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Abstract—Many applications in signal processing, control, and
graphics on embedded devices require efficient linear algebra
computations. On general-purpose computers, program gener-
ators have proven useful to produce such code, or important
building blocks, automatically. An example is LGen, a compiler
for basic linear algebra computations of fixed size. In this
work, we extend LGen towards the embedded domain using
as example targets Intel Atom, ARM Cortex-A8, ARM Cortex-
A9, and ARM1176 (Raspberry Pi). To efficiently support these
processors we introduce support for the NEON vector ISA and
a methodology for domain-specific load/store optimizations. Our
experimental evaluation shows that the new version of LGen
produces code that performs in many cases considerably better
than well-established, commercial and non-commercial libraries
(Intel MKL and IPP), software generators (Eigen and ATLAS),
and compilers (icc, gcc, and clang).

I. INTRODUCTION
Dense linear algebra computations are common, and often

performance-critical, in many domains in computer science
and engineering. For this reason, excellent library support
exists, typically structured around the BLAS (basic linear
algebra subroutines) interface [1], [2], [3], [4]. However,
these approaches mainly target large problem sizes, which are
common in scientific computing and modeling; for small sizes,
the performance is usually suboptimal. LGen [5], a program
generator for basic linear algebra computations (BLACs) of
fixed size operands, was designed to address this problem.
These specialized computations are common in various do-
mains including computer vision and graphics (e.g., geometric
transformation and stereo vision algorithms), control systems
(e.g., optimization algorithms and Kalman filters), and media
processing (e.g., Viterbi algorithms for speech recognition).
LGen is designed closely after Spiral (a generator for linear
transforms [6], [7]) and can generate scalar as well as SIMD
vector code. It was demonstrated that LGen-generated code
can provide significant performance gains compared to existing
library code (e.g., from [4], [8], [9], [10]) on Intel-based
desktop and workstation computers.

Embedded processors. The above domains are of equal,
if not higher importance in embedded computing. Embedded
processors are used in automotive electronics, network devices,
smartphones and tablets, and many other ubiquitous systems
with a reduced power budget. However, their energy efficiency
comes at a price: a reduced set of resources. Examples include
in-order execution units, smaller numbers of instruction-issue
ports, and less efficient access to unaligned memory locations.
Because of these, additional optimizations are needed to obtain
highest performance, and hand-tuning for these processors is

even more common than on their desktop counterparts. A
program generator that performs these automatically for a
specific domain is thus an attractive solution to achieve highest
performance at very low development cost.

Main contributions. The main contribution of this paper
is an extension of LGen that generates efficient BLAC code
for embedded processors, including support for the NEON in-
struction set. In doing so, we make the following contributions:
• We introduce a technique for load/store optimizations

on vector ISAs, targeted specifically to our application
domain, to reduce the number of data rearrangement
instructions in the generated code.

• We show experimental results on four processors: one
Intel-based (Atom) and three ARM-based (Cortex-
A8, Cortex-A9, and ARM1176). The performance
of LGen-generated code compares favorably against
performance libraries (Intel MKL and IPP), other gen-
erators (ATLAS and Eigen), and naïve code optimized
using icc, gcc, and clang.

II. BACKGROUND
Next we will provide background knowledge on the basic

linear algebra compiler LGen [5] and identify shortcomings
for the embedded domain that are addressed in this paper. In
the following, matrices will be denoted as A,B, ..., (column)
vectors as x, y, ..., and scalars as α, β, .... A BLAC was defined
in [5] as a computation on matrices, vectors, and scalars
formed with four basic operations: matrix addition, matrix
multiplication, matrix transposition, and scalar multiplication.
Note that for these operations vectors are viewed as matrices.

LGen takes as input a BLAC including the sizes of the
inputs and output. A valid example would be

B = xTA+ αyT , (1)

where A and B are matrices of sizes 19 × 3 and 1 × 3,
respectively, and x and y are vectors of length 19 and 3. The
output of LGen is a C function (optionally using intrinsics
for vector extensions) that implements the BLAC. Thus, LGen
can be viewed as a program generator for small dense linear
algebra.

