
Data Pump Architecture Simulator and Performance Model

A Thesis

Submitted to the Faculty

of

Drexel University

by

Douglas F. Jones, Jr.

in partial fulfillment of the

requirements for the degree

of

Master of Science in Computer Science

June 2010

c© Copyright June 2010
Douglas F. Jones, Jr.

This work is licensed under the terms of the Creative Commons
Attribution-ShareAlike license. The license is available at http:

//creativecommons.org/licenses/by-sa/3.0/.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

ii

Acknowledgements

I’d like to express my most sincere gratitude to my advisor, Dr. Jeremy Johnson,

for his mentoring and advice for the production of this thesis and throughout the

entirety of my studies and research while at Drexel. I’d like to thank everyone involved

with the DPA project, especially Professors Markus Püschel, Franz Franchetti, and

James C. Hoe. A special thanks is reserved for Qian Yu, whose insight and aid

throughout my work on the DPA project and this thesis was invaluable.

I am grateful for the friendship and advice of my colleagues in our lab, including

Tim Chagnon, Gavin Harrison, Danh Nguyen, and Lingchuan Meng. Finally, I’d like

to thank my friends and family, especially my mother, father, and brother, for their

love and support throughout my college career.

iii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

1. Introduction . 1

1.1 Motivations. 1

1.2 Related Work . 2

1.3 Result Summary . 2

1.4 Organization of the Thesis . 3

2. Background . 4

2.1 Linear Transformations for Digital Signal Processing . 4

2.1.1 Kronecker/Tensor Product . 4

2.1.2 Walsh-Hadamard Transform . 7

2.1.3 WHT Algorithms . 8

2.2 Commodity Architectures . 12

2.3 SPIRAL Code Generation . 14

3. Data Pump Architecture . 16

3.1 Architecture Overview. 16

3.2 SPARC Extension Overview . 17

3.3 Memory. 17

3.3.1 Main Memory . 17

3.3.2 Local Memory . 18

3.4 Data Processor . 18

3.5 Compute Processor . 18

3.6 Processor Synchronization . 19

3.6.1 Transfer Counters . 20

iv

3.6.2 Mailbox Registers. 21

3.6.3 Intra-processor Barrier . 21

3.7 Data Movement Instructions . 22

3.8 Control/State Register Access . 22

3.9 SIMD Instructions . 23

3.10 DPA Hardware Implementation . 23

3.11 Programming Considerations . 24

3.11.1 Main Memory Transfer Scheduling . 24

3.11.2 Local Memory Management . 24

3.11.3 Synchronization . 25

4. DPA Simulator and Assembly Generation . 26

4.1 Simulator Overview. 26

4.2 Simulator Design Detail . 27

4.2.1 Overall Software Design . 27

4.2.2 Processor Simulation . 28

4.2.3 Memory Simulation. 29

4.2.4 Instruction Simulation . 29

4.3 Assembly Generation . 30

4.4 Binary Encoding . 30

4.5 Simulation Logs . 31

4.6 Verification and Testing . 31

4.7 Simulation Execution Time . 32

5. Performance Model . 34

5.1 Performance Model Overview . 34

5.2 Performance Model Implementation. 34

5.2.1 Design . 34

v

5.2.2 Model Parameters . 35

5.2.3 Instruction Models . 36

5.2.4 Vector Operations and Other Instructions . 39

5.2.5 Inter-Processor Synchronization . 39

5.3 DP and Memory Transfer Accuracy . 40

5.4 CP Accuracy and SPARC Instruction Accounting . 42

5.5 Algorithm Simulation Accuracy . 46

5.5.1 WHT Accuracy . 51

5.5.2 DFT Accuracy . 52

6. Architecture Exploration . 53

6.1 Exploration with Abstract Mathematical Model . 54

6.2 Exploration with the DPA Simulator . 58

7. Conclusion . 65

Bibliography . 68

vi

List of Tables

4.1 Performance Comparison of ModelSim and DPA Simulator. 33

5.1 Compute Processor Performance Model Parameters . 36

5.2 Data Processor Performance Model Parameters. 37

5.3 DDR Performance Model Parameters . 37

5.4 CP Vector Add Benchmark Results . 46

vii

List of Figures

2.1 Single Precision DFT Performance, 4-way vectors, 3GHz Intel Core2 [14] . . 13

3.1 The DPA architecture [18]. 16

3.2 The DP Processor architecture [18] . 19

3.3 The CP Processor architecture [18] . 20

5.1 The Performance Model instruction event handling. 36

5.2 MEM2LM Transfer Predicted Performance. 41

5.3 LM2MEM Transfer Predicted Performance. 41

5.4 MEM2LM Strided Access Predicted Performance. 43

5.5 LM2MEM Strided Access Predicted Performance. 43

5.6 DPA basic vector addition benchmark code listing . 47

5.7 DPA annotated basic vector addition benchmark code listing 47

5.8 DPA annotated unrolled basic vector addition benchmark code listing 48

5.9 DPA annotated, pipelined vector addition benchmark code listing 49

5.10 DPA annotated, unrolled, pipelined vector addition benchmark code listing 50

5.11 WHT Performance estimation compared to ModelSim . 51

5.12 DFT Performance estimation compared to ModelSim . 52

6.1 WHT Performance for increasing input size from mathematical model 56

6.2 WHT Performance for increasing input size from mathematical model con-
figuration with increased memory bandwidth . 57

6.3 WHT Performance for increasing input size showing Model, DPA Simula-
tor, and ModelSim estimates . 59

viii

6.4 Performance evaluation as Local Memory size and Number of Compute
Processors varies . 60

6.5 Performance for varying ratio of Local Memory size to Number of CPs 62

6.6 Performance evaluation as off-chip Memory Bandwidth and CP Frequency
varies . 63

6.7 Performance for varying ratio of off-chip Memory Bandwidth to CP Fre-
quency . 64

ix

Abstract
Data Pump Architecture Simulator and Performance Model

Douglas F. Jones, Jr.

Advisor: Jeremy Johnson, PhD

The Data Pump Architecture (DPA) is a novel non-von-Neumann computer ar-

chitecture emphasizing efficient use of on-chip SRAM and off-chip DRAM bandwidth.

The DPA is parameterized by local memory size, memory bandwidth, vector length,

and number of compute processors, allowing the architecture configuration to be bal-

anced for a given set of computations. The Data Pump Architecture Simulator and

Performance Model is a functional simulator providing an implementation of the DPA

as a software library. Simulation at this level provides the user with the ability to test

algorithms for correctness as well as performance. A hardware designer may then use

the Simulator as a tool to experimentally determine the effects of architecture param-

eters and software algorithms through performance data provided by the Simulator’s

model. The benefit of the approach described here compared to alternatives such as

logic/gate level or RTL/HDL software emulation is primarily a reduction in the time

needed for 1) a designer to modify and compile a HDL design and 2) to perform the

simulation. The Simulator serves as a bridge between the application specific hard-

ware and software design. The result is the ability to use the simulator as part of a

framework for rapidly investigating the construction of an optimal system architec-

ture for a given set of algorithms. Investigations with the Walsh-Hadamard transform

(WHT), a prototypical digital signal processing transform, are shown. The SPIRAL

(www.spiral.net) code generation system is used to explore the space of WHT al-

gorithms while the Simulator is used to explore the performance and trade-offs of

different DPA configurations.

1

1. Introduction

1.1 Motivations

Simulation is an important part of architecture design and analysis. Many modern

software tools exist allowing hardware to be simulated with high accuracy in terms of

functional replication as well as performance prediction. These tools typically accept

input in the form of a RTL/HDL description such as Verilog or VHDL. However,

simulation at this level of detail is expensive in terms of development time for HDL

descriptions and execution time to simulate the model. Functional and other types

of high-level simulators require less execution time for model simulation but with

reduced accuracy for performance estimates and, perhaps, functional correctness. For

rapid architecture exploration, the ideal solution would produce accurate performance

estimates with short execution times.

Architecture exploration is of interest because there is a fundamental limit on the

resources allocated amongst the components of a computer system. There are likely

to be constraints on the power and/or physical area consumed by a system. Under

such constraints the question of where to allocate these resources becomes prudent.

To physically produce hardware for every combination of architecture parameters of

interest is infeasible. Therefore, simulation is necessary for the designer to choose

parameters that will create a balanced and efficient system.

The Data Pump Architecture serves as a platform for efficient embedded digital

signal processing applications. As such, it is parameterized so that configurations can

be selected to create a balanced architecture for the target application. Traditional

RTL simulators provide architecture simulation. However, they offer little in terms

of feedback for software development and optimization, leaving a gap between the

2

ISA and the interface the software developer will target. In the context of the DPA,

the SPIRAL code generation system serves as the primary “developer” for software

targeted to the DPA. Given such a code generation system, a tool to serve as the

bridge between the software and hardware is desirable. Such a tool can then be used

as an aide to algorithm verification and as a source of feedback for effects of algorithm

optimization.

1.2 Related Work

There are numerous high level simulator systems in common use today. Virtutech

Simics is a full system simulator capable of simulating heterogeneous architectures

[20]. Flexus, part of the SimFlex project, is a flexible component-based simulator

built on top of Simics [11]. Flexus provides the designer with the capability to select

modules that implement different system components and compose them to build

a complete simulation system. PTLSim is a cycle accurate simulator for the x86

family of processors [9]. In combination with virtualization technology, PTLsim is

able to simulate multi-thread and multi-processor systems with high performance.

Asim is a modular, performance model framework [3]. Modules map to architectural

components in the architecture under study. ManySim is a modular simulation system

designed for exploring large-scale chip multiprocessor architectures [21]. ManySim is

trace driven and supports modules that represent cores, interconnects, caches, and

memory systems.

1.3 Result Summary

This thesis presents a high-level, functional simulator and performance model for

the Data Pump Architecture. The Simulator has been verified using common Digital

Signal Processing (DSP) algorithms, such as implementations of the Walsh-Hadamard

3

and fast Fourier transforms. These algorithms have also been used to benchmark

the Simulator’s performance model through comparison to HDL simulation using

ModelSim. Finally, the DPA Simulator is used to perform an exploration of the

architecture parameters available on the DPA, showing the effect of parameter choice

on the performance of an example DSP algorithm, the Walsh-Hadamard transform.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 provides background on algorithms

of interest and their mathematical notation in addition to a discussion of commodity

architectures and the SPIRAL code generator. Chapter 3 describes the Data Pump

Architecture at the functional unit and ISA level including a section on programmer

considerations. Chapter 4 describes the DPA Simulator’s design, implementation, and

how it enables generation of DPA assembly from C code. Chapter 5 describes the

DPA Simulator’s Performance model including accuracy information and benchmarks.

Chapter 6 shows an example architecture exploration using the Walsh-Hadamard

transform as the target application. Chapter 7 contains the conclusion.

4

2. Background

2.1 Linear Transformations for Digital Signal Processing

In the domain of Digital Signal Processing, most calculations of interest can be

expressed by fast discrete linear transformation of the form

y = A x (2.1)

where A is the transformation matrix, x is the input vector, and y is the output vector.

