
GBTLX: A First Look
Sanil Rao∗, Anurag Kutuluru∗, Paul Brouwer∗, Scott McMillan†, Franz Franchetti∗
∗Department of Electrical and Computer Engineering †Software Engineering Institute
{sanilr, anuragku, pbrouwe1, franzf}@andrew.cmu.edu {smcmillan}@sei.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract—We provide a first look at GBTLX, a code generator
that translates graph processing programs written using the
GraphBLAS Template Library (GBTL) into high-performance
C programs that match the performance of hand-tuned imple-
mentations. GBTLX refactors code written using GBTL into
problems that capture the signature of algorithms and solvers that
capture the semantics (input/output behavior of algorithms. Users
provide classes that implement these two aspects using standard
GBTL functions and encapsulate the targeted algorithm. GBTLX
then performs a sequence of inspection, code generation and
high performance execution. First, the user code is traced while
running with the original GBTL. Then, the trace is used to define
the semantics and signature of the algorithm to be produced
in code generation. The SPIRAL system is used to generate
high performance C code that implements the user-specified
algorithm, specializing the code for algorithm and hardware-
dependent optimizations. Finally, the user-provided GBTL-based
implementation is replaced by the SPIRAL generated C code.
For triangle counting and k-truss enumeration the resulting
executables provide performance equivalent to hand-tuned im-
plementations, while the source code is maintainable as it only
uses the C++ GBTL library.

I. INTRODUCTION

Graph algorithms have seen increased interest in recent
years for a variety of reasons. Whether this be for biology,
cybersecurity or social network analysis, researching graph
algorithms is a very important task in today’s computing
landscape [1]. This involves understanding, in detail, how
graph algorithms perform on a variety of different types of
graphs. As a result, many groups are researching ways to
improve graph algorithms and processing across the entire
system stack from algorithms and frameworks, all the way
down to hardware accelerators for graph applications.

Graph algorithms expressed using a linear algebra formal-
ism [2], as seen through specifications like the GraphBLAS
Application Programming Interface (API) [3], [4] or imple-
mentations like the GraphBLAS Template Library (GBTL) [5],
provide the benefit that the global behavior of the algorithm
is easily understood and allow for linear algebra-inspired op-
timizations. However, writing graph algorithms with matrices
often results in temporaries that are huge but normally would
not need to be materialized as they will, for example, be
reduced in a subsequent algorithmic step. Expressing this
in such a C/C++ library is challenging, as this leads to a
combinatorial explosion in the API and a large, repetitive code
base to capture all cases where optimizations are necessary,
across all data formats etc.

To address this issue we are proposing GBTLX, a system
that—to the user—looks like a C++ class library based on
GTBL, but under the hood is a code generation system based
on SPIRAL [6], [7], [8]. GBTLX solves the combinatorial
explosion problem by analyzing sequences of multiple GBTL
calls to find temporaries that need not be materialized, and
specializes code for various data formats and instruction sets
and other target platform properties. In this paper we present
a first look at GBTLX where the applications are restricted to
triangle counting and k-truss enumeration, and we only target
multicore CPUs without targeting special instruction sets. We
added algorithmic knowledge regarding triangle counting and
k-truss to SPIRAL based on previous HPEC Challenge sub-
missions [9], [10]. The resulting performance is on par with the
performance reported in these submissions, which shows that
GBTLX retains the software abstraction and maintainability of
GBTL while providing performance on par with hand-tuned
implementations.

Contributions. This paper makes the following contribu-
tions:

• It introduces GBTLX, an object oriented inspector/code
generator paradigm for GBTL that retains abstraction
and maintainability while providing hand-coding level
performance.

• GBTL is interpreted as embedded domain specific lan-
guage (DSL), and tracing of GBTL provides the seman-
tics of user-provided code without the need of a compiler.

• Code written using GBTLX is backwards-compatible
with GBTL but can leverage SPIRAL’s advanced code
generation capabilities to provide future-compatible and
performance portable implementations in a true write-
once, run-everywhere paradigm.

This paper only provides a first look at GBTLX and focuses
on the infrastructure. No in-depth discussion of the SPIRAL
code generation module for graphs is provided. Further, we do
not claim performance improvements, we only claim that high
level well-engineered code executes at the speed of hand-tuned
code as demonstrated by others.