Overview. LGen translates an input BLAC into C code
using two intermediate compilation phases as shown in Fig. 1.
During the first phase, the input BLAC is transformed at the
mathematical level using a domain-specific language (DSL)
called Σ-LL. At the code level, these transformations corre-
spond to loop optimizations such as multi-level tiling, merging,
and exchange (in Fig. 1 only the tiling decision is visual-
ized). During the second phase, the mathematical expression
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Fig. 1. LGen overview.

obtained from the first phase is converted to a C-intermediate
representation (C-IR). At this level, LGen performs additional
optimizations such as loop unrolling, scalar replacement, and
conversion into SSA form. Finally, since different tiling deci-
sions lead to different code versions of the same computation,
LGen uses autotuning (search) to select the C function that
achieves the best performance on the specified target device.

Vector code generation. LGen can generate functions
that are vectorized using SIMD intrinsics. In this case LGen
receives the vector length ν as additional input (e.g., ν = 4 for
NEON quadword float vectors). During the first compilation
phase, the vector length ν is used for an additional tiling (ν-
tiling) at the innermost level to create a structure for efficient
mapping to vector instructions. As a consequence of the ν-
tiling, the input BLAC is decomposed into ν-BLACs: the
18 basic operations on matrices of size ν × ν and vectors
of length ν × 1 or 1 × ν. In Fig. 2 we show the five ν-
BLACs used to vectorize matrix multiplication. ν-BLACs are
preimplemented once for every vector ISA and composed by
LGen to obtain the final code for the BLAC. For embedded
processors, LGen currently supports SSSE3 (Intel Atom) and
NEON (ARM Cortex-A8 and A9), an extension included for
the present paper. More details about vector code generation
using ν-BLACs can be found in [5]. We now explain how we
handle memory accesses when computing a ν-BLAC.

Accessing memory. All matrices involved in a ν-BLAC
satisfy two assumptions: (a) every dimension has a length of
either 1 or ν, and (b) the rows of matrices are contiguous
in memory. As described in [5], the ν-tiling decision taken
by LGen during the early compilation phase is made explicit
using gather and scatter matrices. However, at the Σ-LL level
there is no concept of loads and stores, but only of accesses
to matrices. At the C-IR level such accesses are translated to
code using two collections of pre-implemented codelets called
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Fig. 2. The five ν-BLACs used to vectorize matrix multiplication. Matrices
are ν × ν and vectors ν × 1 or 1× ν. The complete set of 18 ν-BLACs can
be found in [5].
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Loader and Storer that pack and unpack the data to make the ν-
BLACs usable. Besides making the data contiguous, Loaders
and Storers pack and unpack eventual leftovers (sizes < ν)
created by tiling. Using a packing-unpacking approach allows
these leftover BLACs to be also treated as ν-BLACs, thus
enabling a complete vectorization of the generated code.

As an example, consider the partial computation T = xTA
from (1). Assume that A is 16-byte aligned and stored in row-
major order, that our target ISA is SSSE3, and that we decide
to vectorize choosing ν = 4. In Fig. 3 we give a pictorial
representation of the flow of computations required to take
into account the leftover (the 1 × 3 matrix T ) produced by
ν-tiling. The 1 × 3 leftover tile of xT and the 3 × 3 leftover
tile of A are loaded to the temporary matrices T0 and T1 (of
sizes 1×ν and ν×ν). A similar approach is followed with the
outputs using Storers. Now, the code associated to the store-
load chain T2 → T3 → T4 should clearly be removed, holding
the result from the multiplication in register for the second
computation (Add ν-BLAC). However, as shown in Fig. 4, on
embedded processors lacking mask-load/store instructions, the
special size of the matrix result (1×3) requires additional data
rearrangement overhead (e.g., vector shuffles). In a generic
compiler such as clang, disposing of instructions such as
shuffles is a more complicated task due to the large set
of mask combinations. In our domain-specific LGen only a
small subset of these actually occur, making the approach
practical. In Section III we present a technique to remove data
rearrangement overhead using generic C-IR vector loads and
stores.

