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Abstract

Recent improvements in processor architectures such as multiple cores and larger single-instruction
multiple-data (SIMD) vector units increased the discrepancy between processing speed and mem-
ory bandwidth. Today, the memory bandwidth has become the biggest bottleneck in high per-
formance domains. Numerical functions are often target to heavy optimizations to get as much
performance as possible. These functions presume a specific data layout and have a fixed domain
and range. Adjusting unsuitable data according to these requirements can take up a significant
amount of the runtime due to heavy memory operations. By integrating layout, domain and range
adjustments into numerical functions, memory bandwidth is saved as the adjustments happen in-
place during execution of the function.

Four transformations are provided by the developed tool to refactor the most common adjust-
ments into numerical functions. Restrictions on the to transformed function ensure the correctness
of the transformations. These transformations enable the function to directly work on previously
incompatible data which makes the manual adjustments superfluous and saves memory bandwidth
by not needing to adjust the data manually before calling the function. The runtime of the trans-
formed function is highly dependent on the used function and transformation type, ranging from
50% slower to up to 5 times faster compared to applying the adjustments manually before or after
the function.

The developed tool shows that automatic refactoring with a subset of C is possible and allows
a developer to enhance numerical functions with minimal additional effort providing more flexible
and high-performance versions of the functions with only having to maintain the original function.
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1 Introduction

1.1 Motivation

Modern computer architectures offer a lot computing power with CPUs running at around 3-4 GHz
with multiple cores. With more processing power the desire to process bigger datasets increases but
the memory bandwidth did not increase as much as the processing power. Therefore, the memory
subsystem is in many computations the biggest bottleneck and limit the maximal obtainable
performance. Optimizations which should increase the performance often need to reduce memory
bandwidth needs or adapt the algorithm to caching hierarchy. To reduce memory bandwidth
usage, as many calculations as possible need to be done with loaded data. Fusing multiple steps
together reduces the needed memory bandwidth largely.

Numerical functions often assume an domain, range and data contiguous in memory. If there
are mismatches, they need to be corrected in additional steps before or after using the function.
To correct the domain or range, often a scaling is sufficient. If the data is not contiguous, there
are certain patterns which can be corrected by copying the elements together. All those correction
steps are mostly using memory bandwidth and do only a few operations. Most of these steps can
be avoided when the author of the function designed the function with these requirements built
in.

Adding these requirements in a third party function can be an erroneous and tedious task, even
more if the function is optimized or generated. The developer needs a long time to understand
the internals of the function and to add the additional functionality correctly. In large functions,
some needed changes can be overlooked and produce incorrect results.

The idea is to provide a tool which can automatically add several of these tasks to a numerical
function and enhance their functionality. The additional work for a developer to use the tool
should be minimal still providing the desired enhanced function.

1.2 Example

In this section, the application of the work is shown on an example. A good explaining example
is any image filter function. The filter is taken as a black box, which calculates an unknown
mathematical function on an image. It processes a whole image with a domain from 0.0 to 1.0.
The goal is to use this filter on a part of an image and store this part on disk. The image is read
from a bitmap on the disk which has one byte each color and pixel. This gives an input range
from 0 to 255.

Traditional Approach. First, the filter only processes a whole image but only a part should
be processed. Therefore, this part needs to be copied into a smaller image of exactly the size of
the smaller part in order that the filter not processes the whole image. The next problem is, that
the filter has a domain of 0.0 to 1.0. To fix it, every pixel has to be multiplied by 1

255 before
passing it to the filter. After the application of the image filter, the result is still in a range from
0.0 to 1.0. To store it on the disk, it needs to be again in the range 0 to 255. Scaling it back by
multiplying by 255 brings it into the correct range. All the steps are summarized again:

1. extract part of the image
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2. scale it by 1
255

3. apply image filter

4. scale it back by 255

Approach with Transformations. The tool offers several transformation to handle the
previous mentioned steps. The image filter gets modified to handle more generic cases. The
extraction step is handled by the 2D optimized blockstride transformation. With the additional
parameters added by the transformation, the image filter can work directly on the part of the
image without copying it first into a separate image. The pre- and postscaling can be added to
the filter with the scaling transformation. At the end, the image filter supports working on parts
of an image and scaling it before and after the filtering. The 4 steps in the previous paragraph
are now merged together in one call to the filter with additional parameters.

Results. Merging the 4 steps together saves memory bandwidth, as the transformed filter only
processes the image once instead of 3 times. When using the unmodified filter, the data has to
be extracted and scaled beforehand and scaled afterwards in an extra loop. On the downside, the
transformations increased the cost of every read and write access of the image. Therefore, it highly
depends on the filter if the transformed version performs better than the previous approach. The
more often every element is accessed, the more likely is the runtime slower with the transformed
filter.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

contrast_sse contrast filter 3x3 filter 5x5

Speedup factor
2D Blockstriding and Scaling Example

2.62

2.05 2.05

1.31

Figure 1: Speedup of using 2D blockstriding, pre- and postscaling on a 2D example

Figure 1 shows the quotient of the runtime before the transformation and after the transfor-
mation. The three functions are described in chapter 6.2. The transformations on these examples
are quite beneficial, up to 2.6 times faster than without transformations.

The effect of the previously mentioned overhead can be seen on filter 3x3 and filter 5x5. The
bigger the filter is, the more often every element is read (k ∗ k times, k being the kernel size)
resulting in a less bigger speedup.
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2 Concept

The main goal of the transformations developed in this work is to increase the performance com-
pared to apply the additional functionality outside the original function. The tool should work
completely automatic without any interaction with the developer. As many performance critical
numerical functions are written in C and for the simplicity of the language (imperative pro-
gramming language), the tool processes functions written in C. Although C is a relatively simple
language, there are still restrictions on the input function which are described in the chapter 3.

The tool processes a C file and has a function name as input and creates a new C file with the
same content including the transformed function. Because the whole file is parsed into an abstract
syntax tree (AST), all the necessary files to correctly parse and type-check the file must be pro-
vided. The generated AST is then analyzed and modified according to the chosen transformation
and finally converted back into source code.

The application is written in Python 2.7 [9] and uses the libclang library from the clang
compiler tool chain [3] to parse the source code into an AST. The parsing library uses the same
code base as the clang compiler itself which guarantees a correct and fast parsing.

2.1 Transformations

In this chapter, the implemented transformations are described. For each transformation, there
is an example to show the usage of the transformation and equivalent code which shows the logic
the transformation adds to the function. The following four basic transformations are supported:

• Scaling

• Striding

• Permuting

• Blockstriding

2.1.1 Scaling

Scaling adjusts the range of the input or output data of a function and therefore changes the
domain and range of the function. The adjustment of the domain scales the data before the
function is applied and is called prescaling. Adjusting the range of the function scales the data
after the application of the function and is called postscaling.

Prescaling transforms every read access on the input data and multiplies it with the scaling
factor before the function uses the value for any calculation. To ensure the prescaling is correct,
only read accesses are allowed on the scaled vector, else it can not be guaranteed that values are
only scaled once. Listing 1 shows the logically equivalent code without any transformation applied.

Postscaling is very similar to prescaling but instead of transforming every read access it needs
to transform the write accesses and scale the value before getting written to the vector. Again,
the vector can only be written, never read, in order to allow postscaling.

3



1 for(int x = 0; x < size; x++) {
2 src[x] *= scale ;
3 }
4 f(src , dst , size);

Listing 1: Logic of prescaling

Vector scaling. Pre- and postscaling scale every element with the same constant scaling
factor. Vector scaling, on the contrary, scales every element with a separate factor. The equivalent
code to apply vector prescaling is shown in listing 2.

1 for(int x = 0; x < size; x++) {
2 src[x] *= scale [x];
3 }
4 f(src , dst , size);

Listing 2: Logic of prescaling with a vector

Example. A simple example is to adjust the domain of an image filter function. The original
function expects the input data in a range from 0.0 to 1.0 but image data often has an range of 0
to 255. By scaling the input by 1

255 , the image appears to the function as it would have been in
the correct domain. Furthermore, postscaling by 255 adjusts the range back again to the original
range after the application of the function. The transformed function with the additional scaling
parameters can have any arbitrary domain or range starting from 0.

2.1.2 Striding

The striding transformation, as opposed to the scaling transformation, works on the data layout
not on the value range of the data. Elements are strided when they are not consecutive in memory
as seen in figure 2, where every other element is relevant. This means between every relevant
element is a fixed number of non-relevant elements. For example a RGB image with the 3 color
channels interleaved, where every value of the same color is 3 elements apart, the other two color
channel are in between.

Numerical functions often assume the data in a consecutive memory block and do not support
any striding of elements. The mismatch between the data layout presumed by the function and the
existing data structure can be fixed by copying the relevant elements together into a new memory
block as seen in listing 3. Instead of copying the elements, the striding transformation modifies
the function to support arbitrary strided data layouts. To achieve this, the index of every access
inside the function has to be multiplied with the striding factor to access the correct element. For
example the 5th color value on the mentioned RGB image is not at the 5th position, instead the
correct strided position is 15 (3 ∗ 5).
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10 2 3 4 5
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Figure 2: Stride access pattern with a striding factor of 2

1 for(int x = 0; x < size; x++) {
2 red_channel [x] = rgb_image [x*3];
3 }
4 f( red_channel , dst , size);

Listing 3: Logic of a input striding on a RGB image with striding factor 3

Example. Again a RGB image with interleaved color channels is a good example. A gray-
scale image filter which expects an image with one color channel can not directly work on the red
color channel of an interleaved RGB image. With the striding transformation, it can be specified
that the data is strided 3 elements apart and the function can work directly on the interleaved
RGB image.

