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Abstract
Many high-level synthesis tools offer degrees of freedom in map-
ping high-level specifications to Register-Transfer Level descrip-
tions. These choices do not affect the functional behavior but span
a design space of different cost-performance tradeoffs. In this pa-
per we present a novel machine learning-based approach that ef-
ficiently determines the Pareto-optimal designs while only sam-
pling and synthesizing a fraction of the design space. The approach
combines three key components: (1) A regression model based on
Gaussian processes to predict area and throughput based on syn-
thesis training data. (2) A “smart” sampling strategy, GP-PUCB, to
iteratively refine the model by carefully selecting the next design
to synthesize to maximize progress. (3) A stopping criterion based
on assessing the accuracy of the model without access to complete
synthesis data. We demonstrate the effectiveness of our approach
using IP generators for discrete Fourier transforms and sorting net-
works. However, our algorithm is not specific to this application
and can be applied to a wide range of Pareto front prediction prob-
lems.

Categories and Subject Descriptors B.5.2 [Hardware]: Design
Aids—Automatic synthesis; F.2.2 [Mathematics of Computing]:
Probability and Statistics—Probabilistic algorithms; I.5.1 [Com-
puting Methodologies]: Pattern Recognition—Models

General Terms Algorithms, Performance

Keywords Pareto Optimality, High-Level Synthesis, Area and
Performance Estimation, Machine Learning

1. Introduction
The ultimate goal of high-level synthesis tools is to free designers
from dealing with implementation details that do not affect behav-
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Figure 1. Design space of sorting networks, supported by an IP
generator, for input size 256.

ioral specifications. Users only specify the required functionality,
and a Register-Transfer Level (RTL) description is automatically
generated. One example of such a tool is an Intellectual Property
(IP) generator that emits RTL designs for a particular function or
operation. However, there are usually important degrees of freedom
in the process of generating designs from a high-level description.
These do not affect the functional behavior but may represent dif-
ferent cost-performance tradeoffs. One example of such a tradeoff
is area cost versus throughput performance. The designer is only
interested in those designs that are Pareto-optimal to select the best
solution for the constraints at hand. Obtaining these designs, how-
ever, is costly since it requires the synthesis and evaluation of all
degrees of freedom supported by the tool.

As an example, consider an IP generator for Sorting Networks
developed in prior work [19]. The generator can produce RTL
descriptions for a given input size n (the length of the list to be
sorted), and a set of configuration parameters c that affect area and



throughput. For n = 256, the generator offers 207 configurations
c; synthesis of each yields the area/throughput plot in Fig. 1. The
Pareto-optimal designs are joined by a line and represent only a
fraction of the design space. The question raised is how to find the
Pareto-optimal designs efficiently. An ideal solution is a model that
avoids actual synthesis. However, building by hand such a model
that covers all cases, even in the case of a fixed-function generator,
is notoriously difficult, not least because the parameters in c are
usually heterogeneous and have complex interactions and effects
on the final results. Thus, an attractive solution is to generate such a
model from synthesis data using techniques from machine learning.
This is the approach taken in this paper.

Contribution. In this paper we address the problem of finding
the Pareto-optimal designs efficiently, i.e., with minimal sampling
and synthesis of the design space. Our approach uses a novel ma-
chine learning algorithm that is specifically designed for the re-
quired multi-objective optimization. The algorithm iteratively and
“smartly” samples the design space to build a continuously improv-
ing model until a stopping criterion is met. It consists of three main
components: (1) A model for predicting area and throughput based
on Gaussian process (GP) regression. This approach proves to be
well-suited to deal with the heterogeneous configuration space and
the non-linear objective functions. As a major advantage, the model
captures predictive uncertainty, which is crucial for guiding our
sampling and termination strategy, as explained next. (2) A novel
sampling strategy, referred to as GP-PUCB, to iteratively refine the
above model. The strategy is designed to both maximally improve
prediction accuracy while focusing on refining the model in the
Pareto region, i.e., the region of interest. Our approach adapts the
known upper confidence bound rule for single objective Gaussian
processes [13] to our multi-objective case. (3) A stopping criterion
that can assess the accuracy of the model even though synthesis
results are (of course) not available for the entire design space.

