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ABSTRACT
Sorting networks offer great performance but become prohibitively
expensive for large data sets. We present a domain-specific lan-
guage and compiler to automatically generate hardware implemen-
tations of sorting networks with reduced area and optimized for la-
tency or throughput. Our results show that the generator produces a
wide range of Pareto-optimal solutions that both compete with and
outperform prior sorting hardware.

Categories and Subject Descriptors
B.5.2 [Register Transfer Level Implementation]: Design Aids—
automatic synthesis; F.2.2 [Theory of Computation]: Nonnumer-
ical Algorithms and Problems—sorting and searching

General Terms
Design

Keywords
Hardware Sorting, Design Space Exploration, HDL Generation

1. INTRODUCTION
Sorting is a fundamental operation that is required in a wide

range of applications with different requirements in performance
and cost. For example, continuous data processing applications
may have throughput requirements that cannot be matched by se-
quential sorting algorithms running on a processor. On the other
hand, applications with more relaxed performance requirements
can benefit from offloading of time consuming operations such as
sorting, by running them on dedicated hardware that can be imple-
mented using simple components.

Two main categories of hardware sorters can be distinguished:
sorting networks and linear sorters. Sorting networks operate in
parallel over the input elements, processing them through a network
of comparison-exchange elements. This solution offers great per-
formance but becomes prohibitively expensive for large data sets
because of the area cost or since elements can no longer be pro-
vided at the same time. Instead, linear sorters input one element at
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a time, sorting them into a register array as they are received. This
approach can offer small designs but fails to scale in performance.

In this paper, we fill the gap between these two approaches by
introducing sorting networks that can offer a variable streaming
width, while maintaining high throughput capabilities. We show
that this approach dramatically reduces the footprint of sorting net-
works by effectively reusing hardware components to operate se-
quentially over the input elements. To the best of our knowledge,
this type of reuse had not been done for sorting networks. The
likely reason is in the challenge of streaming the permutation stages.
We solve this problem using the method in [14].

Furthermore, we built a hardware generator that enables the au-
tomatic and systematic exploration of a large design space for hard-
ware sorters. This way, designers can identify Pareto-optimal solu-
tions that match their specific requirements. The generator makes
use of a small Domain-Specific Language (DSL) to represent at a
high level different known sorting networks. These DSL expres-
sions are then annotated with implementation directives that cap-
ture different types and degree of reuse, which gives rise to a large
and complex design space. Finally, a special DSL compiler gen-
erates Register-Transfer Level (RTL) descriptions for each desired
design.

In summary, the contributions of this paper are
• to our knowledge the first high throughput streaming sorting

networks with arbitrary streaming width;
• a DSL-based framework to describe sorting networks and ar-

chitectural parameters;
• a hardware description generator that automatically translates

DSL expressions into a hardware description language, thus
enabling the automatic exploration of a large design space to
identify Pareto-optimal solutions; and

• a wide range of hardware solutions for sorting that are highly
optimized for area, throughput, latency and memory usage.

1.1 Related Work
Many sorting methods have been invented and studied in detail in

the past decades [5, 8]. Among those, sorting networks are attrac-
tive due to their inherent parallelism and input-independent struc-
ture. Bitonic sorting networks, first presented in [2], have a regular
structure and can sort n = 2t elements in 1

2
log2 n(log2 n + 1)

stages of n
2

parallel compare operations. At every stage, elements
are permuted such that a sorted sequence is obtained at the final
stage. Although other approaches have shown to require O(log2 n)
stages [1], the lack of regularity and the large constants hidden in
this bound make them in practice less efficient than bitonic net-
works [12].