2.1.3 Permuting

The third transformation permutes the elements either before or after the application of the
function. Is uses a lookup table to translate the original index into the permuted index. The
modifications happen at the same place as the striding transformation, but instead of multiplying
the index by the striding factor, the index is used to access the permutation vector to get the
permuted index. The listing 4 shows an example of the logic of the transformation of an input
permutation.

1 for(int x = 0; x < size; x++) {
2 permuted [x] = src[ permutation [x]];
3 }
4 f(permuted , dst , size);

Listing 4: Logic of a input permutation

Example. A bit-reversal permutation is a permutation, where the bit reversed index the
permuted index is. This permutation is important for radix-2 Cooley-Turkey FFT algorithms
[10], where recursive steps need a bit-reversal permutation of the input and output data.

An index can be split up into single bits with

i =
n−1∑
j=0

aj2j . (1)
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The reversed index counts the exponent of the base 2 down from n− 1 to 0 resulting in

ĩ =
n−1∑
j=0

aj2n−1−j . (2)

For example the index 5 (binary 0101) with 4-bit indices will get index 10 (binary 1010).
This permutation can be precomputed into a permutation vector and passed to the transformed
function. The function then operates on the bit-reversed permutation of the data.

2.1.4 Blockstriding

The blockstriding transformation is a more general case of the striding transformation. The
striding transformation has exclusively blocks of one element strided apart. The blockstriding
transformation additionally allows arbitrary sized blocks of relevant elements. A block size of one
is the same as the striding transformation.

With a given striding factor and block size, the position of a specific element in the blockstrided
data structure can be calculated from the given position of the element in the consecutive data
layout. If the original index of an element is i, the block size b and the stride s, the blockstrided
position i2 of the same element can be calculated as

i2 = b i

b
c︸︷︷︸

block number

∗s + i mod b︸ ︷︷ ︸
position inside block

. (3)

b i
bc calculates in which block the element is located and i mod b is the element’s position within

the block. Listing 5 shows the logic of the transformation. The variable block_size represents the
chosen block size, meaning how many elements are next to each other, and stride is the number
of elements from the start of one block to the start of the next block. An example of block size 2
and stride 4 is shown in figure 3.

1 2 3 40 5 6 7

10 2 3 4 5 6 7

s b

Figure 3: Blockstride access pattern with b = 2 and s = 4

1 for(int x = 0; x < size; x++) {
2 int block_num = x / block_size ;
3 src[x] = input [ block_num * stride + x % block_size ];
4 }
5 f(src , dst , size);

Listing 5: Logic of a blockstride transformation

The index of every access is used to calculate the blockstrided index based on the formula 3.
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The blockstrided index is then used to access the vector.

2D optimized blockstriding. The generic blockstriding transformation can be applied to
every function but needs quite a lot of extra computation for each access. A division, modulo,
multiplication and addition is needed to calculate the correct index. Therefore, functions with
many accesses can be quite slow with the transformation. Additionally, many functions which
work on 2D vectors already use an implicit block size and striding factor and for that reason the
additional computations of the generic blockstriding transformation can be omitted. The width
of a 2D vector represents the block size and the striding factor at the same time. There are no
non-relevant elements between the blocks if the block size and the striding factor are equal which
it is the case for an image.

To allow the function to work on smaller part of the 2D vector without copying the data into
a smaller buffer (like in figure 6), the block size has to be modified but the striding factor must
be preserved. For this reason, the 2D optimized blockstriding transformation separates the block
size and the striding factor and adds the striding factor to the parameter list. In order to properly
add the striding factor, the function must use the special indexing style x + y * width, where x

is the column and y is the row of the 2D access. The complete restrictions are described in the
implementation of the transformation in chapter 4.1.5.

1 for(int y = 0; y < height ; y++) {
2 for(int x = 0; x < width ; x++) {
3 part[x + y * width ] = input [x + y * buffer_width ];
4 }
5 }
6 f(part , dst , width );

Listing 6: Logic of a 2D optimized blockstride transformation

Example. Any image filter function suits the blockstriding transformation well. With the
blockstriding transformation, the filter can work on smaller blocks of the input image. The added
striding factor has to be the width of the image and the block size is the chosen block width to
process. Furthermore, the width and a height parameter, which a 2D filter usually has, must
represent the size of the smaller block of the image. As an example, the listing 7 shows the
invocation of a transformed filter. The parameters are chosen in order to process the top left
quarter of the image. The width and height parameter must match the amount of elements to
process because the transformation only changes the indexing and these two parameters are usually
used in loop termination conditions.

7



1
2 f(src , // source pointer
3 dst , // destination pointer
4 width / 2, // width : block width
5 height / 2, // height : block height
6 width / 2, // block_width
7 width ); // stride : image width

Listing 7: Example application of the blockstriding transformation

If the function uses the needed indexing style, the 2D optimized blockstriding transformation
can be used and the duplicated block width parameter is not added. The only added parameter
is the striding factor which is the image width in this example. The result is an image filter which
can operate on parts of an image and is as fast as the original function as there are no additional
computations.

2.2 Combinations

Combinations of transformations are not directly supported by the developed tool, however most
transformations can be applied one after the other to have multiple transformations in one function.
The transformations can be applied in any order and multiple times. The only limitation is the 2D
optimized blockstriding transformation, as it needs the indexing style x + y*width described in the
chapter 2.1.4. The permuting transformation destroys this indexing style by replacing the index
with an access to the permutation vector and therefore a 2D optimized blockstriding can not be
applied after a permuting transformation have been already applied.

2.2.1 Implications on Subsequent Transformations

Different sequences of the same set of transformations produce different transformed functions as
the transformation are not distributive. Some of these transformation sequences have influence on
the performance, others affect the added parameters of the following transformations. The most
important implications are described in the next few paragraphs.

Scaling. The only transformation which does not affect any following transformation is the
scaling transformation. It adds one floating point operation for every access and does not modify
any indexes. However, the transformation is affected by previous transformations if vector scaling
is used, as it uses the index of a possibly modified access for accessing the scaling vector.

Striding. After a striding transformation, the indices are multiplied with the striding factor
and therefore the size of a vector is also multiplied by the same factor. This affects subsequent
transformations, as they are dependent on the used index. For example a permutation vector
has to be strided if the permuting transformation is applied after the striding transformation.
Furthermore, packed vectorized accesses will be split up into single slot accesses increasing the
total access count. The subsequent transformations also operate on the increased access count
and introduce a bigger overhead as if they are applied before the striding transformation.
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Permuting. Similar to the striding transformation, subsequent transformations operate on
the permuted index and therefore use the permutation too. After the transformation, the indexing
style is perm[i], where i is the previously used index. This style is not compatible to the 2D opti-
mized blockstriding transformation as mention in the chapter 2.2 and therefore the 2D optimized
blockstriding transformation can not occur after the permutation transformation.

Blockstriding. The blockstriding transformation is a more general case of the striding trans-
formation. Therefore, all of the implications of striding apply also for the blockstriding trans-
formation. The subsequent added parameters are blockstrided instead of strided. Further, the
packed vectorized accesses are split into single slot accesses and the number of accesses is increased
accordingly.

2.2.2 Reasonable Combinations

If a specific sequence of transformations is useful or not depends on the requirements on the input
or output data. However, two or more consecutive transformations of the same type can often
be combined into one transformation giving a better performing function. Consecutive scaling,
striding or permuting transformations can be easily combined into one transformation. If two
consecutive 2D optimized blockstriding transformations are applied, the first transformation has
no effect on the function at all, because the second transformation replaces the parameter which
was added by the first transformation.

To combine scaling or striding transformations, the factors are multiplied together to get the
factor for the combined transformation. For the vector scaling transformation, every element of
the scaling vector has to be multiplied either by the scalar scaling factor or by the corresponding
element in the second scaling vector.

Two permuting transformations can be combined by getting the first permuted index for every
index and get the permuted index from the second permutation vector by using the first per-
muted index. When perm1, perm2 are the two consecutive permutation vectors, the combination is
perm3[i] = perm2[perm1[i]].
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3 Sufficient Conditions

The tool requires several restrictions on the C language for the input function to work properly.
Most of them limit the complexity of the language in order to make the development of the tool
manageable in the given time. These restrictions are listen in the chapter 3.2. The more important
limitations enable the reasoning on important properties which are needed for the transformations
and are explained in the next section.

If any unsupported elements are used, the tool has an undefined behavior. It can result in a
valid function with correct or wrong output, invalid C code or a crash of the tool.

3.1 Correctness Ensuring Limitations

The limitations described next are used in section 5, where two properties are discussed which
enable the transformation to work correctly.

Assignments with a pointer on the left hand side must be of the form p = q + index where p

and q are pointers of the same type and index is an arbitrary expression with an integer type as a
result. An assignment to p, where p and q are two different pointers, must occur exactly once in
the function, although it can be executed many times. This is known as single static assignment
(SSA) from compiler design. If p and q are the same pointer (i.e. p = p + index), the assignment is
allowed multiple times.