We evaluate our algorithm with two IP generators, one for
sorting networks [19] and one for discrete Fourier transforms [8].
As a metric for comparing actual versus estimated Pareto front
we use the logarithmic hypervolume [16], which proportionally
penalizes mispredictions across the objective space. The results
show that sampling a small fraction of the design space can indeed
yield predictions of the Pareto front that are sufficiently accurate to
be of use in applications.

Finally, we would like to emphasize that our algorithm is not
specific to the IP generators or scenario we use in our empirical
case study. Due to the generality of the problem attacked, we expect
it to be a viable choice for a wide range of Pareto front prediction
problems.

2. Background on our Case Study
In this paper we consider two particular IP generators as case stud-
ies for the approach and evaluation. Both can generate hardware
for a variety of input sizes n, and for each n there are various con-
figurations c that determine different tradeoffs between area and
throughput. The exact working of the generators is not of impor-
tance here, only the parameterization of the design space.

Discrete Fourier transform (DFT). The IP generator in [8]
generates RTL Verilog for DFT, given the input size n, and a
configuration with four parameters: c = (algorithm, radix, depth,
streaming width). The first specifies the fast Fourier transform algo-
rithm, the second the associated radix. The depth ` and the stream-
ing width w are implementation choices: ` indicates the number of
pipelined computation stages, and w the number of samples that
are input at every clock cycle. The generated core includes w`/2
basic butterfly units.

Sorting network (SNW). Similar to [8], the SNW generator
in [19] generates RTL Verilog for sorters, given the length n of

the sequence to be sorted and a configuration with 3 parameters:
c = (algorithm, depth, streaming width). The first specifies the
variant of bitonic sorter to be used, the others are as before. The
generated core has w`/2 size-2 sorters.

3. Problem Formulation
We wish to find for given input size n the set of Pareto-optimal
designs while testing as few configurations as possible. Notice that
while we focus on a dual-criteria optimization—trading off area
and throughput—the approach can be easily generalized to multi-
criteria optimization with an arbitrary number of objective func-
tions [3]. We now introduce notation to provide a formal problem
statement and to emphasize the general nature of the setting we
consider. This should make our approach suitable for a much wider
range of applications than studied here.

Our target IP generators produce designs that are fully specified
by the input size n and the configuration vector c. The set of
“admissible” choices for c depends on n. We denote with Dn the
design space of configurations1 available for a fixed n. Formally,

Dn = {d = (n, c) | c admissible}.
If N is the finite set of all supported sizes n, then

D =
⋃
n∈N

Dn

is the entire design space supported by the generator.
We consider two objective functions, A (area) and T (through-

put) that map every d ∈ D to (A(d), T (d)) in the objective space
(pairs of positive reals). EvaluatingA and T involves actual synthe-
sis and is thus expensive. Further, we define the Pareto dominance
relation in Dn: d � d′ if A(d) ≤ A(d′) and T (d) ≥ T (d′). The
set Pn ⊆ Dn of Pareto-optimal designs is thus the set of maximal
points in this order.

Our goal is to predict Pn, n ∈ N , as accurately as possible from
the evaluation (synthesis) of only a small subset S ⊂ D. In order
to do that, we need to predict area and throughput for designs that
are not synthesized. In the following, we describe how we can use
machine learning to make such predictions.

4. Generating Predictions
Our approach to predicting the set of Pareto optimal configurations
Pn for a given input size n is to learn models of the functions A
and T . The models will be denoted with Â and T̂ , respectively.
Obtaining a prediction P̂n of Pn for some n, is thus straightforward
through cheap evaluation of Â and T̂ on all d ∈ Dn and identifying
designs considered Pareto-optimal.

Generalizing across sizes. Since designs for different sizes n
share patterns, we build models for the entire design space D in-
stead of for the Dn separately. Since A and T tend to grow with
n, we normalize these functions with suitable scaling factors deter-
mined by d (i.e., no synthesis is needed) to aid comparison across
n. We refer to our normalized functions as A′ and T ′:

A′(d) = A(d)/β(d),
T ′(d) = T (d)/γ(d). (1)

In our case we choose β(d) = w`/2 (number of basic elements)
and for γ(d) the average number of input samples per cycles. For
example, for fully streaming designs, γ(d) = w.

In summary, we learn models (or predictors) Â′ and T̂ ′. The
models Â and T̂ are obtained by simple denormalizing.

Training stage. Alg. 1 shows how, given the design space
D, we generate the predictors A′ and T ′ from a growing set

1 We will use “design” and “configuration” interchangeably.



Algorithm 1: train. Training stage that learns area and
throughput models. Input: D. Output: Â′, T̂ ′.