II. RELATED WORK

There has been a large body of work on graphs and graph
algorithms over the past few years. These range from high
level frameworks and APIs, to DSLs.

Fig. 1. System overview of GBTLX from source C++ application to generated high-performance application. An orginial GBTL program is modified into a
GBTLX program. That program is inspected through an interface, generating a trace file for the SPIRAL backend to generate a high-performance algorithm.

GraphBLAS. One library specification for writing graph
algorithms is called GraphBLAS [3] and its C++ implemen-
tation, GBTL [5]. This API exposes the basic building blocks
of many graph algorithms in a linear algebraic context. These
building blocks provide developers easy to use operations for
writing graph applications using a linear algebraic approach.
It further allows for a common language between those who
are not familiar with computing but are familiar with the
underlying mathematics governing the algorithm.

GraphIt. One challenge with using a framework or API is
that the implementation might not be beneficial for a variety
of inputs. In addition it might not always lead to the best per-
formance. In this case, the use of a Domain Specific Language
would be beneficial. GraphIt [11] is a DSL designed for graph
algorithms that generates fast implementations. In GraphIt, the
graph algorithm is written using a high level abstraction, a
language for the DSL. Once expressed, a schedule is specified
where optimizations can be applied, including data layout and
parallelization.

Galois. Galois [12] works in a similar fashion to GraphIt,
focusing on improving scheduling. Rather than schedule com-
putation through coordination scheduling, scheduling such that
all operations finish before then next can begin, it might be
more beneficial to schedule as the data becomes available. This
is especially true for fine-grained parallel graph applications.
In addition, Galois can take implementations from other DSLs
and achieve much better performance through their system.

SPIRAL and FFTX. SPIRAL [6], [7], [8] is a code
generation system that originally targeted FFTs and other
signal processing applications. Its scope has been broadened
significantly over the last several years. SPIRAL is now avail-
able as open source tool under a permissive BSD license [13],
and recent efforts focus on how to expose SPIRAL to users.
A paradigm that has proven successful is to wrap a part of
SPIRAL’s functionality as embedded domain specific language
(DSL), using C/C++. The FFTX [14] project is one such
effort, and the machinery used for GBTLX is closely related
to FFTX. In either case, a domain-specific C++ library is used
as the frontend and SPIRAL is used as the backend code

generator tool. The front end has implied delayed execution
semantics and object oriented design patterns are used to
ensure this behavior.

III. SYSTEM OVERVIEW

We show a full end-to-end example of our system. This
example highlights the template that will be used for any
problem relating to graph processing.

A very common, easily expressible graph algorithm is
counting the exact number of triangles present in a given
input graph G. Through the language of linear algebra, triangle
counting can be formulated as

∆ = ||L .⊗ (L ⊕.⊗ L)||

where L is the lower triangular portion of the adjacency matrix
representation of G, ⊕.⊗ is the semiring used for matrix
multiplication, .⊗ is the point-wise multiplication operator,
and ∆ is the exact number of triangles [15]. This formulation
makes triangle counting a great target application for a linear-
algebra based library like GBTL. However, while easy to
write, the resulting GraphBLAS operations are quite expensive
resulting in poor performance when executed.

We demonstrate the use of GBTLX for the triangle counting
problem, showing how to get better performance while writing
a linear algebra-based application. We begin with the structure
of a GBTLX triangle counting application.

User Code. Figures 2 and 3 illustrate a GBTL ref-
erence triangle counting application modified for GBTLX.
The first file is the problem specification file. This file
include the header gbtlx.hpp, containing all the types,
macros and functions necessary to use GBTLX. This file
also consists of two derived objects, TriangleProblem and
TriangleCounter. In TriangleProblem, the user defines
a method randomProblemInstance, creating a representa-
tive input for their application via a graph generator. This
method is called when generating the program’s trace file.
Also, TriangleProblem, captures the initial input and final
output data structures for the application, encapsulated in
the Signature class. TriangleCounter, contains GBTL

