
▪ FortranX enables the compiler to recognize key algorithms and 
leverages IRISX for optimized kernel generation and task execution.

▪ We are continuing development of FortranX for large cross-motif 
applications including sparse linear algebra and structured grids. 
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▪ Many scientific applications are written and maintained in Fortran.  

▪ New systems leverage novel programming models and hardware 
architectures which are not easily accessible in Fortran.

▪ FortranX is an automated approach to recognize and optimize 
Fortran applications, generating optimized kernels that can execute 
on various hardware platforms without source code modification.

Problem

IRISX[3]: SPIRAL + IRIS

Cyclic Convolution Example

SPIRAL[1]: 
▪ Complete automation of the implementation and optimization task.
▪ Rewriting systems to perform algorithmic selection and optimization for 

various hardware backends.

Performance

Conclusion & Future Work
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Compute Devices

IRIS[2]:
▪ Portable runtime system 

supporting  various 
hardware backends.

▪ Heterogenous execution 
by utilizing multiple 
devices for concurrent 
tasks.

program cyclic_convolution

  allocate(out_arr, in_arr, sym_arr, tmp_box) 

 

  planf = fftw_plan_dft_r2c_3d(dims(3),dims(2),

              dims(1),in_arr, tmp_box, FFTW_ESTIMATE)

  planb = fftw_plan_dft_c2r_3d(dims(3),dims(2),

              dims(1),tmp_box, out_arr, FFTW_ESTIMATE)

  

  ! forward FFT

  call fftw_execute_dft_r2c(planf, in_arr, tmp_box)

        

  ! pointwise multiply

  tmp_box = tmp_box * sym_arr

    

  ! inverse FFT

  call fftw_execute_dft_c2r(planb, tmp_box, out_arr)

 

  call fftw_destroy_plan(planf)

  call fftw_destroy_plan(planb)

end program cyclic_convolution

Idiomatic 
Translation 

Compiler Pass

a.out

▪ Compiler pass that 
recognizes the idiom 
of cyclic convolution.

▪ Injection of IRISX for 
architecture-specific 
implementations and 
heterogenous task 
execution in a portable 
binary.

▪ Optimization by 
fusing operations 
(merging 
multiplication 
into FFT stages) 
and removing 
unneeded 
temporaries.

▪ Without source code modification, FortranX achieves up to 15x 
performance improvement over the sequential CPU baseline and can 
be further optimized for specific hardware and overhead reduction.  
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