Transformations of this form have important computational properties. Data access

patterns for fixed input size are constant, meaning the algorithm is data independent.

The transformation matrix A can be factored into highly structured sparse matrices,

allowing smaller blocks of computation to be used to build the entire transformation

in a divide-and-conquer fashion [12].

High performance code can be created by taking advantage of these inherent prop-

erties. To do so, the Kronecker product is used as a mathematical formalism for the

representation of matrix factorizations. The transformations can then be manipu-

lated analytically to exhibit beneficial computational properties with respect to the

properties of the targeted computer architecture. From the analytical representation,

high performance code can be generated automatically.

2.1.1 Kronecker/Tensor Product

For certain linear transforms, it is convenient to use the Kronecker (or tensor)

product as a tool to factor a larger matrix into two smaller matrices. In addition,

the properties of this operation allow matrix equations to be manipulated into forms

with desirable mathematical properties that correspond to different implementation

5

choices.

The Kronecker product, A⊗B, of two matrices A and B of sizes m×n and p× q

respectively is defined such that the resulting matrix is defined by

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB


. (2.2)

The size of the resulting matrix is mp× nq. Intuitively, the resulting matrix is built

by multiplying each element of A to the entire matrix B.

The Kronecker product has several properties that can be used to manipulate

Kronecker equations into convenient forms [6]. We have the following results when

taking the product with identity matrices

y = (Ip ⊗ A) x =


A

. . .

A

 x (2.3)

y = (A⊗ Iq) x =


a11Iq . . . a1nIq

... . . .
...

am1Iq . . . amnIq

 x. (2.4)

Equation 2.3 can be thought of as a loop over a parallel operation where A is applied

to p independent segments of the input vector x. Equation 2.4 can be thought of as

a vector operation where A is applied to vectors of length q. More precisely, let Xjq

denote the subvector of x of length q starting at index jq and similarly for Yiq. Then

6

the computation given by Equation 2.4 is

Yiq =
n∑

j=1

aijXjq, i = 1, . . . ,m (2.5)

The multiplication aijXjq is a scalar-vector product and the sum involves vector

addition of length q.

The Kronecker product is associative

(A⊗B)⊗ C = A⊗ (B ⊗ C), (2.6)

but not commutative thus

A⊗B 6= B ⊗ A. (2.7)

It is distributive over addition,

(A + B)⊗ (C + D) = (A⊗ C) + (A⊗D) + (B ⊗ C) + (B ⊗D). (2.8)

The multiplicative property

(AC)⊗ (BD) = (A⊗B)(C ⊗D) (2.9)

can be used to derive many useful expressions including

A⊗B = (A⊗ I)(I ⊗B) (2.10)

= (I ⊗B)(A⊗ I). (2.11)

In addition, it is important to note the special case

Im ⊗ In = Imn. (2.12)

7

2.1.2 Walsh-Hadamard Transform

The Walsh-Hadamard Transform can be computed by the matrix-vector product

WN · x (2.13)

where N = 2n and x is the input vector.

The matrix WN can be defined recursively

WN = WN−1 ⊗W2 (2.14)

= W2 ⊗ . . .⊗W2︸ ︷︷ ︸
n

(2.15)

where

W2 =

1 1

1 −1

 (2.16)

and ⊗ is the Kronecker product.

For example, the matrix W4 can be written as

W4 = W2 ⊗W2 (2.17)

=

1 1

1 −1

⊗
1 1

1 −1

 (2.18)

=



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


. (2.19)

8

2.1.3 WHT Algorithms

The properties of the Kronecker product and the definition of the WHT can be

used to create multiple factorizations of the WHT matrix [7]. These factorizations

can be created such that they allow for particular implementations of the transform.

Recursive Factorization

A WHT matrix of size N = 2n can be factored such that the factors contain

successively smaller WHT matrices. In the following equations, the subscripts, k

as in Ak, will be powers of two such that WN is the WHT matrix of size 2n and

WN−1 = W2n−1 .

Then, we can write

WN = WN−1 ⊗W2 (2.20)

= WN−1IN−1 ⊗ I2W2 (2.21)

= (WN−1 ⊗ I2)(IN−1 ⊗W2) (2.22)

using Equations 2.9 and 2.14. This factorization leads to a recursive implementation

where a WHT of size N is defined by two WHTs of size N − 1 and 2.

Iterative Factorization

A different factorization leads to an iterative implementation. For WN = W2n we

have

9

WN =
n⊗

i=1

W2 (2.23)

= (W2 ⊗ I2n−1)(I2 ⊗
n−1⊗

W2) (2.24)

= (W2 ⊗ I2n−1)(I2 ⊗ (W2 ⊗ I2n−2)(I2 ⊗
n−2⊗

W2)) (2.25)

= (W2 ⊗ I2n−1)(I2 ⊗W2 ⊗ I2n−2)(I4 ⊗
n−2⊗

W2) (2.26)

= (W2 ⊗ I2n−1)(I2 ⊗W2 ⊗ I2n−2)(I4 ⊗ (W2 ⊗ I2n−3)(I2 ⊗
n−3⊗

W2) (2.27)

= (W2 ⊗ I2n−1)(I2 ⊗W2 ⊗ I2n−2)(I4 ⊗W2 ⊗ I2n−3)(I8 ⊗
n−3⊗

W2) (2.28)

=
n∏

i=1

(I2i−1 ⊗W2 ⊗ I2n−i) (2.29)

using Equation 2.9 to perform the expansion. This leads to n = log2(N) factors

containing the W2 matrix and is labeled as an iterative algorithm since the factors

can be applied iteratively to the data vector.

Parallel Factorizations

In addition to recursive and iterative factorizations, Kronecker equations can be

thought of as providing parallel and vectorized implementations [6]. Equations that

allow for parallel implementations have the form

y = (Im ⊗ A)x (2.30)

which naturally corresponds to a loop of m iterations where A is applied to the input

vector. For example, if the input is x and the output is y then we would have the

pseudo-code

10

for i = 0 . . . m− 1

A(y(ni), x(ni))

where the transform A with size n is applied to vectors accessed at index ni. Each

iteration of the loop can be executed in parallel since the input and output indices

do not overlap.

The granularity of the parallel execution can be controlled by manipulating the

size of the identity matrix. For instance, if we have Imn ⊗ A we can rewrite this as

Im ⊗ (In ⊗ A) which would allow m processors can execute In ⊗ A in parallel.

Vector Factorizations

Equations that allow for vector implementations have the form

y = (A⊗ Iv)x (2.31)

which naturally corresponds to an implementation using vectors of length v. As an

example, if we have y = (A⊗I2)x and we take A to be W2 then we have the following

y (0) = x (0) + x (2)

y (1) = x (1) + x (3)

y (2) = x (0) − x (2)

y (3) = x (1) − x (3)

which is equivalent to two applications of W2 at stride 2. If the operations are grouped

and we assume the availability of vectors of two elements, then we have

11

v1 = load (x (0))

v2 = load (x (2))

t1 = v1 + v2

t2 = v1 − v2

s t o r e (t1 , y (0))

s t o r e (t2 , y (2))

where load and store are used to read and write vectors of length 2.

Thus, the Kronecker product properties can be used to factor large transforms

in a way that matches the parameters (execution units, vector registers) of a given

machine. For example, we can favor equations with terms of the form (Im ⊗ A⊗ Iv)

for machines with m parallel units and vectors of v elements.

General Factorization

The iterative and recursive factorization can be generalized. The generalized fac-

torization, for n as powers of 2 and n = n1 + · · ·+ nt, is

WN =
t∏

i=1

(In1+···+ni−1
⊗Wni

⊗ Ini+1+···+nt). (2.32)

This representation can be used to create any of the previously mentioned factoriza-

tions. Equation 2.32 mixes various amounts of recursion and iteration and allows the

exploration of a large space of WHT algorithms. Furthermore, 2.32 can be manip-

ulated to account for implementation considerations. Considering on-chip memory

size, we can select Wni
to be sized such that the input for this stage of the algorithm

can fit into half of on-chip memory. While computation is performed on the first half

of memory, data can be stored and loaded to the second half, resulting in a factoriza-

tion suited for software pipelining techniques. Using this approach, the access stride

12

must be managed such that it does not grow too large given the capacity of on-chip

memory, thus reducing the total number of transfers needed per input element.

2.2 Commodity Architectures

Commodity CPUs, such as those implementing the x86 and x86 64 ISAs, often

feature superscalar, pipelined architectures with large caches shared by multiple cores

on a single chip. These designs evolved out of the need to provide good performance

across a wide variety of common applications. However, for specialized applications,

such as the linear transforms discussed here, commodity architectures are inefficient.

Some algorithms, such as the discrete Fourier transform (DFT) can reach only 50%

of the peak performance on modern CPUs [19].

With commodity CPUs, much attention must be paid to the memory hierarchy,

especially the on-chip cache. This is due to the increasing gap between the speed of

processor execution and transfers from main system memory to CPU registers [19].

In these architectures, the cache operates by assuming spatial and temporal locality,

allowing it to implicitly determine what portions of the address space will be stored

on chip. Modern caches use a multi-way set associative design with as many as three

levels of increasing capacity. Knowing this, code can be optimized with respect to

cache utilization by increasing reuse (the number of calculations on a single piece of

data) and spatial locality (accessing data nearby in the address space).

Cache design parameters are selected to minimize misses and maximize utilization

for general use cases and may not provide high utilization for all algorithms. The

result is that there is a limit to the extent of optimization possible given the algorithm.

For instance, matrix multiplication has a reuse degree of O(n) while the DFT only

has a degree of O(log(n)) [19]. For algorithms with low degrees of reuse, high levels

of performance relative to the peak performance can only be achieved for problem

13

Figure 2.1: Single Precision DFT Performance, 4-way vectors, 3GHz Intel Core2 [14]

sizes smaller than the amount of cache. As the problem size increases and data spills

from the lowest level of cache to the upper levels and, eventually, main memory,

performance decreases. As this occurs, the performance bottleneck begins to shift

from integer/floating point execution capacity to bandwidth between memory and the

CPU. Figure 2.1 shows single precision DFT performance on a commonly available

CPU as the problem size increases. Here, high performance code from the Spiral

generator and Intel IPP library [5] is shown. Both show a sharp drop in performance

as the problem size grows larger than the available on-chip memory.

14

2.3 SPIRAL Code Generation

SPIRAL is a software system for code generation of high performance linear dig-

ital signal processing algorithms [8]. SPIRAL automatically tunes the algorithm’s

implementation for a given target architecture. This process is approached as an

optimization problem such that the space of possible algorithm implementations is

represented using a domain-specific mathematical structure similar to the Kronecker

product notation discussed in Section 2.1.1. Using this notation, SPIRAL can ex-

plore the space of possible factorizations. Internally, SPIRAL represents the space as

a tree structure, where the root is the original, full sized transform matrix and leaves

represent the transform matrices that will be used in the final algorithm. SPIRAL

optimizes algorithms using a feedback driven search engine over the algorithm space.

As feedback is gained for each possible implementation, SPIRAL is able to inform

the search engine of how to proceed.