1: S = ∅ {S stores training data: (s,A′(s), T ′(s))}
2: repeat
3: if |S| < 0.01 · |D| then
4: s = random(D − S) {pick random element from D − S}
5: else
6: s = smartSampling(D,S, Â′, T̂ ′) {see Alg. 3}
7: end if
8: (A′(s), T ′(s)) = measure(s) {run synthesis}
9: S = S ∪ (s,A′(s), T ′(s))

10: (Â′, T̂ ′) = learn(S) {see Section 4.1 }
11: until stop(D,S, Â′, T̂ ′) {see Alg. 6}
12: return (Â′, T̂ ′)

Algorithm 2: predict. Predicting Pareto-optimal designs.
Input: n, Â′, T̂ ′. Output: P̂n.

1: (Q1, Q2) = predictPareto(Dn, Â′(d), T̂ ′(d)) {see Alg. 5}
2: P̂n = Q1 ∪Q2 {P̂n ⊂ Dn contains all predicted Pareto optimal

configurations}
3: return P̂n

of evaluated training data S. First, a random 1% of the design
space is measured to create initial models. After that, samples are
selectively chosen to maximize progress (explained in Section 4.2).
In every iteration, a regression model based on Gaussian processes
is trained and updated based on the new sample (explained in
Section 4.1). Then a stopping criterion is evaluated to assess the
maturity of the models (explained in Section 4.4).

Once the stopping criterion is met, the training terminates and
the models are available for prediction.

Prediction stage. Alg. 2 shows how the models Â and T̂ are
used to predict Pareto-optimal designs. The algorithm takes the
uncertainty in predictions into account, as explained in Section 4.3.

4.1 Gaussian Process Modeling
We now describe the function learn in Alg. 1. Given a set of
training data (s,A′(s), T ′(s)), with s ∈ S ⊂ D, we create two
independent regression models Â′ and T̂ ′. While, in principle,
many techniques could be used, we choose Gaussian Processes
(GPs) [11] for reasons detailed below. In our implementation, we
use the Gaussian Process Regression and Classification Toolbox for
Matlab [10].

A GP is a statistical model that can capture complex, non-
linear relationships between the configuration d and the objective
functions T ′(d) and A′(d). It is nonparametric, and therefore not
limited to a particular parametric form (such as linearity). A GP is
fully specified by a mean function and a covariance function. As a
Bayesian model, a GP prior allows expression of the assumption
that design points that are close in the space are likely to have
similar values of the functions T ′ and A′, and this similarity is
captured by the covariance function2. Upon observation of the
training set S, Bayesian inference is used to compute a posterior
distribution over the Â′(d) and T̂ ′(d). A crucial advantage of GPs
is that the posterior provides closed-form predictive distributions
for Â′(d) and T̂ ′(d) with both a mean and a variance for designs
d not in the training set S. The mean is the predicted value and the

2 For our model we chose a constant mean function, and a composite
covariance function equal to the sum of a linear covariance function and
a squared exponential covariance function as explained in [11, pp. 83].
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Figure 2. Sampling strategy

Algorithm 3: smartSampling. Choose a sample point in the
design space D. Input: D,S, Â′, T̂ ′. Output: s.

1: Pu = ∅
2: Un = ∅
3: for all n ∈ N do
4: for all d ∈ Dn do
5: Un = Un ∪ (d, (a(d)− σa(d), t(d) + σt(d)) {values taken

from Â(d) and T̂ (d) to find upper left corners of confidence
rectangles}

6: end for
7: Pu = Pu∪ extractPareto(Un) {see Alg. 4}
8: end for
9: s = p ∈ Pu with maximum σa(p) + σt(p)

10: return s

variance specifies the uncertainty in the prediction. For simplicity
of notation, we denote with a(d) = Â(d) the prediction, and with
σa(d) the associated standard deviation provided by the model.
Similarly, we define t(d) = T̂ (d) and σt(d).3 The covariance
function and the mean function include parameters that control the
smoothness of the functions estimated by the GP. These parameters
are called hyperparameters and are learnt given the initial training
samples S, and used in the GP posterior distribution in order to
generate predictions over unseen design points.