1 #include <graphblas/graphblas.hpp>
2 #include <gbtlx.hpp>
3

4 class TriangleProblem: public GBTLXProblem {
5 public:
6 TriangleProblem() : GBTLXProblem() {}
7 TriangleProblem(Signature &sig)
8 : GBTLXProblem(sig) {}
9

10 void randomProblemInstance() {
11 uint64_t *val = new uint64_t;
12 *val = 0;
13

14 // E.g., call external graph generator
15 const unsigned int N(10);
16 auto *L = new grb::Matrix<uint64_t>(N, N);
17 generateGraph(L, N, N);
18

19 Signature s;
20 s.in.push_back(L);
21 s.out.push_back(val);
22 this->sig = s;
23 }
24 };
25

26 class TriangleCounter: public GBTLXSolver {
27 public:
28 void semantics(GBTLXProblem &p) {
29 typedef grb::Matrix<uint64_t> MatrixT ;
30

31 MatrixT *inp =
32 any_cast<MatrixT *>(p.sig.in[0]);
33

34 MatrixT B(inp->nrows(), inp->ncols());
35

36 //MatMul with mask
37 // B = L .* (L +.* L)
38 mxm(B, *inp , grb::NoAccumulate(),
39 grb::ArithmeticSemiring<uint64_t>(),
40 *inp, *inp);
41

42 //Perform reduction
43 uint64_t *out =
44 any_cast<uint64_t *>(p.sig.out[0]);
45 reduce(*out,
46 grb::NoAccumulate(),
47 grb::PlusMonoid<uint64_t>(), B);
48

49 }
50

51 #ifdef HIGHPERFORMANCE
52 void solve(GBTLXProblem &p);
53 #endif
54 };

Fig. 2. Structure of the Triangle Counting Problem Specification.

operations to count the number of triangles in the given adja-
cency matrix, defined in the semantics method. This method
uses the input and output defined in TriangleProblem as
parameters to GBTL operations. In this case, the operations
are based on the mathematical formulation described above.
Finally, the HIGHPERFORMANCE macro allows the make system
to link and run the GBTLX generated algorithm.

The second file is the driver application, utilizing the
derived objects. The user declares and instantiates the ini-
tial input and final output variables, in the Signature,
as well as TriangleProblem and TriangleCounter.
TriangleProblem takes the Signature object, binding
it internally. TriangleCounter then applies itself on
TriangleProblem, using those bound member objects as pa-

1 #include <graphblas/graphblas.hpp>
2 grb::Matrix<uint64_t> generateAndFill(
3 std::string const &pathname) {
4 /*assign input data to input objects*/
5 }
6

7 int main(int argc, char **argv) {
8 //create GBTL initial objects
9 //load matrix from file argv[1]

10 grb::Matrix<uint64_t> L(
11 generateAndFill(argv[1]));
12

13 uint64_t val = 0;
14

15 //Pass I/O for the Problem
16 Signature sig;
17 sig.in.push_back(&L);
18 sig.out.push_back(&val);
19

20 //create a Problem
21 TriangleProblem td(sig);
22

23 //create a Solver
24 TriangleCounter t;
25

26 //run the Solver on the Problem
27 t.solve(td);
28

29 std::cout << "Number of triangles "
30 << val << std::endl;
31 }

Fig. 3. Structure of the Triangle Counting Application.

rameters to the operations in the semantics function, thereby
executing the application. The method generateAndFill, is
responsible for instantiating the associated input matrix along
the lower triangle.

Interface. The system header file gbtlx.hpp, wraps all
the GBTL operations and defines the base GBTLX objects
and abstract member functions. When the solve function is
called a computational trace file is generated from the wrapped
GBTL functions in gbtlx.hpp. This trace file contains a
list of input/output data structures, and operations performed
by the application. In this case, it includes the input matrix
and the result, as well as the set of operations performed on
that input matrix to calculate the number of triangles. By the
definition, the operations are a matrix multiplication followed
by a reduction. It is important to note that during the matrix
multiplication, there is a mask of the input matrix L. This
allows encapsulation of both the point-wise multiply and the
matrix multiplication in a single step. This trace file, seen in
Figure 4, will be read as input into our SPIRAL backend for
analysis before producing the final binary.