SPIRAL accepts feedback in the form of algorithm execution time. When tuning

for the host platform, the system’s native timer utilities and/or processor level timer

registers can be used to produce highly accurate timings. However, when the host

system is not available, as might be the case for systems under development, a system

simulator or performance model can be used to estimate the execution time and

provide feedback to the SPIRAL system.

SPIRAL is able to take advantage of an architecture’s features when generating

code by making use of multiple processing elements and/or cores as well as vec-

tor instructions. On modern architectures, instruction scheduling, the use of vector

instructions, and memory access pattern optimization is critical for achieving per-

formance approaching the peak performance for a given architecture [19]. SPIRAL

approaches such systems by providing the capability to tag algorithms with details of

the system’s architecture. This information might include, for instance, the number of

15

compute processors and the vector width. Given such information, SPIRAL will limit

the search space to only those algorithms that are able to take advantage of the fea-

tures described by the tags. In relation to the Kronecker Product notation discussed

earlier, when using tags SPIRAL will only consider factorizations that can support

the selected tags. When specifying processor number and vector width, SPIRAL will

only consider factorizations that can be fully parallelized and vectorized.

SPIRAL can be used as part of a system for generating high performance code

for the Data Pump Architecture. By enabling the SPIRAL system to search the

DPA parameter space in conjunction with algorithm optimization, a global optimal

hardware/software system can be created with respect to external constraints.

16

3. Data Pump Architecture

3.1 Architecture Overview

The Data Pump Architecture (DPA) is a non-von Neumann architecture for em-

bedded digital signal processing applications [18]. The DPA is part of the SPIRAL

project [14]. Members of the DPA project include those from Carnegie Mellon Univer-

sity, University of Illinois at Urbana-Champaign, and Drexel University. The DPA is

designed to provide fast, efficient application specific computation. The DPA can be

configured such that its microarchitecture is well suited to the intended application.

The programmer is given full control over the memory subsystems, avoiding the cache

utilization problems suffered on commodity architectures. In addition, the architec-

ture is highly parameterized, allowing the architectures instantiation to be selected

to match the memory and computational requirements of the targeted application.

The DPA Instruction Set Architecture (ISA) is an extension of the SPARC V8 ISA

[4] and is defined in the DPA ISA document and its addenda [18] [15] [16] [17]. The

DPA implementation extends the open source LEON 3 by Gaisler [2].

The DPA’s architecture diagram is shown in Figure 3.1. There are three computa-

tional units shown in the DPA architecture: the Data Processor (DP), the Compute

DP CP

On-Chip
Memory

Main
Memory

VCP

Figure 3.1: The DPA architecture [18].

17

Processor (CP), and the Vector Co-Processor (VCP). The DPA’s system memory is

divided into two layers: Main Memory and On-Chip Memory (referred to as Local

Memory). Main Memory is located off chip. Transfers between Main Memory and

Local Memory are directed by the Data Processor (DP). Transfers between Local

Memory and the VCP’s register file are directed by the CP. In addition, the CP

issues instructions to the VCP.

3.2 SPARC Extension Overview

The primary processors in the DPA, the DP and CP, are implemented as exten-

sions to the SPARC V8 ISA. Each processor of this type has its own private memory

for instruction code and stack and a register file as described in the SPARC ISA

[4]. DPA instructions are inlined with the SPARC instruction stream. When DPA

instructions are decoded, they are handed off to the DPA’s execution units [18]. The

DPA extended SPARC processors are single issue. Every cycle one SPARC or one

DPA instruction may be issued.

3.3 Memory

Memory in the DPA is divided into two levels: Main Memory (MEM) and Local

Memory (LM).

3.3.1 Main Memory

Main Memory is located off chip and is generally classified as having greater

capacity and access times than Local Memory. In implementations at the time of

writing, Main Memory is DDR memory. Transfer operations from Main Memory

move contiguous blocks of data to Local Memory.

18

3.3.2 Local Memory

Local Memory is characterized by having smaller capacity and access time than

Main Memory. In addition, this memory is located on-chip. Local Memory is sub-

divided into segments, which may have their own type. Local Memory addresses are

defined to be 32 bits long where the upper 5 bits are the segment number and the lower

27 bits are the segment offset. Access to Local Memory is always vector aligned. Local

Memory contents can not be accessed directly by the Compute Processor. Instead,

the CP is responsible for transferring data in LM to the vector register file where

the data can then be processed. All transfers to and from Local Memory, including

transfers to the register file, are non-blocking, meaning subsequent instructions will

be issued before the transfer completes. Transfers are initially queued and scheduled

for execution. When the transfer completes, the associated status register is updated.

More detail on the transfer status registers can be found in Section 3.6.1 while detail

on the transfer instructions is found in Section 3.7.

3.4 Data Processor

The Data Processor (DP) is an extended SPARC V8 core and is responsible for

issuing data movement commands for transfers from Main Memory to Local Memory.

The architecture of the DP can be seen in Figure 3.2. Here the DP is shown with its

own private memory, as part of the SPARC implementation as well as its connections

to Main Memory and Local Memory. The bi-directional mailbox transmit (TX) and

receive (RX) connections are shown as well.

3.5 Compute Processor

The Compute Processor is an extended SPARC V8 core and is responsible for

data transfers between Local Memory and the Vector Register File and issuing oper-

19

	

Figure 3.2: The DP Processor architecture [18]

ations to the Vector Co-Processor. The CP guides computation flow through these

responsibilities. The architecture of the CP can be seen in Figure 3.3. Here the CP

is shown with its own private memory, as part of the SPARC implementation as well

as its connections to Local Memory and the vector register file (labeled VPR in the

diagram). The floating point execution units, labeled FP, are attached to the vec-

tor register file. The CP’s mailbox connection with transmit (TX) and receive (RX)

channels are shown.

3.6 Processor Synchronization

There are two methods of inter-processor synchronization available in the DPA

ISA. The first is through inspection of transfer counter registers. The second is

through explicit communication using bi-directional mailboxes. In addition, intra-

processor synchronization is provided in the form of a barrier instruction.

20

	

Figure 3.3: The CP Processor architecture [18]

3.6.1 Transfer Counters

Each Local Memory segment has a set of transfer counters associated with it. The

counters and their purposes are as follows:

DWCNT DP-side Write Counter. This counter records the number of transfers

from Main Memory to Local Memory.

DRCNT DP-side Read Counter. This counter records the number of transfers from

Local Memory to Main Memory.

CWCNT CP-side Write Counter. This counter records the number of transfers from

the Vector Register File to Local Memory.

CRCNT CP-side Read Counter. This counter records the number of transfers from

Local Memory to the Vector Register File.

21

All counters are updated atomically as transfer instructions are retired. Basic

synchronization may be performed by waiting for counters to obtain a certain value.

This type of synchronization can be useful for data-independent algorithms that will

execute a fixed number of transfers.

In addition to segment counters, the DPA system supports intra-processor mailbox

communication. The mailbox can be seen in Figures 3.2 and 3.3. One word of data

can be stored in each mailbox slot. Stored words are accessed in FIFO order. The

following mailbox registers are available:

3.6.2 Mailbox Registers

Each Compute Processor has access to a bi-directional mailbox capable of queue-

ing data words. The mailbox state is accessed/modified using the following registers:

TX Mailbox transmit register. Writing to this register will store a data word for

retrieval by the corresponding processor.

RX Mailbox read register. Reading this register returns the oldest enqueued word

from the mailbox.

TXCNT The number of words that can be transmitted.

RXCNT The number of words waiting to be read.

3.6.3 Intra-processor Barrier

All transfers, even between Local Memory and the VCP register file, are non-

blocking. That is, subsequent instructions may be issued before any given transfer

has completed. A barrier instruction is provided that stalls the processor pipeline

until all pending transfers have completed.

22

3.7 Data Movement Instructions

This section describes the DPA instructions related to data movement.

MEM2LM DP transfers data from Main Memory to Local Memory. Transfers are con-

secutive groups of vectors.

LM2MEM DP transfers data from Local Memory to Main Memory. Transfers are con-

secutive groups of vectors.

LM2VPR CP transfers data from Local Memory to the VCP register file. Multiple

consecutive registers may be loaded by this instruction. Local Memory can be

accessed at stride.

VPR2LM CP transfers data from the VCP register file to Local Memory. Multiple

consecutive registers may be read. Local Memory can be written at stride.

IBARRIER Blocks the processor pipeline until all pending transfers issued on by the

processor have completed.

3.8 Control/State Register Access

This section describes the DPA instructions related to control/state register access.

CP2DSR, DP2DSR Sets the following control/state registers.

CWCNT, CRCNT, DWCNT, DRCNT, TX

DSR2CP,DSR2DP Provides read access to the following control/state registers.

CWCNT, CRCNT, DWCNT, DRCNT, RX, TXCNT, RXCNT

CP2VSR Sets VCP control/state registers.

VSR2CP Provides read access to VCP control/state registers.

23

3.9 SIMD Instructions

This section describes the DPA instructions that perform vector operations. These

instructions are issued by the CP and executed on the Vector Co-Processor. Here

the term packed represents operation over one vector register that is “packed” with

multiple scalar elements. Unpack operations are used to shuffle scalar elements among

the vector registers.

ADDP Packed add.

SUBP Packed subtract.

MULP Packed multiply.

UNPCKHP Interleaved unpack of high-order values.

UNPCKLP Interleaved unpack of low-order values.

UNPCKEP Unpack of even-order values.

UNPCKOP Unpack of odd-order values.

SPLAT Broadcasts a single value to all elements in the target.

REVS Reverses the vector, maintaining the position of the highest-order element.

PALIGNR Packed align right.

3.10 DPA Hardware Implementation

The DPA system has been implemented in the form of a VHDL/Verilog design.

This design can be simulated in software using HDL/RTL simulation technologies in

ModelSim [10] for testing, verification, and cycle-accurate timing. In addition, the

24

DPA has been synthesized to an Field Programmable Gate Array (FPGA) system

for additional testing and verification [13].

3.11 Programming Considerations

This section discusses the major considerations when programming the DPA [13].

3.11.1 Main Memory Transfer Scheduling

In architectures where the on-chip memory is utilized as a cache, data is loaded

as a side-effect of the memory access pattern. With the DPA, the programmer has

explicit control over transfers between Main Memory and Local Memory. Therefore,

it is the programmer’s responsibility to maximize the use of off-chip bandwidth by

scheduling Data Processor transfers.

To maximize bandwidth utilization, attention must be paid to the length and

frequency of Data Processor transfers. The DPA’s off-chip bandwidth utilization will

be maximized by issuing fewer transfer instructions with longer transfer lengths. That

is, large transfers are able to utilize nearly the entire available off-chip bandwidth so

they should be favored over small, frequent transfers.

3.11.2 Local Memory Management

Using the Data Processor, the programmer has complete control over the contents

of Local Memory. In addition, transfers between Main Memory and Local Memory

are executed independently of all computation on the Compute Processors. Fully

optimized software will schedule Data Processor transfers such that the data available

in Local Memory is the working set required for the Compute Processors to be able

to perform calculation.