3 The standard deviation for Â(d) is obtained from the standard deviation
of Â′(d) using the scaling factors in (1).
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Figure 3. Stopping criterion

Algorithm 4: extractPareto. Extract Pareto optimal con-
figurations. Input: E. Output: P .

1: Pn = ∅
2: for all (d,A(d), T (d)) ∈ E do
3: if @(d∗,A(d∗), T (d∗)) ∈ E with d∗ � d and d � d∗ then
4: P = P ∪ d {E stores the vectors (d,A(d), T (d))}
5: end if
6: end for
7: return P

4.2 Smart Sampling
Sampling the design space in a careful way is important as our
goal is to minimize the number of measurements (syntheses) in
the training stage. We propose GP-PUCB, a novel approach (the
function smartSampling in Alg. 1) for selecting the next sample,
which aims to reduce the uncertainty of the model and at the same
time to focus on the predicted Pareto region of every Dn. To
achieve this, we build on the Gaussian Process Upper Confidence
Bound (GP-UCB) algorithm [13], which balances exploration of
the space and emphasis on potential optimal designs (albeit only
for single objective optimization).4

Fig. 2 illustrates our sampling strategy. After measuring a few
sample designs, we are in the situation shown in part a. Here,
three designs have been synthesized and measured; the results are

4 The method considers a single objective maximization problem of a func-
tionF(x). A point x is chosen for sampling if it maximizes µ(x)+η ·σ(x)
obtained from the current prediction; η is a chosen parameter.

Algorithm 5: predictPareto. Predict Pareto optimal con-
figurations in Dn. Input: Dn, Â′, T̂ ′. Output: (Q1, Q2) such
that P̂n = Q1 ∪Q2.

1: E = ∅ {E stores predicted values and their respective configuration
vector d}

2: for all d ∈ Dn do
3: E = E ∪ (d, (a(d), t(d)))
4: end for
5: Q1 = extractPareto(E) {see Alg. 4}
6: E = ∅ {E now stores modified values ofA and T their respective

configuration vector d}
7: for all d ∈ Dn and ∈ Q1 do
8: if d ∈ Q1 then
9: E = E ∪ (d, (a(d) + σa(d), t(d)− σt(d)))

10: else
11: E = E ∪ (d, (a(d)− σa(d), t(d) + σt(d)))
12: end if
13: end for
14: Q2 = extractPareto(E)
15: return (Q1, Q2)

Algorithm 6: stop. Obtain stopping condition to terminate
training stage. Inputs: D, Â′, T̂ ′. Output: stop.

1: (Q1, Q2) = predictPareto(Dn, Â′, T̂ ′) {see Alg. 5}
2: q2 =

|Q2|
|Q1|+|Q2|

{ratio of elements in Q2}
3: if q2 < h then
4: stop = True
5: else
6: stop = False
7: end if{h is a threshold parameter}
8: return stop

red diamonds and have no uncertainty. For the other designs d,
the current model offers predictions (a(d), t(d)) (blue dots) with
uncertainty a(d)± η · σa(d) and t(d)± η · σt(d). We used η = 1,
thus, uncertainties are represented as rectangles with width 2·σa(d)
and height 2 · σt(d). The question is which design, i.e., rectangle,
to sample and synthesize next.

We want to target Pareto optimal candidates, but also want to
reduce the uncertainty (size of rectangle) of the model. To achieve
both we optimistically consider all rectangles whose upper left
(best) corner is Pareto-optimal; among those we pick the one with
the largest uncertainty σa(d)+σt(d). After measuring this sample,
we are in the situation shown in Fig. 2, part b, and the process is
repeated. The algorithm is formally described in Alg. 3.

4.3 Predicting Pareto-optimal Points

During training (Alg. 1), we obtain models Â′ and T̂ ′ and hence
the models Â and T̂ , which for each design d provide a two-
dimensional confidence region (rectangle), whose corner points are
(a(d)± σa(d), t(d)± σt(d)). For the stopping criterion, we need
to extract the Pareto-optimal points predicted so far.