The 2D optimized blockstriding transformation requires a more specific assignment style. The
assignment must be of the form p = q + x + y * width where p and q are again pointers, x and y are
expressions with an integer type without containing width and width is an integer parameter or a
variable depending on it.

To enable the scaling transformation, the underlying memory block of a pointer is either read
or written, never both within a function. Without this limitation, the tool can not determine
if an access is already scaled because the accessed value could have been written a scaled value
beforehand.

If recursion is used, the allocated memory blocks referred by parameters must stay the same
throughout the recursion.

3.2 Limitations to Reduce Development Time

The C language offers a variety of syntactic elements and control statements. As the time is
limited to develop a working tool, the supported language is subject to many more restrictions.
The allowed elements are listed in this chapter.

Function declaration. The function which the transformation should be applied has to
conform the three following points:

• The return value can be void, double or float.

• There are no restrictions on the function name.

• Data types of arguments can be either a pointer or a scalar. Pointers represent input or
output data and can have double or float as pointee type. Scalar arguments which store the
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length of a vector must be of int or size_t type, remaining arguments can be any scalar data
type.

Keywords. Allowed keywords are break, continue, const, register, return, char, short, int,

long, float, double, if, else, for, signed, unsigned, sizeof, void, volatile

Global and local variables. The limitations on global and local variables are the same as
the limitations on the functions arguments. Additionally _mm128 and _mm128d data types are allowed
to enable vectorized code.

Syntax. Allowed are only a few constructs. Namely for loops with one iteration variable,
if/else constructs, variable declarations and assignments. Assignments are only restricted when
the left hand side is any kind of pointer and is described in chapter 3.1.

Pointers. Due to the nature of the transformations, the most restrictions are on pointers.
The following list contain all the restrictions which apply to pointers.

• Pointer parameters do not alias

• Pointers must only point to scalar data types (double, float or int)

• Pointers are not modified from outside the function

• Pointers do not leave the function through a function call

• Allowed operations on pointers are addition, subtraction, dereference and array subscript

SSE. The usage of the streaming SIMD extensions are allowed by using intrinsic functions.
Only the load/store intrinsics and the SIMD data types are restricted. The data types for packed
float (_mm128) and packed double (_mm128d) are allowed. Furthermore, the most common load and
store intrinsics are supported. Supported load intrinsics are _mm_load_ss, _mm_load_sd, _mm_load_ps

, _mm_load_pd, _mm_loadh_pd, _mm_loadl_pd, _mm_loadu_ps, _mm_loadu_pd and supported store intrinsics
are _mm_store_ss, _mm_store_sd, _mm_store_ps, _mm_store_pd, _mm_storeh_pd, _mm_storel_pd, _mm_store1_pd

, _mm_store1_ps, _mm_storeu_ps, _mm_storeu_pd.
Macros/Defines. The usage of macros or defines are not allowed, as they are not fully

expanded by the preprocessor of the parsing library. The only exception are the shuffle macros
_MM_SHUFFLE and _MM_SHUFFLE2.
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4 Implementation

4.1 Transformations

In this chapter, the transformations are described in detail how they are implemented. For every
transformation, the affected vectors can be chosen and the transformation logic is applied for every
chosen vector.

4.1.1 Scaling

The scaling is divided into prescaling and postscaling. Prescaling applies when data is read from a
vector, postscaling when data gets written to a vector. The steps for a prescaling transformation
are:

1. First, the tool creates a list of vectors which have to be handled. This step uses the depen-
dency graph to check the dependencies of the to-scale parameters and store every dependent
pointer of them. Additionally, new variables are inserted to track the total offset when a
pointer is assigned.

2. With the list of variables which need to be handled, it first modifies the normal array
subscripts (pointer dereferences are equivalent to array subscripts).

• For a scalar scaling an access p[i] gets replaced with p[i] * scaling_factor

• If it is a vector scaling transformation, the tool needs to calculate the total offset of
the access and use it as an index for the scaling vector. The total offset can be obtained
due to the restrictions given in chapter 3.1. The access p[index] is replaced with p[

index] * scale[index + offset_of_p]. The index of the scale vector index + offset_of_p is
the total offset of the access to p and is calculated with the additional offset variables
created in step 1.

3. After all array subscripts are transformed, it checks if the function uses any SSE intrinsics.
The changes to the vectorized code are more complicated as there are several different ways
to load a SSE register.

(a) The first step is to isolate the load intrinsics and assign the result to a temporary
variable tmp

(b) If a vector scaling transformation is applied, two or four new scaling factors have to be
loaded into an SSE register before the scaling operation can be executed. The index
used to access the scaling vector must be the total offset used in the load intrinsic.

(c) Afterwards, the multiplication of the temporary variable tmp with the scaling factor is
done.

(d) If the load intrinsic does not load a full packed SSE register, the transformation must
preserve the unloaded values in the registers to stay the same as before the multiplica-
tion. Therefore, shuffling intrinsics are needed to get the unscaled original values back
into the final SSE register.

(e) Lastly, the scaled SSE variable is inserted where the original load intrinsic was placed
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4. Finally, any recursive call is modified to add the additional scaling parameter

The postscaling transformation is very similar. Instead of modifying read accesses, write accesses
are modified. An assignment p[i] = value is transformed into p[i] = value * scale for a scalar
scaling or p[i] = value * scale[i] for vector scaling. Vectorized code is handled the same way.

4.1.2 Striding

The striding transformation moves the relevant elements by a striding factor apart. In contrast
to the scaling transformation, the striding transformation does not modify any data, it modifies
solely indices. The moving of the relevant elements is achieved by multiplying the total offset of
an access by the striding factor. The detailed steps are:

1. The first step is checking the dependencies. A dependency of vectors are based on an
assignment p2 = p + offset, from which can be concluded that p2 has a by offset bigger total
offset than p. This offset has to be multiplied with the striding factor resulting in p2 = p +

offset * stride. This modification ensures that a strided index of an access to any vector
accesses is correct.

2. After the dependencies are handled, every relevant array subscript (or dereference) is modi-
fied. The index of an access is again multiplied with the striding factor resulting in the correct
strided element access due to the modification in the first step (p2[index] gets replaced with
p2[index * stride])

3. Vectorized code is more complicated as the data elements, which were consecutive in memory
before the transformation, are strided apart. Many intrinsics load/store multiple elements
which are consecutive in memory. The striding of the elements forces a switch to single slot
load/store intrinsics.

(a) The index of an access is again multiplied with the striding factor. The resulting address
points to the first element to load.

(b) If packed load/store intrinsics are used, they are split up into 2 or 4 single slot intrinsics.
The single slot intrinsics use the address from the previous step. For each single slot
load/store intrinsic, the address is increased by the striding factor to get the subsequent
element.

(c) After loading the single elements, shuffle intrinsics combine the single elements into one
SSE register.

The intrinsic call x1 = _mm_load_ps(src + x + y * width) has an offset of x + y*width. This call
will get transformed into four single slot loads with shuffling shown in listing 8. Storing
strided elements are done by using single slot store intrinsics and a shuffle intrinsic to rotate
the elements in the register one element to the right. An example of the transformation of
_mm_store_ps(dst+x+y*width, x1) is shown in listing 9.
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1 a_0 = _mm_load_ss (src + stride * (x + y * width + 0));
2 a_1 = _mm_load_ss (src + stride * (x + y * width + 1));
3 a_2 = _mm_load_ss (src + stride * (x + y * width + 2));
4 a_3 = _mm_load_ss (src + stride * (x + y * width + 3));
5
6 a_0 = _mm_shuffle_ps (a_0 , a_1 , 0); // shuffle a_0 and a_1 together
7 a_2 = _mm_shuffle_ps (a_2 , a_3 , 0); // shuffle a_2 and a_3 together
8 a_0 = _mm_shuffle_ps (a_0 , a_2 , 136); // shuffle a_0 and a_2 together
9 x1 = a_0;

Listing 8: example of striding transformation of x1 = _mm_load_ps(src + x + y * width);

1 a_0 = x1;
2 _mm_store_ss (dst + stride * (x + y * width + 0) , a_0); // store 1st element
3 a_0 = _mm_shuffle_ps (a_0 , a_0 , 57); // rotate 1 element right
4 _mm_store_ss (dst + stride * (x + y * width + 1) , a_0); // store 2nd element
5 a_0 = _mm_shuffle_ps (a_0 , a_0 , 57); // rotate 1 element right
6 _mm_store_ss (dst + stride * (x + y * width + 2) , a_0); // store 3rd element
7 a_0 = _mm_shuffle_ps (a_0 , a_0 , 57); // rotate 1 element right
8 _mm_store_ss (dst + stride * (x + y * width + 3) , a_0); // store 4th element
9 a_0 = _mm_shuffle_ps (a_0 , a_0 , 57); // rotate 1 element right

Listing 9: example of striding transformation of _mm_store_ps(dst+x+y*width, x1);

4.1.3 Permuting

The steps of the permuting transformation are very similar to the steps of the striding transfor-
mation. Instead of multiplying the index with the striding factor, the index is used to access the
permutation vector. To access the permutation vector, the total offset is needed, as it has to be
the exact same index as used with the vector. Therefore additional variables are added to track
the offset of every variable. For every assignment of a pointer (p2 = p + offset) an additional offset
variable p2_offset is inserted. The inserted statement to be able to calculate the offset of p2 is
int p2_offset = p_offset + offset.With those additional variables, the tool can easily determine the
total offset of an access of any pointer and use this offset to get the permuted index. An access to
p2[value] has a total offset of p2_offset+value and is used to access the permutation vector.

