

A 1.19GHz 9.52Gsamples/sec Radix-8 FFT Hardware Accelerator in 28nm

Problem

- Dedicated FFT hardware is typically designed as a standalone block and then integrated into systems
- Relatively fixed functionality once implemented
- System-level integration with FFT-based application software becomes manual and challenging to optimize

Hardening of FFTW Codelets

• FFTW kernel approach: Compose and execute small pieces of highly-optimized FFT code known as *codelets*

- Idea: Hardware accelerate only the *codelets* to enable flexibility in how they are composed
- Accelerator is exposed to the user through the FFTW API but codelet plan is executed in custom hardware
- A Radix-8 Twiddle Codelet Accelerator fabricated in a TSMC 28nm process co-designed using SPIRAL

Hardware Design Flow using SPIRAL

- SPIRAL script defines the FFT hardware specification
- Mathematical Formula \rightarrow DSL translations \rightarrow synthesizable RTL
- Additional functional blocks and test structures are hand-designed

Verilog Modules (*.v)

Larry Tang, Siyuan Chen, Keshav Harisrikanth, Guanglin Xu, Franz Franchetti, Ken Mai Department of Electrical and Computer Engineering, Carnegie Mellon University

Test Chip Architecture

FFT Kernel Implementation

- Unrolled radix-8 FFT dataflow and eight complex multipliers for general twiddle factor multiplication compute a *twiddle codelet*
- Pipelined design to concurrently process codelet invocations
- Shift register FIFOs feed and capture input/output data
- Peak throughput: 8 complex samples per cycle

Timing Diagram

fft_input_data<511:0> diag_input_data<511:0> output_data<511:0>

// Data structure containing codelet

Example Codelet Plan

FFT Input Data

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 30,2024 at 17:38:17 UTC from IEEE Xplore. Restrictions apply

Demonstrates a first step towards a new automated design paradigm for FFT hardware accelerators

• Maximum operating frequency of 1.19 GHz at 1.15V Peak throughput of 9.52 Gsamples/s • One of the first test chips with SPIRAL-generated hardware

Implementation Summary	
Process	TSMC 28 nm
Chip Area	1.5 mm x 1 mm
Core Area	1.2 mm x 0.7 mm
Core Voltage	0.65 – 1.15 V
Frequency	455 – 1188 MHz
Throughput	3.8 – 9.52 GSamples/s
Latency	15.1-39.5 ns

Dynamic Power Breakdown