The set of predicted Pareto-optimal points P̂n is composed
of two subsets Q1 and Q2. Q1 is formed by the points that are
not dominated given the mean values predicted by the model
(a(d), t(d)). As a small misprediction in (a(d), t(d)) might change
the dominance relationship among design points, we also predict
points that are likely to be Pareto-optimal even though they are not
given their predicted values (a(d), t(d)). Thus, Q2 is composed of
points that are not in Q1 (since those are already predicted to be
Pareto-optimal), and that are not dominated when points inQ1 take
values at the bottom-right corners (worst outcomes) in the confi-
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Figure 4. Examples of the hypervolume indicator (V) and the logarithmic hypervolume indicator (L), evaluated on the true Pareto optimal
set Pn and the predicted Pareto optimal set P̂n.

dence region and points not in Q1 take values at the top-left corner
(best outcome). In Fig. 3(a), Q2 consists precisely of the center
points of the light blue rectangles. This is a conservative approach
when confidence regions are still large. However, Q2 tends to get
smaller as more samples are taken and uncertainties are reduced.

The overall algorithm is formally described in Alg. 5 and is the
crucial subroutine in the stopping criterion (Alg. 6) described next
and also in Alg. 2.

4.4 Stopping Criterion
A stopping condition is used to terminate the training stage (stop
in Alg. 1). When this condition is met, no more samples are eval-
uated and the model is used for predicting Pareto configurations
as shown in Alg. 2. Our stopping criterion assesses the confidence
of the current model along the Pareto front. The challenge is that
without complete synthesis results, the accuracy cannot be assessed
directly; hence, another approach is needed.

Using the notation from the previous section, for a given n,
we define q2 = |Q2|/|P̂n| as the ratio of points of designs that
have been predicted as Pareto-optimal only due to uncertainty.
Intuitively, as the model matures, the uncertainties are reduced and
q2 decreases. Once it drops below a chosen threshold, we terminate
the training.

As example, Fig. 3(a) shows a stage at which the model is still
immature and this is reflected by a large q2. In Fig. 3(b) the model
has become more mature, which is reflected by a smaller q2.

The procedure is formalized in Alg. 6. We test several threshold
values in Section 6.

5. Quality Indicator
The goal of our machine learning algorithm is to find the best
approximation P̂n of the Pareto set Pn for every input size n.
To assess the approximation and compare different models and
different stages of the training process, we hence need a measure
of quality. As explained next, we use the logarithmic hypervolume,
which is a special case of the weighted hypervolume suggested
in [16].

5.1 Hypervolume
The Hypervolume indicator is a well known quality indicator for
multi-objective optimization problems [17]. It measures the size of
the space covered between the Pareto front and a reference point
located inside the dominated region of the design space. Fig. 4(a)

shows an example where the area that defines the hypervolume is
highlighted in blue. The reference point is marked as r2 and is
chosen such that the region that is formed covers all design points.
The point r1 is obtained from the maxima and minima of the Pareto
data. We denote the hypervolume thus obtained from the Pareto
front Pn with V(Pn).

Solutions in the set P̂n are suggested to be Pareto optimal, and
therefore, evaluated to obtain precise area and throughput measure-
ments. Thus, any predicted Pareto front P̂n is dominated by Pn.
Moreover, V(Pn)−V(P̂n) is never negative and can serve as qual-
ity measure of the approximation. Further, P̂n = Pn if and only if
V(P̂n) = V(Pn). Fig. 4(b) shows both, the front and the predic-
tion. The difference of the volumes is light blue.

A problem with the hypervolume is that it assesses absolute
errors rather than relative ones. This means errors for smaller or
slower designs are disproportionately underaccounted for. A more
desirable measure would count errors proportionally. It is straight-
forward to show that this is achieved by calculating the hypervol-
ume in a log-log scale, which converts absolute differences into rel-
ative ones on both scales. We call this measure logarithmic hyper-
volume and denote it with L(Pn). Fig. 4(c) shows the logarithmic
hypervolumes corresponding to Fig. 4(b).

Variable substitution in the integral computing the logarithmic
hypervolume shows that it is equivalent to a weighted hypervolume
as proposed in [16] with a weighting function of 1/(at).

5.2 Pareto Front Percentage Error
Based on the quality indicator L, we define the following metrics
to compare an approximation P̂n with Pn:

Ea(P̂n) = (1− e
L(Pn)−L(P̂n)

t′1−t′2 ) · 100, (2)

Et(P̂n) = (1− e
L(Pn)−L(P̂n)

a′1−a′2 ) · 100 (3)

where r′1 = (a′1, t
′
1) and r′2 = (a′2, t

′
2) are the reference points in

the log-scaled objective space. Ea is the average relative distance
between Pn and P̂n along the axis defined by the objective function
A; Et is the average relative distance between Pn and P̂n along the
axis defined by our objective function T .

