Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko and Markus Püschel (Proc. International Conference on Machine Learning (ICML), pp. 729-736, 2009)
Bandit-Based Optimization on Graphs with Application to Library Performance Tuning
Preprint (309 KB)
Published paper (link to publisher)
Bibtex

The problem of choosing fast implementations for a class of recursive algorithms such as the fast Fourier transforms can be formulated as an optimization problem over the language generated by a suitably defined grammar. We propose a novel algorithm that solves this problem by reducing it to maximizing an objective function over the sinks of a directed acyclic graph. This algorithm valuates nodes using Monte-Carlo and grows a subgraph in the most promising directions by considering local maximum k-armed bandits. When used inside an adaptive linear transform library, it cuts down the search time by an order of magnitude to find a similar solution. Further, the search can be stopped at any time and still return a solution. In some cases, the performance of the implementations found is also increased by up to 10% which is of considerable practical importance since it consequently improves the performance of all applications using the performance library.

Keywords:
SPIRAL program generation system for transforms, Search/Learning for optimization, General size libraries