An access to p2 has an implicit offset included from its origin. As the permutation vector stores
the indices of the elements in the parameter, which has a zero offset, the implicit offset of p2 has
to be removed to access the correct permuted element. Therefore, the pointer p2 is replaced with
its origin resulting in origin[perm[p2_offset + value]].
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1 a_0 = _mm_load_ss (x + x_perm [((j) + p_offset_0 + 0) ]);
2 a_1 = _mm_load_ss (x + x_perm [((j) + p_offset_0 + 1) ]);
3 a_2 = _mm_load_ss (x + x_perm [((j) + p_offset_0 + 2) ]);
4 a_3 = _mm_load_ss (x + x_perm [((j) + p_offset_0 + 3) ]);
5 a_0 = _mm_shuffle_ps (a_0 , a_1 , 0);
6 a_2 = _mm_shuffle_ps (a_2 , a_3 , 0);
7 a_0 = _mm_shuffle_ps (a_0 , a_2 , 136);
8 x1 = a_0;

Listing 10: example of permuting transformation of x1 = _mm_load_ps(p+j);

Packed SSE load and store intrinsics are split up into their single slot equivalent intrinsics like
in the striding transformation as the permuted elements are not consecutive in memory anymore.
Again the same logic as with scalar accesses is used. Instead of multiplying the index, the total
offset of the access is used to index the permutation vector. An example of _mm_load_ps can be
seen in the listing 10. The intrinsic _mm_load_ps loads 4 elements at once, therefore 4 consecutive
elements of the permutation vector are used to get the permuted indices. Again, the single values
loaded with the single slot intrinsics have to be merged together into one SSE register with shuffling
intrinsics.

4.1.4 Blockstriding

The blockstriding transformation is a more general case of the striding transformation and can
handle arbitrary block sizes. For vector accesses, the formula (3) is used to calculate the correct
index. With the total offset of the access as i, the final index i2 can be calculated and used as an
index to the origin of the accessed vector. The block size and the striding factor are added to the
parameter list to use in the formula (3).

Handling of vectorized code is more complicated than in the striding transformation. In the
striding transformation, every packed load or store has to be replaced with its single slot coun-
terpart, because only one element at the time is loaded. The blockstriding transformation can
differentiate three different cases instead of always switching to single slot intrinsics. These cases
depend on the alignment of the parameters, block size and striding factor. The parameters are
aligned if the address is divisible by 16, block size and striding factor are aligned if they are di-
visible by either 2 or 4, depending on the used data type. The three different cases are listed in
table 1. If the parameters, block size and striding factor are aligned, packed aligned load/store
intrinsics can be used. In the second case, the block size is aligned but not the start of a block
and therefore unaligned packed load/store intrinsics must be used. If the block size is unaligned,
unaligned packet load/store intrinsics are use until there are not enough elements left in the cur-
rent block. The remaining elements and elements from the next block are loaded with single slot
intrinsics. These cases can only be checked at runtime and therefore the transformation inserts a
check at the beginning of the function and branches to the according code block. This branching
allows to use higher performing code if the alignment conditions are fulfilled.
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Alignment

Parameters Block Size Striding Factor

X X X packed aligned intrinsics are preserved
X/ - X - packed aligned intrinsics are converted to packed un-

aligned intrinsics
- - - packed intrinsics are converted to unaligned intrin-

sics or split up into single slot intrinsics for the re-
maining elements in a block

Table 1: Different cases for SSE intrinsics handling in the blockstriding transformation

4.1.5 2D Optimized Blockstriding

The most complex transformation is the 2D optimized blockstriding. A function that operates
on a 2D vector usually uses the full width and height of the vector. These two values are often
passed as integer parameters. If a developer needs the function to only operate on a part of the
2D vector, it is not enough to just change the width parameter. If the function has accesses
across rows, it still needs to consider the full width of the buffer to skip a full row despite only
working on a smaller width. The transformation adds a new parameter to pass the buffer width
and the original width parameter is then used to pass the smaller width to the function. The 2D
optimized transformation only works on 2D vectors with a special indexing style described in the
next paragraph.

Indexing Style. The index must contain an integer parameter or a variable which is dependent
on a integer parameter (namely the width parameter). If this parameter is contained multiple times
in the calculation, every occurrence is replaced. A typical index calculation looks like x + y * width,
where width is the integer parameter (block size and striding factor) and y is a loop counter. The
expression y * width is the row calculation which has to be modified to allow the function to work
on a smaller width than the buffer width.

1 void f( const double * input_img , double * output_img , const int width , const int
height ) {

2 for(int y = 1; y < height -1; y++) {
3 for(int x = 1; x < width -1; x++) {
4
5 int index = x+y* width ;
6
7 double tmp = input_img [index - width ] + input_img [ index + width ] +

input_img [index -1] + input_img [ index +1] + input_img [ index ] * 2;
8 output_img [ index ] = tmp / 6;
9 }

10 }
11 }

Listing 11: example to show blockstride transformation
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ASTLoop

output_img

x

x++

ASTLoop

x < width - 1

indexint index = x + y * width

height y < height - 1

output_img[index]

input_img

input_img[index + width]

input_img[index]

input_img[index + 1]

input_img[index - width]

input_img[index - 1]

width

x < width - 1

int index = x + y * width

input_img[index + width]

input_img[index - width]

y

y < height - 1

int index = x + y * width

y++

Figure 4: Dependency graph of listing 11

To show the internals of the transformation the example in listing 11 is used. It is a simple
average filter without any border handling which uses the indexing style needed by the transfor-
mation. The function is modified in order that only a part of the vector input_img is processed.
The vector output_img is already of the smaller size and does not need any modifications in the
function. The detailed steps to modify the function to work on a smaller area of input_img are:

1. At first, the width parameter of the vector has to be found out. It uses a heuristic approach,
shown in figure 5, to find the width of the vector. In the example, the parameter int width

is found as the width of input_img after the subscript refinement step.

2. Next step is to check the usages of this parameter (on line 5 and 7 in the example). The
dependency graph is used to find the three occurrences of width. Figure 6 shows the generated
dependency graph from the listing 11. The dependency graph is explained in chapter 4.2.
The four outgoing edges of the node width indicate, that the variable is used in the calculation
of the variable index, in a loop condition and in array subscripts of input_img.

The dependency graph is used to handle cases where the width parameter is used in non-
relevant vectors (in this example output_img via the node index). For this reason, all paths
between the relevant vector (input_img) and the width parameter (width) are marked in a first
step. There are two paths directly from input_img to width and several paths via index.

3. After the marking, the graph looks like in figure 6. The green nodes and edges are marked.
To check if width is used in non-relevant parts of the function, every outgoing marked edge
of width has to be checked. For every of these edges, it is checked if any marked node on
any path to input_img has any unmarked edges, meaning if a variable is used somewhere else
without needing the changes of the transformation. In the used example, the two occurrences
of width on line 7 are replaced as there is no unmarked out-edge from the node input_img. On

17



start heuristic
find width of ~v

~c = {p ∈ parameters : p has type int}

|~c| == 1

~c = {p ∈ ~c : p is used in a subscript of ~v}

|~c| == 1

~c = {p ∈ ~c : p is used in a loop condition}

|~c| == 1

use candidateheuristic failed

no

yes

no

yes

no

yes

Figure 5: Heuristic flow chart of the blockstride transformation
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ASTLoop

output_img
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input_img

input_img[index + width]

input_img[index]

input_img[index + 1]

input_img[index - width]

input_img[index - 1]

width

x < width - 1

int index = x + y * width

input_img[index + width]

input_img[index - width]

y

y < height - 1
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y++

Figure 6: All paths between width and input_img have been marked in the dependency graph of
listing 11.

line 5, width is used to calculate the variable index. The node index has an unmarked out-edge
to output_img (used as index in output_img) and therefore, the variable has to be duplicated
to not change the index of the subscript of output_img on line 8. The transformation creates
a new variable, modifies width and replaces index with the newly created variable for every
marked out-edge of the node index. This keeps the usage of index in line 8 unaltered

The result of the transformation of the example in listing 11 is shown in listing 12. On line 4
is the duplicated index variable with the adjusted width parameter. Furthermore, the two usages
of width on line 6 got replaced by buffer_width.

1 void f_prime ( const double * input_img , double * output_img , const int width , const
int height , const int buffer_width ) {

2 for(int y = 1; y < height - 1; y++) {
3 for(int x = 1; x < width - 1; x++) {
4 int index_0 = x + y * buffer_width ;
5 int index = x + y * width ;
6 double tmp = input_img [ index_0 - buffer_width ] + input_img [ index_0 +

buffer_width ] + input_img [ index_0 - 1] + input_img [ index_0 + 1] +
input_img [ index_0 ] * 2;

7 output_img [ index ] = tmp / 6;
8 }
9 }

10 }

Listing 12: example to show blockstride transformation
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At the end, every usage of width which influences input_img are replaced with buffer_width and
the function processes only the smaller width with still considering the full buffer width.