The metrics Ea and Et provide an intuitive way to compare
approximations P̂n at different stages of training. Since it is a
percentage value and it does not depend on the ranges covered
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Figure 5. Two examples of Pareto front predictions P̂n (dark gray
region) versus the actual Pareto front Pn (light blue region), in
original and log scale, including the corresponding Pareto front
percentage errors: (a) Ea = 5.52, Et = 6.58; (b) Ea = 11.15,
Et = 13.2.

by the volume indicators, it allows for direct comparisons between
predictions of different design spaces Dn.

Fig. 5 shows two examples of solutions found by evaluating the
configurations predicted by our model to be Pareto (points cov-
ered by the gray region), against the Pareto optimal solutions found
after exhaustively evaluating the design space (points covered by
the blue region). The second plot of (a) and (b) shows the corre-
sponding values of the Pareto front percentage errors (Ea and Et).
Example (b) shows that what appears as a minor misprediction on
the original scale (left plot, circled area) is captured by the metrics
Ea and Et, which measure the error proportionally.

6. Experimental Evaluation
We evaluate our machine learning algorithm from Section 4 us-
ing the IP generators for discrete Fourier transforms (DFTs) and
sorting networks (SNWs) (see Section 2). Both offer a large design
space characterized by a heterogeneous set of parameters. In the re-
mainder of this section we first explain the experimental setup and
then we perform the same set of experiments with both generators:

• We assess the quality of the Pareto front prediction versus the
size of training set sampled using the measures Ea and Et.
• We determine the accuracy of the generated area and throughput

models Â and T̂ on the predicted Pareto set.
• We explore the effect of choosing the threshold in the stopping

criterion.

Experimental setup. As explained in Section 2, for every input
size n ∈ N there is a design spaceDn of admissible configurations
c supported by the generator. For DFTs, we considered N =
{24, . . . , 214}, and for SNWs N = {24, . . . , 214}. Table 1 shows

the number of designs |Dn| for every n and the total number |D|
of designs.5

In both experiments, we evaluated the design space D exhaus-
tively, which took several weeks on a system with 12 cores and
144GB of RAM. All Verilog descriptions were synthesized and
place-and-routed for the Xilinx Virtex-6 XC6VLX760 FPGA us-
ing Xilinx ISE 13.1. All designs were generated to process 16-bit
fixed-point data. Through the exhaustive evaluation we could de-
termine each Pn, n ∈ N , and thus could compute the measures Ea
and Et defined in Section 5.2.

We initialized all models by sampling a random 1% of the
design space; then samples were “smartly” selected (Alg. 3) until
40% of the design space was explored. Because of the random
initialization of the models, the same experiment was repeated 40
times. This way, we can provide averages and their 95% confidence
intervals over these 40 experiments.

We evaluate our regression technique based on GPs with our
Pareto UCB sampling strategy and refer to it as GP-PUCB. For
comparison, we also run the same experiments for GP models with
random sampling, referred to as GP-R, and for regression trees
(provided by Matlab 7.11) with random sampling, referred to as
RT-R.

Pareto front prediction. We evaluate the quality of the Pareto
front predictions P̂n found with increasing size of the training set
from 2% up to 40% of |D|, in increments of 1%. We measure
Ea and Et and average over all n ∈ N . The results are shown
in Fig 6: (a) and (b) for SNWs, and plots (c) and (d) for DFTs.
The x axes in both plots show the percentage of the design space
that has been measured and used for training. Shaded areas indicate
95% confidence intervals. As expected, the errors decrease with
increasing training set size.

Fig. 6(a–b) show that, for SNWs, GP-PUCB systematically
outperforms RT-R for any percentage of the design space sampled.
It also yields considerable gains compared to GP-R once more than
about 7% of the training set are sampled. As the training set size
increases, GP-PUCB gets considerably closer to the actual Pareto
fronts (2% versus 5–7% for the others).

Fig. 6(c–d) show the equivalent results for DFT. A similar
behavior can be observed but is less pronounced. Here DT-R is
competitive up to sampling 10% of D. Beyond that GP-PUCB is
again consistently best.

We conclude that for these IP generators, our method offers a
useful prediction, that the GP-based prediction can improve con-
siderably over regression trees (DT-R), and that our smart sampling
improves over random sampling.