The DPA hardware does not provide data coherence at any point in the system,

25

therefore it is the programmer’s job to ensure coherence or to schedule computation

such that each data element is only worked on by one computational unit at a time.

Double buffering is one technique in common use to parallelize computation and

data transfers. In this technique, one half of Local Memory is used as a buffer

for computation, eventually storing the results of the current operation. The other

half of Local Memory then is a buffer for pending data transfers, allowing the Data

Processor to read previous result and to store the data required for the next stage of

computation. Once both the data transfers and the computation are finished, both

processors switch buffers.

3.11.3 Synchronization

Synchronization is an important issue on the DPA since all data transfers retire

asynchronously. When a transfer instruction is encountered one processor cycle is

spent issuing the operation then the processor is free to issue subsequent instruc-

tions. Therefore, explicit synchronization is necessary even when loading from Local

Memory to the VCP register file. Data independent algorithms will likely be able

to use counter and barrier based synchronization across processors, while mailbox

communication will likely be necessary when there are data dependencies.

26

4. DPA Simulator and Assembly Generation

4.1 Simulator Overview

The DPA Simulator is a high-level simulator. The Simulator functions at the

source code level in comparison to other processor simulators which typically func-

tion at the binary/machine code level. The Simulator is capable of simulating every

architectural component described in the DPA ISA [18]. Architectural components

of the DPA are represented and simulated at a high level, meaning they are imple-

mented as data structures and functions written in the Simulator’s implementation

language, C. The DPA simulator is provided to the user in the form of a software

library which implements the features of the DPA system as well as the functionality

specific to the simulation, such as configuration file parsing and log generation. No

effort is made to simulate the SPARC components or logic in the DPA system. This

does not affect the functional accuracy of the simulation but is a consideration for

the Performance Model (see Chapter 5 on page 34).

The high level design and implementation of the simulator provides several key

advantages over low level simulators.

• The Simulator is easy to modify and extend in order to accommodate changes

to the hardware design and the addition of new architectural components.

• Execution time of the simulation is greatly reduced (one order of magnitude or

more compared to gate level simulators).

• Verbose feedback can be generated in the form of log files and instruction traces

for consumption by the user or other software tools.

27

4.2 Simulator Design Detail

Every architectural component in the DPA is represented in the simulator. This

section describes, in detail, how these components are represented.

4.2.1 Overall Software Design

The overall architecture of the Simulator is that of a software library. The imple-

mentation language for the Simulator is C, allowing the interface to the simulator to

be defined by a series of C header files. These header files expose the functionality of

the simulator to the user and define the public types, data structures, and functions.

The DPA Simulator is configurable at two points in time: compilation and run-

time. Compile time configurations are related to the data types used within the

simulator (for example, the data type of vector elements) as well as some internal

features of the simulator. Typically, it is enough to generate a small set of libraries

that cover the configurations of interest to the user. Then, the user can select the

correct library when compiling the DP/CP code. Runtime configuration allows the

DPA system parameters not configured during library compilation to be set.

Users writing code for use with the Simulator and, ultimately, an instantiation of

the DPA in hardware must provide two main functions to be linked with the Simulator

library. One main function will contain the operations for the Data Processor while

the other will be used for the Compute Processor(s). This concept is similar to the

standard C convention of having a function named “main” as the entry point for the

program.

To create a Simulator executable, the code for the DP and CP is compiled and

linked with the Simulator library. The result is a binary for the host platform that,

upon execution, will simulate the execution of the code provided by the DP and CP

main functions.

28

4.2.2 Processor Simulation

DPA processors are simulated using operating system level threads. For each

processor in the system, a thread is created such that it will enter the main function

for that processor upon execution. Aside from some creation and cleanup operations,

each thread will perform only the operations necessary to complete the execution of

the functionality of the code implemented for that processor.

Each DPA processor thread simulates only the operations specific to the DPA

ISA. Included in this portion of the simulation are all registers and execution units

available to the programmer through the ISA. All Vector Co-Processor registers and

operations that modify their state are simulated directly. As DPA instructions are

encountered in the program’s flow they are executed by calling a function provided

by the Simulator library.

No operations for the underlying SPARC portions of the chip are simulated di-

rectly by the simulator. Instead, these operations are carried out by the host system.

Operation identical to a true SPARC system for the portion of the code that would

compiled to SPARC instructions is only guaranteed in so far as the base compiler’s (a

gcc based cross compiler [1]) ability to compile the C code implementation of the DP

and CP’s main functions to have the same meaning on the host system as it would

on a SPARC system. Different compilers, versions, and/or optimization settings may

elicit this problem. However, in practice, we have not encountered this issue.

The DPA Simulator library provides internal synchronization only to the extent

that its data structures are able to remain consistent. No effort is made to synchronize

DPA processor threads such that they execute in lock-step or any other order with

respect to each other. The only inter-processor synchronization that is respected

by the simulator is that which is exposed through the DPA ISA. If the user code

executing on the DP or CPs does not synchronize, then the order of execution of one

29

DPA processor thread with respect to another will be nondeterministic.

4.2.3 Memory Simulation

The DPA’s Main Memory and Local Memory state is included in the simulation.

Memory size and segmentation descriptions are part of the Simulator’s configuration

parameters. In addition, configuration allows the user to specify which Compute

Processors are able to access Local Memory segments created in the system. Any

configuration from full M : N to 1 : 1 access is supported. The DPA ISA specifies

that these memories may not be accessed directly by the DP or CP, meaning that data

stored in either memory bank cannot be transfered to the registers of either processor.

Data in either memory bank must be transferred to the Vector Co-Processor register

file in order to be operated on.

The design of the Simulator’s systems allows for more flexibility. The contents of

the Main Memory and Local Memory is exposed by the simulator in the form of a

pointer to an array. Access in this manner is not correct with respect to the DPA

ISA, but it can be useful to the programmer for the development and testing phases

of DPA code creation.

4.2.4 Instruction Simulation

The DPA Simulator implements every instruction specified in the DPA ISA as

part of the Simulator library. DPA processor threads simulate an instruction issue

by calling the function implementing the instruction in the DPA Simulator library.

The instruction implementation is then responsible for modifying the state of the

simulator to emulate the operation of the instruction that was called. In addition,

any log output or other bookkeeping operations are taken care of at this time.

Instructions issued on a single DPA processor are processed serially by the Simula-

30

tor. The Simulator will not queue operations for later execution. Instead, each DPA

instruction’s simulator function will carry out the entire operation before returning

to the caller. This design decision sacrifices some functional accuracy in order to

increase design and implementation simplicity for the Simulator.

DPA Synchronization instructions are simulated by using the implementation’s

threading library synchronization support. For inter-processor synchronization, mu-

tex objects are used to create atomic regions while condition variables are used to

signal processor threads of state changes. The Simulator does not need to implement

intra-processor synchronization since every operation on a single processor is executed

serially, as discussed above.

4.3 Assembly Generation

The Simulator library package supports assembly generation for all instructions in

the DPA ISA plus any additional user functions supplied by the Simulator. For each

instruction in the ISA, a definition is created in the Simulator’s interface header files.

When configured to build a Simulator binary, these definitions are linked to functions

in the Simulator library. When configured to produce DPA compatible binaries, these

definitions are implemented by inline assembly. The result is a mixed C/assembly

code that can be cross compiled for the DPA hardware. In this way, the same DP/CP

C code can be compiled once for use with the simulator and compiled a second time

to produce a binary targeted for the DPA hardware.

4.4 Binary Encoding

The standard compilation tool chain for the DPA uses GCC configured to cross

compile for the SPARC V8 elf platform [1]. This compiler does not recognize the

assembly statements for the DPA ISA. Therefore, it was necessary to develop a tool

31

to encode DPA assembly to binary machine code. The tool that was created accepts

input containing assembly statements and produces output where the instructions

from the DPA ISA are replaced with binary literals. The assembler simply copies

these literals into the encoded output. The result is an augmented assembly file that

can then be assembled using the normal assemblers included with the GCC cross

compiler.

4.5 Simulation Logs

The Simulator is capable of creating two types of logs during execution: a simu-

lation log and an instruction trace log. The simulation log is intended to be read by

the developer. It contains entries for all DPA instructions processed during the sim-

ulation. In addition, it provides some feedback of the system state, such as register

values, data values for transfers, and memory contents. The trace log contains the

instruction trace for the simulation. Instructions are listed with their parameters as

well as the information necessary to follow inter-processor synchronization (namely,

the values of transfer counters). The trace log is formatted such that it should be

easily machine readable, allowing off-line analysis to be performed by tools that are

not part of the simulator proper.

4.6 Verification and Testing

The DPA Simulator has been tested for correctness in two ways. The first is

through a series of blackbox tests. These tests invoke instructions in the DPA ISA and

then probe the state of the system to ensure that the operation executed correctly.

There is at least one test for every instruction in the ISA. Many test suites are

generated to cover the set of possible simulator configurations.

The second type of test is verification of simulation results. In this case, the

32

contents of memory at the end of the simulation are considered to be the final result

of the simulation. Tests of this type were conducted using code implementing the

WHT and FFT. The memory contents at the end of the simulation is compared to

the known correct values to determine if the simulation was successful. In addition,

this technique was used to test the DPA Simulator’s assembly and machine code

generation systems. DPA binaries produced by this system were executed using RTL

Simulation, which produced the final state in the simulation’s DPA Main Memory.

4.7 Simulation Execution Time

One of the key benefits of the DPA Simulator when compared to logic or gate

level simulations is decreased execution time. The DPA Simulator can be much more

efficient in terms of execution time due to simulation at a high level. In addition,

the Simulator is able to utilize multiple processors/cores on the host system to allow

parallel execution of simulation operations. This ability is due to the Simulator’s use

of multiple operating system level threads for the simulation of the DPA’s set of pro-

cessors. Generating the very verbose logs contributes largely to the DPA Simulator’s

overall execution time. For this reason, the DPA Simulator will not produce logs by

default. The user may activate logs using a command-line argument.

For comparison, the execution times required to run simulations in the HDL simu-

lator ModelSim [10], were recorded. Table 4.1 shows the ratio of ModelSim execution

times to DPA Simulator execution times. All experiments were run independently

on the same machine. Each row in the table lists the simulation that was executed

(the transform and its input size), the ModelSim to DPA Simulator ratio with logging

turned off followed by the ratio for DPA Simulator execution with logging turned on.

The results shown here indicate that the DPA Simulator is three orders of magni-

tude faster than ModelSim when simulation logs are not produced and two orders of

33

Table 4.1: Performance Comparison of ModelSim and DPA Simulator

Simulation Ratio Ratio Logs
On

WHT 128k 1.8 · 103 6.2 · 102

WHT 1m 1.7 · 103 6.0 · 102

DFT 64k 1.4 · 103 4.7 · 102

DFT 1m 1.7 · 103 5.1 · 102

magnitude faster when logs are produced.

34

5. Performance Model

5.1 Performance Model Overview

The DPA Simulator includes a performance model for the DPA system. This

model is included in the DPA Simulator library discussed in Section 4.2.1. The

Performance Model executes as a side effect of the simulation proper. The Model

maintains its own internal state and only relies on the Simulator to provide it with

the sequence of instructions as they are executed. From this information, it calculates

the number of processor cycles for each operation. The final result produced by the

model is a set of statistics, including the CPU cycles for each processor and the total

execution time.