1 spiral_session := [
2 rec(op := "triangle_count"), //function name
3 rec(op := "MatrixCreation",row:= 90,col:= 90,
4 ptr := 0x7fffff45bb30, mat = 0x7fffff45bb30),
5 rec(op := "Matrix Multiplication",
6 output = IntHexString("0x7fffff45bb60"),
7 inputA = IntHexString("0x7fffff45bb30"),
8 inputB = IntHexString("0x7fffff45bb30"),
9 mask = IntHexString("0x7fffff45ba30")),

10 rec(op := "reduce(matrix->scalar)",
11 /*many more arguments*/),
12];

Fig. 4. Generated Trace file for Triangle Counting.

1 //load SPIRAL graph package
2 Load(graph);
3 Import(graph);
4

5 //parse trace for operations
6 //perform constraint analysis
7 t := parse("spiral_session");
8

9 //If all constraints met generate code
10 //load Triangle Counting Options
11 opts := TCDefaults;
12 //t is now TriangleCount(param(TInt, "n"));
13 /*www.spiral.net for RuleTree Overview*/
14 rt := RandomRuleTree(t, opts);
15 srt := SumsRuleTree(rt, opts);
16 cs := CodeSums(srt, opts);
17

18 //create files
19 PrintTo("solve.hpp",
20 PrintCode("solve", cs, opts));

Fig. 5. SPIRAL script for High-Performance Code Generation.

Code Generation. The code generation backend, SPIRAL,
utilizes a script file, seen in Figure 5, to generate the high
performance equivalent of the operations in semantics. The
script reads from the trace file and does constraint analysis on
the set of operations performed. For this example, the system
needs to determine that the set of operations include a matrix
multiplication masked by the input matrix L, followed by a
reduction. It also has to know whether or not the input graph is
undirected (i.e. the matrix is symmetric) in order to generate
the correct triangle counting algorithm. Finally, the system
has to know that the output is a scalar integer. After these
constraints have been checked a high-performance algorithm
is generated, and the build system will link solve.hpp during
compilation of the final high performance binary, effectively
replacing the GBTL operations. Figure 6 shows an example of
the generated triangle counting algorithm, with casting back
to uint64_t on completion. This generated algorithm takes
advantage of an insight where matrix multiplication is not
needed, reducing computation time [9].

IV. SYSTEM WALKTHROUGH

GBTLX is designed as a user-triggered inspector/code gen-
erator, in which user input is given via Makefile targets. In this
system, the user specifically decides what type of output they
desire. This could be reference, high performance, or debug
output, with the final binary being created off this decision.
In addition, all GBTLX applications conform to a delayed
execution model. In this model, the set of operations that
comprise an application is captured and executed such that
after the first input is given only the final output is received.
There is no inspection of temporaries in between operations.
This model allows the SPIRAL backend to accurately gen-
erate high-performance code. Figure 1 illustrates the system
overview of GBTLX from user code to generated code.

User Application. The user written application has the
same general format. First, the user defines two derived
classes, referred to generally as the problem specification.
These classes, embody the graph problem being written as
seen in the previous example through the TriangleProblem

and TriangleCounter objects. These classes are derived

1 void generatedFunction(int *res, int *IJ, int n) {
2 int t1;
3 t1 = 0;
4 for (int i1 = 1; i1 < n; i1++) {
5 int t2;
6 int *j1, *jm1;
7 t2 = 0;
8 j1 = (1 + IJ + n + IJ[i1]);
9 jm1 = (1 + IJ + n + IJ[(i1 + 1)]);