III. STORE-LOAD ELIMINATION WITH GENERIC C-IR
VECTOR LOADS AND STORES

LGen generates C-IR code by combining codelets from the
target ISA’s Loader, Storer, and ν-BLACs. All of these codelets
are implemented following a load-compute-store approach,
meaning that they first load data from memory into registers,
then they process the data, and finally they store the results
back to memory. As a result, the generated C-IR code consists
of chains of codelets, where data flow from one codelet to the
next one, as shown in Fig. 3. Data between two consecutive
codelets are stored in a local array allocated within the func-
tion. However, in the example shown in Fig. 3 the use of the



/* Begin nuBLAC mul */
// ... nuBLAC multiplication
__m128 mul_res = ...;
_mm_storeu_ps(T2, mul_res);
/* End nuBLAC mul */

/* Begin Storer 1x4 → 1x3 */
__m128 v0 = _mm_loadu_ps(T2);
_mm_storel_pi ((__m64*)(T3), v0);
_mm_store_ss(T3 + 2,
_mm_shuffle_ps(v0, v0, _MM_SHUFFLE (3, 3, 3, 2)));
/* End Storer 1x4 → 1x3 */

/* Begin Loader 1x3 → 1x4 */
_mm_storeu_ps(T4, _mm_shuffle_ps(
_mm_loadl_pi(_mm_setzero_ps (), (__m64*)(T3)),
_mm_load_ss(T3 + 2),
_MM_SHUFFLE (1, 0, 1, 0)
));
/* End Loader 1x3 → 1x4 */

Fig. 4. SSSE3 code snippet for the store-load chain T2 → T3 → T4 (Fig. 3).

temporary matrices T0, ..., T6 is superfluous since the result
of each codelet could be passed directly to the next codelet
through registers. Store-load elimination (SLE) is a compiler
technique that can be used to eliminate redundant memory
accesses. As we explain in the following, the challenge is in
removing unnecessary shuffles.

Problems using SLE with intrinsics. Standard SLE
works in the following way: Whenever a pair of load and
store intrinsics with matching access patterns is found, it is
replaced with an assignment between vector variables. By
access pattern we refer to the mapping between memory
locations and positions within a vector variable. Loads that
do not follow any store with the same access pattern are left
unchanged. The same holds for stores that are not followed
by loads with the same access pattern. For example, Fig. 5
depicts the store-load chain from Fig. 4 with access patterns
depicted with arrows. Finding store-load pairs to eliminate is
thus equivalent to finding stores and loads whose outgoing
and ingoing arrows can be “wired” together. Since storing the
three values a, b, c to memory is implemented in the same way
as loading them, we can safely wire up outgoing and ingoing
connections. In other words, applying SLE to this piece of code
replaces the wired store-load pairs with assignments between
variables v2 and v0, and between v3 and v1 (bottom-right code
snippet). However, shuffles are left untouched by the analysis.

Better SLE with generic C-IR vector load and store
instructions. To facilitate the application of SLE and avoid
unnecessary shuffle instructions like the ones shown before, we
use in our C-IR load and store instructions that do not corre-
spond to specific intrinsics, but are generic enough to represent
all possible vector accesses to memory. These instructions are
used during SLE and are translated to specific intrinsics only
during unparsing C-IR into C code.

The full syntax of a generic load is GenLoad(addr,
poslist, orientation) and the one of a generic store is
GenStore(addr, v, poslist, orientation). The param-
eter addr is a memory address, v is a vector variable, and
poslist is a list that maps memory locations to positions
within the vector v. More specifically, the ith element of
poslist maps the ith element starting from addr to a list
of positions within a vector. For example, GenLoad(addr, [
[0],[1],[2],[3] ], hor) loads four consecutive elements
starting from addr to the four positions of the returned vector,
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Fig. 5. Example of SLE with load and store instrinsics. Both v0 and v4
contain a leftover of length three.
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Fig. 6. Example of SLE with generic load and store C-IR instructions
analogous to the one in Fig. 5.

while GenLoad(addr, [ [0,1,2,3] ], hor) loads one
element at addr to all four positions of the returned vector.
The parameter orientation can take the value hor or vert
and determines whether the access refers to a row or a column
of a mathematical matrix. At the C-IR level, LGen main-
tains a mapping between mathematical matrices and memory-
allocated arrays. A generic load/store with orientation set to
vert is interpreted as a strided memory access, and the stride
is obtained from the size of the matrix that the related memory
address is associated with.

Using these generic load/store instructions, for example,
the code segment of Fig. 5 is transformed into the one
shown in Fig. 6. Applying SLE on the latter will leave us
with a single assignment, without any shuffle instructions. An
example implementation of the generic load and store in Fig. 6
on NEON is shown in Fig. 7. Note that the "non-dual" mapping
of generic loads and stores to code does not affect SLE.

