, D2km
m is a diagonal matrix, andB2km

m and X2km
m are 2-sparse matrices (that is, with each row

containing only two non-zero entries) specified in (C.4-C.6).

This factorization is obtained by inducing a subalgebraB =
〈
(xk + x−k)/2

〉
of an algebraA =

C[x]/(x2km−1) with transversalt0(x) = 1, t1(x) = (xk−x−k)/2, t2j(x) = xj(xk+1)/2, andt2j+1(x) =

xj(xk − 1)/2 for 1 ≤ j < k.

DFTk requiresO(k log k) operations;DCT-Im+1,DST-Im−1,DCT-IIm, andDST-IIm requireO(m logm)

operations each [2,5].D2km
m requiresn = 2km operations andB2km

m andX2km
m each require3n operations.

Hence, the algorithm forDFTn in Theorem 7.1.1 requiresO(n log n) operations.

7.1.2 General-Radix Wang Algorithm for DCT-4

We also derive a novel fast general-radix algorithms forDCT-IVn. It requiresO(n log n) operations. To

the best of our knowledge, this algorithm has not been reported in the literature.

In [66], Wang derived a fast algorithm forDCT-IV2m that can be written as the factorization

DCT-IV2m = K2m
2 ·

m−1⊕

j=0



cos 2m−2j−1

8m π (−1)j cos 2j+1−2m
8m π

cos 2j+1−2m
8m π (−1)j+1 cos 2m−2j−1

8m π




×(DCT-IIIm⊗I2)(K2m
2 )T ·




1

L
2(m−1)
2 · Im−1 ⊗DFT2

1



.

In Appendix C.2, we derive the following general-radix version of this algorithm:
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Theorem 7.1.2

DCT-IV2km = K2km
k (K2m

2 ⊗DCT-IVk)Y
2km
m · (DCT-IIIm⊗L2k

2 )(Kn
2k)

T

×Ik ⊗




1

L
2(m−1)
2 · Im−1 ⊗DFT2

1




(K2km
2m )T .

Here,Y 2km
m is a2-sparse matrix specified in(C.10).

This factorization is obtained by inducing a subalgebraB =
〈
T2k(x)

〉
of an algebraA = C[x]/T2km(x)

with transversalt2j(x) = Vj(x) andt2j+1(x) =Wj(x)(V2k−1(x)− V2k(x))/2 for 0 ≤ j < k.

DCT-IVk requiresO(k log k) operations, andDCT-IIIm requiresO(m logm) operations [2,5].Y 2km
m

requires3n operations, wheren = 2km. Hence, the algorithm forDCT-IVn in Theorem 7.1.2 requires

O(n log n) operations.

7.2 Compression of ECG Signals

In [102], we use the finite GNN model based on normalized Hermite polynomials to efficiently compress

electrocardiographic signals.

7.2.1 Processing of ECG Signals

Many signals encountered in electrophysiology often have (or can be assumed to have) a compact sup-

port. These signals usually represent the impulse responseof a system (organ) to an electrical stimulation

recorded on the body surface. Examples include electrocardiographic (ECG), electroencephalographic, and

myoelectric signals.

Visual analysis of long-term repetitive electrophysiological signals, especially in real time, is a tedious

task that requires the presence of a human operator. Computer-based systems have been developed to facil-

itate this process. For efficient storage, automatic analysis and interpretation, electrophysiological signals

are usually represented by a set of features, either heuristic, such as duration and amplitude, or formal, such

as coefficients of the expansion in an orthogonal basis. In the latter case, a continuous basis can be used,
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(a) (b)

Figure 7.1: (a) ECG structure. Reprinted from LabVIEW for ECG Signal Processing, National Instruments,
http://zone.ni.com/devzone/cda/tut/p/id/6349. (b) Example of a QRS complex (centered around the peak).

and the projection and reconstruction of a compact-supportsignal are computed using numerical methods

for integral approximation, such as a numerical quadrature. Alternatively, a discrete basis can be used, and a

discrete signal transform, such as DFT or DCT, can be appliedto a digitized signal—obtained by sampling

a continuous one.

In both continuous and discrete cases, usually only a few projection coefficients are used for the storage

and reconstruction of a signal, leading to a reconstructionerror. The goal of the compression optimization is

to minimize the error while achieving the greatest compression (for example, by using the fewest coefficients

possible).

We study the compression of QRS complexes, which are the mostcharacteristic waves of ECG sig-

nals [103]. The structure of an ECG signal and an example QRS complex are shown in Fig. 7.1. In par-

ticular, we examine the expansion of QRS complexes into the basis of Hermite functions. Such functions,

in their continuous form, provide a highly suitable basis for the representation and compression of QRS

complexes [103–106]. However, as we discuss in Section 7.2.3, the reported computer implementations of

such expansion suffer from certain limitations, such as theinability to obtain an exact reconstruction of a

signal, large computational cost, and an a priori selectionof coefficients for reconstruction.
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We propose an improved compression algorithm for QRS complexes that expands digitized signals into

the basis ofdiscreteHermite functions, obtained by sampling the continuous Hermite functions at specific

points, not necessarily on a uniform grid. This approach is based on the results obtained Chapters 4 and 6.

The proposed algorithm achieves the perfect reconstruction of signals, has a lower computational cost, and

allows us to choose coefficients for reconstruction from a larger pool of coefficients. Experiments comparing

the approximation accuracy demonstrate that the new algorithm performs on par with other algorithms for

low compression ratios (less than4.5), and outperforms them for higher compression ratios.

7.2.2 Expansion into Hermite Functions

Hermite functions

Consider the family of normalized Hermite polynomialŝHℓ(t), ℓ ≥ 0, discussed in Example 4.3.1. Recall

that they satisfy recursion (4.14), and hence can be constructed forℓ ≥ 2 as

Hℓ(t) =

√
2

ℓ
tHℓ−1(t)−

√
ℓ− 1

ℓ
Hℓ−2(t),

with H0(t) = 1 andH1(t) =
√
2t. These polynomials are orthogonal on the real lineR with respect to the

weight functione−t2 : ∫

R

Ĥℓ(t)Ĥm(t)e−t2dt =
√
π · δℓ−m. (7.1)

It immediately follows that functions

ϕℓ(t, σ) = π−1/4e−t2/2σ2
Ĥℓ(t/σ) (7.2)

are orthonormal onR with respect to the inner product

〈ϕℓ(t, σ), ϕm(t, σ)〉 =
∫

R

ϕℓ(t, σ)ϕm(t, σ)dt = δℓ−m. (7.3)

These functions are calledHermite functions. The set of Hermite functions{ϕℓ(t, σ)}ℓ≥0 is an orthonormal

basis in the Hilbert space of continuous functions defined onR [92, 93]. Any such functions(t) can be
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represented as

s(t) =
∑

ℓ≥0

cℓϕℓ(t, σ), (7.4)

where

cℓ = 〈s(t), ϕℓ(t, σ)〉 =
∫

R

s(t)ϕℓ(t, σ)dt.

The first four Hermite functions are shown in Fig. 7.2. Noticethat eachϕℓ(t, σ) quickly approaches zero

as the value of|t| increases, sinceHℓ(t/σ) is a polynomial of degreeℓ, and, as|t| → ∞, e−t2/2σ2
Hℓ(t/σ) →

0. Hence, we can assume that each Hermite function has a compactsupport. In particular, we assume

that firstL Hermite functions have the same compact support[−Tσ, Tσ], such thatϕℓ(t, σ) = 0 for t /∈

[−Tσ, Tσ], where0 ≤ ℓ < L, andTσ is a suitably chosen constant that depends onσ andL. If s(t) also has

a compact support of[−Tσ, Tσ], then we can compute the coefficientscℓ with a finite integral:

cℓ =

∫

R

s(t)ϕℓ(t, σ)dt =

∫ Tσ

−Tσ

s(t)ϕℓ(t, σ)dt. (7.5)

Compression

In practical applications, only a finite numberM of Hermite functions are used to represent the signals(t)

in (7.4). Accordingly, only a fewa priori selected coefficientscℓ0 , . . . , cℓM−1
are computed. Here,cℓk

corresponds toϕℓk(t, σ) in (7.5). Alternatively, a larger pool of coefficients can becomputed, from which

M ones are selected. It is well-known that for an orthonormal basis selecting coefficients with the largest

magnitude minimizes the approximation error computed as the energy of the difference between the signal

s(t) and its approximation withM basis functions.

Digital implementation

A computer-based computation of the coefficient (7.5) and the Hermite expansion (7.4) has to be performed

in the discrete form. The integral in (7.5) can be computed with a numerical quadrature using, for example,

a rectangle rule:

cℓ =

∫ Tσ

−Tσ

s(t)ϕℓ(t, σ)dt ≈
K∑

k=−K

s(τk)ϕℓ(τk, σ)(tk − tk−1). (7.6)
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(a) ϕ0(t, σ) (b) ϕ1(t, σ)

(c) ϕ2(t, σ) (d) ϕ3(t, σ)

Figure 7.2: First four Hermite functions (plotted for the same scaleσ).