Several techniques have been proposed to reduce the area of sort-



ing networks. In [15], it is demonstrated that a single physical
stage, composed of an array of n

2
compare modules followed by

a perfect shuffle permutation, can be used to sort n elements by
recirculating them (log2 n)2 times. A version of this implemen-
tation that can support several input sizes (up to some maximum)
is presented in [6] but does not gain performance. Reconfigurable
logic is used to change the required shuffles depending on the input
width. The work in [7] explores area-throughput trade-offs with a
pipelined architecture composed of log2 n stages that recirculates
the data within each stage. Our generator can produce each of these
designs as special case. Further, we will show that through our
novel approach to implementing reuse, we can considerably fur-
ther improve the area/performance tradeoff and at the same time
offer a much larger space of Pareto-optimal designs.

Not based on sorting networks is [11], which uses linear sorters
[8] with the goal to improve throughput. The authors show how
a stack of linear sorters can be used to parallelize the sorting of a
joint list by interleaving the inputs of the system and the outputs of
the individual linear sorters. Results show that interleaving creates
significant delays due to conflicts and increases the complexity of
the design, such that input widths greater than eight no longer rep-
resent a performance gain due to the low execution frequency of
the resulting datapath. We include this work in our comparison and
again show considerable and systematic gains in area and perfor-
mance.

Finally, as one application example of hardware sorters, we cite
[10], which evaluates various sorting networks on FPGAs, focus-
ing on accelerating database applications. The authors demonstrate
that sorting networks on FPGAs represent a competitive solution to
sorting data sets of small sizes; our work may help to remove this
restriction.

2. DSL FOR SORTING NETWORKS
In this section we introduce a small domain-specific language

(DSL) to represent sorting networks, borrowing concepts from [3]
and [9]. The elements of the language are structured operators
(viewed as data flow graphs) that map vectors to vectors of the same
length. For instance, the operator S2 transforms a vector of two el-
ements into a vector of two ordered elements. Each operator is
either a first order operator or a composition using higher order op-
erators. In the following, vectors are written as x = (xi)0≤i<n =
(x0, . . . , xn), and operators An are functions on these vectors of
length n. Thus, y = Anx indicates that an operator An is applied
to an input vector x, generating an output vector y. We formally
introduce first order operators and higher order operators next.

First order operators. We define the following first order oper-
ators:

S2 : (x0, x1) 7→ (min(x0, x1), max(x0, x1))

In : x 7→ x

Jn : (xi)0≤i<n 7→ (xn−1−i)0≤i<n

Xc
2 :

8><>:
I2, c = 0

J2 ◦ S2, c = 1

S2, c = 2

Ln
m : (xik+j)0≤i<m

0≤j<k
7→ (xjm+i)0≤i<m

0≤j<k
; n = km

In is the identity operator, Jn flips the input vector, and Ln
m per-

forms a stride-by-m permutation on n elements (also called cor-
ner turn, transposition, or shuffle). Ln

n/2 is called perfect shuffle.
S2 and Xc

2 are the basic kernels for sorting networks. S2 sorts 2
elements into ascending order, whereas Xc

2 can be configured to
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Figure 1: Higher order operators and associated data-flow
graph structures: (a) composition, (b) direct sum, (c) tensor
product, and (d) parameterized tensor product.

perform ascending sorting, descending sorting, or to preserve the
original order of the input elements.

Higher order operators. The purpose of higher order operators
is to recursively compose operators into more complex data-flow
structures. We define the following.
• Composition (◦): An ◦ Bn is the composition of operators, as

shown in Fig. 1(a): the input vector is first mapped by B and
then by A. The symbol ◦ may be omitted to simplify expres-
sions. For an iterative composition we use the product sign:
A

(0)
n ◦ · · · ◦A

(t−1)
n =

Qt
i=1 A

(i)
n . Since composition is applied

from right to left, we draw dataflow diagrams accordingly.
• Direct sum (⊕): An ⊕ Bm signifies that An maps the upper

n elements and Bm the bottom m elements of the input vector
(see Fig. 1(b)).

• Tensor product (⊗): The expression Im⊗An = An⊕· · ·⊕An

replicates m times the operator An to operate in parallel on the
input vector (see Fig. 1(c)).

