
LibraryX-ASIC: A First Look
Sanil Rao, Larry Tang, Franz Franchetti

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA
{sanilr, lawrenct, franzf}@andrew.cmu.edu

Abstract—Domain-specific accelerators have become the new
frontier for increasing computation performance in modern
computing systems. Accelerators provide dedicated hardware
support for key operations in their domain. However, these
accelerators require significant effort to program, with each
new accelerator having its own programming characteristics.
This makes it difficult for programmers to take advantage of
their performance. To overcome this difficulty, we introduce
a new framework for accelerator programming development
called LibraryX-ASIC. LibraryX-ASIC leverages domain specific
software libraries like FFTW or C++ STL as a way to program
accelerators, while offloading the actual computation to the new
accelerator. We show the system design of LibraryX-ASIC using
the example of an FFT library and an FFT accelerator.

Index Terms—Code Generation, FFT, SPIRAL, ASIC, Accel-
erator

I. INTRODUCTION

With the end of Dennard scaling, hardware developers
have turned to building domain-specific accelerators to in-
crease computing performance. These accelerators provide
two key benefits over general purpose hardware: performance
and energy efficiency. Accelerators have custom circuits for
critical operations in their domain, enabling increased energy
efficiency for their workloads.

While accelerators have many benefits, they also have a
few challenges specifically in programmability and adoption.
Accelerator designers define their unique end-to-end software
stack for developer use. This is challenging because it requires
developers to potentially learn a new programming model
to access the accelerator. This becomes increasingly more
complicated for each new accelerator introduced, thereby
limiting program portability.

To address these issues of programmability and portability
of accelerator devices, we propose LibraryX-ASIC. LibraryX-
ASIC is an automated framework designed to hide the
complexity of accelerator offload behind domain-specific
software libraries like FFTW [1] for FFTs, or C++ Standard
Template Libraries (STL). Using the library’s standard
interface, LibraryX-ASIC recognizes the operation, generates
an optimized accelerator implementation, and offloads it
to the accelerator automatically, populating the output
buffer upon completion. This relieves the programmer
of having to worry about various accelerator offload
paradigms. We show how LibraryX-ASIC can be utilized
through an FFT benchmark and an FFT accelerator.

Contributions. This paper makes the following contributions:
• Introduces the LibraryX-ASIC framework for automatic

accelerator offload.
• Provides a system walkthrough of the framework using

an FFT example.
• Provides preliminary results compared to software imple-

mentations.

II. BACKGROUND

A. SPIRAL

The SPIRAL [2] code generation system is a domain spe-
cific language and compiler for Fast Fourier Transform (FFT)
algorithms. Its internal language, Signal Processing Language
(SPL), uses linear transforms to express key operations in FFT
computations. These operators are composed using a pointfree
matrix vector representation where an implicit input vector
x gets multiplied by an SPL operator matrix, producing an
implicit output vector y. SPL then gets broken down using
SPIRAL code transformation layers, producing optimized code
for a variety of hardware platforms including, CPUs, GPUs,
FPGAs, and ASICs. LibraryX-ASIC leverages SPIRAL to
produce equivalent optimized accelerator code for FFT library
calls.

B. FFT Accelerator

The FFT accelerator is designed to address two primary
challenges — flexibility and programmability, in existing FFT
hardware implementations by following the design principles
outlined in [3]. The key observation is that software flexibility
in libraries like FFTW [1] arises from recursion where the
base cases are small sized FFTs known as codelets. Thus
flexibility in hardware can be retained by designing highly
configurable hardware codelets and a surrounding architecture
that orchestrates their execution.

Similar to an FFTW plan, the FFT computation on the
accelerator is defined by a sequence of descriptors contain-
ing the configuration parameters for the hardware codelet.
Descriptors are fetched from a local instruction memory and
then decoded to obtain configuration parameters including
input/output base address and stride, batch size, FFT radix, and
compute ordering. The codelet datapath can be reconfigured
to compute different small sized FFTs and also reordered
between element-wise multipliers and a transposer. Details of
the accelerator microarchitecture are presented in Fig. 1. The



Fig. 1: Overview of the FFT accelerator microarchitecture.