Here,−T = t−K−1 < t−K < . . . < tK−1 < tK = T, and eachtk−1 ≤ τk ≤ tk. The signal is then

approximated withM Hermite functions as

ŝ(τk) =

M−1∑

m=0

cℓmϕℓm(τk, σ). (7.7)

Let tk be such thattk − tk−1 = ∆ for all k. Then (7.6) and (7.7) can be expressed in the matrix-vector

notation. Let

s=




s(τ−K)

...

s(τK)



, c =




c0
...

cM−1



, ŝ=




ŝ(τ−K)

...

ŝ(τK)



.

Then

c = ∆ΦTs and ŝ= Φc, (7.8)

whereΦ ∈ R
(2K+1)×M , such that itsm-th column is theℓm-th Hermite function sampled at the points
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τ−K , τ−K+1, . . . , τK :

Φk,m = ϕℓm(τk, σ)

for −K ≤ k ≤ K, 0 ≤ m < M.

Observe that for perfect reconstructionŝ= s, Φ must be an orthogonal matrix:ΦΦT = I2K+1.

Compression of QRS complexes: Previous work

The compression of QRS complexes using the expansion into continuous Hermite functions has been studied

in [103–106]. It was originally motivated by the visual similarity of QRS complexes, centered around their

peaks, and Hermite functions, as can be observed from Figs. 7.1 and 7.2. Varying the value ofσ allows us

to “stretch” or “compress” the Hermite functionsϕℓ(t, σ) to optimally match a given QRS complex.

Since ECG signals are usually available as discrete signalsequidistantly sampled atτk = k∆, previous

works usedtk = τk = k∆ in (7.8). In addition, they proposed to use only thefirst M Hermite functions

ϕ0(t, σ), . . . , ϕM−1(t, σ) for the approximation of QRS complexes.

In Section 7.2.3, we propose an improved compression algorithm that re-samples ECG signals at non-

equidistant points, and usesM Hermite functions that have thelargestcoefficientscℓ.

Hermite polynomial transforms

Recall from Example 4.3.1 that the polynomial transform (4.22) for normalized Hermite polynomials satis-

fies the condition

P−1
P,α = PT

P,αD, (7.9)

whereD ∈ R
n×n is a diagonal matrix whosek-th diagonal element is

√
2/n/Pn−1(αk)P

′
n(αk).

Using the decomposition algorithms for polynomial transforms derived in Section 6.5, a matrix-vector

product withPP,α can be computed with approximately3n + n2/4 operations for small values ofn, and

3n + 21.5n log22(n/2) operations for largen, instead ofn2 and43n log22 n, respectively [74]. As a result,

the cost is reduced approximately by a factor of 2. Similarly, we can use (7.9) to compute a matrix-vector

product withP−1
P,α with only 4n+ n2/4 and4n+ 21.5n log22(n/2) operations instead ofn2. This reduction

of the computational cost is especially significant for large values ofn.
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7.2.3 Proposed Algorithm

The compression algorithm based on the expansion into continuous Hermite functions has several important

limitations. It does not achieve the perfect reconstruction of a signals, sinceΦΦT 6= I2K+1 for τk = k∆. As

a result,̂swill not converge tos, regardless of the numberM of Hermite functions used for the construction

of an approximation. This problem could be solved by settingM = 2K + 1 and usingΦ−1 instead ofΦT

to computec in (7.8). However, the matrix-vector productΦ−1s requiresO((2K + 1)2) operations. This

cost can be prohibitive for largeK, and makes this approach impractical. Finally, the solutionsuggested in

previous works, that uses thefirstM Hermite functions, may not be the optimal choice for the construction

of ŝ with M basis functions.

Algorithm modifications. In Section 7.2.2 the parameterσ was used to “stretch” and “compress” the

Hermite functionsϕk(t, σ) relatively to the signals(t). Alternatively, we can fixσ = 1, and introduce a

parameterλ to “stretch” and “compress” signals(tλ). In this case the numerical quadrature (7.6) becomes

cℓ =

∫ Tλ

−Tλ

s(tλ)ϕℓ(t, 1)dt ≈
K∑

k=−K

s(τkλ)ϕℓ(τk, 1)(tk − tk−1).

Furthermore, we use different, non-equispaced sampling points. Letτk = αk+K , −K ≤ k ≤ K, be the

roots of the Hermite polynomialH2K+1(t), and define polynomialsPℓ(t) = 1√
2ℓℓ!

Hℓ(t). ThenΦ in (7.8)

has the form

Φ = π−1/4WPP,α, (7.10)

whereW = diag
(
e−α2

k
/2
)
0≤k<2K+1

is a diagonal matrix, andPP,α is given in (2.20).

Finally, if M = 2K + 1, then it follows from (7.9) that the columns ofΦ form an orthogonal basis:

ΦΦT = π−1/2W 2D−1 = Λ. (7.11)

Thus, to account for the vector norms, we must pre-multiply the input signalswith the weight matrixΛ−1.

Proposed algorithm. The proposed compression algorithm operates as follows. First, we sample ECG
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signals(t) at sampling pointsαk+Kλ, −K ≤ k ≤ K, to obtain a vector of samples

s=
(
s(α0λ), s(α1λ), . . . , s(α2Kλ)

)T

.

Then we compute vector of expansion coefficients

c = ∆ΦTΛ−1s,

whereΦ andΛ are given in (7.10) and (7.11). Finally, we construct vectorĉ by keeping onlyL coefficients

with the largest magnitudes inc and setting others to zero. Then we useĉ to obtain signal approximation

ŝ= ∆−1Φĉ.

Advantages. The proposed algorithm addresses all limitations of the original compression algorithms

based on continuous Hermite functions. The exact reconstruction of signals can be achieved by using all

L = 2K + 1 coefficients to obtain̂c. Further, to minimize the approximation error, we can compute all

coefficientscℓ for 0 ≤ ℓ < 2K + 1, and only after that pick a few to obtain̂c. This is a practical approach,

since the computational cost of bothΦ andΦT is now smaller, as explained in Section 7.2.2,

7.2.4 Experiments

Setup

In order to analyze the performance of the proposed compression algorithm, we study the compression of

QRS complexes extracted from ECG signals obtained from the MIT-BIH ECG Compression Test Database [107].

A total of N = 29 QRS complexes are used. Each complex is available as a discrete signal of length

2K + 1 = 27, and represents a continuous signal of duration 104 milliseconds sampled at 250 Hz.

For the original compression algorithm that uses continuous Hermite functions, we compute2K + 1

coefficientsc0, . . . , c26. Among them, we select1 ≤ L ≤ 27 coefficients with the largest magnitude,
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Figure 7.3: A QRS complex and its approximations with 10% and5% errors.

construct the approximation̂susing the transpose ofΦ, and compute the approximation error

EL =
||̂s− s||2
||s||2

.

For the new compression algorithm, we have to re-sample the QRS complexes at pointsτkλ proportional

to the rootsτk of P2K+1(t). To do so, we interpolate the available discrete signals withsinc functions, and

sample it at pointsτkσ. Then we compute2K + 1 coefficients, selectL ones with the largest magnitude,

construct the approximation using the inverse transform, and compute the approximation error.

In addition, we study the accuracy of compression algorithms based on two widely-used orthogonal dis-

crete signal transforms—DFT and DCT. As above, we apply the transforms tos, selectL largest coefficients,

and compute the approximation error of the reconstructionŝ.

The purpose of the experiment is to obtain average approximation errors of10% and5% with the fewest

coefficients possible. We assume that approximations that capture90% or 95% of the energy of a QRS

complex is sufficient to represent its important features for correct analysis and interpretation. Fig. 7.3 gives
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an example of such approximations.

Results

The average approximation errors that were computed duringthe experiments are plotted in Fig.7.4. Here,

Fig. 7.4(a) shows all approximation errors, and Fig. 7.4(b)shows only the ones less than10%. The x-axis

shows the number of coefficients used for reconstruction, and the y-axis shows the errors.

To obtain the average reconstruction error of10%, our algorithm requires onlyL = 5 coefficients out

of 2K + 1 = 27 (compression ratio5.4), while the original Hermite algorithm requires 6 coefficients, and

DFT and DCT-based algorithms require 7 coefficients (4.5 and3.86, respectively). To obtain the error of

5%, our algorithm, as well as the ones based on DFT and DCT, requires 8 coefficients (compression ratio

3.5), while the original Hermite algorithm requires 17 coefficients (1.6).

Discussion

As we observe from Fig.7.4, the new compression algorithm has the lowest approximation error among

all algorithms if the compression ratio is4.5 or higher; i.e. if we use up to 6 out of 27 coefficients for

reconstruction. For lower compression ratios, it performson par with the algorithms based on DFT and

DCT, and significantly outperforms the original Hermite algorithm.

