
▪ FortranX enables the compiler to recognize key algorithms and 
leverages IRISX for optimized kernel generation and task execution.

▪ We are continuing development of FortranX for large cross-motif 
applications including sparse linear algebra and structured grids. 

FortranX: Harnessing Code Generation, Portability, and Heterogeneity in Fortran
Sanil Rao*, Mike Franusich+, Mohammad Alaul Haque Monil☨, Het Mankad☨, Jeffery S. Vetter☨, Franz Franchetti*

*Carnegie Mellon University,  +SpiralGen Inc., ☨Oak Ridge National Laboratory

▪ Many scientific applications are written and maintained in Fortran.  

▪ New systems leverage novel programming models and hardware 
architectures which are not easily accessible in Fortran.

▪ FortranX is an automated approach to recognize and optimize 
Fortran applications, generating optimized kernels that can execute 
on various hardware platforms without source code modification.

Problem

IRISX[3]: SPIRAL + IRIS

Cyclic Convolution Example

SPIRAL[1]: 
▪ Complete automation of the implementation and optimization task.
▪ Rewriting systems to perform algorithmic selection and optimization for 

various hardware backends.

Performance

Conclusion & Future Work

References

This work is funded, in part, by Bluestone, a X-Stack project in the DOE Advanced Scientific 
Computing Office with program manager Hal Finkel. This research used resources of the 
Experimental Computing Laboratory (ExCL) at the Oak Ridge National Laboratory, which is 
supported by the Office of Science of the U.S. Department of Energy under Contract No. 
DE-AC05-00OR22725.

Acknowledgment [1] F. Franchetti, T.-M. Low, T. Popovici, R. Veras, D. G. Spampinato, J. Johnson, M. Puschel, J. C. Hoe, and J. M. F. Moura, 
“SPIRAL: Extreme performance portability,” Proceedings of the IEEE, special issue on “From High Level Specification to 
High Performance Code”, vol. 106, no. 11, 2018. 
[2] J. Kim, S. Lee, B. Johnston, and J. S. Vetter, “IRIS: A portable runtime system exploiting multiple heterogeneous 
programming systems,” in 2021 IEEE High Performance Extreme Computing Conference, HPEC 2021, Waltham, MA, USA, 
September 20-24, 2021, pp. 1–8, IEEE, 2021.
[3] Sanil Rao, Mohammad Alaul Haque Monil, Het Mankad, Jeffrey Vetter, and Franz Franchetti. 2023. FFTX-IRIS: Towards 
Performance Portability and Heterogeneity for SPIRAL Generated Code. In Proceedings of the SC '23 Workshops of The 
International Conference on High Performance Computing, Network, Storage, and Analysis (SC-W '23). Association for 
Computing Machinery, New York, NY, USA, 1635–1641. https://doi.org/10.1145/3624062.3624242

CU D A

Runtime 
Shared

Library

H IP

Runtime 
Shared

Library

O pen M P

Kernel 
Shared

Library
Vendor

OpenCL

Vendor

OpenCL

C P U
N V ID IA

G P U

A M D

G P U

Intel

FPG A

Q ualcom m

G P U

Task

Task

Task

Task

Task

Task

Task

Task

O penC L ICD Loader

O penC L

Kernel

H IP

Kernel

O penM P

Kernel

CU D A

Kernel

O p enCL

Kernel

Shared Virtual Device M emory

D D R 4 H B M 2 H B M 2 H B M 2 LP D D R 4

C P U

D D R 4

D yn a m ic

Pla tfo rm
Lo a d er

Ta sk

Sch edu ler

Task

Host

IR
IS

IR IS  H ost C ode

(C/C++/Fortran/
Python)A

p
p

P
o

li
cy

P
o

li
cy

P
o

li
cy

P
o

li
cy

Q ua lcom m

D SP

LP D D R 4

H exagon

Runtime 
Shared

Library

Task

H exagon

Kernel

Level Zero

Runtime 
Shared

Library

Inte l

G P U

Task

SP IR -V

Kernel

H B M 2

Compute Devices

IRIS[2]:
▪ Portable runtime system 

supporting  various 
hardware backends.

▪ Heterogenous execution 
by utilizing multiple 
devices for concurrent 
tasks.

program cyclic_convolution

  allocate(out_arr, in_arr, sym_arr, tmp_box) 

 

  planf = fftw_plan_dft_r2c_3d(dims(3),dims(2),

              dims(1),in_arr, tmp_box, FFTW_ESTIMATE)

  planb = fftw_plan_dft_c2r_3d(dims(3),dims(2),

              dims(1),tmp_box, out_arr, FFTW_ESTIMATE)

  

  ! forward FFT

  call fftw_execute_dft_r2c(planf, in_arr, tmp_box)

        

  ! pointwise multiply

  tmp_box = tmp_box * sym_arr

    

  ! inverse FFT

  call fftw_execute_dft_c2r(planb, tmp_box, out_arr)

 

  call fftw_destroy_plan(planf)

  call fftw_destroy_plan(planb)

end program cyclic_convolution

Idiomatic 
Translation 

Compiler Pass

a.out

▪ Compiler pass that 
recognizes the idiom 
of cyclic convolution.

▪ Injection of IRISX for 
architecture-specific 
implementations and 
heterogenous task 
execution in a portable 
binary.

▪ Optimization by 
fusing operations 
(merging 
multiplication 
into FFT stages) 
and removing 
unneeded 
temporaries.

▪ Without source code modification, FortranX achieves up to 15x 
performance improvement over the sequential CPU baseline and can 
be further optimized for specific hardware and overhead reduction.  


	Slide 1