• Indexed tensor product (⊗k): The expression Im ⊗k A
(k)
n =

A
(0)
n ⊕ · · · ⊕A

(m−1)
n allows for a change in the replicated op-

erator through the parameter k (see Fig. 1(d)).
Bitonic sorting networks: Example. Our DSL is designed

to represent sorting networks with a regular structure, specifically
those based on bitonic sorting [5, pp. 230]. We define Sn as the
sorting operator that transforms an input vector of size n into a
sorted ascending sequence of the same size. We assume n = 2t is
a two-power. Further, we define Mn as a bitonic merge operator
that transforms a regular-bitonic sequence of size n into a sorted
sequence of the same size. A regular-bitonic sequence is a con-
catenation of an ascending sequence and a descending sequence of
size n/2. In the case of n = 2, M2 = S2.

The classical bitonic sorting network [2] consists of a sequence
of t merging stages. In our DSL it becomes

S2t =

1Y
i=t

[(I2t−i ⊗M2i)(I2t−i ⊗ (I2i−1 ⊗ J2i−1))]. (1)

Specifically for n = 8,

S8 = M8(I2 ⊗ J4)(I2 ⊗M4)(I2 ⊗ (I2 ⊕ J2)(I4 ⊗M2), (2)

and the associated dataflow graph is shown in Fig. 2(a).
Each merger in (1) is recursively decomposed into smaller merg-

ers. In our DSL,

M2t = (I2 ⊗M2t−1)L
2t

2 (I2
2t−1 ⊗ S2)L

2t

2t−1 . (3)
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Figure 2: A bitonic sorter for n = 8: (a) S8 is based on (1) and
sorts by a sequence of mergers; each merger is again decom-
posed. For example, (b) M8 is based on (3).
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Figure 3: Data flow graph representation of a bitonic sorter of
size 8 based on SN3. X1

2 sorts the inputs in descending order
and X2

2 sorts the inputs in ascending order.

Fig. 2(b) shows the example M8.
Recursive expansion of (3) yields a complete decomposition into

basic blocks S2:

M2t =

tY
j=1

h
(I2t−j ⊗ L2j

2 )(I2t−1 ⊗ S2)(I2t−j ⊗ L2j

2j−1)
i
. (4)

Note that each of the t stages has a different permutation that con-
nects the parallel S2’s. Similar to the Pease FFT [13], this expres-
sion can be manipulated using tensor product identities [4] into the
“constant geometry” form

M2t =

tY
j=1

h
(I2t−1 ⊗ S2)L

2t

2t−1

i
. (5)

The permutation is now the same in each iteration. This manipula-
tion is also applied to sorting networks in [6].

A complete sorting network is obtained by inserting either (4) or
(5) into (1). Besides these two, several other variants with slightly
different structure and number of stages have been reported in the
literature. In our generator, we consider the following five sorting
networks; the corresponding DSL expressions are in Table 1.
• SN1 is obtained by inserting (4) into (1) [2].
• SN2 is obtained by inserting (5) into (1) [6]. By using (5) as a

breakdown rule for Mn, the regularity of the design increases,
but it also increases the complexity of the occurring permuta-
tions.

• SN3 is obtained by rewriting SN1 to use the operator Xc
2 in-

stead of S2 to eliminate the Jn permutations [2]. SN3 repre-
sents the trade-off of eliminating a permutation at the cost of
the additional control logic for Xc

2 . SN3 for n = 8 is shown in
Fig. 3.

• SN4 is obtained by rewriting SN2 to use the operator Xc
2 , elim-

inating the permutations Jn [6].
• Each of the prior networks has t

2
(t + 1) stages with different

permutations in each stage. SN5 has t2 stages but perfect reg-
ularity [15]. Each stage consists of parallel pairwise compar-
isons, followed by the same perfect shuffle. Thus, SN5 in-
creases the latency of Sn in exchange of the regularity in the
permutation stages.