4.2 Dependency Graph

half dstdst[half]

size

int half = size / 2

p

p[size / 2]

double* p = src + size

src
double* p = src + size

Figure 7: Dependency graph generated from listing 13

As described in the previous section, several transformations need the total offset and the
origin of a vector access. Furthermore, the 2D optimized blockstriding transformation also needs
the information of integer variable usage in index calculations to determine the correct width
parameter. To provide this information, a dependency graph for every input function is created.
The nodes of the graph represent the variables used in the function. The edges between the nodes
are statements which create a dependency between the variables. The tracked properties are:

1. Dependencies between pointers from assignments of style p2 = p1 + index (p2 is dependent on
p1)

2. Dependencies between integer variables from assignments. The left hand side variable is
dependent on every variable occurring on the right hand side of the assignment.

3. Usages of integer variables throughout the function. For example the vector access v[x*width

+ y] uses x, y and width as an index and is shown as purple edges

From the example function in listing 13 the graph in figure 7 is generated. The first line
creates the dependency between p and src. The second line creates the dependency between the
two integer variables half and size. half and size are used in the array accesses in the last line of
the example, which is shown as the purple edge.

1 void f( double * src , double * dst , int size) {
2 double * p = src + size;
3 int half = size / 2;
4 dst[half] = p[size /2];
5 }

Listing 13: Example to show a minimal dependency graph
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5 Analysis

In this chapter, formal reasoning is given to proof the properties needed by the transformations.
The properties are described in the next chapter and the reasoning of the properties over single
statements are given in chapter 5.2. The reasoning over single statements is then combined in
order to proof that the properties are fulfilled over a whole function.

5.1 Properties

The tool basically relies on 2 properties which enable the transformations to be correct. The first
property is, that the tool needs to know the origin of every pointer variable. The origin of a pointer
is the parameter on which the pointer depends on. The second property is the total offset, which
is the amount of elements between the pointer to its origin. To show that these two properties
can be fulfilled, the restrictions on the input language in section 3.1 are needed.

The listing 14 is a example of a function which copies a 2 dimensional vector. It is used to
show the application of origin and offset. On line 3 the pointer row is assigned. As input is the
pointer on the right hand side of the assignment, row is depending on it and because input is a
parameter, the origin of row is input. The offset of row is y*width as it is the difference between row

and input. The next assignment is on line 5. The origin of the pointer element is the same as the
origin of row and the offset of elements is the offset of row plus the variable x.

The offset of parameters are assumed to be 0 except if recursion is used. An additional
parameter is then used to pass the offset during recursion. The origin of a parameter is the
parameter itself.

1 void f( double * input , double * output , int width , int height ) {
2 for(int y = 0; y < height ; y++) {
3 double * row = input + y * width ;
4 for(int x = 0; x < width ; x++) {
5 double * element = row + x;
6
7 output [x+y* width ] = * element ;
8 }
9 }

10 }

Listing 14: Example of a function to show the origin and offset property

5.2 Reasoning

To be able to reason about a function whether the transformation works or not, Hoare logic [5]
is used. Hoare logic uses Hoare triples of the form {P}C{Q} where P is the precondition, Q the
postcondition and C a command. In order that the transformations work, at every state of the
function the origin and offset of the used pointer variables must be known. For this reason, the
two properties are defined to provide the needed information. The first property is denoted as O
and contains the origin of every pointer variable. Two operations are defined, O(p) is the origin
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of pointer p and O[p = o] sets the origin of pointer p to o. The second property is I and contains
the offset of every pointer variable. Again I(p) is the total offset of p and I[p = o] sets the offset
of p to o. Both properties are fulfilled if at the execution state the offset and origin of every used
pointer variable is known.

5.2.1 Axioms

In this section, it is shown that for every axiom the two properties O and I are fulfilled.
A skip statement is a command, which does not have any influence on the state and therefore

preserve the properties O and I. The corresponding axiom for a pointer assignment is

{O, I} skip {O, I}
. (4)

A pointer assignment is the only command, which modifies the set of pointer variables. There-
fore, every other statement is seen as a skip statement. The axiom is

{O, I} p2 = p1 + i {O[p2 = O(p1)], I[p2 = I(p1) + i]} . (5)

According to the limitation in 3.1, there is exactly one pointer assignment, where p2 6= p1 is true.
Therefore, this assignment is the only possible source of the origin for p2. The origin of p2 is the
origin of p1 and the offset of p2 is the offset of p1 plus i.

The second allowed pointer assignment is p1 = p1 + i. The origin is not modified and the index
is increased by i by this pointer assignment. The resulting axiom is

{O, I} p1 = p1 + i {O, I[p1 = I(p1) + i]} . (6)

5.2.2 Decomposition Rules

The decomposition rules separate whole function into simpler rules until an axiom can be applied.

{P} S {Q} , {Q} T {R}
{P} S; T {R}

(7)

{P ∧B} S {Q} , {¬B ∧ P} T {Q}
{P} if B then S else T endif {Q} (8)

{P ∧B} S {P}
{P}while B do S done {P} (9)

Additionally to the common rules above, a rule to handle a for-loop is needed as the only
allowed loop structure is a for-loop. The rule

{P}B {P} , {P}while C do S ; I done {P}
{P} for( B; C; I) do S done {P} (10)

is used to decompose a for loop into a single statement and a while loop.
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5.2.3 Initialization of the properties

At the beginning of a function, the two properties are initialize with the available parameters.
The origin of a parameter is the parameter itself (O[p = p]) and the offset is either 0 (I[p = 0])
or the offset passed in the corresponding integer parameter (I[p = p_offset]). This parameter is
only present if recursion is used.
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6 Experiments

The main goal of the tool is to increase the performance of the transformed functions. For this
reason, comprehensive tests are made to evaluate the gained speedup.

The runtime of the resulting transformed function and the original function with code added
to simulate the transformation (called reference) are measured and compared. Furthermore, func-
tional tests are done to check the correctness of the transformations.

6.1 Experimental Setup

All performance measurements were made on a computer with the following specifications:

Processor AMD Phenom II X4 Deneb @ 3.4 GHz
Memory 8 GiB DDR3 1333MHz
OS Windows 7 64bit
Compiler Intel(R) C++ Compiler XE IA-32, Version 12.0.0.104
Compiler flags /O3 /arch:SSE2 /fp:fast=2 /qipo_fas /Oa /Ow /Ob2 /Oi /Ot /fast /xHost

The compiler flags are quite important. For example omitting the flag /fast affects the block-
striding transformation enormously, resulting in a similar runtime as with the Microsoft compiler
seen in appendix B.

6.2 Test Cases

Various input functions are used to measure the performance impact of the transformation. The
first part of the functions are hand written, the remaining functions are generated by spiral [8].
In the table 2 is a short explanation of every test function, the used data type and a list of
transformations which are not available due to limitation violations.

6.3 Functional Tests

Functional tests are done to verify the correctness of the transformations. Additionally to every
performance test in the next chapter, the correctness of the output of the transformed function is
verified. A test case is correct if the output of the transformed function equals the output of the
reference.

Except for minor floating point rounding errors due to a different ordering of floating point
operations were the output exactly the same. Therefore, the transformations on the used test
cases are functional and are valid.

6.3.1 Combination Functional Tests

Random combinations of transformations are applied to check if the added source code by the
transformations is correct. Two sets of transformations are used to create random combinations.
The first set contains all transformation except the 2D optimized blockstriding transformation
and the second set consists of all transformation except the permuting transformation. The per-
muting transformation is not compatible to the 2D optimized blockstriding transformation as it
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Function Description DataType Invalid Transformations

filter Generic convolution with a kernel of
size 3x3

float -

contrast Adjust the ranges from the minimum
to the maximum value in an im-
age. The calculation for every pixel is

input−min
(max−min)∗new_max

double -

sse_contrast vectorized version of the test contrast double -
sse_mvm vectorized matrix-vector multiplication float -
rec_mergesort recursive 2-way mergesort with O(n)

extra storage for merging.
double scaling, 2d blockstriding

reduce Sum reduction of all elements double postscaling, 2d blockstrid-
ing

rec_reduce 2-way divide and conquer version of re-
duce

double postscaling, 2d blockstrid-
ing

scan Calculates the prefix sum of a vector double postscaling, poststriding,
2d blockstriding

dft512 Discrete Fourier transformation for 512
elements generated by spiral

double postscaling, 2d blockstrid-
ing

dft1048576 Discrete Fourier transformation for
1 048 576 elements generated by spiral

double postscaling, 2d blockstrid-
ing

fftfwd Fast Fourier transformation for 128 el-
ements generated by spiral

double 2d blockstriding

sse_fftfwd Vectorized fast Fourier transformation
for 128 elements generated by spiral

double 2d blockstriding

dct40 Discrete cosine transformation for 40 el-
ements generated by spiral

double 2d blockstriding

Table 2: List of the used functions in the performance measurements
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changes the needed indexing style to perform the transformation and therefore the two sets of
transformations are used in separate test runs.

A combination of up to 40 transformations worked with both sets of transformations without
any compilation error. At that stage, either the processing time to transform the function gets
really large (especially for a vectorized input function as the blockstriding transformation multiplies
the code size by factor of three) or the parsing library raises an assertion error during the parsing
of the file (note: a compilation error is not raised, which would be the case if the given source
code contains an error).

6.4 Performance Tests

For the performance tests, each test case is run 10 times to compensate variations on the runtime.
For test cases with variable input size, the input size varies from small (few megabytes) to large (few
gigabytes), each is again run 10 times. To see if the transformation actually perform better, the
transformation is simulated in an extra step before or after the untransformed function call which
is referred as reference. The testing framework measures the time taken to execute the transformed
function and the reference. All the performance plots show the factor runtime reference

runtime transformed function .
Values smaller one mean the transformed function runs slower than reference, larger one means it
runs faster.