The choice of the values for parametersσ andλ is crucial for optimal representation of signals. We have

obtained the best results usingσ = λ = 0.017 for all N = 29 test signals (these values are for variables

t and τk measured in seconds). However, in computer-based systems these parameters can be adjusted

automatically for each ECG signal to achieve a yet higher accuracy of compression and approximation.

7.3 Gauss-Markov Random Fields

In this section, we discuss the connection of finite discreteGNN models and Gauss-Markov random fields

that was originally suggested in [3]. In particular, we demonstrate that generalized discrete Fourier transform

for the finite GNN model is precisely the Karhunen-Loève transform matrix for a suitably defined first-

order Gauss-Markov random fields. This link provides an educational insight into the similarities of the
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(a) All errors.

(b) Errors less than10%.

Figure 7.4: Average approximation errors for different compression algorithms.
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deterministic and stochastic signal processing points of view.

Considern random variablesξ0, . . . , ξn−1 that satisfy the difference equation

ξk = ak−1ξk−1 + bkξk + akξk+1 + νk, (7.12)

whereνk is a zero-mean Gaussian noise.
(
ξk
)
0≤k<n

are called afirst-order Gauss-Markov random field

defined on the finite lattice0 ≤ k < n. We assume zero (Dirichlet) boundary conditionsξ−1 = 0 and

ξn = 0.

The Karhunen-Loève transform diagonalizes the covariance matrixΣ of the above Gauss-Markov ran-

dom fields, as well as its inverse. As demonstrated in [108, 109], the inverse of the covariance matrixΣ,

called thepotential matrix, is

Σ−1 =




b0 a0

a0 b1 a1

. . .
. . .

. . .

an−3 bn−2 an−2

an−2 bn−1




. (7.13)

Observe that it corresponds to the matrix representation ofthe basic shift (4.20) of the finite GNN model (4.16).

As immediately follows from Section 4.3, the Karhunen-Loève transform of the Gauss-Markov random

fields (7.12) is exactly the orthogonalized discrete GNN Fourier transformD−1/2Pb,α defined in (4.19).

7.4 Climate Modeling

In this section, we briefly discuss the need for fast computational algorithms for discrete GNN transforms

that arises in the climate modeling. For more detailed description of climate modeling we refer readers

to [110,111].
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Many computational climate models include integrals of thefollowing form:

∫ π

0
f(cosω)Pℓ(cosω)dω,

where0 ≤ ℓ < n, andPℓ(x) are Legendre polynomials discussed in Appendix A. Parameter ω corresponds

to the lattitude of a location.

It has been shown that for the functionsf(x) of interest to the climate modeling, such integrals can be

computedexactlyusing the Gaussian quadrature

∫ 1

−1
f(x)Pℓ(x)dx =

n−1∑

k=0

akPℓ(αk),

whereαk are roots ofPn(x) andak are properly selected coefficients that depend onf(x).

Hence, we need to calculate the following matrix-vector product:




∫ 1
−1 f(x)P0(x)dx
∫ 1
−1 f(x)P1(x)dx

...
∫ 1
−1 f(x)Pn−1(x)dx




=




P0(α0) P0(α1) . . . P0(αn−1)

P1(α0) P1(α1) . . . P1(αn−1)

...
...

...

Pn−1(α0) Pn−1(α1) . . . Pn−1(αn−1)




·




a0

a1
...

an−1



.

The matrix above is precisely the transpose of the discrete GNN transform of the finite discrete GNN

modelA = M = C[x]/Pn(x) with basis
(
P0(x), P1(x), . . . , Pn−1(x)

)
. Using the module induction ap-

proach developed in Chapter 6, we can reduce the computational cost of this transform.

7.5 Other Application

In addition, the infinite and finite GNN signal models can be applied in other areas. We discuss two examples

below.
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Signal compression

Efficient signal representation and compression may require a suitable signal expansion basis. In addition to

the examples and applications discussed throughout this thesis, other applications include the use of Hermite

polynomials for image coding and processing [112–114]; Laguerre polynomials for signal compression of

exponentially decaying signals [115] and speech coding [116].

Birth-death processes

Consider a discrete-state system or process with statest0, t1, t2, . . .. Suppose that a state can change from

tk only to tk−1, tk, or tk+1. Let the change from statetk to tk−1 occur at rateak−1; the change from statetk

to tk+1 occur at rateck; and staying in statetk occur at ratebk.

For example, in population modeling, statestk are associated with the population quantity, and can be

set totk = k. Then, if the current population count istk, a death occurs at rateak−1, and a birth occurs at

rateck. For this reasons, such processes are often calledbirth-death processes.

Another example can be drawn from the queuing theory. Consider a server with a buffer that accepts

and processes data packets every discrete moment of timetk. Then at each momenttk we assume that the

rate at which packets arrive isck, and the rate at which packets are processed isak−1.

We can associate a family of orthogonal polynomials
(
P0(x), P1(x), . . .

)
with such processes. Namely,

we require that they satisfy the recursion

x · Pk(x) = ak−1Pk−1(x) + bkPk(x) + ckPk+1(x).

Recall that this is precisely the recursion (A.1) for orthogonal polynomials.

Such polynomial are sometimes calledbirth-death polynomials. They have been used as convenient

tools for modeling birth-death processes [117–119]. SinceGNN signal models are based on the same

recursion (A.1), they can also be interpreted as models thatdescribe birth-death processes.



Chapter 8

Conclusion

8.1 Summary

In this thesis, we have answered important questions that contribute to the fundamentals of the signal pro-

cessing theory:

1) Do there exist linear, shift-invariant signal models of interest, not studied previously by the traditional

signal processing theory, or by the algebraic signal processing theory? How do we define signal process-

ing concepts for the new models?

2) How do we define and construct the appropriate tools for subband analysis of signals from the new

models, such as filter banks and analogs of the discrete Fourier transform?

We constructed a new, large family of signal models called generic nearest-neighbor models, and defined

and derived all relevant signal processing concepts for these models. Furthermore, we developed the theory

of subband analysis tools for these models that describes the design and implementation of filter banks for

infinite discrete generic nearest-neighbor signals, and efficient implementation of associated discrete Fourier

transforms for finite discrete generic nearest-neighbor signals.

8.2 Main Contributions

The main contributions of this thesis include:
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• Generic nearest-neighbor signal models.

We constructed the infinite and finite discrete generic nearest-neighbor signal models. These models are

based on the notion of the generic nearest-neighbor shift that significantly differs from the traditional

time shift. We identified the relevant signal processing concepts for these models, including the filter and

signal spaces,z-transform, the spectrum, the corresponding Fourier transform, the frequency response,

the convolution, and the frequency domain.

We also generalized the notions of low and high frequencies,as well as the degree of flatness, beyond the

domain of traditional time signals to the generic nearest-neighbor signals. The proposed generalization

extends to other models as well.

The proposed infinite and finite discrete generic nearest-neighbor signal models can serve as legitimate

alternatives to the infinite and finite discrete time models that are traditionally assumed in modern linear

signal processing.

• Filter banks.

We extended the theory of perfect-reconstruction filter banks to the infinite discrete generic nearest-

neighbor signal models. Prior to this thesis, design and implementation of filter banks was only studied

in the context of traditional time signal model.

We also introduced a combined approach to the design of filterbanks that combines two different ap-

proaches that consider filter banks either as arrays of band-pass filters, or as expansions of a signal into

properly designed signal bases or frames. The proposed approach can be further extended to future signal

models.

As a demonstration of the developed theory, we constructed two classes of perfect-reconstruction filter

banks for infinite discrete generic nearest-neighbor signals. First, we designed two-channel filter banks

that extract low-frequency and high-frequency componentsof an input signal. Second, we designed

multichannel filter banks for robust signal transmission that can tolerate partial coefficient loss and allow

for exact signal reconstruction from a subset of all coefficients.

The contribution of this work is two-fold. The more obvious goal is to construct perfect-reconstruction fil-
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ter banks for the infinite discrete generic nearest-neighbor signals. However, a more general contribution

is the extension of the ASP theory with new, advanced concepts that have not been considered previously.

These concepts include the notions of low and high frequency, degree of flatness, and, most importantly,

the notion of filter banks for alternative signal models.

• Fast signal transforms.

We introduced a generalized framework for the factorization of arbitrary polynomial transforms into prod-

ucts of sparse matrices. The approach is based on module induction—an algebraic structure that allows

us to decompose a signal module into smaller signal modules,hence expressing the original polynomial

transform via polynomial transforms of smaller sizes. Suchdecomposition, applied recursively to all

polynomial transforms in the factorization of an original polynomial transform, can lead to a significant

reduction of the computational cost of the polynomial transform.

We applied the developed theory to the factorization of discrete generic nearest-neighbor Fourier trans-

forms. We identified conditions, under which such factorization lead to a reduction in the computational

cost of the transforms. As an ultimate result, we identified aclass of discrete generic nearest-neighbor

Fourier transforms of sizen × n that can be computed only inO(n log2 n) operations, rather than in

O(n2).