3. HARDWARE GENERATOR
The DSL expressions in Table 1 represent algorithms that can di-

rectly be translated into combinatorial logic. With proper pipelin-
ing, these designs offer maximal performance, but the area cost of
these implementations quickly becomes prohibitive as n increases.
To solve this problem our generator considers a much richer design
space that arises from exploiting the regularity of the sorting net-
works to “fold” them by reusing sorting elements S2 and Xc

2 . We
explain the procedure and the overall generator in the following.

Datapath reuse. The sorting networks in Table 1 exhibit reg-
ularity expressed through the iterative composition (

Q
) and the

tensor product (⊗). These types of regularity can be mapped to
a variety of sequential datapaths [9] as explained next.

First,
Q

indicates that an operator will be used in sequence more
than once. Fig. 4 (top-left) illustrates a direct interpretation: each
iteration gives an independent module in series. However, by em-
ploying iterative reuse, this same computation can be performed by
building a single An module and recirculating the data around it as
many times as required, as shown in Fig. 4 (top-right). In our DSL,
we express this freedom by annotating the formula with a depth pa-
rameter d that indicates the number of modules to be implemented.
A depth d smaller than the maximum t in

Qt
j=1 An is possible if

d evenly divides t and the permutations in the block An are not
dependent on the iteration index j. This is the case in the inner
composition in SN2 and SN4 and in both compositions in SN5.

Second, Ik⊗Am indicates that operator Am will be used k times
in parallel. This is illustrated in Fig. 4 (bottom-left) for k = n

2
,

m = 2, where n data words flow into the system at the same time.
Alternatively, we could perform the same computation by instead
folding our data stream and datapath vertically as shown in Fig. 4
(bottom-right). Now the data words stream in and out of the system
at a rate of 2 words per cycle, and flow through a single instance of
A2. We refer to this type of reuse as streaming reuse. We express it
in our DSL by annotating expressions as shown in Fig. 4 with their
width w, which indicates the number of inputs taken in each cycle.
Our generator also supports w = 1, which requires that even the
basic modules S2 and X2 are folded. In summary, any w ≥ 1 that
evenly divides n is a legal width for the expression In/2 ⊗A2.

By setting values of d and w, we specify a particular hardware
implementation of an expression from our DSL, each with its own
area and throughput. Larger values of d and w correspond to higher
costs and throughput. Streaming and iterative reuse can also be
combined. Table 2 shows for each network the number of stages
in the datapath, the legal choices of d and w, and the associated
number of sorters used.



SN1:
t−1Y
i=1

"
(I2t−1 ⊗ S2)

t−i+1Y
j=2

h“
I2t−j ⊗ (I2 ⊗ L2j−2

2j−1)L
2j

2

”
(I2t−1 ⊗ S2)

i “
I2i−1 ⊗

“
L2t−i

2t−i+1(L2t−i ⊗ J2t−i)
””#

(I2t−1 ⊗ S2)

SN2:
t−1Y
i=1

"
t−i+1Y
j=2

h
(I2t−1 ⊗ S2)(I2i−1 ⊗ L2t−i+1

2t−i )
i
(I2i−1 ⊗ (I2t−i ⊗ J2t−i))

#
(I2t−1 ⊗ S2)

SN3:
t−1Y
i=1

"
(I2t−1 ⊗m X

g(i,m)
2 )

t−i+1Y
j=2

h“
I2t−j ⊗ (I2 ⊗ L2j−2

2j−1)L
2j

2

”
(I2t−1 ⊗m X

g(i,m)
2 )

i
(I2i−1 ⊗ L2t−i

2t−i+1)

#
(I2t−1 ⊗m X

g(i,m)
2 )

SN4:
t−1Y
i=1

"
t−i+1Y
j=2

h
(I2t−1 ⊗m X

g(i,m)
2 )(I2i−1 ⊗ L2t−i

2t−i+1)
i#

(I2t−1 ⊗m X
g(t,m)
2 ); g(i, m) =

(
1, m[t− i] = 1 and i 6= 1

2, (m[t− i] = 0 or i = 1

SN5:
t−1Y
i=0

t−1Y
j=0

h
(I2t−1 ⊗m X

f(i,j,m)
2 )L2t−1

2t

i
; f(i, j, m) =

8><>:
0, t− 1 < j + i

1, m[t− 1− j − i] = 1 and i 6= 0

2, m[t− 1− j − i] = 0 or i = 0

Table 1: DSL representation of five bitonic sorting networks S2t . m[x] represents the value of the bit in position x of the binary
representation of m.

