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Abstract

Developing scientific computing applications that are both maintainable and achieve good

performance is a challenging task. At the software level, software design principles in-

crease productivity but obfuscate the ability to easily discover performance opportunities.

This is exacerbated by the complexity of modern hardware systems, which require deep

hardware knowledge to achieve good performance. This leaves application developers

with two main options for performance critical operations, use domain specific software

libraries to write their applications, or ask a performance expert to optimize their applica-

tion. The library approach has the benefit of providing usability with good performance,

but leaves performance on the table, as there are opportunities to optimize across the li-

brary call boundary. Unfortunately, a compiler cannot easily find these because library

calls are treated as black boxes. A performance expert can provide the best performance,

but has to write specialized code removing the library calls and any usability.

To address the gap between writing productive software and achieving optimized per-

formance, this thesis introduces LibraryX, a framework for cross-library-call optimization.

Using LibraryX scientific applications can be written using standard domain specific li-

braries which will be replaced with an optimized implementation during execution with-

out source code modification. This is done through a combination of library call semantic

capture, optimized code generation, and runtime compilation. LibraryX is able to recog-

nize the semantics of library calls or what operation the library call is performing. The

computation semantics is then sent to the SPIRAL code generation system for analysis

and optimization, producing an optimized implementation. This implementation is then



executed in place of the original library call sequence.

We showcase the high level design of the LibraryX framework, specifically showing

how it can be used for a few key domains within scientific computing. These domains

include spectral methods, graph analytics/sparse linear algebra, and structured grids. We

demonstrate how LibraryX uses various library capture mechanisms for each domain and

how the SPIRAL code generation system can optimize specific library call sequences for

each domain. This enables LibraryX to cross not only the library call boundary, but also

the library domain boundary, allowing developers to use different domain libraries simul-

taneously. We then showcase how LibraryX can be extended to support multi-accelerator

systems by plugging into a runtime system called IRIS. We finally show how LibraryX

can be extended to support legacy applications written in Fortran and act as a hardware

accelerator offloading system.
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Chapter 1

Introduction

The thesis of this dissertation is that scientific applications can express performance-

critical computations using various domain-specific software libraries, while benefiting

from domain expert performance optimizations without source code modification. Tradi-

tionally, performance experts are required to identify and implement optimizations that

exist across library calls but come at the cost of removing the calls themselves to incor-

porate those optimizations. This suggests that an automated approach can be developed

to automatically detect these library call sequences, optimize them using performance

experts’ techniques, and execute the optimized implementation in place of the original li-

brary call sequence. This enables application developers to leverage well-defined software

libraries while abstracting away the complexity of low-level performance software.

1.1 Motivation

Complex high-performance computing systems have made writing performance portable

and productive software a significant challenge for scientific application developers. These

systems have had complicated cache hierarchies and microarchitectural features such as

vector instructions, which require deep knowledge to obtain optimal performance. Fur-

thermore, complexity at the software level through programming language constructs

such as objects and portability layers inhibits the ability to automatically discover opti-



mizations. This has led to two options for scientific software developers writing performance-

critical computations: write against domain-specific software libraries that are optimized

for various hardware platforms, or write a highly optimized implementation of the com-

putation in conjunction with a performance expert. Given the highly specialized nature

of the latter approach, the library approach is utilized more often, as it balances software

productivity with performance.

In recent years, the library approach has not provided enough benefit for performance-

critical computations. This is due in part to the scale of the computation as well as the

move to heterogeneous hardware platforms using accelerators. Sequences of library calls

require significant memory space, as the input and output buffers must be allocated in full

for each library call to execute properly. This incurs significant memory traffic for larger

computations. This is exacerbated by accelerators, such as GPUs, which require creating

explicit memory copies and performing data transfers along with the idea of a host plat-

form initialized kernel launch to perform the computation on the accelerator. However,

if these library calls were not implementations, but instead specifications, optimizations

such as algorithm modification, kernel fusion, and memory footprint reduction can be

introduced, enabling significant performance improvements. Unfortunately, this requires

removing the library calls and writing a manually optimized implementation.

