Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Richard Veras and Franz Franchetti (Proc. High Performance Extreme Computing (HPEC), IEEE, pp. 1-7, 2017)
A Scale-free Structure for Real World Networks
Preprint (911 KB)
Published paper (link to publisher)
Bibtex
The field of High Performance Computing (HPC) is defined by application in physics and engineering. These problems drove the development of libraries such as LAPACK, which cast their performance in terms of more specialized building block such as the BLAS. Now that we see a rise in simulation and computational analysis in fields such as biology and the social sciences, how do we leverage existing HPC approaches to these domains. The GraphBLAS project reconciles graph analytics with the machinery of linear algebra libraries. Like their Dense Linear Algebra (DLA) counterpart, the GraphBLAS expresses complex operations in terms of smaller primitives. This paper focuses on efficiently storing real world networks, such that for these graph primitives we can obtain the level of performance seen in DLA. We provide a hierarchical data structured called GERMV, which is an extension of our previous Recursive Matrix Vector (RMV). If the network in question exhibits a scale-free structure, namely hierarchical communities, then our data structure enables high performance. We demonstrate high performance for Sparse Matrix Vector (spMV) and PageRank on real world web graphs.
Keywords: GraphBLAS, Scale-free