Network Sorting Stages Implementation directives Cost

Reuse Ranges Constraints Number of 2-input sorters
2-input sorters (w ≥ 2) used

SN1 t
2
(t + 1) w 1 ≤ w ≤ n w|n w

4
t(t + 1) S2

SN2 t
2
(t + 1) w,di 1 ≤ di ≤ j di|j w

2

`
1 +

Pt−1
i=1 di

´
S2

1 ≤ w ≤ n w|n

SN3 t
2
(t + 1) w 1 ≤ w ≤ n w|n w

4
t(t + 1) X2 (2 states)

SN4 t
2
(t + 1) w,di 1 ≤ di ≤ j di|j w

2

`
1 +

Pt−1
i=1 di

´
X2 (2 states)

1 ≤ w ≤ n w|n

SN5 t2 w,d,d′ 1 ≤ d, d′ ≤ t d|t, d′|t w
2
dd′ X2 (3 states)

1 ≤ w ≤ n w|n

Table 2: Implementation characteristics of the different break down rules in Fig. 1 when applying streaming and iterative reuse. The
constraint a|b means that a must divide b evenly. Last column: one state means that S2 is used; otherwise X2 is used.
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Figure 4: Iterative reuse and streaming reuse applied to expres-
sions.

To the best of our knowledge, sorting networks with streaming
reuse (w < n) have not been implemented before. The likely rea-
son is in the challenge of streaming the required permutations. In
our generator we use the method from [14], which uses simple two-
ported memories and two-input switches to solve the problem for
all permutations in Table 2.

RTL generation. A sorting network expressed in our DSL along-
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Figure 5: Flow diagram of the generator.

side its implementation directives w and d completely specifies
a set of algorithmic and hardware implementation choices. We
have created an automated hardware generator (an extension of
Spiral [9]) that produces annotated DSL expressions and compiles
them to synthesizable register-transfer level Verilog. Fig. 5 illus-
trates our system’s flow.

First, one of the five algorithms in Table 1 is selected and adapted
to reflect the user’s choices for sorting network size n and imple-
mentation directives d and w. The operations for basic blocks
S2 and Xc

2 are specified by an intermediate code representation.
Next, a set of optimization and rewriting rules are applied with the
goal of simplifying the expressions and improving the quality of
the generated design. Then, the result is translated into synthe-
sizable register-transfer level Verilog. The design is automatically
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Figure 6: Throughput-area trade-offs for sorting networks of sizes: 16, 256 and 2048.

pipelined to maximize its achievable clock frequency, and timing
analysis is performed to ensure that all signals route through the
system and any feedback paths with correct timing. Other imple-
mentation options such as data type are additionally fed to the RTL
generation stage.

Streaming permutations (where w is less than the number of
points permuted) are implemented by the system as explained in [14].
Permutations that operate on non-streaming data (i.e., when all
points to be permuted are available in parallel at the same time)
are simply implemented with wires.

The generator additionally calculates the system’s memory re-
quirements and the latency and throughput of each block. It outputs
the final design alongside Verilog testbenches for the verification of
the created modules.

4. EVALUATION
With our generator we can systematically explore the large de-

sign space spanned by the five different sorting networks and the
various reuse options. Each design has a different trade-off between
area cost, performance, and memory requirements. In this section
we present various experiments on an FPGA for small, medium,
and large sizes. We identify Pareto-optimal designs and compare
to prior work.