10 while (((((j1 < jm1))) && (((*(j1) < 0))))) {
11 j1 = (j1 + 1);
12 }
13 while (((((j1 < jm1))) && (((*(j1) < i1))))) {
14 int i2, t3;
15 i2 = *(j1);
16 int *j11, *j1m1, *j21, *j2m1;
17 t3 = 0;
18 j11 = (1 + IJ + n + IJ[i2]);
19 j1m1 = (1 + IJ + n + IJ[(i2 + 1)]);
20 j21 = (1 + IJ + n + IJ[i1]);
21 j2m1 = (1 + IJ + n + IJ[(i1 + 1)]);
22 while (((((j11 < j1m1))) &&
23 (((*(j11) < 0))))) {
24 j11 = (j11 + 1);
25 }
26 while (((((j21 < j2m1))) &&
27 (((*(j21) < 0))))) {
28 j21 = (j21 + 1);
29 }
30 while (((((((j11 < j1m1))) &&
31 (((j21 < j2m1)))))
32 && (((((*(j11) < i1))) &&
33 (((*(j21) < i1))))))) {
34 if (((*(j11) < *(j21)))) {
35 j11 = (j11 + 1);
36 } else if (((*(j21) < *(j11)))) {
37 j21 = (j21 + 1);
38 } else {
39 t3 = (t3 + 1);
40 j11 = (j11 + 1);
41 j21 = (j21 + 1);
42 }
43 }
44 t2 = (t2 + t3);
45 j1 = (j1 + 1);
46 }
47 t1 = (t1 + t2);
48 }
49 *(res) = t1;
50 }

Fig. 6. Triangle Counting Algorithm generated by GBTLX. The algorithm
is based off this paper [9].

from the base objects GBTLXProblem and GBTLXSolver,
described in a later section.

The user then creates a separate main application file. In
the main application, the user declares the GBTLXProblem

and GBTLXSolver objects. Additionally, the user creates a
Signature object to encapsulate the initial input and final
output data structures. This is necessary because the system
creates mirrored data structures for use in any backend gen-
erated functions. As an example, the system would convert
an adjacency matrix into a flattened one-dimensional array
using compressed sparse row format. The user then places
these data structures in a class called Signature, which is
passed into the constructor of GBTLXProblem. Finally, the
user applies the GBTLXSolver to the GBTLXProblem, using
the member function solve. The main application is written
separately from the problem specification because of the trace

file discussed in the next section.
GBTLX Interface. The interface, gbtlx.hpp, acts as the

translator between GBTL and the SPIRAL backend. All GBTL
functions are blocking or synchronous functions; they must
return before the application can continue. In order to get
GBTL to work within the delayed execution paradigm, the
system wraps all of the user facing operations using C macros
as seen in Figure 8 through OBSERVE. These macros allow the
system to intercept GBTL functions without modifying the
GBTL library keeping usage the same. The system utilizes
these macros to trigger additional functionality depending
on the given compile-time flag. As a result, the system has
transformed each of the GBTL operations into either blocking
or non-blocking functions, depending on the compile-time
flag.

GBTLXProblem/Solver. In addition to the wrapped
functions, the GBTLX base objects, GBTLXProblem and
GBTLXSolver, are implemented in the interface. The
GBLTXProblem object is the specific instance of a prob-
lem the user is trying to solve. Its abstract member func-
tion, randomProblemInstance is responsible for creating
a smaller representative problem used during trace generation.
This function’s written representation should match charac-
teristics of the original input dataset, like types and shape,
and can be an external call to a graph generator. In addition,
GBTLXProblem’s implicit Signature captures the initial
input and final output for the user application. Signature
is responsible for holding not only the input and output of the
application but also any additional data structures unique to
the problem.
GBTLXProblem’s complement, GBTLXSolver, contains

the set of operations needed to solve a problem generally.
This is captured through GBTLXSolver’s abstract mem-
ber function, semantics. In semantics, the user uses
library-defined functions from a framework like GBTL, plac-
ing in data structures from GBTLXProblem as necessary.
GBTLXSolver’s solve function either executes semantics,
or is overridden, executing the SPIRAL generated function.
Passing GBTLXProblem into solve allows for reuse of the
GBTLXSolver on a variety of GBTLXProblem objects with
different properties. Figure 8 shows some code associated
with the interface, specifically the masked functions and the
GBTLX base objects.

High-Performance. There are a few different targets that
are available through GBTLX’s build system. The most mean-
ingful target is is the high performance target.

The high-performance target leverages the SPIRAL back-
end to generate a high-performance equivalent of the
GBTLXSolvers’ operations, replacing those operations. To
do this the build system first links the problem specifica-
tion file together with an internal driver application, used
for computational trace generation. The internal driver uses
user-modified targets in the Makefile in order to replace
the derived GBTLX object names with generalized object
names USER_PROBLEM and USER_SOLVER. Then the internal
driver creates a randomProblemInstance, and executes

the GBTLXSolver’s semantics function on that instance.
Semantics calls the wrapped GBTL operations, which not
only execute, but also print out information about that function
to a trace file. This trace file would contain the operations, and
the operations’ inputs and outputs, including operators and
masks. These pieces are important for the SPIRAL backend
to accurately determine if optimization is applicable.

