Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Anuva Kulkarni, Daniele G. Spampinato and Franz Franchetti (IEEE High Performance Extreme Computing Conference (HPEC), 2019)
FFTX for Micromechanical Stress-Strain Analysis
Published paper (link to publisher)
Bibtex
Porting scientific simulations to heterogeneous platforms requires complex algorithmic and optimization strategies to overcome memory and communication bottlenecks. Such operations are inexpressible using traditional libraries (e.g., FFTW for spectral methods) and difficult to optimize by hand for various hardware platforms. In this work, we use our GPU-adapted stress-strain analysis method to show how FFTX, a new API that extends FFTW, can be used to express our algorithm without worrying about code optimization, which is handled by a backend code generator.
Keywords: FFTX, Stress-strain analysis