1 #include <iostream>
2 #include <complex>
3 #include <vector>
4 #include "fftw3.h"
5 #include "LibraryX_ASIC.hpp"
6 using namespace std;
7 int main() {
8 int N = 64;
9 int sign = -1;

10 u_int f = FFTW_ESTIMATE;
11 vector<complex<float>> input(N);
12 vector<complex<float>> output(N,0.0);
13

14 buildInput(input);
15

16 //call is replaced with accelerator offload
17 //and executed
18 fftwf_plan p = fftwf_plan_dft_1d(N,
19 (fftwf_complex*)input.data(),
20 (fftwf_complex*)output.data(), sign, f);
21 fftwf_execute(p);
22

23 //output buffer contains accelerator result
24 checkOutput(output);
25

26 fftwf_destroy_plan(p);
27 return 0;
28 }

Fig. 2: Example FFT program. This FFT application written
against FFTW will be executed on an FFT acclerator without
user modification using LibraryX-ASIC. The output buffer will
be populated as if nothing changed.

codelet datapath has been silicon-verified in an FFT accelera-
tor [4] consisting of a radix-8 FFT core and eight element-wise
multipliers to accelerate a radix-8 twiddle codelet of FFTW.

III. END-TO-END EXAMPLE: FFT

We describe the LibraryX-ASIC system design using a
simple FFT program shown in Fig. 2. We discuss how FFT
library calls are recognized and captured. We then describe
the high-level process to generate equivalent accelerator code
using SPIRAL. Finally, we show how that code is compiled
and executed on the accelerator.

1 #include "model.h"
2 #include "utils.h"
3 #include "accel.h"
4

5 Program dft_desc[7] = {
6 {CONFIGI,8,0,0,1,0,1,1,0,8},
7 {MEMI,MEM_IN,1,8,0xFF,LOCAL_MEM,0},
8 {MEMI,MEM_DIAG,1,8,0xFF,LOCAL_MEM,
9 LOCAL_MEM_REGION_SIZE};

10 {MEMI,MEM_OUT, 1, 8, 0xFF, LOCAL_MEM,0};
11 {CONFIGI,8,0,0,0,0,1,1,1,8};
12 {MEMI,MEM_IN,1,8,0xFF,LOCAL_MEM,0};
13 {MEMI,MEM_OUT,1,8,0xFF,LOCAL_MEM,0}
14 };
15

16 void dft64(float *Y, float *X) {
17 enter();
18 float *T23;
19 T23 = initTwiddles64();
20 dmaLoad(LOCAL_MEM, 0, 0, 8, 1, X, 8, 8, 8);
21 dmaLoad(LOCAL_MEM, 1, 0, 8, 1, T23, 8, 8, 8);
22 // Invoke Accelerator
23 executePlan(0, dft_desc);
24 dmaStore(LOCAL_MEM, 0, 0, 1, 8, Y, 8, 8, 8);
25 exit();
26 }

Fig. 3: SPIRAL generated code for the FFT accelerator. This
code uses information from SPIRAL’s FFT description include
input ranges and input and output strides.

Capturing Library Calls. LibraryX-ASIC uses a function
call capturing technique called delayed execution to intercept
library calls at runtime. This transforms library calls from
operations performed on inputs and outputs to specifications
describing the computation to be performed. In the case of
FFTs this includes the type of transform, its dimensionality,
and the types for the call’s input and output. LibraryX-ASIC
implements its delayed execution mechanism through prepro-
cessor directives, with the equivalent library call stored in the
LibraryX-ASIC header file, which gets replaced at compile
time. At runtime the LibraryX-ASIC captured call is invoked.
Here, LibraryX-ASIC extracts the library call information,
building an SPL expression that describes the library call’s



Fig. 4: High level abstract system model of the CPU-
accelerator system. The model consists of a CPU controller
coupled to the accelerator, fast on-chip local memory, and
main memory. The micrograph shows a silicon-verified FFT
accelerator implementing a part of the architecture in Fig. 1.

semantics. This SPL expression is then passed to the SPIRAL
system for code generation.