The internal driver, seen in Figure 7, is called in place
of the user written driver because of potential complexity in
user applications. These applications could use large datasets,
causing extended computation times or have user unknown
exceptions. The internal driver instead creates a represen-
tative GBTLXProblem instance via the user implemented
randomProblemInstance, to save on execution time. Trace
generation does not complete if there are application excep-
tions at run-time. Once the trace file is generated, the SPIRAL
backend is launched, generating the high-performance algo-
rithm and linking it to the final binary, by overriding solve

with the function defined in solve.hpp. All of this is done
without the need of the user to delineate which region of their
application could be optimized.

1 int main(int argc, char **argv) {
2 //create a Problem, randomInstance, and Solver
3 USER_PROBLEM p;
4 p.randomProblemInstance();
5 USER_SOLVER s;
6 //run Solver semantics
7 s.solve(p);
8 }

Fig. 7. Structure of GBTLX Internal Driver.

Reference/Debug. The other targets are the reference target
and the debug target. In reference, instead of creating an output
file and launching the SPIRAL backend, the interface will call
into GBTL directly to execution the original functions. This
path is used for correctness verification and is the default
build option. Furthermore, the debug target will circumvent
delayed execution by allowing inspection of temporary objects
used during computation. This is useful for developers to
understand how exactly their application is getting the final
output.

SPIRAL. The open source SPIRAL backend has been
extensively applied to the area of FFTs, and it’s scope has
been broadened to include new application domains. Within
the SPIRAL system is a mathematical descriptor language,
Operator Langauge (OL). OL describes the set of mathematical
operations being performed for a computation [14]. This set
of operations is then placed in a rewrite system that works
in a similar fashion to an optimization problem, resulting in
generated code. We add on to this system cursory mathemat-
ical formulations for graph algorithms utilizing the existing
infrastructure available in SPIRAL. This specifically includes
OL objects for triangle counting and ktruss enumeration, that
can target different hardware platforms.

V. RESULTS

We tested GBTLX using two popular graph algorithms,
triangle counting and k-truss enumeration. Triangle counting

1 //GBTLX objects for capture and execution
2 struct Signature {
3 vector<any> in;
4 vector<any> out;
5 vector<any> in_out;
6 };
7

8 class GBTLXProblem {
9 public:

10 GBTLXProblem() {}
11 GBTLXProblem(Signature &Sig) : sig(Sig) {}
12 virtual void randomProblemInstance() = 0;
13 Signature sig;
14 };
15

16 class GBTLXSolver {
17 public:
18 virtual void semantics(GBTLXProblem &p)=0;
19 void solve(GBTLXProblem &p){
20 semantics(p);
21 }
22 };
23

24 // mxm operation wrapper
25 template</*many more arguments*/>
26 void wrapped_mxm(CMatrixT &C,
27 MaskT const &Mask,
28 AccumT accum,
29 SemiringT op,
30 AMatrixT const &A,
31 BMatrixT const &B) {
32 #ifdef OBSERVE
33 fprintf(stderr,
34 "rec(op := \"Matrix Multiplication...",
35 &C, &A, &B, &Mask);
36 mxm(C,Mask,accum,op,A,B);
37 #endif
38 #ifdef REFERENCE
39 mxm(C,Mask,accum,op,A,B);
40 #endif
41 }
42

43 // Do something similar for reduce operation
44 template</*many more arguments*/>
45 void wrapped_reduce(/*many more arguments*/){
46 ...
47 }
48

49 //macro to intercept GBTL operations
50 #define mxm wrapped_mxm
51 #define reduce wrapped_reduce

Fig. 8. Abbreviated GBTLX Interface between GBTL and SPIRAL.

gives the exact number of triangles present in a given graph,
while k-truss enumeration gives the subset of a graph in which
each edge in the subset is supported by at least k − 2 other
edges [16]. Both algorithms were run using the reference
library, a hand optimized version, and our SPIRAL generated
algorithm on two data sets, a smaller dataset, ca-HepTh and
a larger dataset, ca-AstroPh. Ca-HepTh, has 9877 nodes, and
25998 edges, while ca-AstroPh has 18772 nodes and 198110
edges. Neither dataset was pre-sorted.