Current techniques cannot adequately address both components of this problem, the

expressability of computations (possible through a library abstraction), while providing

low-level performance optimizations that break the abstraction. Library developers could

provide optimized implementations that take advantage of the optimizations mentioned

above. This unfortunately is intractable for every combination of library operator as

there are too many combinations. Furthermore, it is still ineffective for computations

that require the use of multiple libraries. Optimizing compilers, both general-purpose

and domain-specific, are also unable to adequately address this problem. General pur-

pose compilers generally treat library calls as third-party black boxes, not allowing any

inter-procedural optimizations. Domain-specific compilers can provide optimizations like

library developers and can even do it for multi-domains depending on how much they en-
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capsulate. However, utilizing these tools requires domain expert knowledge and replaces

the library call implementation similar to a performance expert.

Ideally, there should exist a solution that allows application developers to write single-threaded,

standard address space, and single instruction stream programs using domain-specific libraries,

and provide optimizations done by performance experts without source code modification. To ad-

dress this, this thesis introduces the LibraryX framework. LibraryX is able to capture

library call sequences, optimize the sequence, and execute the optimized implementation

without user modification of the library call sequence. LibraryX achieves this by trans-

forming library calls from implementations to mathematical specifications. This allows

a mathematical code generation system, such as the SPIRAL code generation system, to

understand library calls and produce optimized variants. Using mathematical software

libraries, SPIRAL can optimize library calls from different domains. LibraryX is demon-

strated through a combination compile time and runtime approach for libraries taught to

they system by domain experts. This thesis shows the LibraryX design, various capture

mechanisms, performance optimizations, execution on various hardware platforms, and

multi-device execution.

1.2 Background

1.2.1 Programming Models

There are a few programming models which describe how to implement libraries to

achieve productivity and performance.

Active Libraries. There have been efforts to automate the optimization of libraries

through the use of generative programming [25]. In generative programming, software

components are generic specifications and heavily parameterized. Then during program

execution, these components are instantiated with a custom, highly optimized imple-

mentation leveraging the specific set of parameters passed to that component. Active

Libraries [91] are software libraries that leverage generative programming for all of the

libraries’ components. This enables flexibility in optimization through low-level opti-
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mizations such as scheduling, and high level optimizations such a loop transformations.

Many modern software systems and core language libraries can be classified as Active

Libraries.

Telescoping Languages. Programming productivity is an important metric when cre-

ating and maintaining new software systems. As computing systems become more com-

plicated, software systems become more challenging to program due to new syntax and

programming models. Telescoping Languages [49] is an idea to reduce this complexity

by allowing developers to write their application in high level domain-specific systems.

Underneath this high-level system is an intelligent compiler that exhaustively searches all

optimization opportunities, providing good performance. This technique bridges the gap

between productivity and performance by allowing simple expression by the developer

along with great performance during execution.

LibraryX builds upon the ideas expressed in Active Libraries and Telescoping Lan-

guages. LibraryX utilizes the semantics of domain specific libraries as a specification akin

to the domain-specific systems in telescoping languages. This transforms any applica-

tion written against static libraries into generative or active applications. Underneath,

LibraryX uses code generation and run-time compilation to replace these library calls

with a high-performance variant. This allows for separation of concerns when developing

and optimizing applications.

1.2.2 Domain-Specific Libraries and Compilers

Providing optimized code for a specific domain is usually hidden away by a domain-

specific library or behind a compiler. Instead, these software systems expose building

blocks that make application development much simpler.

Domain-specific Libraries. Domain specific libraries are critical for developing large

scale applications. These libraries provide good performance for their operators along

with reuse opportunities across the applications’ components. Broadly, domain-specific

libraries are implemented as a collection of operations and implementations, but new

libraries enable developers to interact with library features. The former tend to be C-
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style libraries that use the traditional approach due to limitations of the implementation

language. Meanwhile, modern libraries such as those written in C++ leverage language

features to interoperate with user-provided data structures and user-provided functions,

which live outside the library itself.

Compilers. Compilers have long been seen as the mechanism for automated perfor-

mance of applications. Classical compilers such as LLVM [57] can use a common infras-

tructure to provide optimization and execution on a wide array of target platforms. The

LLVM intermediate representation (IR) is critical to enabling architecture independent

code for analysis and optimization. Recent advances in IR such as MLIR [58] build on this

representation to provide domain-specific optimizations.