Optimal alignment detection. Several embedded proces-
sors with vector architectures offer both aligned and (slower)
unaligned loads and stores. In our case (Intel Atom, ARM
Cortex-A8, and A9) aligned instructions are at least twice
as fast. Furthermore, on Intel Atom, unaligned instructions
require two out of two issue ports for execution, making it
impossible to issue an unaligned load simultaneously with an
unaligned store. In contrast the aligned ones require only one
port [11].
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For these reasons we incorporated into LGen an alignment
detection algorithm based on abstract interpretation [12] at the
C-IR level. The idea behind the algorithm is as follows: First
the C-IR code is analyzed by applying abstract interpretation
using the abstract domain of congruences [13]. This analysis
is similar to the congruence detection technique described
in [14] and determines for each memory access, whether all
the addresses used in this access during program execution
are guaranteed to be divisible by the ISA-specific alignment
length. In the affirmative case, an aligned load or store in-
trinsic is generated when unparsing to C code. Otherwise an
unaligned instruction is generated.

Note that if the alignment of the input and output arrays is
not known at compile time, LGen can generate various code
versions, one for each of the possible alignments, including
the control to select the proper one at runtime.

In our context of BLACs, all addresses are affine combina-
tions of induction variables. Based on this restriction, we can
prove that our alignment analysis is precise, i.e., each aligned
memory access is detected and there are no false negatives.
The proof is omitted due to space limitations and can be found
in [15].

IV. RESULTS
In this section we present performance experiments con-

ducted to evaluate the code generated by LGen on four
embedded processors: Intel Atom, ARM Cortex-A8, ARM-
Cortex-A9, and ARM1176. First we explain the experimental
setup; then we show and discuss the results for each target
processor. A larger set of experiments is discussed in [15].

A. Experimental setup
Table I summarizes relevant information about the comput-

ing platforms. The peak performance values in this table were
computed without considering the impact of loads and stores
and assuming an ideal ratio of additions and multiplications. In
the following we describe our tests, competitors, and provide
details about the configuration of our hardware and software
environment.

Chosen BLACs. We selected the following BLACs for
our experiments:
• α = xTAy: A memory-intensive bilinear form (blinf).
• C = α(A0 + A1)TB + βC: A compute-intensive

matrix multiplication, where one of the operands is
obtained by a matrix addition (gemam).

By memory-intensive we mean an operational intensity (oper-
ations/data movement) of O(1). Both BLACs need more than
one BLAS call. In the rest of this section we refer to the

TABLE I. PROPERTIES OF THE PLATFORMS USED FOR THE
EXPERIMENTS. AI STANDS FOR ARITHMETIC INSTRUCTION, LS FOR

LOAD/STORE, F/C ARE FLOPS/CYCLE.

CPU Intel Atom D2550 Cortex-A8 Cortex-A9 ARM1176

Vector ISA SSSE3 NEON NEON -

D-L1 [kB] 24 32 32 16

I-L1 [kB] 32 32 32 16

Peak [f/c] 6 4 4 1

Execution in-order in-order OoO in-order

Issues 2 AI yes yes (FMA) yes (FMA) no

Issues LS+AI yes yes no no

Board Mini-PC BeagleBone Kayla Raspberry Pi
Black DevKit

OS kernel Linux 3.8 Linux 3.8 Linux 3.1 Linux 3.6

BLACs above using the tags provided in parentheses. Unless
stated otherwise, all matrices and vectors are 16-byte aligned.

Competitors. Our selected competitors are: (a) Intel
MKL 11.1 (Intel Atom only), (b) Intel IPP 8.0 (Intel Atom
only), (c) Eigen 3.2.0 (all processors), (d) ATLAS 3.10.1 (all
processors), and (e) compilers taking as input handwritten
scalar code (all processors). Regarding the last case, we
considered both code with fixed problem sizes that are known
at compile time (labeled as fixed on plots) and code with
unknown problem sizes that are passed as arguments (labeled
as gen on plots).

Measuring process. All experiments involve single-
precision code. For all plots, the y-axis shows performance
in flops per cycle (f/c), and the x-axis shows the value of the
input’s varying dimensions as number of float elements.

The flop count is derived from the BLAC while cycles are
explicitly measured. On Intel Atom, cycles are measured using
the rdtsc instruction. On the ARM Cortex-A8 and ARM1176
we used the cycle counter of the PMU. On the ARM Cortex-
A9 we used the Linux perf infrastructure.