This chapter shows the performance impact of the developed transformations.

6.4.1 Overall Performance

In this chapter, the performance of the test cases for every transformation is shown. All data used
to call the functions is randomly generated.

Scaling. Figure 8 shows the performance impact of the scalar scaling transformation. The
scaling parameter is randomly chosen for each test run. The results of the transformation are
all equally fast or faster than the reference. This is not really surprising as the transformation
increases the operation count per element by one but does not increase the needed memory band-
width as opposed to the reference, which increases the needed memory bandwidth.

The spiral generated functions (dct40, dft1048576, dft512, fftfwd, sse_fftfwd) do benefit less
than the hand-written, in average these functions run 22% faster than the reference. These
functions are highly optimized and run already at a top performance, therefore the possible speed
up is more limited as for the handwritten test functions.

The results of the vector scaling transformation are shown in figure 9. It shows a similar but
not as stable results than the scaling transformation. filter and dft1048576 are the only test cases
which run slower than the reference. The runtime of the different test runs of sse_mvm differ too
much if only the output or the input is scaled and therefore the range of the results is quite large
from a light slowdown to a 5 times faster runtime.

The average runtime over all test cases is 1.64 times faster for scaling and 1.30 times faster for
vector scaling.

Striding. Figure 10 shows the performance change with the striding transformation. The
striding test cases use a striding factor of 8. The results below one is mainly due to the change of
the access pattern, resulting in less optimal code for the cache hierarchy. For rec_mergesort the
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Figure 8: Speedup of scaling transformation
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Figure 9: Speedup of vector scaling transformation
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Figure 10: Speedup of striding

transformed function results in a runtime more than twice as long as the reference. A possible
cause can be its larger amount of accesses (log(n) accesses for each element compared to usually
O(1)) combined with less cache effect because the elements are further apart.

More interesting are the results of the vectorized tests. All three vectorized tests seem to benefit
from the transformation quite well, which is surprising as striding forces the usage of single slot
load and store intrinsics. A possible cause might be that modern architectures handle single slot
operations quite efficient and the slowdown using single slot operations is less than copying the
data into a consecutive memory block.

To conclude the striding performance tests, the average speedup is 8.1% regardless that the
transformation works against the caching memory system.

Permuting. The results of the permuting transformation are shown in figure 11. The results
are better than expected as a random permutation is used which is counterproductive for the
cache memory system. The big range of sse_mvm is again due to different tests combined into
the plot. A reason for the huge speedup on sse_mvm could not be found.

On average the permuting transformation is 35.2% faster than the reference (not including
sse_mvm due to the exceptional speedup comared to all other tests).

Blockstriding. Figure 12 shows the results of the blockstriding transformation. As expected,
the resulting code can be quite slow compared to the reference. This is due to the additional index
calculation for every access. More surprising is, that several test cases still can get a significant
speedup.

The results depend highly on the input function, the used compiler and the optimization flags.
Without the \fast flag, the results look a lot worse, similar to the results of the Microsoft compiler
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Figure 11: Speedup of permuting

in appendix B.
The more stable results of the 2D optimized blockstriding transformation are shown in figure

13. The blockstriding transformation optimized for 2D indexing performs a lot better than the
generic blockstriding transformation, as it does not add any computation at all, it only modifies
the present computations. This implies the indexing style, described in the chapter 2.1.4, is used
in the function. However, if the transformation can be applied, the resulting function runs a lot
faster than the reference due to less memory bandwidth needed.

On average, the blockstriding tests run 30% faster and 125.1% faster with the 2D optimized
blockstriding transformation.

6.4.2 CPU bound vs. memory bound

All test cases shown until now are mostly memory bound functions. As the transformations all
save memory bandwidth with merging multiple steps into one, the performance gain can be huge
with memory bound functions. As soon as the CPU is the limiting factor, the impact on the
runtime starts to get smaller quickly. Figure 14 shows the effect of getting CPU bound. The test
functions contrast and contrast_sse are modified in order to increase the floating point operations
on every element. The operation count gets increased from 4 to 80 per element. No additional
vector accesses are added to just increase the load on the CPU. Both CPU bound tests perform
clearly worse using the scaling transformation.

All transformations only have an influence on the part of the function which reads or writes the
vectors. If the fraction of the runtime spent on vector accesses gets smaller, the overall runtime
of the transformed function will be closer to the reference as the transformation has less influence
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Figure 12: Speedup of blockstriding

co
n
tr

a
st

fi
lt

e
r

ss
e
_c

o
n
tr

a
st

ss
e
_m

v
m

0

1

2

3

4

5

2.01 1.57 1.97 3.41

Speedup factor
Runtime comparison of the 2D optimized blockstriding transformation

Figure 13: Speedup of 2D optimized blockstriding
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Figure 14: Effects on the runtime of CPU bound functions

on the overall runtime.

6.4.3 Impact of input sizes

In the previous performance plots, the results of different input sizes are combined into the final
result. In contrast to the previous plots, the performance test in this chapter show the performance
gain with different input sizes.

The functions sse_mvm and contrast are tested with various input sizes n. The vector in
sse_mvm is n× 1 and the matrix n× n. The input size of contrast is n× n.

sse_mvm. Figure 15 shows the results of the function sse_mvm. The speedup on input sizes
smaller than 1500 varies more as the cache has a bigger effect on the runtime. The speedup gets
steady around 1000 to 1500 input size, where the input byte size increases from around 4MiB
to 8.5MiB. As the third level cache of the CPU is 6MiB, the reduction of the needed memory
bandwidth has a bigger effect on the runtime if the size exceeds the caches.

There is a significant drop around an input size of 4100. At closer inspection, there are
significant slowdowns at input sizes 4072, 4096 and 4120 and a smaller slowdown at input sizes
±4 of the 3 sizes mentioned before. Measuring the performance counters with AMD CodeAnalyst
[1] showed, that during the slow test cases the data cache miss rate is 4 times higher, from around
5% cache misses to around 20%. As the slowdown is only temporary at specific input sizes, it can
not be due to compulsory or capacity misses but it can be due to conflict misses.

contrast. Compared to sse_mvm, the contrast function uses double precision and therefore
the input size is twice as big and the cache affects the runtime less than for the test case sse_mvm.
The speedup is steady from an input size of 1000 and higher.
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To conclude, the speedup is steady if the dataset is too large for the cache because the system
is running at its memory bandwidth limit and the size of the input does not have an influence on
the speedup.

6.4.4 Combination Tests

The effect on the runtime of a different order of a combination of transformations is shown in
figure 17. The striding and scaling transformation are first applied alone and the speedup is
measured. contrast_sse profits from the transformation alone, contrast only profits from the
scaling transformation. As contrast_sse is a vectorized test case, the striding transformation
splits the packed vectorized accesses into single slot accesses and increases the number of accesses.
The scalar function contrast has the same access count before and after the transformation.

If the scaling transformation is applied before the striding transformation, the packed accesses
in contrast_sse are scaled and then the loads are split up into single slot loads. Therefore, every
packed access is replaced with two single slot loads and one packed scaling operation. If the order
of the transformations is reversed, the packed accesses is replaced with 2 single slot loads and then
2 single slot scaling operations as the scaling transformation does not know anything about the
packed accesses and scales every single slot access. The second version runs around 12% slower
than the more efficient combination, which is enough to be slower than the reference. Without
any vectorized code in contrast, the order does not have an influence on the runtime and the
combinations run as slow as the slower of the two transformation alone.
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7 Applications

In this chapter, applications of the developed tool, the transformed functions and the resulting
performance change are shown.

7.1 Scaled Strided Blockstrided Contrast Adjustment

The function contrast first identifies the maximal and minimal value from the input buffer and
then adjusts the input value accordingly to increase the difference between the brightest and the
darkest pixel. The whole function is shown in listing 15. It is a simple and short function in
order to clearly show the changes made by the transformations. There are very limited interface
options, basically providing parameters for the data, the size of the given data and the maximal
value after the application of the function.

1 void contrast ( const double * const input , double * output , size_t width , size_t
height ,

2 const double new_max )
3 {
4 double max = 0;
5 double min = 0;
6 // get minimal and maximal value of input
7 for(int y = 0; y < height ; y++) {
8 for(int x = 0; x < width ; x++) {
9 double val = input [x+y* width ];

10
11 if(max < val) {
12 max = val;
13 }
14 if(min > val) {
15 min = val;
16 }
17 }
18 }
19 // increase contrast
20 for(int y = 0; y < height ; y++) {
21 for(int x = 0; x < width ; x++) {
22 double tmp = ( input [x+y* width ]-min)/( max - min) * new_max ;
23 output [x+y* width ] = tmp;
24 }
25 }
26 }

Listing 15: source code of contrast before transformations

As an example, three transformations are used on the function contrast, namely scaling, striding
and 2D optimized transformation. With these transformations, it is possible to use the function on
one channel on a part of a RGB image. For this function, the scaling transformation is superfluous
as the function itself does a scaling, however in this example it is used to show the effects of the
transformation. The three transformation add the following features to the function:
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• Scaling is used to bring the values from a range from 0 to 255 in to the range from 0.0 to
1.0 and at the end back to the original range.

• Striding is used to extract one color channel of the three channels. A striding factor of 3
is used to read one color channel and the starting color value determines which channel is
used.