Area/throughput prediction for Pareto-optimal points. Ac-
curately predicting the Pareto front is not the same as accurately
predicting area and throughput separately. The latter implies the
former but not vice-versa. For example, the area/throughput pre-
dictions may be off but produce a shape similar to the actual front
and thus predict the Pareto-points properly.

In the next experiment we show that our method, however, does
produce reasonable models Â and T̂ , which are of interest in their
own right. Since our method focuses the exploration on the Pareto
region, we show the accuracy of Â and T̂ on the predicted Pareto
fronts P̂n, n ∈ N . The relative errors in area predictions are shown
in Fig. 7(a) and (c); the relative errors in throughput predictions
are shown in Fig. 7(b) and (d). The x-axes in all the plots show
the percentage of the design space that has been evaluated. Area
and throughout are considerably better predicted with GP-PUCB
except for a few regions in which GP-R is also competitive. DT-R
performs overall poorly.

5 The numbers |Dn| fluctuate since they depend on the divisibility of n.



0 5 10 15 20 25 30 35 40

Percentage of training samples

0

5

10

15

20

25

(a) SNW: Ea vs. Percentage Explored

0 5 10 15 20 25 30 35 40

Percentage of training samples

0

5

10

15

20

25

30

35

(b) SNW: Et vs. Percentage Explored

0 5 10 15 20 25 30 35 40

Percentage of training samples

0

2

4

6

8

10

12

14

(c) DFT: Ea vs. Percentage Explored

0 5 10 15 20 25 30 35 40

Percentage of training samples

0

2

4

6

8

10

12

14

(d) DFT: Et vs. Percentage Explored

DT-R GP-R GP-PUCB

Figure 6. Quality of the Pareto front predictions P̂n, n in N , as measured with Ea and Et versus size of the training set: (a–b) for SNW and
(c–d) for DFT. The shaded areas are confidence intervals.

n 24 25 26 27 28 29 210 211 212 213 214 all n

|Dn| DFT 20 17 46 30 74 46 58 33 91 30 45 409

SNW 76 91 148 145 207 100 86 184 1037

Table 1. Design space characterization for DFT and SNW.

Area and throughput predictions with an error of only 10–20%
can be achieved with GP-PUCB, while sampling only 10–20% of
the design space.

Stopping criterion. So far, we did not invoke our stopping
criterion, determined by the threshold parameter h. Next, we test
the effect of this parameter with values from 0.01 to 0.3 in steps of
0.01.

Fig. 8 shows, for different values of h, Ea and Et when the
stopping condition is met (when p2 ≤ h). As expected, the errors
decrease with h. Similarly, Fig. 9 shows, for different values of
h, the percentage of the design space used for training when the
stopping condition is met. As expected, the percentage increases
with decreasing h. In this experiment, we limited the percentage

explored to 10% to make sure it terminates for very small h, which
explains the plateau for h < 0.05.

When h is large, the stopping condition is easily met, Ea and Et
values are large (see Fig. 8), but a small training set is required (See
Fig. 9). On the other hand, when h is small, more training samples
are required and better predictions can be made.

Since evaluations are expensive, it is not desirable to evaluate
more designs if no improvements in the predictions are observed.
For example, from h = 0.12 to h = 0.01 there are nearly no
improvements in the predicted Pareto front. However, the demand
for training samples in this range increases up to the limit of 10%.
Therefore, a good tradeoff here would be h = 0.1. For DFT, the
Pareto front would be predicted with errors of 6% and 7% (Ea and
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Figure 7. Relative error of throughput and area, calculated for Pareto optimal points, versus size of the training set: (a–b) for SNW and (c–d)
for DFT. The shaded areas are confidence intervals.

Et) with only 6% of the design space evaluated. For SNW, 10% and
13% (Ea and Et) error would be obtained by evaluating 3% percent
of the design space.