Experimental setup. Verilog descriptions are synthesized and
place-and-routed for the Xilinx Virtex-6 XC6VLX760 FPGA using
Xilinx ISE 13.1. All designs are generated to process 16-bit fixed-
point data. We characterize each design by its cost: hard onchip
memory units called Block RAM (BRAM) and the FPGA’s recon-
figurable slice usage, and by its performance: latency or through-
put. The target FPGA includes 720 BRAMs of 36Kbits and 118,000
slices. Latency is measured in microseconds and throughput is
measured in giga samples per second (GSPS); both are calculated
with the system’s maximum execution frequency, given by Xilinx
ISE after place-and-route. BRAM and FPGA slice usage are taken
from place-and-route reports. An additional parameter to enable
or disable the usage of BRAMs was added to our generator, which
allows us to further explore platform dependent trade-offs.

Exploring the design space. Fig. 6 shows an evaluation of the
design space for the sizes n = 16, 256, 2048. All designs that
fit onto the target FPGA are shown. 150 designs are shown for
n = 16, 412 for n = 256, and 349 for n = 2048 . Generating

the RTL for each design took a few milliseconds, while obtaining
precise resource usage and timing information for each design took
from minutes to hours, depending on the complexity of the imple-
mentation. In each plot, the x-axis is the number of slices used, the
y-axis the throughput, and the size of the marker is proportional to
the number of BRAMs used. Fig. 6(c) zooms into a small region of
Fig. 6(b).

Among the designs, only the Pareto-optimal ones have to be con-
sidered for an application. The (throughput, area)-optimal designs
are connected by a line, and all Pareto-optimal (considering area,
throughput and BRAM-usage the target objectives) are marked by
a black dot. As expected, the smallest design in all cases is obtained
with SN5, w = 2 and d = d′ = 1.

Fig. 6(a) shows the solutions found for n = 16. All possi-
ble designs fit in the target FPGA. The highest throughput is ob-
tained with w = 16. Plot (b) shows all the solutions obtained for
n = 256. The design that achieves best performance is SN1 with
w = 128. Close to it we find SN2, SN3, SN4, all with w = 128
and no iterative reuse, which require more area and achieve lower
execution frequencies. Plot (c) shows designs for n = 256 that fit
in 2000 slices. The smallest designs are SN5, followed by SN2
and SN4. The smallest fully streaming designs, i.e., without itera-
tive reuse, achieve best performance in the range: SN1, SN2, SN3,
SN4 all with w = 2. Plot (d) shows all the solutions obtained for
n = 2048. The design that achieves best performance is SN3 with
w = 64.

For comparison purposes, we added to our design space an im-
plementation (by hand) of a linear sorter, as described in [8, pp. 5].
It is part of the Pareto optimal set only for n = 16.

In summary, the set of Pareto-optimal points is non-obvious and
composed of different networks and implementation directives. Our
generator enables a systematic exploration and identification of these
designs. The area requirements of a design could be estimated from
the number of 2-input sorters given in Table 2 to guide designers
on selecting only a subset of designs for hardware synthesis.

Comparison to prior work. A key contribution is not only the
ability to generate designs but, to the best of our knowledge, the
first designs for sorting networks with streaming reuse to dramat-
ically reduce area cost, even for high throughput designs. We il-
lustrate this contribution in Fig. 7, which shows the area cost (y-
axis) of various sorters for increasing n (x-axis) that fit onto the
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Figure 8: Streaming sorting networks generated in this pa-
per in comparison with the interleaved linear sorters (ILS)
from [11].

target FPGA. With prior work it was possible to build the designs
of the four uppermost lines: networks without reuse (here: SN3
with w = n), iterative reuse in networks with constant geometry
([7] implements SN4 with di = 1 and [15] implements SN5 with
d = d′ = 1), and the linear sorter (which is not based on a network)
from [8, pp. 5].

Our work enables, for example, the two bottom lines: fully stream-
ing designs (here SN1 which processes w = 2 elements per cy-
cle) and a design with maximal reuse (SN5 with w = 2 and d =
d′ = 1), i.e., it uses only one sorter Xc

2 . Both designs require more
BRAM but considerably less slices. Even a sorter for 219 elements
can be fit onto the target FPGA.