We also demonstrated that the developed approach can be usedto re-derive existing and discover novel

fast algorithms for signal transforms that have already been thoroughly studied, such as discrete Fourier

transform and discrete cosine transform.

• Applications.

We studied the applications of generic nearest-neighbor signal models in several areas of signal pro-

cessing. In particular, the use of finite signal models in thecompression of electrocardiographic signals

resulted in improvements in the compression accuracy compared to traditional compression methods.

Also, we used the developed theory for polynomial transformdecomposition to discover fast algorithms

for widely-used signal transforms, including DCT and DFT. Finally, we discussed other potential appli-

cations, including the fast computation of Karhunen-Loéve transforms for Gauss-Markov random fields,

and the use of generic nearest-neighbor models in climate modeling.
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8.3 Future Work

Throughout the thesis, we identified several outstanding questions that still remain to be answered. They

can serve as indicators of potential directions for future research on generic nearest-neighbor signal models.

Continuous generic nearest-neighbor models.One of the most challenging questions is whether we can

construct infinite and finitecontinuousgeneric nearest-neighbor signal models. These models, on the one

hand, must be linear and shift-invariant. On the other hand,they must yield infinite and finite discrete

generic nearest-neighbor models after sampling. Unfortunately, the results reported in the literature to

date hint that, unlike for time and space models, there may not exist shift-invariant continuous generic

nearest-neighbor models [93].

Downsampling. Another intriguing question is connected to the existence of continuous models: What is

a proper way to downsampled discrete generic nearest-neighbor signals that have been band-pass filtered?

Certainly, a connection between the continuous and discrete models could have lead to the identification of

proper sampling techniques and sampling theorems. However, the absence of continuous models requires

us to search for other approach. For example, we may try to determine a proper sampling technique without

direct construction of continuous GNN models by using interpolation theory. This approach, was used to

re-derive the Nyquist sampling theorem with the help of Lagrange interpolation in [96]

Filter bank construction. In this thesis, we introduced an approach for filter bank construction for infinite

generic nearest-neighbor signals. However, at its presentstate, this approach requires laborious calculations

to construct even a simple filter bank, such as a Haar-like one. A better approach, such as one that avoids

the need to derive equations for each coefficient separately, is very much needed.

Fast algorithms. In this thesis, we identified a class of discrete generic nearest-neighbor Fourier trans-

forms, for which a fast algorithm can be constructed using the module induction technique. The resulting

algorithms requireO(n log2 n) operations. A discovery of fast algorithms for other transforms that are not

included in the reported class, will be an important and valuable extension of the developed theory.

Applications. As we discussed in Chapter 7, there exist numerous applications of generic nearest-neighbor

signal models in different areas of signal processing. For example, we can further explore the connection
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between finite discrete generic nearest-neighbor models and Gauss-Markov random fields. In particular, we

can construct fast algorithms for the Karhunen-Loève transform of certain Gauss-Markov random fields.

It would be of interest to investigate how to approximate a Gauss-Markov random fields, for which we do

not have a fast algorithms, with another Gauss-Markov random fields, for which we have one. Another

example is to study classes of signals, which can be efficiently represented and compressed using various

generic nearest-neighbor signal models.

Each of the above questions represents a considerable research challenge. Answering it will be a valu-

able contribution to the fundamental signal processing theory, as well as a deep insight into signal modeling.
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Appendix A

Orthogonal Polynomials

A.1 Definition and Properties

There is a large body of literature dedicated to orthogonal polynomials and their properties. A thorough

discussion can be found in [90, 91, 94, 120, 121]. Here, we discuss and, if necessary, derive only those

properties that are later used in this thesis.

Definition

PolynomialsP = {Pk(x)}k≥0 that satisfy the three-term recursion

x · Pk(x) = ak−1Pk−1(x) + bkPk(x) + ckPk+1(x), (A.1)

P0(x) = 1, P−1(x) = 0,

whereak, b,ck ∈ R satisfy the conditionakck > 0 for k ≥ 0, are calledorthogonal polynomials.
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Orthogonality

By Favard theorem, there exists an intervalW ⊆ R and a weight functionµ(x), non-negative onW , such

thatPn are orthogonal overW with respect toµ(x):

∫

x∈W
Pk(x)Pm(x)µ(x)dx = µkδk−m. (A.2)

Here,

||Pk(x)||2,µ =
(
〈Pk(x), Pk(x)〉µ

)1/2
= µ

1/2
k

is theL2
µ-norm ofPk(x) induced by the inner product

〈f(x), g(x)〉µ =

∫

x∈W
f(x)g(x)µ(x)dx. (A.3)

Note that allµk are finite, which holds if
∫
x∈W p(x)µ(x)dx < ∞ is finite for any polynomialp(x) of an

arbitrary degree.

Basis of orthogonal polynomials

The set of orthogonal polynomials{Pk(x)}k≥0 is an orthogonal basis in the Hilbert space of all polynomials

defined on the intervalW , with the inner product (A.3). Respectively,

{µ−1/2
k Pk(x)}k≥0

is an orthonormal basis in the above space .

Roots ofPn(x)

Orthogonal polynomialPn(x) has exactlyn real, distinct rootsα0 < ... < αn−1 that lie within the interval

of orthogonalityW :

αk ∈W

for all 0 ≤ k < n. Hence,Pn(x) is a separable polynomial of degreen.
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PolynomialPn(x) is a characteristic polynomial (up to a scalar factor) of thefollowing tridiagonal

matrix:

S =




b0 a0

c0 b1 a1

c1 b2
. . .

. . .
. . . an−2

cn−2 bn−1




. (A.4)

This meansα0, . . . , αn−1 are exactly the eigenvalues ofS. This property allows us to straightforwardly

compute the roots ofPn(x).

Even and odd polynomials

In the special case, when allbk = 0 in the recursion (A.1), each polynomialPk(x) is an even polynomial

for evenk = 2m: P2m(−x) = P2m(x), and odd for oddk = 2m+ 1: P2m+1(−x) = −P2m+1(x).

Interval of orthogonality

The orthogonality intervalW ⊆ R can be finiteW = [A,B], semi-infiniteW = [A,∞), or infiniteW = R.

Hereafter, we assume thatW is one of the following:

- W = [−1, 1];

- W = [0,∞);

- W = R.

Any family of orthogonal polynomials
(
Pk(x)

)
k≥0

can be scaled and shifted to be orthogonal on one of the

above intervals using a linear transformation

x→ ax+ b,

wherea andb are appropriately selected constants.
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The orthogonality intervalW can be determined by computing lower and upper bounds on the roots of

polynomialsPk(x) for increasingk. These bounds can be estimated using the recursion coefficients ak, bk,

andck in recursion (A.1). If both lower and upper bounds are finite,then orthogonality intervalW is finite.

If only one bound is finite, the interval is semi-infinite. If both bounds are infinite, the interval is the entire

real lineR.

This is a valid technique, since the roots of orthogonal polynomials satisfy the following “expansion”

property: ifαn,min andαn,max are, respectively, the smallest and largest roots ofPn(x), thenαn+1,min <

αn,min andαn+1,max > αn,max.

Decay ofµ(x)

In general, it is non-trivial to determine the weight functionµ(x) solely from the recursion (A.1). Neverthe-

less, we can still estimate its behavior in certain cases. Namely, if W is a semi-infinite or infinite interval

[0,∞) orR, respectively, thenµ(x) decreases rapidly for largex. It follows from the requirement that each

µk must be finite: ∫

x∈W
P 2
k (x)µ(x)dx = µk <∞

even though

lim
x→∞

|Pk(x)Pm(x)| = ∞.

Hence, the decrease rate of weight functionµ(x) is faster than polynomial:

µ(x) = o(x−k) (A.5)

for anyk ≥ 0.

A.2 Chebyshev Polynomials

Among all orthogonal polynomials,Chebyshevpolynomials are arguably the most well-studied ones [16,

17].
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C1 Closed form forCn Weight functionµ(x) Symmetry

T x cos (nθ) (1− x2)−1/2 T−n = Tn

U 2x sin (n+1)θ
sin θ (1− x2)1/2 U−n = −Un−2

V 2x− 1
cos (n+ 1

2
)θ

cos θ
2

(1 + x)1/2(1− x)−1/2 V−n = Vn−1

W 2x+ 1
sin (n+ 1

2
)θ

sin θ
2

(1− x)1/2(1 + x)−1/2 W−n = −Wn−1

Table A.1: Chebyshev polynomials and their properties.

Chebyshev polynomialsCk(x) satisfy the recursion

xCk+1(x) =
1

2
Ck−1(x) +

1

2
Ck+1(x)

for k ≥ 1. They are orthogonal on intervalW = [−1, 1].

PolynomialC0(x) = 1 is fixed. However, depending on the choice ofC1(x), different orthogonal

polynomials may be constructed. They are known as Chebyshevpolynomials of first, second, third, and

fourth kind; they are denotes asTk(x), Uk(x), Vk(x), andWk(x), respectively.