5.2 Performance Model Implementation

This section describes the implementation of the Performance Model, what is

included in the model, and how it is modeled.

5.2.1 Design

At a high level, the design of the Performance Model resembles that of an event

driven system. Events are created as instructions are processed by the Simulator.

Each event represents an instruction of a certain type being issued on a processor. As

the Performance Model handles events, it updates its own internal state and statistics.

Figure 5.1 shows the event processing flow for the Performance Model. In this fig-

ure, software components are drawn as boxes. Multiple component instances/objects

are depicted by layered boxes. Messages and function calls are shown as lines with ar-

rows indicating the receiver and labels describing their purpose/content. Dotted lines

35

represent return values. The DPA Simulator and relevant components are depicted

on the left while the Performance Model and relevant components are on the right.

Here, the Simulator is depicted producing an event for an instruction of a specific

type. The event contains information specific to the instruction issued and is nearly

equivalent to what would be contained in the assembly syntax for that instruction.

For example, a Global Memory to Local Memory load instruction event contains the

address in Global Memory and the transfer size.

The Performance Model is notified of an event through its interface, which is made

accessible to all Simulator components. This interface defines handler functions for

each type of instruction. The Simulator notifies the Performance Model of an event

by calling one of these functions. Each handler function is responsible for dispatching

the instruction to the appropriate Processor object within the Model using a map

from Simulator threads to Processor objects.

Processor objects track the state, including the statistics of interest, for a single

processor in the DPA system. When an event is received, the Processor dispatches

the event to the appropriate Instruction Model object which calculates and returns

the number of cycles required to execute that instruction. Instruction Model objects

may query the state of the Processor or the system during their calculations. Af-

ter receiving the count of cycles from the Instruction Model, the Processor object

performs the necessary bookkeeping before retiring the event.

5.2.2 Model Parameters

The Performance Model can be configured by setting parameter values which are

read at runtime. Some parameters that affect the simulation as a whole, such as

memory sizes, vector lengths, and number of compute processors are also read by the

Performance Model. Tables 5.1, 5.2, and 5.3 describe the Performance Model specific

36

Figure 5.1: The Performance Model instruction event handling.

Table 5.1: Compute Processor Performance Model Parameters

Parameter Purpose

Frequency Frequency of the Compute Processor in MHz
Vector Transfer Delay Delay in cycles vector transfer issue and processing
Bytes per Vector Total vector size in bytes
Wait Overhead Cycles required to issue a wait operation
Wait Loop Cycles Cycles for one pass of wait loop
Mailbox Overhead Cycles required to issue a Mailbox operation

parameters for the CP, DP, and DDR subsystems, respectively.

5.2.3 Instruction Models

Each instruction type has a cost model associated with it, where cost is measured

in cycles. This section describes the models used to calculate the number of cycles

for individual instructions.

37

Table 5.2: Data Processor Performance Model Parameters

Parameter Purpose

Frequency Frequency of the Data Processor in MHz
Wait Overhead Cycles required to issue a wait operation
Wait Loop Cycles Cycles for one pass of wait loop
Mailbox Overhead Cycles required to issue a Mailbox operation

Table 5.3: DDR Performance Model Parameters

Parameter Purpose

Frequency Frequency of the DDR bus
Bytes Per Cycle Total bytes delivered each DDR cycle
Bytes Per Vector Bytes required to transfer one DPA vector
Page Address Length Number of bits required to describe a page address
Page Switch Cycles Cycles required to access a new DDR page
Efficiency Transfer efficiency considering hardware refresh rates
Refresh Threshold Cycles until a DDR refresh is required

Global Memory Transfers

Memory transfer cycles are calculated in terms of DDR cycles which are then

translated into CPU cycles. The model for the number of DDR cycles is:

s× vs

w
+ pcost(a) (5.1)

where s is the transfer size in vectors, vs is the number of bytes per vector, w is the

bandwidth in bytes per cycle, and pcost is the page access cost, in cycles, which is a

function of the page address, a.

If the number of DDR cycles is greater than the DDR refresh threshold, then the

cycle count is scaled by the DDR efficiency:

ce =
c

e
(5.2)

38

where c is the cycle count calculated by 5.1, e is the DDR efficiency expressed as a

percentile, and ce is the scaled cycle count. DDR efficiency must be considered due

to the properties of DDR refresh.

The resulting DDR cycle count is then converted to CPU cycles:

ccpu = ce × b (5.3)

where b is bus multiplier, i.e. the ratio of CPU to DDR cycles.

Local Memory to Vector Register File Transfers

Transfers from Local Memory to the Vector Register File are calculated by:

c = s + d (5.4)

where s is the number of vectors transferred and d is the vector transfer delay. After

this value is calculated and returned to the processor, it is not immediately charged to

the current count of CPU cycles. Instead, the cycle at which the transfer will complete

is tracked such that it can be referenced by later synchronization instructions, if

necessary. This reflects the non-blocking nature of the DPA’s transfer instructions in

relation to other instructions issued on the Compute Processor.

Intra-Processor Barrier

The IBARRIER instruction is used to block the processor’s pipeline until all pending

transfer instructions complete. This behavior is modeled by tracking the processor

cycle at which the most recent transfer will complete, ct. When a barrier instruction

is handled, this cycle is compared against the current cycle, c, for the processor. If

the ct is in the future, the barrier will then consume ct− c cycles. If ct is in the past,

39

the barrier will consume a single cycle.

5.2.4 Vector Operations and Other Instructions

All remaining DPA instructions, aside from inter-processor synchronization in-

structions, explained below, use a constant execution time of one cycle for their

models. This includes all Vector Register File, SIMD, and read/write operations to

status registers. This aspect of the model matches the single issue nature of the

DPA’s processors.

5.2.5 Inter-Processor Synchronization

The DPA supports two methods of Inter-processor Synchronization: blocking until

counter update and blocking until a message is received through the FIFO mailbox.

Both types of synchronization are modeled in a similar manner.

When any processor updates a counter or writes to a mailbox, the time of the

write is recorded in a map of write operation to cycle. The map stores the counter

value or mailbox entry id, respectively, and the cycle at which the update occurred.

This structure allows the time of the state change to be accessed directly from the

counter value or mailbox entry.

When a wait statement or mailbox read is processed, update time is found in the

respective map. The time of the update, denoted as cu is compared to the current

cycle time, c. If this time is in the future, that is cu > c, then the synchronization

operation is considered to take (cu− c) + h cycles, where h is the overhead associated

with processing either the wait or mailbox read operations. If this time is in the past,

then the synchronization operation consumes h cycles.

In the current version of the DPA interface software, counter wait operations are

implemented by a loop that polls the counter value. To accurately model this aspect

40

of the implementation, the value (cu−c)+h as calculated above, is modified such that

it is greater than (cu−c) cycles and is a multiple of Wait Loop Cycles, a Performance

Model parameter described in Table 5.1.

5.3 DP and Memory Transfer Accuracy

This section shows the accuracy of the DPA Simulator’s Performance Model for

transfers from Global Memory to Local Memory using a set of transfer benchmarks.

Here, the estimated times produced by the Performance Model are compared to the

cycle accurate measurements taken from ModelSim running an HDL implementation

of the DPA system. The Simulator was configured with the same parameters as the

HDL used with ModelSim.

The first set of benchmarks compares the estimated performance to the actual

performance for transfers between Global Memory and Local Memory of increasing

size. This benchmark was constructed by performing a fixed number of iterations

of transfers of the same size to increasing addresses. The time per transfer was

calculated by total transfer time
iterations . The results are shown in Figures 5.2 and 5.3 for

Global Memory to Local Memory (MEM2LM) and Local Memory to Global Memory

(LM2MEM) transfers, respectively. The log2 of the transfer size is shown on the X

axis and the log2 of the transfer time in nanoseconds is shown on the Y axis. The

average relative difference between the predicted times and the true times is 14.72%

for MEM2LM and 25.27% for LM2MEM.

The deviation between the predicted times and the actual times for LM2MEM trans-

fers smaller than 24 is due to not completely modeling the hardware’s transfer queues.

Here, the queue hides some of the transfer cost for very small size LM2MEM transfers.

This causes the measured transfer times to be lower than the Performance Model’s

predicted transfer times.

41

0 2 4 6 8 10
Transfer Size 2x

0

2

4

6

8

10

12

14

lo
g 2

(T
im

e
/ t

ra
ns

fe
r (

ns
))

ModelSim
DPA Performance Model

Figure 5.2: MEM2LM Transfer Predicted Performance

0 2 4 6 8 10
Transfer Size 2x

0

2

4

6

8

10

12

14

lo
g 2

(T
im

e
/ t

ra
ns

fe
r (

ns
))

ModelSim
DPA Performance Model

Figure 5.3: LM2MEM Transfer Predicted Performance

42

The second set of benchmarks compares the estimated performance to the actual

performance for transfers with varying numbers of writes per DDR page. In the

DDR implementation used in the DPA system, accessing a new page has a fixed cycle

cost. This implies that bandwidth will be more efficiently used if transfers are able

to access the same page repeatedly. This benchmark was constructed by performing

many iterations of transfers where the source Global Memory address is increased by

a constant stride after every transfer in the loop. As the stride decreases, the number

of writes per DDR page increased.

The results for this benchmark are shown in Figures 5.4 and 5.5 for MEM2LM and

LM2MEM, respectively. The log2 of the number of consecutive writes per DDR page is

shown on the X axis while the log2 of the time per transfer in nanoseconds is shown

on the Y axis. The plots display the time required for one transfer of size 2 and 64

as the writes per page increases along the X axis. As expected, the time per transfer

decreases as the writes per page increases. The average relative difference between

the predicted times and the true times for MEM2LM size 64 is 15.00%, for size 2 is

16.084%, and for LM2MEM size 64 is 18.86% and for size 2 is 14.43%.

5.4 CP Accuracy and SPARC Instruction Accounting

Instructions issued on the Compute Processor fall into four general categories:

transfers between Local Memory and Vector Register File, Vector operations, synchro-

nization, and scalar operations defined in the SPARC V8 ISA [4]. The Performance

Model is capable of handling all categories, except for SPARC instructions.