We also compared our designs with the interleaved linear sorters
(ILS) presented in [11]. For n = 64, Fig. 8 shows throughput and
area of our Pareto-optimal designs connected by a line and the ILS
designs with w = 1, 2, 4, 8 from [11]. Again, the improvement is
considerable.

5. CONCLUSIONS
We believe that for well-understood kernel functions IP core gen-

erators based on small domain-specific languages offer a practical
solution that is hard to match by human designs. We have presented

such a generator for sorting. Using the generator, we could generate
a large set of candidate designs that capture the existing algorithm
knowledge of bitonic sorting networks as well as the various im-
plementation options. The Pareto-optimal designs are non-obvious.
Equally important, we used prior work on streaming permutations
to present the first sorters with streaming reuse to dramatically re-
duce area and hence to enable much larger sorting problems to be
processed at high throughput on FPGAs.
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SUPPLEMENTAL MATERIAL
This section includes material that clarifies concepts from Section 2
or results from Section 4.

Fig. 9 shows the data flow graph representation of a bitonic sorter
of size 23 = 8 based on SN5. SN5 is a sorting network introduced
in Section 2. It is composed of 32 = 9 stages. Each stage per-
forms 8/2 = 4 parallel compare operations followed by the perfect
shuffle permutation.

Table 3 shows FPGA slices and BRAMs used by some of the
sorting networks that we generate. The table also includes a linear
sorter that was separetaly implemented for comparison. The last

design in the table (last 2 rows) are the smallest sorting networks
that we generate for a given n. This data was used for the plot in
Fig. 7.

Fig. 10 shows the area and latency of designs for size n = 2048
that fit into 10,000 slices. The smallest Pareto-optimal designs are
provided by SN5 with various degrees of reuse. Most of the low-
latency Pareto-optimal designs in the range are found with SN1
and SN3.

Fig. 11 and Fig. 12 zoom into a small region of the plots in
Fig. 6(a) and (d) respectively. Both figures display the smallest
solutions found in each design space.
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Figure 9: Data flow graph representation of a bitonic sorter of size 8 based on SN5. X0
2 preserves the original order of the input

elements, X1
2 sorts the inputs in descending order, and X2

2 sorts the inputs in ascending order.

n 16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384
t 4 5 6 7 8 9 10 11 12 13 14

SN3 w = n FPGA slices 1,579 4,476 12,325 32,008
BRAMs 0 0 0 0

SN4 w = n, di = 1
FPGA slices 1,067 2,546 6,009 13,337 29,776
BRAMs 0 0 0 0 0

SN5 w = n, d = d′ = 1
FPGA slices 727 1,372 2,591 5,007 10,154
BRAMs 0 0 0 0 0

Linear sorter (LS)
FPGA slices 167 434 749 1,332 2,572 5,840 10,641 22,076 41,327 82,566
BRAMs 0 0 0 0 0 0 0 0 0 0

SN1 w = 2
FPGA slices 303 483 582 890 1,092 1,391 1,567 1,876 2,134
BRAMs 9 14 20 27 35 44 54 67 86 117 172

SN5 w = 2, d = d′ = 1
FPGA slices 120 122 124 136 136 161 180 231 159 249 195
BRAMs 1 1 1 1 1 1 1 2 5 10 19

Table 3: Area and BRAM usage for different network sizes n. This data corresponds to the trend lines displayed in Fig. 7.
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Figure 10: Latency-area trade-offs for sorting networks of size 2048.
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Figure 11: Throughput-area trade-offs for sorting networks of size 16 that fit in 1000 FPGA slices. All the design points are displayed
in Fig. 6(a).
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Figure 12: Throughput-area trade-offs for sorting networks of size 2048 that fit in 3000 FPGA slices. All the design points are
displayed in Fig. 6(d).