• 2D optimized Blockstriding is used to apply the function only on a part of the image.
The 2D optimized blockstriding transformation can be used because contrast uses the index
style x + y * width

The result of the 3 transformations can be seen in listing 16. The changes are minor as there
are only 2 read and 1 write accesses. The index of the two read accesses on line 6 and 17
is multiplied with the striding factor of the striding transformation and width is replaced with
buffer_width by the 2D optimized blockstriding transformation. Furthermore, the read value is
scaled by prescale_input_0 from the scaling transformation. The written value on line 18 is scaled
by postscale_output_0.

The runtime is measured for three different sizes of an RGB image. For a small size of 512
by 512 pixels, the transformed function is around 10% faster, for larger sizes (2048 by 2048 and
4096 by 4096) the speedup increases to 30% due to less cache effects for the reference function.

1 void contrast_prime ( const double * const input , double * output , size_t width ,
size_t height , const double new_max , const int buffer_width_input_0 , const
double prescale_input_0 , const double postscale_output_0 , const int
stride_input_0 ) {

2 double max = 0;
3 double min = 0;
4 for(int y = 0; y < height ; y++) {
5 for(int x = 0; x < width ; x++) {
6 double val = ( prescale_input_0 * ( input [ stride_input_0 * (x + y *

buffer_width_input_0 )]));
7 if(max < val) {
8 max = val;
9 }

10 if(min > val) {
11 min = val;
12 }
13 }
14 }
15 for(int y = 0; y < height ; y++) {
16 for(int x = 0; x < width ; x++) {
17 double tmp = (( prescale_input_0 * ( input [ stride_input_0 * (x + y *

buffer_width_input_0 )])) - min) / (max - min) * new_max ;
18 output [x + y * width ] = ( postscale_output_0 * (tmp));
19 }
20 }
21 }

Listing 16: source code of contrast with applied 2D blockstriding, scaling and striding
transformations
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Given an RGB image with size 2048 by 2048 and the need to process a 1024 by 1024 rectangle
from the image, the scaling and blockstriding of the data for the function contrast is shown in
listing 17. The part of the image has to be copied together and scaled before the function and
scaled after the function call in contrast to the transformed function, which can be called di-
rectly with contrast_prime(image + (x + y * width)* 3, output, width, height, new_max, buffer_width,

1/255.0, 255, 3);.

1 int buffer_width = 2048; // width of image
2 int width = 1024; // width to process
3 int height = 1024; // height to process
4
5 // start coordinates of the rectangle to process
6 int x = 10;
7 int y = 10;
8
9 for(int i = 0; i < height ; i++) {

10 for(int j = 0; j < width ; j++) {
11 input [i * width + j] = image [((y + i) * buffer_width + j + x) * 3] *

(1/255.0) ;
12 }
13 }
14
15 contrast (input , output , width , height , new_max );
16
17 for(int i = 0; i < height ; i++) {
18 for(int j = 0; j < width ; j++) {
19 output [i * width + j] = output [i * width + j] * 255;
20 }
21 }

Listing 17: manual scaling and blockstriding for the function contrast

7.2 Vectorized Matrix-Vector Multiplication

The influence of vectorized code on the transformation is shown with the vector-matrix multipli-
cation already used during the experiments. Listing 18 contains the source code of the function.
It has 2 input pointers: the vector x and the matrix M. The pointer y is used to store the result.
For simplicity reasons, the function only supports square matrices.

1 void f( const float * x, const float * M, float * y, const int size)
2 {
3 __m128 m1 ,m2 ,m3 ,m4;
4 __m128 x1 , y1;
5 for (int i = 0; i < size; i=i+4)
6 {
7 y1 = _mm_set1_ps (0);
8 for (int j = 0; j < size; j = j+4)
9 {

10 int index = i*size+j;
11 x1 = _mm_load_ps (x+j);
12 m1 = _mm_load_ps (M+ index );
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13 m2 = _mm_load_ps (M+ index +size);
14 m3 = _mm_load_ps (M+ index +2* size);
15 m4 = _mm_load_ps (M+ index +3* size);
16
17 m1 = _mm_mul_ps (m1 , x1);
18 m2 = _mm_mul_ps (m2 , x1);
19 m3 = _mm_mul_ps (m3 , x1);
20 m4 = _mm_mul_ps (m4 , x1);
21
22 m1 = _mm_hadd_ps (m1 , m2);
23 m3 = _mm_hadd_ps (m3 , m4);
24 m1 = _mm_hadd_ps (m1 , m3);
25 y1 = _mm_add_ps (y1 , m1);
26 }
27 _mm_store_ps (y+i, y1);
28 }
29 }

Listing 18: source code of sse_mvm

To show the permutation and vector scaling transformation it is assumed that the vector x is
reversed and the elements need to be scaled by the reciprocal value of the index of the element
( 1

i ). At first, the vector scaling transformation is used as the scaling vector is not reversed and
afterwards the permuting transformation to reverse the vector x.

The output after the two transformations is shown in listing 19. On line 9 are the next scaling
factors loaded and then the scaling multiplication is on line 19. The permuted values are loaded
on the lines 11 to 17.

1 void f_prime ( const float * x, const float * M, float * y, const int size , const
float * prescale_vec_x_0 , const int* perm_x_0 ) {

2 __m128 a_0 ,a_1 ,a_2 ,a_4;
3 __m128 prescale_vec_x_0_sse ;
4 __m128 m1 ,m2 ,m3 ,m4 , x1 , y1;
5 for(int i = 0; i < size; i = i + 4) {
6 y1 = _mm_set_ps1 (0);
7 for(int j = 0; j < size; j = j + 4) {
8 int index = i * size + j;
9 prescale_vec_x_0_sse = _mm_load_ps ( prescale_vec_x_0 + j);

10 int tmp_0 = j;
11 a_1 = _mm_load_ss (x + perm_x_0 [( tmp_0 + 0) ]);
12 a_2 = _mm_load_ss (x + perm_x_0 [( tmp_0 + 1) ]);
13 a_3 = _mm_load_ss (x + perm_x_0 [( tmp_0 + 2) ]);
14 a_4 = _mm_load_ss (x + perm_x_0 [( tmp_0 + 3) ]);
15 a_1 = _mm_shuffle_ps (a_1 , a_2 , 0);
16 a_3 = _mm_shuffle_ps (a_3 , a_4 , 0);
17 a_1 = _mm_shuffle_ps (a_1 , a_3 , 136);
18 a_0 = a_1;
19 a_0 = _mm_mul_ps ( prescale_vec_x_0_sse , a_0);
20 x1 = a_0;
21 m1 = _mm_load_ps (M + index );
22 m2 = _mm_load_ps (M + index + size);
23 m3 = _mm_load_ps (M + index + 2 * size);
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24 m4 = _mm_load_ps (M + index + 3 * size);
25 m1 = _mm_mul_ps (m1 , x1);
26 m2 = _mm_mul_ps (m2 , x1);
27 m3 = _mm_mul_ps (m3 , x1);
28 m4 = _mm_mul_ps (m4 , x1);
29 m1 = _mm_hadd_ps (m1 , m2);
30 m3 = _mm_hadd_ps (m3 , m4);
31 m1 = _mm_hadd_ps (m1 , m3);
32 y1 = _mm_add_ps (y1 , m1);
33 }
34 _mm_store_ps (y + i, y1);
35 }
36 }

Listing 19: source code of the permuted and scaled sse_mvm

The runtime is measured for vector sizes from 260 to 16132 elements. Although the packed
load intrinsics are split up into single slot intrinsics, the runtime of the transformed function is 1%
faster than the reference. The effects on the runtime are rather small because only the accesses to
the vector x are modified and the size of x (n) is marginal compared to the matrix M (n2).
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8 Related Work

8.1 Locality Optimizations

Locality optimization is a well studied field. The different approaches mostly target generic com-
piler optimizations. Locality can be improved by changing the data layout of the used data
structures during compilation, for example array unification in [6] which combines multiple arrays
into one. Another approach is to modify, fuse or split nested loops to be more cache friendly as
presented in [13] and many following papers. Also combinations of loop and data transformations
are developed and evaluated recently in [4]. These approaches are strictly compiler optimizations
and do not add functionality to the handled functions. As opposed to these optimizations, the
presented tool augments functions with various transformations to enhance the flexibility of the
procedures. The added functionality allows the developer to fuse loops together and therefore
improve the locality.

Most of these optimizations target single procedures, which is a common limitation for opti-
mizations in compiler design. Nevertheless, inter-procedural locality optimization have been shown
in [7] to be more effective than loop and data optimizations alone. The developed tool allows the
developer to inject functionality which could have been in a separate procedure into the target
procedure. This is similar to inter-procedural optimizations as it merges loops together, however
the one of the loops is from a fixed set of the transformations.

All these locality optimizations are generic compiler optimizations and usually work on an
abstract syntax tree of the compiler without the need to output any source code. S. Carr shows in
[2] a tool which does a Fortran source-to-source transformation to improve cache performance and
instruction level parallelism. The presented source-to-source transformation approach is applied
manually by the developer before the compilation and change the functionality and parameters of
the source code. The enhanced functions can be stored and used later in the code base. This is
not possible in a compiler optimization as the compiler verifies the correctness of the source code
before applying optimizations and additional parameters can not be added in this phase of the
compilation.