In DPA code, SPARC instructions are used mainly for Local Memory address cal-

culation and general control flow (loops, function calls, etc.) operations. The impact

of these instructions can, in general, be thought of as overhead that reduces the uti-

lization of the vector transfer and computation units. While the Performance Model

43

0 2 4 6 8
Writes per Page

0

50

100

150

200

Ti
m

e
/ t

ra
ns

fe
r (

ns
)

64 DPA Performance Model
64 ModelSim
2 DPA Performance Model
2 ModelSim

Figure 5.4: MEM2LM Strided Access Predicted Performance

0 2 4 6 8
Writes per Page

0

50

100

150

200

250

Ti
m

e
/ t

ra
ns

fe
r (

ns
)

64 DPA Performance Model
64 ModelSim
2 DPA Performance Model
2 ModelSim

Figure 5.5: LM2MEM Strided Access Predicted Performance

44

cannot directly estimate the cost of these instructions from the simulation, a method

has been implemented that allows the user to inform the model of the SPARC instruc-

tions that are executed at any point in the DPA instruction stream. This functionality

allows the user to annotate the DPA code with statements indicating the number of

SPARC instructions that will be executed before subsequent DPA instructions will

be issued. In the current implementation, each SPARC instruction is assigned a cost

of one CPU cycle. These annotations can be used to increase the accuracy of the

Performance Model’s estimate for CP computation time. In code where the execu-

tion time of SPARC instructions dominates over the time of DPA instructions, use of

these annotations will be necessary for high accuracy. The remainder of this section

quantifies the effect of these annotations for a set of benchmark code.

The benchmark used for the following experiments is based off of a simple vector

addition where C[i] ← A[i] + B[i] : 0 < i < N − 1 where N is the vector length.

Figure 5.6 shows the DPA code for the Compute Processor used to implement this.

For the code shown here, the data is assumed to be already available in Local Memory.

Then, the data at each index is loaded into the Vector Register File, operated on,

and stored back into Local Memory. Figure 5.7 shows this code annotated with

SPARC instruction counts (line 4 and so on). These annotations account for the

SPARC instructions associated with address calculations (code of the form &A[i])

and overhead due to the for loop. The Performance Model estimated time and the

true time, as measured using ModelSim, to execute this benchmark can be found in

Table 5.4 where the code in Figures 5.6 and 5.7 is labeled Basic and Annotated Basic,

respectively. Here the difference between the estimated execution time and the true

time for the Basic version is about -30% while the Annotated version is less than 1%.

This shows that the difference in the Basic version is due to not accounting for the

SPARC instructions.

45

The vector addition benchmark was then modified to unroll the for loop by a

factor of eight. A portion of the annotated version of the code can be seen in Figure

5.8 and the timing results in Table 5.4 for labels Basic Unrolled and Annotated Basic

Unrolled. Unrolling the code has the effect of reducing overhead due to the for loop.

This can be seen as a reduction in the execution time in ModelSim from the Basic

version to the Basic Unrolled version. The Performance Model estimated execution

time for the Unrolled version does not change compared to the original Basic version,

since the quantity and sequence of DPA instructions is not modified by unrolling the

loop. For the code annotated with SPARC instruction counts, the difference is about

-1.6%.

The basic vector addition algorithm was then written using software pipelining,

allowing some transfers and vector operations to occur in parallel. The loop body

for this code can be seen in Figure 5.9 and the timing results in Table 5.4 for labels

Pipelined and Annotated Pipelined. In this case, pipelining the code in this man-

ner increases the execution time due to the use of wait statements, which are more

expensive to execute than barrier statements. In addition, more SPARC instruc-

tions are needed per vector computation. For this version, the Performance Model’s

predictive capabilities without accounting for SPARC instructions is poor: the differ-

ence between the estimated and true times is -49.35%. However, when this code is

annotated with SPARC instruction counts, the difference drops to -14.89%.

The final version of the benchmark code unrolls the pipelined version by a factor

of eight. The loop body for this code can be seen in Figure 5.10 and the timing

results in Table 5.4 for labels Pipelined Unrolled and Annotated Pipelined Unrolled.

In this version of the code, unrolling allows all synchronization statements to be

removed from the loop body, resulting in the fastest version of the code. However,

each vector operation has a series of address computations associated with it that are

46

Table 5.4: CP Vector Add Benchmark Results

Code Version Simulator
Time (us)

ModelSim
Time (us)

Relative
Difference

Basic 1.56 2.29 -31.5%
Annotated Basic 2.27 2.29 -0.646%
Basic Unrolled 1.56 2.04 -23.45%
Annotated Basic Unrolled 2.01 2.04 -1.59%
Pipelined 1.99 3.92 -49.35%
Annotated Pipelined 3.34 3.92 -14.89%
Pipelined Unrolled 0.57 1.52 -61.94%
Annotated Pipelined Unrolled 1.43 1.52 -5.40%

not accounted for in the un-annotated version, resulting in a difference of -61.94%

between the estimated and true times. When SPARC instruction annotations are

added, this difference drops to -5.40%.

The benchmarks described here and the results shown in Table 5.4 serve as a

method to quantify the magnitude of error that can be introduced into CP side

calculations due to only accounting for DPA instructions and ignoring SPARC in-

structions. The relative error will vary from code to code and may be large enough

to have a significant effect on the estimate for the overall algorithm execution time.

In these cases, the accuracy can be improved by annotating the code indicating the

number of SPARC instructions that will be executed before DPA instructions.

5.5 Algorithm Simulation Accuracy

This section shows the accuracy of the DPA Performance Model on simulations

of two algorithms across multiple, input sizes. The execution times estimated by the

Performance Model are compared to the true times measured through HDL simulation

of the DPA using ModelSim.

47

1 for (i = 0 ; i < t ; i++)
2 {
3 // Load vec t o r r e g i s t e r f i l e
4 LM2VPR(&A[i] , 0 , 0 , 0) ;
5 LM2VPR(&B[i] , 1 , 0 , 0) ;
6
7 // Block u n t i l l oad s f i n i s h
8 IBARRIER () ;
9

10 // Computation on r e g i s t e r s
11 ADDP(0 , 1 , 2) ;
12
13 // Store to LM
14 VPR2LM(2 , &C[i] , 0 , 0) ;
15 }

Figure 5.6: DPA basic vector addition benchmark code listing

1 for (i = 0 ; i < t ; i++)
2 {
3 // Load r e g i s t e r f i l e
4 SPARC INS COUNT(1) ;
5 LM2VPR(&A[i] , 0 , 0 , 0) ;
6 SPARC INS COUNT(1) ;
7 LM2VPR(&B[i] , 1 , 0 , 0) ;
8
9 // Block u n t i l l oad s f i n i s h

10 IBARRIER () ;
11
12 // Computation on r e g i s t e r s
13 ADDP(0 , 1 , 2) ;
14
15 // Store to LM
16 SPARC INS COUNT(1) ;
17 VPR2LM(2 , &C[i] , 0 , 0) ;
18
19 // Account f o r loop overhead
20 SPARC INS COUNT(4) ;
21 }

Figure 5.7: DPA annotated basic vector addition benchmark code listing

48

1 for (i = 0 ; i < t ; i +=8)
2 {
3 // Load r e g i s t e r f i l e
4 SPARC INS COUNT(1) ;
5 LM2VPR(&A[i] , 0 , 0 , 0) ;
6 SPARC INS COUNT(1) ;
7 LM2VPR(&B[i] , 1 , 0 , 0) ;
8
9 // Block u n t i l l oad s f i n i s h

10 IBARRIER () ;
11
12 // Computation on r e g i s t e r s
13 ADDP(0 , 1 , 2) ;
14
15 // Store to LM
16 SPARC INS COUNT(1) ;
17 VPR2LM(2 , &C[i] , 0 , 0) ;
18
19 // Load r e g i s t e r f i l e
20 SPARC INS COUNT(1) ;
21 LM2VPR(&A[i +1] , 0 , 0 , 0) ;
22 SPARC INS COUNT(1) ;
23 LM2VPR(&B[i +1] , 1 , 0 , 0) ;
24
25 // Block u n t i l l oad s f i n i s h
26 IBARRIER () ;
27
28 // Computation on r e g i s t e r s
29 ADDP(0 , 1 , 2) ;
30
31 // Store to LM
32 SPARC INS COUNT(1) ;
33 VPR2LM(2 , &C[i +1] , 0 , 0) ;
34
35 // And so on u n t i l we opera te on index i+7
36 . . .
37 }

Figure 5.8: DPA annotated unrolled basic vector addition benchmark code listing

49

1 /∗ Prologue r e s p on s i b l e f o r
2 i n i t i a l v e c t o r load removed ∗/
3 for (i = 0 ; i < t−2; i += 2)
4 {
5 // Wait f o r r e g i s t e r group 1 load
6 SPARC INS COUNT(1) ;
7 c r c += 2 ;
8 WAIT CR INC(crc) ;
9

10 // Operate on group 1
11 ADDP(0 , 1 , 2) ;
12
13 // Store group 1
14 SPARC INS COUNT(1) ;
15 VPR2LM(2 , &C[i] , 0 , 0) ;
16
17 // Load group 1 f o r next i t e r a t i o n
18 SPARC INS COUNT(2) ;
19 LM2VPR(&A[i +2] , 0 , 0 , 0) ;
20 SPARC INS COUNT(2) ;
21 LM2VPR(&B[i +2] , 1 , 0 , 0) ;
22
23 // Wait f o r r e g i s t e r group 2 load
24 SPARC INS COUNT(1) ;
25 c r c += 2 ;
26 WAIT CR INC(crc) ;
27
28 // Operate on group 2
29 ADDP(3 , 4 , 5) ;
30
31 // Store group 2
32 SPARC INS COUNT(2) ;
33 VPR2LM(5 , &C[i +1] , 0 , 0) ;
34
35 // Load group 2 f o r next i t e r a t i o n
36 SPARC INS COUNT(2) ;
37 LM2VPR(&A[i +3] , 3 , 0 , 0) ;
38 SPARC INS COUNT(2) ;
39 LM2VPR(&B[i +3] , 4 , 0 , 0) ;
40
41 SPARC INS COUNT(4) ;
42 }
43 /∗ Epi logue r e s p on s i b l e f o r
44 f i n a l v e c t o r s t o r e removed ∗/

Figure 5.9: DPA annotated, pipelined vector addition benchmark code listing

50

1 /∗ Prologue r e s p on s i b l e f o r
2 i n i t i a l v e c t o r load removed ∗/
3 for (i = 0 ; i < t−8; i += 8)
4 {
5 // Operate on group 1
6 ADDP(0 , 1 , 2) ;
7 SPARC INS COUNT(1) ;
8 VPR2LM(2 , &C[i] , 0 , 0) ;
9 SPARC INS COUNT(2) ;

10 LM2VPR(&A[i +8] , 0 , 0 , 0) ;
11 LM2VPR(&B[i +8] , 1 , 0 , 0) ;
12
13 // Operate on group 2
14 ADDP(3 , 4 , 5) ;
15 SPARC INS COUNT(2) ;
16 VPR2LM(5 , &C[i +1] , 0 , 0) ;
17 SPARC INS COUNT(2) ;
18 LM2VPR(&A[i +9] , 3 , 0 , 0) ;
19 SPARC INS COUNT(2) ;
20 LM2VPR(&B[i +9] , 4 , 0 , 0) ;
21
22 // And so on u n t i l we opera te on index 1+7
23 . . .
24 }
25 /∗ Epi logue r e s p on s i b l e f o r
26 f i n a l v e c t o r s t o r e removed ∗/

Figure 5.10: DPA annotated, unrolled, pipelined vector addition benchmark code
listing

51

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1m
WHT Size

0

500

1000

1500

2000

2500
M

FL
O

Ps

ModelSim
DPA Performance Model

Figure 5.11: WHT Performance estimation compared to ModelSim

5.5.1 WHT Accuracy

Figure 5.11 shows the estimated and true performance of an implementation of

the WHT on the DPA. Here, input sizes ranging from 16 to 1 million points are shown

on the X axis and the performance measured in millions of floating point operations

per second is shown on the Y axis. The average relative difference between the

Performance Model and the ModelSim values is 20.1%. The largest relative difference

is 36.46% and occurs at input size 128k. For this benchmark, the DPA system was

configured with Local Memory sizes ranging from 32 to 128 KB, 1 CP with 64 Vector

Registers, and a DP/CP clock of 900 MHz.