A crucial distinction of Chebyshev polynomials from other orthogonal polynomials is that there exist

closed-form expression for their roots. They have been derived using the following property of Chebyshev

polinomials: settingx = cos θ allows us to express Chebyshev polynomials in their trigonometric closed

formCn(cos θ) as functions of cosines and sines ofθ.

Main properties of Chebyshev polynomials are listed in Table A.1.

A.3 Other Orthogonal Polynomials

As we discussed above, all orthogonal polynomials have either closed, semi-infinite, or infinite intervals of

orthogonality. Furthermore, these intervals can be scaledand shifted to be[−1, 1], [0,∞), or R.

This property of orthogonal polynomials allows researchers to organize families of orthogonal polyno-

mials into three large classes based on the interval of orthogonality. Each of these classes are named after

one of their well-known representatives.

1) Jacobi-like polynomialsare orthogonal polynomials with orthogonality interval that can be scaled and
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shifted to[−1, 1]. These polynomials have the general form

P (a,b)
n (x) =

Γ(a+ n+ 1)

n!Γ(a+ b+ n+ 1)

n∑

k=0

(
n

k

)
Γ(a+ b+ n++k + 1)

Γ(a+ k + 1)

(x− 1

2

)k
.

They are orthogonal over[−1, 1] with respect to weight function

µ(a,b)(x) = (1− x)a(1 + x)b

as follows:

∫ 1

−1
P

(a,b)
k (x)P (a,b)

m (x)µ(a,b)(x)dx =
2a+b+1

2k + a+ b+ 1

Γ(k + a+ 1)Γ(k + b+ 1)

k!Γ(k + a+ b+ 1)
δk−m.

BesidesJacobipolynomials, other well-known polynomials of this class are Gegenbauerpolynomials,

Legendrepolynomials, and four kinds types of Chebyshev polynomials.

2) Laguerre-like polynomialsare orthogonal polynomials with orthogonality interval that can be scaled and

shifted to[0,∞). These polynomials have the general form

L(a)
n (x) =

n∑

k=0

(−1)k
(
n+ a

n− k

)
xk

k!
.

They are orthogonal over[0,∞) with respect to weight function

µ(a)(x) = xae−x

as follows: ∫ ∞

0
L
(a)
k (x)L(a)

m (x)µ(a)(x)dx =
Γ(k + a+ 1)

k!
δk−m.

PolynomialsL(0)
n (x), for a = 0, are known asLaguerrepolynomials. They are usually denoted simply

asLn(x).

3) Hermite-like polynomialsare orthogonal polynomials with orthogonality interval that can be scaled and



A.3. OTHER ORTHOGONAL POLYNOMIALS 159

Polynomials Recursion Weightµ(x) Norm ||Pk(x)||2,µ

Legendre xPk = k
2k+1Pk−1 +

k+1
2k+1Pk+1 1

√
2

2k+1

Laguerre xLk = −kLk−1 + (2k + 1)Lk − (k + 1)Lk+1 e−x 1

Hermite xHk = kHk−1 +
1
2Hk+1 e−x2 √

k!2k
√
π

Table A.2: Orthogonal polynomials and their properties.

shifted toR. These polynomials have the general form

H(a)
n (x) = (2a)−n/2n!

⌊n/2⌋∑

k=0

(−1)k

k!(n − 2k)!

(√2x√
a

)n−2k
.

They are orthogonal overR with respect to weight function

µ(a)(x) = e−x2/2α

as follows: ∫

R

H
(a)
k (x)H(a)

m (x)µ(a)(x)dx = a−(k+m+1)/2k!
√
2πδk−m.

PolynomialsH(1/2)
n (x), for a = 1/2, are known asHermitepolynomials. They are usually denoted

simply asHn(x).

In Table A.2, we list the properties of several families of orthogonal polynomials that are used or men-

tioned in this thesis. Recall that, in general, there are no closed-form expressions for orthogonal polynomials

and their roots.
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Appendix B

Lapped Tight Frame Transforms

First, observe that we can rewrite (5.6) in thez-domain using polyphase analysis. Namely, we define the

N ×M polyphase matrixΦp(z) as1

Φp(z) =

q−1∑

r=0

Φrz
−r, (B.1)

with Φr as defined in (3.7). We sayΦp(z) has degreeq − 1, since any polynomial inΦp(z) has degree at

mostq − 1. Using (B.1), (5.6) is equivalent toΦp(z) being paraunitary:

Φp(z)Φ
∗
p(z) = I. (B.2)

Here,Φ∗
p(z) represents the Hermitian transpose of a polyphase matrix ofΦ(z), in which coefficients are

complex-conjugated,z−1 is replaced byz, and the matrix is transposed. A paraunitary square matrix is

unitary on the unit circle.

As mentioned in Section 3.1, oversampled filter banks correspond to frames inℓ2(Z), whose elements

form the columns ofΦ in (3.6). The converse is also true. This class of frames is called filter bank frames.

We have three equivalent representations of filter bank frames, and, by slight abuse of notation, we will

use them interchangeably as convenient and refer to all of them as frames:

• a set of vectors{ϕi}i∈Z spanningℓ2(Z);

1The subscriptp will always denote a polyphase matrix and should not be confused with subscripts denoting submatrices as in
(3.6).
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• an infinite matrixΦ as in (3.6);

• a polyphase matrixΦp(z) as in (B.1).

We will also encounter finite frames, that is, spanning sets of CN orRN , and will view them equivalently as

N ×M matrices,M ≥ N . A finite basis hence corresponds to a square matrix.

Hereafter, we often emphasize the special case of a basis by denotingΦ with Ψ. Correspondingly, the

base vectors are denoted withϕ for frames orψ for bases.

B.1 Basis Expansions

Basis Expansions with Blocked Transforms.In a critically-sampled filter bank (M = N ) with filters of

length equal to the sampling factorL = N =M (q = 1),

Ψ = diag
(
. . . ,Ψ0,Ψ0, . . .

)
(B.3)

is a block-diagonal matrix with copies ofΨ0 on the diagonal, as visualized in Fig. 5.5(a). In this case, (5.6)

is equivalent toΨ0Ψ
∗
0 = IM , that is,Ψ0 is an orthonormal basis inCM . The filter bank processes an infinite

signalx ∈ ℓ2(Z) by applyingΨ0 to successive nonoverlapping blocks ofM signal elements. Since signal

blocks are processed as independent signals, and the results are then concatenated,blocking effectsoccur

due to boundary discontinuities. A well-known example of a blocked transform usesΨ∗
0 = DFTM ; others

include the use of discrete cosine and sine transforms or thediscrete Hartley transform.

In the case of the DFT,

Ψ∗
0 = DFTM =

1√
M

[ωmk
M ]0≤m,k<M , ωM = e−2πj/M .

Basis Expansions with Lapped Transforms. To avoid blocking artifacts, basis vectors with longer

support can be used, as is the case with LOTs. They can be viewed as a class ofM -channel critically-

sampled filter banks, originally developed for filters of length L = 2N = 2M and later generalized to

arbitrary integer multiples ofN [42].
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In this work, we focus on LOTsΨ∗ with basis vector supportL = 2N = 2M (q = 2) whose basesΨ are

visualized in Fig. 5.5(b). The only nonzero blocks in (3.6) areΨ0 andΨ1; hence, (B.1) yields a polyphase

matrix of degreeq − 1 = 1:

Ψp(z) = Ψ0 + z−1Ψ1. (B.4)

SinceΨp(z) is square, (B.2) is equivalent to

Ψ0Ψ
∗
0 +Ψ1Ψ

∗
1 = I, (B.5a)

Ψ0Ψ
∗
1 = Ψ1Ψ

∗
0 = 0. (B.5b)

We use these conditions later to show that the new transformswe construct are indeed LOTs.

B.2 Frame Expansions

In the previous section we explained how critically-sampled filter banks compute basis expansions. Simi-

larly, oversampled filter banks compute frame expansions.

For frames, the property (5.6),ΦΦ∗ = I, is calledtightness[122].2 Tight frames can be constructed

from orthonormal bases using the Naimark theorem [123,124]:

Theorem B.2.1 A set{ϕi}i∈I is a tight frame for a Hilbert spaceH if and only if there exists another

Hilbert spaceK ⊃ H with an orthonormal basis{ψi}i∈I , so that the orthogonal projectionP of K ontoH

satisfies:Pψi = ϕi, for all i ∈ I.

One example of an orthogonal projection is the canonical projection that simply omits coordinates and is

calledseeding[48].

In the finite case, seeding yields a frame (N × M matrix) Φ for CN by omitting rows from a basis

(M ×M matrix)Ψ of CM . Conversely, every finite frame can be obtained this way.3

To seed in the infinite case considered here, we extend this approach to polyphase matricesΨp(z).

2Note that in general, a tight frame is also one for whichΦΦ∗ = cI ; however, sincec can be pulled intoΦ, we consider only
c = 1 here.