All experiments are run under warm cache conditions
using the same measuring strategy as in [5]: The code is
executed multiple times for at least 108 cycles. The reported
measurement is the average number of cycles per execution.
This process is repeated 15 times to compute median and
quartile information. Each point in the plots is the median of
15 repetitions and it is accompanied by whiskers that show the
most extreme data points falling into the range [1.5q1, 1.5q3],
where q1 and q3 are the first and third quartiles.

Hardware and software configuration. We disabled
hyper-threading on Intel Atom and CPU throttling on the three
ARM processors. LGen was configured to use a random search
with sample size of 10. For both Intel MKL and ATLAS,
we implemented blinf as a combination of cblas_sgemv and
cblas_sdot. Gemam was implemented in MKL with a call
to MKL_Somatadd followed by cblas_sgemm and in ATLAS
with a call to cblas_saxpy followed by cblas_sgemm. For
Eigen we used Map interfaces over existing arrays, no-alias as-
signments, and we enabled vector code generation by defining
EIGEN_VECTORIZE. ATLAS was built natively using gcc 4.7 on
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Fig. 8. (a) α = xTAy and (b) C = α(A0 +A1)TB+ βC on Intel Atom.

all platforms. On the Intel Atom we used the provided architec-
tural defaults, while for the other three processors we executed
a full search to find the best values for the ATLAS parameters.
For all four processors, gemm was retuned after the installation
to improve the performance of ATLAS for small matrix
computations, as it is described in the errata section of the
ATLAS website1. On the Intel Atom tests were compiled with
icc 14 (flags -O3 -xHost -fargument-noalias -fno-alias
-no-ipo -no-ip -no-prec-div); on the ARM processors
with clang 3.4 (flags -O3 -mcpu=<cpuname>) and gcc 4.7
(flags -O3 -ffast-math -fsingle-precision-constant
-fstrict-aliasing -mcpu=<cpuname> -march=armv7-a
-mtune=<cpuname> -mfpu=neon -mfloat-abi=hard).

Labelling conventions. For plots we use the following
labelling convention: LGen for the basic version of LGen,
LGen -GLS for LGen using generic C-IR loads and stores,
and LGen -GLS -AD for LGen using both generic C-IR loads
and stores and alignment detection. Alignment detection only
applies on Atom, since the ARM NEON intrinsics do not
provide aligned loads and stores. Also, the NEON ν-BLACs
were implemented directly with generic loads and stores; thus
a comparison to the previous LGen is omitted.

B. Intel Atom
In Fig. 8a we show the results for the computation of blinf.

LGen -GLS -AD performs better than all competitors, achieving
speedups of up to 2.8× with respect to MKL. The presence
of several downward spikes is due to the amount of unaligned
instructions available in the code. The size of the panel matrix
A strongly influences performance, bringing it down to 1 f/c
whenever n mod 4 ∈ {1, 3} (which yields only 25% aligned
accesses).

In Fig. 8b we show the performance results for gemam.
The performance of LGen -GLS is around 30% higher than
the one of LGen. Alignment detection adds another 30% of
improvement over the performance of LGen for matrix sizes
that favor this optimization (i.e. divisible by 4). Eigen, the best
competitor, performs better than LGen for larger matrices, but
never better than LGen -GLS and LGen -GLS -AD.

C. ARM Cortex Processors
The two Cortex-A processors present two critical microar-

chitectural differences: (a) Scalar floating point operations are
more efficient on Cortex-A9 and (b) Cortex-A8 can issue a
NEON load/store instruction together with a NEON arithmetic
operation, while this is not possible on Cortex-A9.

Cortex-A8. In all experiments conducted on Cortex-A8
(Fig. 9) the competitors achieve lower performance than LGen
(in most cases less than 0.2 f/c). The main reason is the mixing

1http://math-atlas.sourceforge.net/errata.html
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Fig. 9. (a) α = xTAy and (b) C = α(A0 +A1)TB + βC on Cortex-A8.
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Fig. 10. (a) α = xTAy and (b) C = α(A0+A1)TB+βC on Cortex-A9.

of scalar and vector instructions, which on Cortex-A8 leads to
poor performance. This does not apply to LGen, as it generates
completely vectorized code, even when handling leftovers. The
performance of LGen is mostly in the range 1-1.3 f/c, being
up to 9× faster than the best competitor.