52

4 8 16 32 64 128 256 512 1k 2k 4k 8k 64k 1m
DFT Size

0

500

1000

1500

2000

2500

3000

M
FL

O
Ps

ModelSim
DPA Performance Model

Figure 5.12: DFT Performance estimation compared to ModelSim

5.5.2 DFT Accuracy

Figure 5.12 shows the estimated and true performance of an implementation of

the DFT on the DPA. Here, input sizes ranging from 4 to 1 million points are shown

on the X axis and the performance measured in millions of floating point operations

per second is shown on the Y axis. The average relative difference between the

Performance Model and the ModelSim values is 11.5%. The largest relative difference

is 32.1% and occurs at input size 128. For this benchmark, the DPA system was

configured with Local Memory sizes ranging from 32 KB to 1 MB, 1 CP with 64

Vector Registers, and a DP/CP clock of 900 MHz. The DFT twiddle factors were

pre-loaded into Global Memory before the benchmark began.

53

6. Architecture Exploration

The Data Pump Architecture is intended for use as an application specific embed-

ded processor. In this use case, the DPA’s parameters can be selected to match the

target application such that the architecture is balanced. A balanced architecture can

be considered to be an architecture that provides good performance without excess

resource allocation. We can describe a balanced system as one where computation

time and off-chip communication time are equal and on-chip memory is the minimal

amount such that the former condition still holds. More formally, we can describe the

operation of selecting architecture parameters as an optimization problem where we

desire to maximize performance while minimizing the resources consumed given the

finite set of valid resource configurations. We can observe that the frontier of possible

solutions to this optimization problem will provide a set of configurations for a bal-

anced system, such that memory and computational resources are minimized without

reducing performance, thus balanced, for each configuration on the frontier. The

amount of resources consumed by the architecture can be measured in several ways.

One fundamental set of measurements might be power consumption and the physical

area required to implement the system in hardware. Alternatively, one can consider

the architecture parameters relatively, independent of the hardware implementation,

declaring an increase in any parameter to be an increase in resource consumption.

Therefore, the resources consumed can be measured directly from the parameters

selected; an increase in any parameter from the set of those under consideration will

be considered an increase in resource consumption. This optimization problem can

then be analyzed by exploring the parameter space and measuring the effect of pa-

rameter choice on performance. For the explorations described below, the parameters

under consideration are Local Memory size, number of Compute Processors, memory

54

bandwidth, and processor frequency.

To perform the exploration, we have multiple tools at our disposal. From least

granular to most granular, we have a mathematical model based on theoretical limits

and idealized algorithms, the DPA Simulator, RTL Simulation, and, finally, execution

on hardware. Moving from tool to tool in this order results in increased granularity

and accuracy by sacrificing flexibility and execution speed. We see that the DPA

Simulator is situated in the middle of this spectrum.

6.1 Exploration with Abstract Mathematical Model

Starting with the least granular yet most flexible tool, the mathematical model, we

can analyze a broad set of problems and algorithms. The model used here is a simple

model based primarily on the time required for memory transfers and transform

calculation [13]. We define Workload(Algorithm) to be the number of operations

required by the algorithm and w is the maximum of this function. In addition we

define D to be the dataset, and M to be the size of on-chip memory. Transfer time

is calculated as

Td = (
D

Bpeak

+ Page× Tpage)× 2 =
D

BW (M/Page)
× 2 (6.1)

where BW is a function of the accesses per DDR page, Bpeak is the maximum of BW ,

and Tpage is the time for accessing a new DDR page. Then the maximum performance

for the memory transfers is

pio =
w

Td

. (6.2)

Data computation time is then calculated as

Tc =
Workload(Algorithm)

Nfp × Freq
(6.3)

55

where Nfp is the number of functional units with Freq as the frequency in the DPA

configuration. The maximum performance for computation time is then

pc =
w

Tc

. (6.4)

We define the performance for the entire system as

p = min(pio, pc). (6.5)

In this model, the information provided about the algorithm used is idealized, essen-

tially providing a lower bound on the number of operations required. We can also

define the theoretical performance limits for the system irrespective of the algorithm

used. For bandwidth we have

pbandwidth =
w

2×D/Bpeak

. (6.6)

For computation we have

pcompute = Nfp × Freq. (6.7)

Total system performance will not exceed the minimum of pbandwidth and pcompute,

psystem = min(pbandwidth, pcompute). (6.8)

Figure 6.1 shows the results of an analysis using this model for WHT algorithms

of increasing input size. The system depicted here was configured with 4 CPs, vector

width 4, CPU frequency 1000 MHz, Local Memory size 215 kilobytes and off-chip

memory bandwidth of 6,400 MB/s. The dashed yellow line shows the peak perfor-

56

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0

5

10

15

20

25

30

Mathematical Model
Compute Peak
Bandwidth Peak

Figure 6.1: WHT Performance for increasing input size from mathematical model

mance when constrained by memory bandwidth while the dashed green line shows the

peak performance for when constrained by compute resources. The blue line shows

the performance predicted by the model.

One important result of this analysis is the depiction of the crossover point where

the performance of the system moves from being memory bound to compute bound.

In the plot, this point is where the yellow line crosses the green line and is roughly at

input size 220. We can see that problems smaller than 217 will have their performance

limited by memory bandwidth, as indicated by the performance of this points closely

following the yellow line. At sizes 217 to 222 the performance is compute bound.

Once the problem grows larger than 222, it becomes memory bound again. This

second case of memory bound performance for larger problems is due to the problem

size exceeding the capacity of Local Memory and requiring multiple transfers per

data element. Then, as the problem size continues to increase beyond this point,

the performance slowly trends toward the maximum compute performance. For the

57

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0

5

10

15

20

25

Mathematical Model
Compute Peak
Bandwidth Peak

Figure 6.2: WHT Performance for increasing input size from mathematical model
configuration with increased memory bandwidth

system depicted in Figure 6.1 we could increase algorithm performance for many input

sizes by increasing the available memory bandwidth, which we have done showing the

results in Figure 6.2. Here, the memory bandwidth has been increased to 9,600 MB/s.

All other parameters of the system remain unchanged. As we see, the cross-over point

for this configuration now occurs at roughly 213 and for inputs larger than 210 the

performance is compute bound.

The abstract mathematical model shown here allows the designer to consider the

problem space at a very high level by providing insight to the trade-off between

compute resources and memory bandwidth. Analysis at this level can lead to a first

approximation of total system performance for the target application. The designer

can adjust configurations to change the point where the performance bottleneck shifts

from memory bound to compute bound.

58

6.2 Exploration with the DPA Simulator

The DPA Simulator is capable of providing greater detail than the idealized math-

ematical model. However, to be able to use the Simulator, we must first generate code.

The initial experiment compares the results using hand-written code to performance

estimates using the mathematical model, the DPA Simulator, and ModelSim, shown

in Figure 6.3. These results are for a system with 8 CPs, DDR bandwidth of 25,600

MB/s, frequency 3.2 GHz, and 512 KB of Local Memory. Here we see that all three

tools follow the same pattern for performance, with the ModelSim curve (shown in

green) giving the true performance of this implementation of the WHT for increasing

input size. The DPA Simulator consistently over-estimates the performance compared

to the true results, however the magnitude of the error is small. In this case, SPARC

instruction execution time is not included in the DPA Simulator results which is the

most likely cause of the bias. Here, we were able to create an accurate model and

hand-write code with performance that matches this model. In the general case, this

may not be possible, thus one would expect a larger gap between modeled perfor-

mance and actual performance as measured using the Simulator or ModelSim.

All of the code for the experiments discussed in the remainder of this section

was generated using the SPIRAL system. In order to show more detail, here we

have selected a single input size, the WHT of input size 216 = 64k as our target

application. For each instance of code generated, the SPIRAL system was provided

with the selected transform and input size as well as the DPA configuration for Local

Memory size and number of Compute Processors. Given this input, the SPIRAL

system produced code optimized for these parameters. Modifying the number of

Compute Processors and size of Local Memory forces the need for the code to be

regenerated in order to utilize the additional resources.

We will start by exploring the trade-off between Local Memory size and the num-

59

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

10

20

30

40

50

60

Mathematical Model
DPA Simulator
ModelSim

Figure 6.3: WHT Performance for increasing input size showing Model, DPA Simu-
lator, and ModelSim estimates

ber of Compute Processors. As the number of processors increases, each CP will have

less Local Memory allocated (either in software or through Local Memory segments)

for its use. Increasing either Local Memory or the number of Compute Processors

without a mutual increase in the other resource will lead to an imbalance in the sys-

tem, thus creating bottlenecks that limit the use of the expanded resource. If there

are too many Compute Processors and not enough Local Memory, each CP will need

to stall as it waits for transfers from off-chip memory into Local Memory. Spilling to

off-chip memory will be expensive and can lead to decreased performance.

The results of considering a system for executing the WHT 64k are shown in Figure

6.4. Local Memory size (measured in kilobytes) is in the set {212, 213, 214, 215, 216},

Number of CPs is in the set {2, 4, 8, 16}, and memory bandwidth and CPU frequency

are fixed at 6400 MB/s and 1000 MHz, respectively. Code for each pair in the cross

product of these sets was generated. For each pair, the plot displays the performance

as a color shade ranging from blue, low performance, to red, high performance. The

60

2 4 8 16
Number CPs

12

13

14

15

16

17

LM
 S

iz
e

lo
g 2

(n
) K

B

0

800

1600

2400

3200

4000

4800

5600

6400

7200

M
FL

O
Ps

Figure 6.4: Performance evaluation as Local Memory size and Number of Compute
Processors varies

color for the level of performance from each pair is expanded to fill the block up to

the next parameter value. For instance, the block from 8 to 16 on the x-axis and 16

to 17 on the y-axis is colored for the performance from the point (8,16) corresponding

to 8 CPs and 216 kilobytes of Local Memory. The black line and associated points

indicates the Pareto frontier. Here, points are included in the frontier such that for

each valid choice of number of CPs, the smallest Local Memory size with the highest

level of performance is selected. One performance value is considered to be greater

than another if it is at least 10% greater. This effectively identifies the boundary

after which performance peaks then levels off.

This style of pseudo-color plot has a very intuitive interpretation with respect to

the selection of balanced architecture points. All potential configuration points can be

found by identifying the lower-left corners of like colored blocks. The coordinates of

61

this corner identify the configuration parameters. While we have identified the Pareto

frontier over the entire range of parameters in Figure 6.4, one can visually identify

new frontier points for a subset of the parameters by, for each number of CPs on the

x-axis, finding the box with the color signifying the highest level of performance and

then finding the lower-left corner of this box.

