Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva and Steve Zdancewic (Proc. International Conference on Functional Programming (ICFP), 2021)
Modular, Compositional, and Executable Formal Semantics for LLVMIR
Preprint (1.4 MB)
Bibtex
This paper presents a novel formal semantics, mechanized in Coq, for a large, sequential subset of the LLVM IR. In contrast to previous approaches, which use relationally-specified operational semantics, this new semantics is based on monadic interpretation of interaction trees, a structure that provides a more compositional approach to defining language semantics while retaining the ability to extract an executable interpreter. Our semantics handles many of the LLVM IR’s non-trivial language features and is constructed modularly in terms of event handlers, including those that deal with nondeterminism in the specification. We show how this semantics admits compositional reasoning principles derived from the interaction trees equational theory of weak bisimulation, which we extend here to better deal with nondeterminism, and we use them to prove that the extracted reference interpreter faithfully refines the semantic model. We validate the correctness of the semantics by evaluating it on unit tests and LLVM IR programs generated by HELIX.
Keywords: Coq, HELIX, Semantics, Monads, LLVM, Verified compilation