8.2 Refactoring

Refactoring usually does not change the external behavior and is targeted to improve the internal
structure of source code. Semi-automatic approaches usually recommend refactoring based on
different algorithms. For example Shimomura et al. show in [11] an approach with a genetic
algorithm-driven refactoring for Java programs which recommends design patterns to improve the
code quality. In this works, the behavior of a function is changed and therefore not a refactoring
traditionally. It can be seen as a refactoring in terms of that the tool refactors specific functionality
into the function. The lack of generic refactoring gives the advantage of being automatic than
generic refactoring approaches.
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9 Future Work

9.1 Static Parameters Optimization

The transformations add new parameters in order to allow arbitrary values for the transformations.
However, if this flexibility is not needed as the value will be fixed throughout the usage of the
function, it is more suitable to compiler optimizations if these static values are inserted as literals
in the function. This allows the compiler to optimize more aggressive resulting in faster code.

9.2 More Generic Transformations

The transformations analyze and modify either the access to a vector or an index of an access,
a more generic transformation, which allows arbitrary code inserted, could allow many other
transformations implemented by users. Basically, a scale transformation changes an access v[i]
into v[i] ∗ scale. The resulting value is a function of the original value which could be generalized
into f(v[i]). The same can be applied to the striding transformation in order that the new index
is a function of the original index resulting in v[f(i)]. Combining these two ideas gives a generic
transformation which replaces any read access v[i] with fvalue(origin(v), findex(offset(v[i]))). The
offset and origin properties are needed for transformation which depend on the total offset of
an access like permutation or vector scaling. Write accesses and vectorized code can be handled
similarly to the conversion of read accesses explained before.

With the new basic framework, the implemented transformations and many other transforma-
tions based on reading/writing vectors can be implemented. For example a RGB to gray-scale
transformation can be implemented which results in findex(i) : i∗3 and fvalue(o, i) : o[i]+o[i+1]+o[i+2]

3 .
This transformation converts an RGB image on-the-fly to a gray-scale image.

9.3 Abstract Interpretation

With the gained insight of the properties needed for the transformations, it might be beneficial to
model the offset and origin properties as a static program analysis based on abstract interpretation.
Every step of the analysis can be proofed to be sound. This approach can give less strict limitations
on the input function. For example if the same pointer is assigned in the if and else block, the
tool still can get the offset and the origin of the assigned pointer.

9.4 Roofline Model

The results vary quite a lot from a huge speed up to a significant slow down. The functions
generated by spiral are highly optimized to yield maximal performance. These functions run closer
to the maximal performance of the computer than the non-optimized functions and therefore have
less possibility to gain performance from the transformations. The Roofline model [12] shows the
performance in relation to the maximal attainable performance. With this additional information,
it is expected to get a better understanding if performance will increase or decrease with the
addition of the transformations.
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10 Conclusions

The presented work shows an approach to automatically enhance numerical functions to improve
locality by providing several transformations.

The additional effort to create multiple variants of a function is minimal and does not need
any interaction during the transformation. Therefore, an optimal variant for many use-cases can
be generated with only maintaining the original function. This reduces development time and
increases the performance compared using the solely the original function.

The limitations on the input functions are the biggest drawback of the approach, restricting
the set of input functions. However, a numerical function might only need minor modifications in
order to fulfill the limitations. Additionally, these limitations may be eased with a more advanced
analysis of the input function.

Although the transformations are in general beneficial for the runtime, it is advisable to evalu-
ate the runtime of the transformed function as the speedup highly depends on the access pattern
of the function. Numerical functions accessing every element once are more likely to benefit from
transformations than functions with higher access count such as sorting.

With further work put into a more advanced analysis and additional transformations, the
approach provides a real benefit for many applications without being too restrictive on the input
function.
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A Manual

A.1 Prerequisites

• Install Python 2.7 [9]

• Copy libclang’s Python bindings (from the clang source code in bindings\python\clang) in a
Python include path in order that import clang.cindex works

• Copy the libclang shared library (libclang.so on Unix and libclang.dll on Windows) in
a LD_LIBRARY_PATH (Unix) or PATH (Windows). On Unix sudo make install in the
clang’s source directory should be sufficient.

During the development, libclang was built from the svn repository using revision 172934.
Building clang from source is described on http://clang.llvm.org/get_started.html#build.

A.2 Installation

After installing the prerequisites are installed, the tool does not need to be installed.

A.3 Usage

The tool can be run with python main.py in the tool’s directory. The command python main.py -h

prints the following help text:

usage: main.py [-h]

[-t --transformation {prescale_vector,stride,prescale,postscale,

blockstride,permute,postscale_vector,

2Dblockstride}]

[-f --function FUNCTION_NAME]

[-p --function_prime TRANSFORMED_FUNCTION_NAME]

[-o --options OPTIONS] [-y] [-I INCLUDE_PATH]

infile outfile

Automatic Refactoring: Locality Friendly Interface Enhancements for Numerical Functions

positional arguments:

infile

outfile

optional arguments:

-h, --help show this help message and exit

-t --transformation {2Dblockstride,blockstride,permute,postscale,

postscale_vector,prescale,prescale_vector,stride}

selects the transformation to be used (default: stride)

-f --function FUNCTION_NAME

function name to transform (default: f)
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-p --function_prime TRANSFORMED_FUNCTION_NAME

transformed function name (default: f_prime)

-o --options OPTIONS transform options

-y forces overwriting outfile (default: false)

-I INCLUDE_PATH provide additional include directories to parse

infile, multiple paths with multiple -I parameters

Most arguments are straight forward to use except the options argument. It is a string which
defines which parameters are processed by the transformation. It is a list of parameter groups. A
parameter group is a comma separated list of parameters which use the same additional parameter
of the transformation. All parameters listed in the same group share the same additional parameter
added by the transformation. Parameter groups are separated by a semi-colon. For example the
function has three parameters x, y and z. The parameters x and y have a different striding than
z. Therefore, x and y are in the same group and z is in a separate group. This would result
in an options string "x,y;z" and the striding transformation adds 2 striding parameters, the first
for x and y and the second striding factor is for z. The blockstriding transformation is the only
transformation which allows only one parameter group, the other transformations allow multiple
groups.

A.4 Examples

The examples are shown for a function with the function header void f(const double* const input

, double * output, size_t width, size_t height, const double new_max). For each example, the com-
mand and the resulting function header is given. For combinations, multiple commands are given.

1. scalar prescaling input:
python main.py -t prescale -f f -p f_prime -o "input" in_file.c out_file.c

results in
void f_prime(const double* const input, double* output, size_t width, size_t height, @\\@const

double new_max, const double prescale_input_0)

2. striding input and output with the same striding factor:
python main.py -t stride -f f -p f_prime -o "input,output" in_file.c out_file.c

results in
void f_prime(const double* const input, double* output, size_t width, size_t height, const double

new_max, const int stride_input_output_0)

3. striding input and output with different striding factors:
python main.py -t stride -f f -p f_prime -o "input;output" in_file.c out_file.c

results in
void f_prime(const double* const input, double* output, size_t width, size_t height, const double

new_max, const int stride_input_0, const int stride_output_0)

4. permute and prescale input, vector postscale output:
python main.py -t permute -f f -p f1 -o "input" in_file.c out_file1.c

python main.py -t prescale -f f1 -p f2 -o "input" out_file1.c out_file2.c
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python main.py -t postscale_vector -f f2 -p f_prime -o "output" out_file2.c out_file3.c

results in
void f_prime(const double* const input, double* output, size_t width, size_t height, const double

new_max, const int* perm_input_0, const double prescale_input_0, const double* postscale_vec_output_0

)
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B Microsoft Compiler

The performance tests were additionally compiled with the Microsoft C/C++ Compiler Version
17.00.50727.1 for x64. The used compiler flags are /Ox, /arch:SSE2, /GA, /fp:fast, /Oa, /Ob2,
/Oi and /Ot. For reference, the performance plot are give in this chapter. The biggest difference
shows the blockstriding transformation, clearly running worse than with the Intel compiler.
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Figure 18: Speedup of scaling transformation
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Figure 19: Speedup of vector scaling transformation
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Figure 20: Speedup of striding
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Figure 21: Speedup of permuting
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Figure 22: Speedup of blockstriding
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Figure 23: Speedup of 2D optimized blockstriding
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Figure 26: Effects of input size for sse_mvm

0 1000 2000 3000 4000 5000

Input size

0

1

2

3

scaled

strided

permuted 2D blockstrided

vector scaled

blockstrided

Speedup factor
Runtime effect of the input size on contrast

Figure 27: Effects of input size for contrast

54


	Introduction
	Motivation
	Example

	Concept
	Transformations
	Combinations

	Sufficient Conditions
	Correctness Ensuring Limitations
	Limitations to Reduce Development Time

	Implementation
	Transformations
	Dependency Graph

	Analysis
	Properties
	Reasoning

	Experiments
	Experimental Setup
	Test Cases
	Functional Tests
	Performance Tests

	Applications
	Scaled Strided Blockstrided Contrast Adjustment
	Vectorized Matrix-Vector Multiplication

	Related Work
	Locality Optimizations
	Refactoring

	Future Work
	Static Parameters Optimization
	More Generic Transformations
	Abstract Interpretation
	Roofline Model

	Conclusions
	References
	Figures
	Tables
	Listings
	Manual
	Prerequisites
	Installation
	Usage
	Examples

	Microsoft Compiler