3Just extendΦ with rows to an invertible square matrix.
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Definition B.2.2 A frameΦp(z) is obtained byseedingfrom a basisΨp(z), if it is constructed fromΨp(z)

by preserving only a subset of the rows ofΨp(z). This is written asΦp(z) = Ψp(z)[I], whereI is the set of

indices of the retained rows.

In particular, forq = 1, seeding constructs frames of the form in Fig. 5.5(c) from bases of the form in

Fig. 5.5(a). Conversely, every such frame can be constructed this way.

Forq > 1, seeding constructs frames of the form in Fig. 5.5(d) from bases of the form in Fig. 5.5(b) (the

example in the figure is forq = 2). However, in this case, it is unclear whether the converse is true.

The following result is a special case of Theorem B.2.1:

Lemma B.2.3 Seeding an orthonormal basis (paraunitary)Ψp(z) yields a tight frameΦp(z).

Next, we discuss the blocked and lapped frame expansions in Figs. 5.5(c) and (d) in greater detail.

Frame Expansions with Blocked Transforms.If q = 1, then, as visualized in Fig. 5.5(c),

Φ = diag
(
. . . ,Φ0,Φ0, . . .

)
. (B.6)

The difference from (B.3) is thatΦ0 is now rectangular:Φ0 ∈ C
N×M , and can be viewed as anM -element

frame inCN . Hence, if it is tight, it can be constructed from an orthogonal basis inCM by seeding.

Frame Expansions with Lapped Transforms.Projecting signals onto frame vectors with nonoverlap-

ping support leads to similar blocking artifacts as for orthonormal bases. We thus use the same approach as

for orthonormal bases in Section B.1 and consider frames inℓ2(Z) with vector supportL = 2N , visualized

in Fig. 5.5(d).

As in (B.4), the resulting polyphase matrixΦp(z) has degree 1:

Φp(z) = Φ0 + z−1Φ1,

and the tightness conditionΦΦ∗ = I is equivalent toΦp(z) being paraunitary (B.2).

In [43], LTFTs were constructed by seeding the polyphase matrix Ψp(z) of an LOT basis:

Φp(z) = Ψp(z)[I]. (B.7)
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By the Naimark theorem, the constructed frames are tight; this is why we named them lapped tight frame

transforms. We will follow later the same procedure here to derive LTFTs from LOT bases. First, we

introduce the frame properties we consider.

B.3 Construction of New Real LOTs

In Section B.1 we showed that a real LOT basis corresponds to areal square paraunitary polyphase matrix

Ψp(z) of degreeq− 1. Although in generalΨp(z) is paraunitary if and only if it is unitary on the entire unit

circle |z| = 1, for a realΨp(z) of degreeq − 1 = 1, it suffices to check only two conditions:

Lemma B.3.1 LetΨp(z) be a realM ×M polyphase matrix of degree1, that is,Ψp(z) = Ψ0 + z−1Ψ1,

whereΨ0,Ψ1 ∈ R
M×M . Then,Ψp(z) is paraunitary if and only ifΨp(1) andΨp(j) are unitary.

Proof: “⇒” is immediate. To prove “⇐”, let Ψp(1) = Ψ0 +Ψ1 andΨp(j) = Ψ0 − jΨ1 be unitary, that is,





(Ψ0 +Ψ1)(Ψ
T
0 +ΨT

1 ) = IM

(Ψ0 − jΨ1)(Ψ
T
0 + jΨT

1 ) = IM

⇔





Ψ0Ψ
T
0 +Ψ1Ψ

T
1 +Ψ0Ψ

T
1 +Ψ1Ψ

T
0 = IM

Ψ0Ψ
T
0 +Ψ1Ψ

T
1 + j(Ψ0Ψ

T
1 −Ψ1Ψ

T
0 ) = IM

(B.8)

Subtracting the two equations yields

Ψ0Ψ
T
1 +Ψ1Ψ

T
0 − j(Ψ0Ψ

T
1 −Ψ1Ψ

T
0 ) = 0M

⇔ Ψ0Ψ
T
1 +Ψ1Ψ

T
0 = 0M andΨ0Ψ

T
1 −Ψ1Ψ

T
0 = 0M

⇔ Ψ0Ψ
T
1 = 0M andΨ1Ψ

T
0 = 0M

Inserting into (B.8) yieldsΨ0Ψ
T
0 + Ψ1Ψ

T
1 = IM ; all requirements (B.5a)-(B.5b) for a paraunitaryΨp(z)

are satisfied. �
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DFTp,K(z)
submatrix

// Ψp(z)
seed

// Φp(z)

Figure B.1: Construction of frames forq = 2.

Lemma B.3.1 chooses 1 andj as evaluation points. Using a very similar proof, we can generalize to

arbitrary roots of unityω1 andω2, providedω2 6= ±ω1,±ω∗
1.

As an example application of Lemma B.3.1, consider theK ×K polyphase matrix

DFTp,K(z) =
1√
K

[
cos

2kℓπ

K
+ z−1 sin

2kℓπ

K

]

0≤k,ℓ≤K−1

. (B.9)

BothDFTp,K(j) = DFTK andDFTp,K(1) = DHTK (the discrete Hartley transform [125]) are unitary;

hence, by Lemma B.3.1,DFTp,K(z) is paraunitary.

In Theorem B.3.2, we show that specific submatrices ofDFTp,K(z) are paraunitary, and thus correspond

to LOTs. In Section B.4 we will seed these matrices to obtain LTFTs (this algorithm is depicted in Fig. B.1).

Theorem B.3.2 LetΨp(z) be anM ×M submatrix of
√
K/M · DFTp,K(z), K ≥ M ≥ 2, constructed

by selecting the following row and column sets:

rows: {r + kR modK | 0 ≤ k ≤M − 1}

columns: {c+ ℓC modK | 0 ≤ ℓ ≤M − 1}

for some constants0 ≤ r, c,R,C < K.

Then,Ψp(z) is paraunitary ifK =M gcd(K,RC) (in particular,M dividesK) and one of the follow-

ing is satisfied:

(i) K divides2rC, 4rc, and2MRc;

(ii) K does not divide2rC, andK divides both2r(2c+ CM − C) andR(2c+ CM − C).

Proof: According to Lemma B.3.1, to show thatΨp(z) is paraunitary, it is enough to show thatΨp(j) and

Ψp(1) are unitary.
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The elements of the matrixΨp(z) are

ψk,ℓ(z) =
1√
M

(
cos (

2π(r + kR)(c + ℓC)

K
)

+ sin (
2π(r + kR)(c+ ℓC)

K
)z−1

)
,

0 ≤ k, ℓ ≤M − 1 and0 ≤ r, c,R,C ≤M − 1.

We first find the conditions forΨp(j) to be unitary. The(k, ℓ)th element ofΨp(j)Ψ
∗
p(j) is given by

(
Ψp(j)Ψ

∗
p(j)

)
k,ℓ

=
1

M

M−1∑

m=0

ω
(r+kR)(c+mC)−(r+ℓR)(c+mC)
K

=
1

M
ω
(k−ℓ)Rc
K

M−1∑

m=0

ω
(k−ℓ)RCm
K

=





1, k = ℓ;

1
M ω

(k−ℓ)Rc
K

1−ω
(k−ℓ)RCM

K

1−ω
(k−ℓ)RC

K

, k 6= ℓ.

Ψp(j) is unitary if and only if(Ψp(j)Ψ
∗
p(j))k,ℓ = 0 for any k 6= ℓ, or, equivalently, if and only ifK is

divisible by the productRCM , but not divisible by(k − ℓ)RC for anyk − ℓ 6= 0 such that1 ≤ |k − ℓ| ≤

M − 1. This is possible if and only ifK =M gcd(K,RC). Thus,Ψp(j)Ψ
∗
p(j) = IM , andΨp(j) is unitary

if and only ifK =M gcd(K,RC).

We next investigate conditions forΨp(1) to be unitary. The(m, ℓ)th element ofΨp(1) is

ψk,ℓ(1) =
1√
M

(
cos (

2π(r + kR)(c+ ℓC)

K
)

+ sin (
2π(r + kR)(c+ ℓC)

K
)
)

=
1√
M

(1 + j

2
ω
(r+kR)(c+ℓC)
K

+
1− j

2
ω
−(r+kR)(c+ℓC)
K

)
.
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The(k, ℓ)-th element ofΨp(1)Ψ
∗
p(1) is

(Ψp(1)Ψ
∗
p(1))k,ℓ =

1

M

M−1∑

m=0

[(1+j
2 ω

(r+kR)(c+mC)
K

+1−j
2 ω

−(r+kR)(c+mC)
K

)

×
(1−j

2 ω
−(r+ℓR)(c+mC)
K + 1+j

2 ω
(r+ℓR)(c+mC)
K

)]

= 1
2M

M−1∑

m=0

(ω
(k−ℓ)R(c+kC)
K + ω

(ℓ−k)R(c+mC)
K )

+ j
2M

M−1∑

m=0

(ω
(2r+(k+ℓ)R)(c+mC)
K

−ω−(2r+(k+ℓ)R)(c+mC)
K )

= 1
2MΣ

(1)
k,ℓ +

j
2MΣ

(2)
k,ℓ.