From Figure 6.4 we can form the conclusion that number of CPs and Local Memory

size affect performance jointly and must be considered simultaneously when selecting

a configuration of DPA parameters. For instance, we see that if constrained to Local

Memory size between 212 and 213 increasing the number of CPs from 4 to 8 does not

increase performance while increasing to 16 CPs decreases performance. Similarly,

when fixing the number of Compute Processors to 4 and looking at the range of LM

sizes, we see that increasing LM size beyond 215 provides no increase in performance.

In fact, this point has been identified as being on the Pareto frontier. We see that the

best performance in this figure occurs when we choose 8 CPs and a Local Memory

size of 216. Figure 6.5 compares utilization rate to the ratio between Local Memory

size and number of Compute Processors. Here, utilization rate is defined as the ratio

of achieved performance to maximum performance where maximum performance is

defined by Equation 6.8. The utilization ratio begins to peak at a ratio of roughly

4,000. Local Memory to number of CP ratios higher than this value show no increase

in utilization rate, while ratios less than this exhibit decreased utilization, indicating

that balanced systems should target ratios near 4,000 when selecting values for Local

Memory size and number of Compute Processors.

Now, we will concentrate on the second pair of parameters, memory bandwidth

and compute processor frequency. We can perform exploration of these parameters

without additional code generation and only adjusting the configuration provided to

the DPA Simulator. The result of this exploration is shown in Figure 6.6 for Local

62

0 5000 10000 15000 20000 25000 30000 35000
Ratio LM Size / Num CPs

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ili

za
tio

n
Ra

te

Figure 6.5: Performance for varying ratio of Local Memory size to Number of CPs

Memory size fixed to 215 kilobytes and Number of CPs fixed to 4, a point indicated on

the Pareto frontier in Figure 6.4. In this figure, CP Frequency ranges from 600 to 1900

MHz and DDR Bandwidth ranges from 5,000 to 19,000 MB/s. This plot is similar

in style to 6.4, here, again, performance is indicated by color with low performance

displayed as blue and high performance displayed as red. Also, we indicate the Pareto

frontier with the black curve and points along it.

Again, we have the same intuitive interpretation by finding lower-left corners of

boxes of the same color to find the minimum resources required to gain that level of

performance. As an example, we see from the plot that at a CP frequency of 1100

MHz the minimum memory bandwidth with the best level of performance is at about

13,000 MB/s. We can also note that moving to 1200 MHz increases performance

without requiring an increase in DDR bandwidth. These points are shown on the

63

600 800 1000 1200 1400 1600 1800 2000
CP Frequency (MHz)

4000

6000

8000

10000

12000

14000

16000

18000

20000

D
D

R
Ba

nd
w

id
th

 (M
B/

s)

4500

6000

7500

9000

10500

12000

13500

15000

16500

M
FL

O
Ps

Figure 6.6: Performance evaluation as off-chip Memory Bandwidth and CP Frequency
varies

Pareto frontier. The best performance in this Figure occurs when select a frequency

of 1900 MHz and a bandwidth of 16,000 MB/s. Figure 6.7 shows the utilization

rate compared to ratio between memory bandwidth and CP frequency. Here we see

that utilization peaks when the ratio is between 5 and 6. Again, utilization does not

increase with ratios larger than this and utilization decreases for smaller ratios. The

indication is that bandwidth to frequency ratios between 5 and 6 should be targeted

by the designer.

The Simulator allows the designer to perform such experiments and receive per-

formance feedback from a model that is much more similar to that of the actual

system compared to the abstract mathematical model used earlier. Exploration at

this level forces the designer to use the algorithm and code that would be executed

on hardware, ensuring more detail and realism than the idealized algorithms assumed

64

0 5 10 15 20 25 30 35
Ratio Bandwidth / CP Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ili

za
tio

n
Ra

te

Figure 6.7: Performance for varying ratio of off-chip Memory Bandwidth to CP Fre-
quency

by the mathematical model. After reviewing feedback provided by the Simulator, the

designer can then further narrow the set of potential configurations before moving to

more granular and time consuming methods of simulation/exploration.

65

7. Conclusion

The Data Pump Architecture (DPA) is a parameterized, novel non-von Neumann

architecture designed for application specific embedded processing. The DPA Simula-

tor and Performance Model is tool that simulates the DPA at a high level, providing

fast simulation times, performance feedback, and acceptable accuracy. The DPA

Simulator can be used by system designers to explore the DPA parameter space in

search of a balanced system for the target application. Such an exploration process,

in combination with optimized code generation allows the system, both hardware

and software, to be optimized as a whole. Without a tool similar to the Simulator

and Performance Model described here, this process would be forced to use abstract

and less detailed results from a mathematical model or time consuming and inflexible

RTL simulation.

Future work for the DPA Simulator and Performance model includes increasing

accuracy through finer tuning of the performance model and the choice of model

parameters. Potential work includes the development of an automatic method of

parameter adjustment and optimization. In addition, a more accurate method of

accounting for SPARC instructions is desirable. The current system relies on code

annotation to provide the DPA Simulator with information about SPARC instruc-

tions. In this thesis, these annotations were be provided by hand. An improved

approach might include SPARC annotations as part of the SPIRAL code generation

system or use some new tool to generate annotations automatically. To fully explore

the space of DPA configurations, improved algorithm and code generation tools will

be needed. Such tools must be capable of analyzing and searching the DPA configura-

tion space in a complete manner. Given these tools, the DPA Simulator can be used

as a platform for further architecture exploration by adding new implementations of

66

DPA functional units with modified or new capabilities. Then, a designer may choose

from these functional unit implementations to create a system with capabilities be-

yond those found in the current DPA ISA and, perhaps, leading to new research in

architectural components for use within the DPA system.

68

Bibliography

[1] Aeroflex Gaisler AB. Leon Bare-C Cross Compilation System.
http://www.gaisler.com/cms/index.php?option=com_content\&task=

view\&id=147\&Itemid=31.

[2] Aeroflex Gaisler AB. Leon3 Processor. http://www.gaisler.com/cms/index.

php?option=com_content\&task=view\&id=13\&Itemid=53.

[3] J. Emer, P. Ahuja, E. Borch, A. Klauser, Chi-Keung Luk, S. Manne, S.S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim:
a performance model framework. Computer, 35(2):68 –76, feb 2002.

[4] SPARC International Inc. The SPARC Architecture Manual Version 8. SPARC
International Inc., 1992.

[5] Intel. Intel Integrated Performance Primitives (Intel IPP). http://software.

intel.com/en-us/intel-ipp/.

[6] J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri. A Methodology for De-
signing, Modifying, and Implementing Fourier Transform Algorithms on Various
Architectures. In Circuits, Systems, and Signal Processing 9, pages 449–500,
1990.

[7] Jeremy Johnson and Markus Püschel. In Search of the Optimal Walsh-Hadamard
Transform. In Proc. ICASSP, pages 3347–3350, 2000.

[8] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voro-
nenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPIRAL: Code Gen-
eration for DSP Transforms. In Proc. of the IEEE special issue on ”Program
Generation, Optimization, and Adaptation”, volume 93, pages 232–275, 2005.

[9] Matt T. Yourst. PTLsim x86-64 Cycle Accurate Processor Simulation Design
Infrastructure. http://www.ptlsim.org/.

[10] Mentor Graphics. ModelSim. http://model.com.

[11] Parallel Systems Architecture Laboratory. SimFlex. École Polytechnique
Fédérale De Lausanne. http://parsa.epfl.ch/simflex/.

[12] Neungsoo Park and V.K. Prasanna. Dynamic data layouts for cache-conscious
implementation of a class of signal transforms. Signal Processing, IEEE Trans-
actions on, 52(7):2120 – 2134, july 2004.

http://www.gaisler.com/cms/index.php?option=com_content\&task=view\&id=147\&Itemid=31
http://www.gaisler.com/cms/index.php?option=com_content\&task=view\&id=147\&Itemid=31
http://www.gaisler.com/cms/index.php?option=com_content\&task=view\&id=13\&Itemid=53
http://www.gaisler.com/cms/index.php?option=com_content\&task=view\&id=13\&Itemid=53
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://www.ptlsim.org/
http://model.com
http://parsa.epfl.ch/simflex/

69

[13] Qian Yu. Personal communication and meeting notes. Carnegie Mellon Univer-
sity, 2010.

[14] SPIRAL. http://www.spiral.net.

[15] SPIRAL. DPA ISA V0.2 Addendum 1 Redefine CP Side Data Transfer Instruc-
tions.

[16] SPIRAL. DPA ISA V0.2 Addendum 2 Blocking Instructions for Internal Barrier.

[17] SPIRAL. DPA ISA V0.2 Addendum 3 DSR Access.

[18] SPIRAL. DPA Instruction Set Architecture V0.2 Basic Configuration. 2008.

[19] Srinivas Chellappa, Franz Franchetti, and Markus Püschel. How to Write Fast
Numerical Code: A Small Introduction. In Proc. Summer School on Genera-
tive and Transformational Techniques in Software Engineering (GTTSE), vol-
ume 4959 of Lecture Notes in Computer Science, pages 116–131. Springer, 2008.

[20] Wind River. Virtutech Simics. http://www.virtutech.com/products/.

[21] Li Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and D. Newell. Exploring
large-scale cmp architectures using manysim. Micro, IEEE, 27(4):21 –33, july-
aug. 2007.

http://www.spiral.net
http://www.virtutech.com/products/

	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivations
	Related Work
	Result Summary
	Organization of the Thesis

	Background
	Linear Transformations for Digital Signal Processing
	Kronecker/Tensor Product
	Walsh-Hadamard Transform
	WHT Algorithms

	Commodity Architectures
	SPIRAL Code Generation

	Data Pump Architecture
	Architecture Overview
	SPARC Extension Overview
	Memory
	Main Memory
	Local Memory

	Data Processor
	Compute Processor
	Processor Synchronization
	Transfer Counters
	Mailbox Registers
	Intra-processor Barrier

	Data Movement Instructions
	Control/State Register Access
	SIMD Instructions
	DPA Hardware Implementation
	Programming Considerations
	Main Memory Transfer Scheduling
	Local Memory Management
	Synchronization

	DPA Simulator and Assembly Generation
	Simulator Overview
	Simulator Design Detail
	Overall Software Design
	Processor Simulation
	Memory Simulation
	Instruction Simulation

	Assembly Generation
	Binary Encoding
	Simulation Logs
	Verification and Testing
	Simulation Execution Time

	Performance Model
	Performance Model Overview
	Performance Model Implementation
	Design
	Model Parameters
	Instruction Models
	Vector Operations and Other Instructions
	Inter-Processor Synchronization

	DP and Memory Transfer Accuracy
	CP Accuracy and SPARC Instruction Accounting
	Algorithm Simulation Accuracy
	WHT Accuracy
	DFT Accuracy

	Architecture Exploration
	Exploration with Abstract Mathematical Model
	Exploration with the DPA Simulator

	Conclusion
	Bibliography