SPIRAL Code Generation. The SPIRAL code generation
system uses the LibraryX-ASIC SPL expression to generate
the ASIC implementation. This SPL expression goes through
a series of transformation stages within SPIRAL that imple-
ment and optimize the FFT calculation. In the first stage, a
specific algorithm is selected to instantiate the FFT. As the
FFT accelerator uses fixed-function radix-8 codelets, SPIRAL
specializes its algorithmic breakdown for radix-8.

After algorithm selection, SPIRAL lowers the SPL ex-
pression to a Σ-SPL expression. This expression introduces
abstract loops, access patterns, and operations that will be per-
formed in each step of the FFT calculation. SPIRAL converts
these expressions into instructions for the FFT accelerator,
walking the loops and access patterns to generate the load,
store, and computation instructions.

These instructions are called internal code, an intermediate
representation similar to other general-purpose compilers. The
FFT accelerator exposes an intrinsic C library for computation
offload, and SPIRAL produces the intrinsic code for the
FFT computation. Along with the actual operation, SPIRAL
also produces the setup code to move the pointers from the
host device to the accelerator, and performs memory cleanup
once the operation is complete. An example generated FFT
implementation is shown in Fig. 3.

Runtime Compilation and Execution. LibraryX-ASIC
compiles the generated code into a dynamic library and
immediately links against it. This enables access of the gener-
ated functions using the user’s input and output buffers. The
generated program in Fig. 3 consists of two parts: the host
code defined on line 16 in function dft64() which runs on
a controlling CPU and the accelerator code defined by the data
structure dft_desc that is executed on the FFT hardware.
To facilitate code generation targeting the accelerator, we have
designed an API that enables data movement to/from on-chip
local memory and main memory, accelerator invocation, and
the FFT accelerator program itself. We outline the execution
flow of the program on a high level abstract machine shown

Fig. 5: Flow chart demonstrating the execution of the gener-
ated accelerator program.

in Fig. 4. The three main components are (1) main memory
with a mechanism for data transfer, (2) the accelerator which
interfaces to fast on-chip local memory, and (3) a controller
CPU coupled to the accelerator.

Fig. 5 now walks through the execution of the generated
program. The program first initiates input data transfer from
main memory to the accelerator’s local memory with the
function call to dmaLoad(). Once data transfer is complete,
the accelerator is invoked from the CPU and passes a memory
pointer to the base address of the descriptor array, dft_desc.
The accelerator program is defined by this array that constructs
the byte code that programs the accelerator. The accelerator
then fetches, decodes, and executes all descriptors in the
program. Finally, the accelerator signals completion to the
CPU, and a DMA store request is issued to transfer output
data from local memory back to main memory. At function
call exit the accelerator output now exists in the output buffer.

IV. EXPERIMENTAL RESULTS

We show preliminary results of LibraryX-ASIC for FFTs of
various sizes against software implementations.

Experimental Setup. We show both CPU and GPU per-
formance results as baselines to compare against LibraryX-
ASIC. On CPU, we run FFTW on a 20-core Intel Xeon
E5-2698v4 and for GPU evaluation, we run cuFFT on an
Nvidia H100. Accelerator performance results are based on a
cycle-accurate accelerator model that is calibrated against real
silicon measurements from test chips [3], [4] taped on a TSMC
28nm process. The performance model simulates the abstract
machine model shown in Fig. 5, where the controlling CPU is
a single core of the Intel Xeon E5-2698 CPU, main memory
consists of 256 GB of RDIMM DDR4, and the accelerator



Fig. 6: FFTW on CPU vs. LibraryX-ASIC on accelerator
system.

interfaces to 256 kB of banked, SRAM-based local memory.
The FFT accelerator core accelerates a radix-8 twiddle codelet.
For GPU comparisons, we target off-chip HBM3e DRAM with
the same accelerator configuration.