SinceK = M gcd(K,RC), then for any0 ≤ k, ℓ ≤ M − 1 with k 6= ℓ, K is not divisible by(k − ℓ)RC.

Thus

Σ
(1)
k,ℓ =





∑M−1
m=0 2, k = ℓ;

ω
(k−ℓ)Rc
K

1−ω
(k−ℓ)RCM

K

1−ω
(k−ℓ)RC

K

+ω
(ℓ−k)Rc
K

1−ω
(ℓ−k)RCM

K

1−ω
(ℓ−k)RC

K

, k 6= ℓ;

=





2M, k = ℓ;

0, k 6= ℓ.

To makeΨp(1) a unitary matrix, we choose to impose the conditionΣ
(2)
k,ℓ = 0 for any0 ≤ k, ℓ ≤ M − 1.

Here, we consider the two cases specified by the theorem:
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Case (i).If K divides2rC, 4rc, and2MRc, then for anyk, ℓ

Σ
(2)
k,ℓ = ω

(2r+(k+ℓ)R)c
K

M−1∑

m=0

ω
(2r+(k+ℓ)R)Cm
K

−ω−(2r+(k+ℓ)R)c
K

M−1∑

m=0

ω
−(2r+(k+ℓ)R)Cm
K

=





M(ω2rc
K − ω−2rc

K ), k + ℓ = 0;

M(ω2rc+MRc
K − ω−2rc−MRc

K ), k + ℓ =M ;

ω
2rc+(k+ℓ)Rc
K

1−ω
(k+ℓ)RCM

K

1−ω
(k+ℓ)RC

K

−ω−2rc−(k+ℓ)Rc0
K

1−ω
−(k+ℓ)RCM

K

1−ω
−(k+ℓ)RC

K

, otherwise;

= 0.

Case (ii). If K does not divide2rC, thenΣ(2)
k,ℓ = 0 is equivalent to

ω
(2r+(k+ℓ)R)(2c+CM−C)
K = 1

for anyk, ℓ. This is possible ifK divides both2r(2c + CM − C) andR(2c+ CM − C).

Thus, in either of the two casesΨp(1)Ψ
∗
p(1) = IM , andΨp(1) is unitary.

Since the above conditions makeΨp(j) andΨp(1) unitary, Lemma B.3.1 implies thatΨp(z) is parauni-

tary. �

SinceDFTp,K(z) is symmetric, we can interchange the row and column index sets in the theorem:

Corollary B.3.3 Ψp(z) constructed as in Theorem B.3.2 is paraunitary if and only ifΨp(z)
T is paraunitary.

Note that in Theorem B.3.2 we work with index sets instead of lists since permutations of rows and

columns preserve paraunitarity.

Each paraunitary matrixΨp(z) obtained with Theorem B.3.2 defines a basisΨ; the associated LOT is

Ψ∗. Next, we complete the theory and discuss the seeding of LTFTs from the above LOTsΨ.
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B.4 Construction of New LTFTs from LOTs

In this section we seedM ×M LOT matricesΨp(z), constructed as in Theorem B.3.2, to obtainN ×M

framesΦp(z) and establish their properties.

Tightness. Any seeding of aΨp(z) obtained with Theorem B.3.2 yields a tight frameΦp(z) by

Lemma B.2.3.

Equal Norm. Every element ofΨp(z) constructed with Theorem B.3.2 has the norm1/
√
M . Hence,

the columns of any seededN ×M matrixΦp(z) have the same norm
√
N/M .

Maximally Robust Frames. In general, maximal robustness for frames is a property difficult to prove

since one has to check that everyN × N submatrix ofΦp(z) is invertible. The good news is that it is

sufficient to ensure that each such submatrix is nonsingularfor at least one value [126]:

Lemma B.4.1 A square polyphase matrixAp(z) is nonsingular if and only if there existsz0 ∈ C such that

detAp(z0) 6= 0.

We will use this fact in the proof of the following theorem.

Theorem B.4.2 LetΨp(z) be a paraunitary polyphase matrix constructed using Theorem B.3.2 such that

M andMRC/K are co-prime. Further, we seed a frame,

Φp(z) = Ψp(z)[I],

by retainingN < M rows. ThenΦp(z) is maximally robust to erasures if (as sets)

I = {d+Dk modM | 0 ≤ k < N}

for some0 ≤ d < M andD ≡ (MRC/K)−1 modM .

Proof: We use Lemma B.4.1 withz0 = j, which makesΨp(j) a submatrix of
√
K/M DFTK . We fix the
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order of rows and columns and get

Ψp(j) =
1√
M

[
ω
(r+kR)(c+ℓC)
K

]
0≤k,ℓ<M

=
1√
M

[
ωrc
K · ωckR

K · ωrℓC
K · ωkℓRC

K

]
0≤k,ℓ<M

=
1√
M
ωrc
K · Ω1 ·

[
ωkℓRC
K

]
0≤k,ℓ<M

· Ω2.

Here,Ω1 = diag
(
ωckR
K

)
0≤k<M

andΩ2 = diag
(
ωrℓC
K

)
0≤ℓ<M

are full-rank diagonal matrices, andωrc
K 6=

0. Hence, we can omit them in studying the seeding of MR frames.

SettingMRC/K = A yields

ωkℓRC
K = ω

kℓAK
M

K = (ωA
M)kℓ. (B.10)

Sincegcd(M,A) = 1, ωA
M is a primitiveM th root of unity, and thus

1√
M

[
ωkℓRC
K

]
0≤k,ℓ≤M−1

= P ·DFTM ·P T , (B.11)

whereP is theM ×M permutation matrix:

Pkℓ =





1, if ℓ = Ak mod M

0, otherwise

. (B.12)

Further, letD ≡ (MRC/K)−1 modM , 1 ≤ D < M , and consider anN × M submatrix of (B.11),

constructed by selecting rowsI = {d+Dk modM | 0 ≤ k < N}. Then

(
P ·DFTM ·P T

)
[I] = DFTM [J ] · PT , (B.13)

whereJ = {dA + k modM | 0 ≤ k < N}. SinceDFTM [J ] is anN × M submatrix ofDFTM

constructed from adjacent rows (possibly looping around the bottom of the matrix), eachN ×N submatrix

of it is invertible [48]. It follows that eachN ×N submatrix ofΦp(j) is also invertible.

Hence, by Lemma B.4.1, everyN × N submatrix ofΦp(z) is nonsingular, andΦp(z) is maximally
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robust to erasures. �

As an example, consider the following family of maximally robust LTFTs:

Corollary B.4.3 If Ψp(z) is constructed as in Theorem B.3.2 withR = 1, C = K/M, andr = c = 0, then

any consecutive seeding (retaining of consecutive rows) ofΨp(z) yields a maximally robust LTFTΦp(z).

Note that the LTFTs constructed as in Corollary B.4.3 and seeded starting with the first row (i.e.I =

{0, 1, . . . ,M − 1}) are Weyl-Heisenberg frames [127].



Appendix C

Proofs of Theorems in Chapter 7

C.1 Proof of Theorem 7.1.1

ConsiderA = M = C[x]/(x2km − 1), with basis
(
1, x, . . . , x2km−1

)
andαk = ωk

2km. The corresponding

polynomial transform isDFT2km.

By Theorem 6.1.2, the polynomialr(x) = (xk + x−k)/2 generates the subalgebra

B =
〈
r(x)

〉 ∼= C[y]/2(y2 − 1)Um−1(y).

If we choose
(
Tℓ(y)

)
0≤ℓ<m+1

as the basis , the polynomial transform is

[
Tℓ(cos

kπ

m
)
]
0≤k,ℓ<m+1

= DCT-Im+1 .

By Theorem 6.2.5, theB-module(xk−x−k)/2·B ∼= C[y]/Um−1(y). If we choose the basis
(
Uℓ(y)

)
0≤ℓ<m−1

,

then the polynomial transform is

[
Uℓ(cos

kπ

m
)
]
0≤k,ℓ<m−1

= diag
(
1/ sin

(k + 1)π

m

)
0≤k<m−2

· DST-Im−1 = DST-Im−1. (C.1)

Similarly, theB-modulexj(xk + 1)/2 · B ∼= C[y]/2(y − 1)Um−1(y) for any1 ≤ j < k. If we choose
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the basis
(
Vℓ(y)

)
0≤ℓ<m

, then the polynomial transform is

[
Vℓ(cos

kπ

m
)
]
0≤k,ℓ<m

= diag
(
1/ cos

kπ

2m

)
0≤k<m

·DCT-IIm = DCT-IIm. (C.2)

Finally, theB-modulexj(xk − 1)/2 · B ∼= C[y]/2(y + 1)Um−1(y) for any1 ≤ j < k. If we choose the

basis
(
Wℓ(y)

)
0≤ℓ<m

, then the polynomial transform is

[
Wℓ(cos

(k + 1)π

m
)
]
0≤k,ℓ<m

= diag
(
1/ sin

(k + 1)π

2m

)
0≤k<m

·DST-IIm = DST-IIm. (C.3)

Using Theorem 6.2.6, we can verify thatt0(x) = 1, t1(x) = (xk−x−k)/2, t2j(x) = xj(xk+1)/2, and

t2j+1(x) = xj(xk − 1)/2 for 1 ≤ j < k, is a transversal ofB in A. Hence, by Theorem 6.3.1, we obtain

the factorization

DFTn = M
(
DCT-Im+1 ⊕DST-Im−1 ⊕ Ik−1 ⊗ (DCT-IIm ⊕DST-IIm)

)
B2km

m .