Cortex-A9. Fig. 10 shows the experimental results for
Cortex-A9. For blinf (Fig. 10a) Eigen is the best competitor,
achieving 10–40% lower performance than LGen. For gemam
(Fig. 10b) LGen is more than 2× faster than the optimizing
compilers and 25% faster than Eigen, with a performance of
between 0.8 and 1 f/c. For wider matrices ATLAS approaches
LGen’s performance to within 10%.

D. ARM1176
The ARM1176 is a scalar processor, for which optimiza-

tions such as tiling, loop unrolling, loop fusion, and loop
exchange have a significant impact on the quality of the
generated code. In all the experiments in Fig. 11 LGen is
up to 4× faster than ATLAS, which is in all cases the best
competitor. Drops in performance can be noticed for large
values of n due to reaching the L1 data cache size (16 kB).
Another general remark is that for all tested BLACs, LGen’s
generated code compiled with gcc is more efficient than the
one compiled with clang. Finally, for large values of n the
performance results of LGen are less stable because of the
random search with a sample size that is relatively small
compared to the large space of tiling options.

V. RELATED WORK
Linear algebra libraries. Intel’s Math Kernel Library

(MKL) [4] and Integrated Performance Primitives (IPP) [8]
are vendor libraries optimized for the Intel architectures. MKL
implements the BLAS interface [1] and is optimized for large
scale problems. IPP offers a subset of BLAS and other inter-
faces geared towards small-scale linear algebra computations.
We used both as benchmarks. BLIS [16] is a framework for the
instantiation of high-performance BLAS-like libraries, based
on a set of micro-kernels that must be provided by the user. The
studies presented in [17] show the results of using BLIS for a
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Fig. 11. (a) α = xTAy and (b) C = α(A0+A1)TB+βC on ARM1176.

variety of architectures, including ARM Cortex-A9. Although
the presented experiments did not involve vectorized code,
BLIS appears to be competitive on this processor. LGen could
be used for instantiating the needed micro-kernels.

Linear algebra generators. ATLAS [2] is a BLAS
program generator that uses autotuning to tune optimization
parameters (e.g., block sizes and unrolling factors) for large
data. ATLAS provides support for both Intel and ARM pro-
cessors. Eigen [10] is a linear algebra library based on C++
templates. Metaprogramming is used for compile-time opti-
mizations like loop fusion and vectorization (SSE, NEON, and
AltiVect ISAs). We used ATLAS and Eigen as benchmarks.

Optimization based on generic vector instructions.
LLVM [18] provides generic vector instructions at the IR level.
Our approach however, is closer in spirit to the work in [19]
and [20], where generic vector instructions are defined at a
higher level of abstraction than usual vector data types and
are geared towards working with matrices. This enables the
efficient handling of our domain of interest.

VI. LIMITATIONS
Here we list some of the current limitations of LGen.
Limited functionality. To date LGen supports only fixed-

size BLACs on general matrices stored contiguously in mem-
ory. We are working on removing these restrictions.

Search strategies. The experimental results for
ARM1176 showed that random search is far from optimal,
since a relatively small sample size does not guarantee that
good choices for the search parameters will be visited. We
believe that there is significant potential in employing more
sophisticated search strategies during the autotuning process,
which is one possible direction for future research.

Aligned accesses. Although we proved that our alignment
detection methodology is precise for our generated code, we
could potentially achieve further improvement by (a) exposing
more aligned memory accesses, e.g., introducing leftovers on
both sides producing an effect similar to loop peeling in the
resulting code, and (b) investigating techniques similar to [21]
that replace unaligned accesses with aligned ones combined
with shuffles.

VII. CONCLUSION
Efficient dense linear algebra code for small problem sizes

is of crucial importance in various fields of computer science
and engineering. With this paper we extend LGen, a domain-
specific compiler that targets this type of functionalities, to-
wards embedded processors. To do so, we extended LGen
to support the NEON instruction set and then introduced a
technique that eliminates unnecessary memory accesses and
shuffle operations based on the use of generic load and store

C-IR instructions. Furthermore, all aligned memory accesses
in our generated code are guaranteed to be implemented using
aligned intrinsics.

We evaluated LGen-generated code on four widely used
embedded processors: Intel Atom, ARM Cortex-A8, ARM
Cortex-A9, and ARM1176. The experimental results show that
LGen performs in many cases better than well-established
libraries, prior code generators, and general-purpose compilers.
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