Results. The execution times in microseconds are shown
in Fig. 6 and 7 for power-of-8 1D complex FFTs ranging
from 8 to 4096. LibraryX-ASIC targeting the CPU-accelerator
system achieves speedups of 11x – 23x as compared to running
FFTW on CPU only. The performance results demonstrate an
order of magnitude improvement in execution time for a real
FFT program running on the custom FFT ASIC through the
LibraryX-ASIC framework. Compared to cuFFT running on
an H100 GPU, LibraryX-ASIC also provides up to an order
of magnitude speedup at smaller size FFTs. Improved speedup
against the GPU at larger FFT sizes can be achieved by scaling
the number of hardened codelets in the FFT accelerator. These
results demonstrate the LibraryX-ASIC framework automati-
cally targeting a custom FFT accelerator through CPU and
GPU FFT library calls.

V. RELATED WORK

Accelerator Programming. The Fourier ACcelerator Com-
piler (FACC) [5] is a compiler that translates C FFT implemen-
tations to various FFT accelerators. FACC uses a constraint
system to generate equivalent implementations of FFTs by
modifying incorrect types, loops, and other code structures.
It uses a generate and test system to create different im-
plementations and verify correctness. LibraryX-ASIC shares
the same idea as FACC to be a drop-in replacement for
targeting accelerators. However, they differ in their respective
approaches, as LibraryX-ASIC uses semantics of the library
call to generate optimized FFT implementations. This pro-
vides increased flexibility in implementation compared to the
adapter approach of FACC.

FFT Hardware. The significance of the FFT has natu-
rally led to a vast amount of custom FFT hardware designs
in domain-specific SoCs, communications ASICs, and DSP
systems. Many hardware implementations [6] are designed
and used as standalone accelerators or are later integrated
into a larger system. FFT accelerator functionality is typically
optimized for the target application and thus has limited
support for various FFT sizes or type of transform. There

Fig. 7: cuFFT on GPU vs. LibraryX-ASIC on accelerator
system.

also exists a large body of work on building FFT hardware
generators [7] targeting both FPGAs and ASICs.

VI. CONCLUSION

LibraryX-ASIC is an automated framework for software
portability on custom accelerators. LibraryX-ASIC uses the
semantics of library calls to recognize computations, gener-
ates an optimized implementation using the SPIRAL system,
and executes the generated code on the accelerator device.
Using an example of an FFT program and an FFT accel-
erator, LibraryX-ASIC demonstrates significant performance
improvements compared to the original software library im-
plementation without software modification. We plan to extend
LibraryX-ASIC to support other types of FFTs as well as
spectral method operations such as circular convolution.

VII. ACKNOWLEDGMENT

This work is funded in part by DOE ASCR X-Stack
Bluestone DE-FOA-0002460.

REFERENCES

[1] M. Frigo and S. Johnson, “Fftw: an adaptive software architecture for the
fft,” in Proceedings of the 1998 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181),
vol. 3, 1998, pp. 1381–1384 vol.3.

[2] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “Spiral: Extreme
performance portability,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1935–1968, 2018.

[3] L. Tang, S. Chen, K. Harisrikanth, G. Xu, K. Mai, and F. Franchetti, “A
high throughput hardware accelerator for fftw codelets: A first look,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC),
2022, pp. 1–7.

[4] L. Tang, S. Chen, K. Harisrikanth, G. Xu, F. Franchetti, and K. Mai, “A
1.19ghz 9.52gsamples/sec radix-8 fft hardware accelerator in 28nm,” in
2024 IEEE Hot Chips 36 Symposium (HCS), 2024, pp. 1–1.

[5] J. Woodruff, J. Armengol-Estapé, S. Ainsworth, and M. F. P.
O’Boyle, “Bind the gap: compiling real software to hardware fft
accelerators,” ser. PLDI 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 687–702. [Online]. Available:
https://doi.org/10.1145/3519939.3523439

[6] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Hand-
book of signal processing systems. Springer, 2013.

[7] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer
generation of hardware for linear digital signal processing transforms,”
ACM Trans. Des. Autom. Electron. Syst., vol. 17, no. 2, Apr. 2012.
[Online]. Available: https://doi.org/10.1145/2159542.2159547