Here,B2km
m is the base change matrix from

(
xℓ
)
0≤ℓ≤n−1

to the concatenation of bases oftj(x)B, 0 ≤ j <

2k, and by construction

B2km
m =




1

Im−1 Jm−1

1

Im−1 −Jm−1




⊕ Ik−1 ⊗




1 1

Im−1 Jm−1

−1 1

Im−1 −Jm−1




· L2km
k . (C.4)

M is constructed as follows. Let

M0 = 1k ⊗




1

Im−1

1

Jm−1



.

LetM0(j0, . . . , jℓ) be the subset of columns ofM0 with indicesj0, . . . , jℓ; and letDj = diag
(
tj(αi)

)
0≤i<n

,
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for 0 ≤ j < 2k. Then

M =

(
D0M0 | D1M1 | D2M2 | · · · | D2k−1M2k−1

)
,

whereM1 = M0(1, . . . ,m − 1); M2j = M0(0, . . . ,m − 1) andM2j+1 = M0(1, . . . ,m) for 1 ≤ j < k.

We can further rewriteM as

M = L2km
k (I2m ⊗DFTk)X

2km
m L2km

2m (Im ⊕ Z−1
m ⊕ I2(k−1)m).

Here, matrixX2km
m has the structure

X2km
m =




Ik

⊕m−1
j=1 Cj ⊕m−1

j=1 Dj

F

⊘2m−1
j=m+1Cj ⊘m−1

j=1 Dj



, (C.5)

where

Cj = 1⊕ diag
(
ωjℓ
2km(ωj

2m + 1)/2
)
1≤ℓ<k

,

Dj =
(
(ωj

2m − ω−j
2m)/2

)
⊕ diag

(
ωjℓ
2km(ωj

2m − 1)/2
)
1≤ℓ<k

,

F = 1⊕ diag
(
− ωj

2k

)
1≤j<k

.

After the substitution ofDST-Im−1,DCT-IIm, andDST-IIm withDST-Im−1,DCT-IIm, andDST-IIm

using (C.1-C.3), and simplification, we obtain the factorization

DFT2km = L2km
k (I2m ⊗DFTk)X

2km
m L2km

2m (Im ⊕ Z−1
m ⊕ I2(k−1)m)D2km

m

·
(
DCT-Im+1 ⊕DST-Im−1 ⊕Ik−1 ⊗ (DCT-IIm⊕DST-IIm)

)
B2km

m ,
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whereB2km
m andX2km

m are defined in (C.4) and (C.5), and

D2km
m = Im+1 ⊕ diag

(
1/ sin

(j + 1)π

m

)
0≤j<m−1

⊕Ik−1 ⊗
(
diag

(
1/ cos

jπ

2m

)
0≤j<m

⊕ diag
(
1/ sin

(j + 1)π

2m

)
0≤j<m

)
. (C.6)

C.2 Proof of Theorem 7.1.2.

ConsiderA = M = C[x]/2T2km(x) with basis
(
V0(x), V1(x), . . . , V2km−1(x)

)
. The corresponding poly-

nomial transform is

diag
(
1/ cos

(k + 1/2)π

4km

)
0≤k<2km

·DCT-IV2km = DCT-IV2km. (C.7)

By Theorem 6.1.2, the polynomialr(x) = T2k(x) generates the subalgebra

B =
〈
r(x)

〉 ∼= C[y]/2Tm(y).

By Theorem 6.2.5, theB-moduleVj(x)B ∼= C[y]/2Tm(y) for any 0 ≤ j < k. If we choose the basis
(
Vℓ(y)

)
0≤ℓ<m

, then the polynomial transform is

[
Tℓ(cos

(k + 1/2)π

m
)
]
0≤k,ℓ<m

= DCT-IIIm .

Similarly, theB-moduleWj(x)(V2k−1(x) − V2k(x))/2 · B ∼= C[y]/2Tm(y) for any0 ≤ j < k. If we

choose the basis If we choose the basis
(
Uℓ(y)

)
0≤ℓ<m

, then the polynomial transform is

[
Uℓ(cos

(k + 1/2)π

m
)
]
0≤k,ℓ<m−1

= diag
(
1/ sin

(k + 1/2)π

m

)
0≤k<m

· DST-IIIm = DST-IIIm. (C.8)

We can verify using Theorem 6.2.6 thatt2j = Vj(x) andt2j+1 = Wj(x)(V2k−1(x) − V2k(x))/2 for

0 ≤ j < k, is a transversal ofB in A. Hence, by Theorem 6.3.1, we obtain the decomposition

DCT-IV2km =M
(
Ik ⊗ (DCT-IIIm ⊕DST-IIIm)

)
B.
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Here,B is the base change matrix from
(
xℓ
)
0≤ℓ≤n−1

to the concatenation of bases oftj(x)B, 0 ≤ j < 2k,

and by construction

B = Ik ⊗




1

L
2(m−1)
2 · Im−1 ⊗DFT2

1




(K2km
2m )T .

M is constructed as follows. Let

M0 = 1k ⊗



Im

Jm


 .

LetDj = diag
(
tj(αi)

)
0≤i<n

for 0 ≤ j < 2k. Then

M =

(
D0M0 | D1M0 | D2M0 | · · · | D2k−1M0

)
.

We can simplify matrixM . Let us introduce matrices

X
(C4)
k (r) =




c0 sk−1

. . . . .
.

. .
. . . .

s0 ck−1



, X

(S4)
k (r) =




c0 −sk−1

. . . . .
.

. .
. . . .

−s0 ck−1



. (C.9)

Here,cℓ = cos (1−2r)(2ℓ+1)π
4k andsℓ = sin (1−2r)(2ℓ+1)π

4k . These matrices are used for the so-calledskew

DCT and DST [5]. Further, let us definer(i) = (2i + 1)/(4m) and

r
(i)
j =





r(i)+2j
k , if j is even

2−r(i)+2j
k , if j is odd
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for 0 ≤ j < ⌊k2⌋. In casek is odd, we also definer(i)k−1 =
r(i)−1

k +1. Finally, let us define diagonal matrices

D
(C4)
k (r(i)) = diag

(
1/ cos (r

(i)
j π/2)

)
0≤j<k

,

D
(S4)
k (r(i)) = diag

(
sin (2kr

(i)
j π)/ cos (r

(i)
j π/2)

)
0≤j<k

.

ThenM = Kn
k M̂Ln

2m, whereM̂ =




⊕m−1
i=0 D

(C4)
k (r(i))DCT-IVk(r

(i))X
(C4)
k (r(i)) ⊕m−1

i=0 D
(S4)
k (r(i))DST-IVk(r

(i))X
(S4)
k (r(i))

⊘2m−1
i=m D

(C4)
k (r(i))DCT-IVk(r

(i))X
(C4)
k (r(i)) ⊘2m−1

i=m D
(S4)
k (r(i))DST-IVk(r

(i))X
(S4)
k (r(i))


 .

We can further simplify (C.7) by substitutingDCT-IV2km andDST-IIIm with DCT-IV2km DST-IIIm

using (C.7) and (C.8). Then we use the equalities

X
(C4)
k (r) = X

(S4)
k (1− r),

DST-IIIm = diag
(
(−1)j

)
0≤j<m

·DCT-IIIm ·Jm,

DST-IVk = diag
(
(−1)j

)
0≤j<k

·DCT-IVk ·Jk,

to obtain the decomposition

DCT-IV2km = K2km
k (K2m

2 ⊗DCT-IVk)Y
2km
m (DCT-IIIm⊗L2k

2 )(K2km
2k )T

·Ik ⊗




1

L
2(m−1)
2 · Im−1 ⊗DFT2

1




(K2km
2m )T ,

where

Y 2km
m =

m−1⊕

j=0




X
(C4)
k (r(j)) (−1)j · Jk ·X(C4)

k (1− r(j))

X
(C4)
k (1− r(j)) (−1)j+1 · Jk ·X(C4)

k (r(j))


 (C.10)

andX(C4)
k (r) is defined in (C.9).
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