7. Related Work
Multi-objective optimization. Multiple approaches for approxi-
mating the Pareto surface of a multi-dimensional objective space
have been proposed. Evolutionary algorithms, being one of the
most popular of these approaches, have proven to be robust and
powerful search mechanisms for tackling the exploration of highly
complex design spaces. These algorithms aim at evolving a pop-
ulation to converge to Pareto solutions by emulating natural evo-
lution, supported by concepts such as fitness, elitism, and muta-
tion. The multi-objective nature of the problem raises several chal-
lenges to these approaches. Recent works on this topic aim at over-
coming these challenges; such as maintaining a diverse popula-
tion, and defining appropriate fitness functions to suit the multi-
ple objectives [1, 6, 18]. A subset of evolutionary algorithms have
used Gaussian processes in order to model the objective functions,
and thus eliminating weak candidates from the current popula-

tion [4, 5]. The main objective of these approaches is to search
through the design space until the current population is a good
enough approximation of the Pareto set. In contrast, we are inter-
ested in extracting a few samples from the design space to predict
the Pareto-optimal designs without having to evaluate them during
the training stage.

A simplistic approach to a multi objective optimization prob-
lem reduces the dimensionality of the objective space by aggregat-
ing multiple objectives into a single one, reducing the problem into
a simpler one in which a large range of mechanisms can be used,
such as statistical inference or single objective evolutionary algo-
rithms. Zhang et al. [15] propose a multiobjective evolutionary al-
gorithm framework that decomposes the optimization problem into
single-objective subproblems. A predictive model based on Gaus-
sian processes is built for every subproblem, and sample candidates
are selected based on their expected improvement.

Electronic design. Palermo et al. [9] tackle the problem of find-
ing the set of Pareto optimal architectural configurations for mul-
tiprocessor systems, while minimizing the number of system-level
simulations. First, “design of experiments” techniques are used to
initialize a set of training samples. Then response surface model-
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Figure 8. Ea and Et when p2 equals the threshold h, for different
values of h. Better predictions are made as h gets smaller.
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Figure 9. Percentage of the design space explore when p2 equals
the threshold h, for different values of h. Better predictions are
made as h gets smaller.

ing techniques are used to predict the objective functions on the
remaining configurations. Pareto optimal solutions are taken from
the predicted space and then evaluated. This process is repeated
until no more improvements are obtained from the simulated con-
figurations or until a maximum number of evaluations is met.

Similarly, our approach to finding the Pareto optimal configura-
tions given a design space, is to model the objective functions and
predicting the Pareto configurations based on the predicted space.
However, as we are interested in both, estimating and optimizing
the objective functions, we explore the design space while targeting
potential optimal designs. To achieve this, we build on the Gaus-
sian process upper confidence bound algorithm [13], which only

addresses single-objective problems, to balance exploration and ex-
ploration in a multi-objective scenario.

In the context of FPGA design, So et al. [12] implemented a
high-level synthesis framework where a parallel compiler technol-
ogy is used to transform application kernels before mapping them
into RTL descriptions. The algorithm determines whether a loop
should be unrolled and by how much. The tools find an optimal
solution by searching over the space of configurations. This search
is guided by a set of observations and assumptions about the target
applications, and about the impact of unrolling factors on area and
performance of the resulting design.

Machine learning techniques, such as non-linear regression and
curve fitting, have been already used for area and performance es-
timation of FPGA designs. However, these are mostly constrained
to specific types of implementations. Deng et al. [2] model designs
that are composed of a fixed set of supported IP cores. Moreover,
it uses a different modeling technique for targeting floating point
or fixed point data. Yan et al. [14] target coarse-grained reconfig-
urable architectures and very long instruction word architectures,
while Milder et al. [7] propose area models for a parameterized im-
plementation of DFT, similar to the one considered in this paper.
In contrast, our work aims at capturing high-level features of the
design, allowing the models to capture the particular patterns of the
target application. This ensures that our techniques can be used in
a wide range of applications without any modifications.

8. Conclusions
This paper has presented a novel and general machine-learning
technique that can be used to find Pareto-optimal implementation
tradeoffs in design spaces in which the evaluation of design points
is very expensive. The technique is specifically designed for ef-
ficiency, i.e., to minimize the number of designs to be synthesized
and evaluated using a “smart” sampling strategy. One application is
in the context of high-level synthesis tools where parameterization
produces a large set of functionally equivalent design points with
different cost/performance tradeoffs. We used one such class of
tools, fixed-function IP generators for DFTs and sorting networks,
for our evaluation. The results show that our method can produce
useful predictions of the Pareto front while only sampling a fraction
of the design space. Further, our sampling strategy systematically
outperforms random sampling for a large enough training set.

Our algorithms have been devised to tackle multi-objective opti-
mization as a general problem. However, more evaluation is needed
to assess and understand the benefits of our algorithm in other sce-
narios and in larger design spaces.
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