All experiments were run on an Intel Skylake architec-
ture, with g++ 9.2.1. We used GBTL version 3.0 with the
optimized_sequential backend to generate those results.
In addition, we ran generated multi-threaded versions of the
two algorithms using four threads. The aggregated results are
shown in Figures 9 and 10. The results show that GBTLX
code’s performance is on par with the hand-tuned code, and

Fig. 9. Performance of GBTLX generated triangle counting algorithm
compared against reference and hand-tuned [9]. Y-axis scale is log.

Fig. 10. Performance of GBTLX generated ktruss algorithm compared against
reference and hand-tuned [10]. Y-axis scale is log2.

that GBTLX is able to leverage multiple cores via OpenMP.
These results are obtained while maintaining the clean code
structure of original GBTL code.

VI. CONCLUSION

This paper presents a first look at GBTLX, a Graph-
BLAS/GBTL implementation that interprets GBTL as an
embedded DSL and leverages code generation and automatic
performance tuning to overcome the problem of combinatorial
explosion in the GraphBLAS API and to avoid materialization
of huge non-essential temporaries. The first look at GBTLX
uses triangle counting and k-truss enumeration as examples
that have concise GBTL implementations and for which
previous work has shown how to implement them in low
level C to obtain high performance. This paper demonstrates
how GBTLX translates the high-level C++/GBTL code into
the low level C code without loss of performance, using
an inspector/code generator paradigm. GBTLX leverages the
SPIRAL code generation system as a backend in the same
vein as the FFTX system. Ultimately, the hope is to leverage
this technology across libraries and application domains.

VII. ACKNOWLEDGEMENT

This work was supported in part by Defense Advanced
Research Projects Agency (DARPA) contract HR0011-20-9-
0018. This material is also based upon work funded and
supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center. The view, opinions,
and/or findings contained in this material are those of the
author(s) and should not be construed as an official Govern-
ment position, policy, or decision, unless designated by other
documentation. [DM20-0655]

REFERENCES

[1] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[2] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[3] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the graphblas api for c,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 643–652,
IEEE, 2017.

[4] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, et al., “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–9, IEEE, 2016.

[5] “GraphBLAS Template Library (GBTL), Version 3.0.” Available at
https://github.com/cmu-sei/gbtl, June 2020.

[6] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “Spiral:
Extreme performance portability,” Proceedings of the IEEE, vol. 106,
no. 11, pp. 1935–1968, 2018.

[7] M. Püschel, F. Franchetti, and Y. Voronenko, Encyclopedia of Parallel
Computing, ch. Spiral. Springer, 2011.

[8] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. ryan
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,” Proceedings of the IEEE, special issue on “Program
Generation, Optimization, and Adaptation”, vol. 93, no. 2, pp. 232–
275, 2005.

[9] T. M. Low, V. N. Rao, M. Lee, D. Popovici, F. Franchetti, and S. McMil-
lan, “First look: Linear algebra-based triangle counting without matrix
multiplication,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–6, IEEE, 2017.

[10] M. Blanco, T. M. Low, and K. Kim, “Exploration of fine-grained paral-
lelism for load balancing eager k-truss on gpu and cpu,” in 2019 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–7,
IEEE, 2019.

[11] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“Graphit: A high-performance graph dsl,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–30, 2018.

[12] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, pp. 456–471, 2013.

[13] “SPIRAL Project, Version 8.1.2.” Available at https://www.spiral.net.
[14] F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M.

Low, M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen,
and P. Colella, “Fftx and spectralpack: A first look,” in 2018 IEEE 25th
International Conference on High Performance Computing Workshops
(HiPCW), pp. 18–27, IEEE, 2018.

[15] S. Parimalarangan, G. M. Slota, and K. Madduri, “Fast parallel graph
triad census and triangle counting on shared-memory platforms,” in 2017
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 1500–1509, IEEE, 2017.

[16] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”

