Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko and Markus Püschel (Proc. International Conference on Machine Learning (ICML), pp. 729-736, 2009)
Bandit-Based Optimization on Graphs with Application to Library Performance Tuning
Preprint (309 KB)
Published paper (link to publisher)
Bibtex
The problem of choosing fast implementations for a class of recursive algorithms such as the fast Fourier transforms can be formulated as an optimization problem over the language generated by a suitably defined grammar. We propose a novel algorithm that solves this problem by reducing it to maximizing an objective function over the sinks of a directed acyclic graph. This algorithm valuates nodes using Monte-Carlo and grows a subgraph in the most promising directions by considering local maximum k-armed bandits. When used inside an adaptive linear transform library, it cuts down the search time by an order of magnitude to find a similar solution. Further, the search can be stopped at any time and still return a solution. In some cases, the performance of the implementations found is also increased by up to 10% which is of considerable practical importance since it consequently improves the performance of all applications using the performance library.
Keywords: SPIRAL program generation system for transforms, Search/Learning for optimization, General size libraries