If a general-purpose compiler cannot provide enough optimization, domain-specific

compilers can be utilized for the best performance. These compilers have specialized

languages to express operations within that domain, similar to domain-specific libraries.

These compilers then take that expression and generate optimized code that targets a

variety of hardware platforms. They do this by separating the algorithm, how the compu-

tation is expressed, from the schedule, the optimizations that can be performed. There are

many examples of domain-specific compilers such as [82] [100] [41] [54] [32] [45] [93]. In

the domain of machine learning and deep learning, compilers are able to recognize and

optimize computational dags at compile time [64]. These compilers [85] [23] can be used

as a backend to many popular machine learning frameworks [8] [79], automatically trans-

forming these library sequences into optimized implementations that can be executed on

different hardware platforms. Some compilers are even able to translate C programs to

specialized accelerators like the FACC [93] (Fourier ACcelerator Compiler) which can map

legacy FFT programs to FFT accelerators.

LibraryX explores a wide variety of libraries for optimization in the domains of sparse

linear algebra, FFTs, and structured grids. This includes traditional libraries such as [37]

[1] [4], as well as modern libraries such as [3] [6]. LibraryX provides optimizations for

applications using these libraries regardless of their implementation, and in the case of

modern libraries, can utilize their language features. Furthermore, LibraryX is able to op-
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timize across the library call boundary a limitation of current compilers. To provide opti-

mization, LibraryX uses the SPIRAL [32] code generation system. SPIRAL uses Operator

Language (OL) [31] to express and optimize general linear transforms, enabling multi-

domain optimization, rivaling the performance of domain-specific compilers. This opti-

mization process is performed without modification to any of the libraries or the source

application. LibraryX takes inspiration from previous work to automate library optimiza-

tion such as the Broadway [40] compiler. Using domain-expert annotations, Broadway

is able to find opportunities to optimize library call sequences through dataflow analy-

sis. LibraryX goes beyond the scope of Broadway by expanding beyond a single library

domain.

1.2.3 Programming Paradigms

A number of different approaches exist to capture the computation of a given program

at runtime. Once this computation is captured, it can be optimized and replaced by a

high-performance variant.

Inspector/Executor. The Inspector/Executor paradigm enables the optimization of

a computation by first determining its characteristics and then creating an optimized

version that best leverages those characteristics. In the Inspector phase, the program is

executed as written by the user, but in tracing mode. Tracing mode allows important

metadata of the application to be collected. After collection, the relevant computation is

updated based on the collected data to improve performance. The program is then reexe-

cuted using the updated computation, which is the Executor phase. The Inspector/Execu-

tor approach has been used to great effect in the areas of irregular applications [87].

Preprocessor Directives. Preprocessor directives are a way to modify source programs

before invoking the compiler, depending on certain information provided by the program-

mer. Using these directives, programmers can perform textual replacement of operations,

provide compile time branches, and turn on or off sections of code. These directives of-

fer increased flexibility for programmers to support portability to different systems and

environments. Preprocessor directives can be used at any point in the program, but only
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affect lines of code following the directive. The process of using preprocessor directives

to redefine library calls is called compile time library interpositioning.

Operator Overloading. Operator overloading is a technique that modifies the meaning

of a built-in operator in a given programming language. This kind of polymorphism en-

ables the programmer to support custom operations with common keywords. Take, as an

example, the expression a+ b where a and b are integer variables. With operator overload-

ing, programmers can change the meaning of add with the + operator to concatenation,

creating a new integer with high digits a and low digits b. Operator overloading can be

used not only for operations but also for primitive data types such as int and double as

well as classes and objects.

Lazy Evaluation. Lazy or delayed evaluation [44] [59] is a programming language idea

of deferring the execution of operations until they are required. This approach has the

benefit of not performing unnecessary or duplicate work by only computing on access of

the result. This idea is in direct contrast to strict or eager evaluation, which executes an

operation as it is invoked. Generally, lazy evaluation is implemented through tags or dec-

orations to certain operators or data holders, and can experience significant performance

overhead if not implemented properly.

Runtime Compilation. Runtime compilation is a technique to compile and link ex-

ternal code into an already running program. It is an extension of Just-In-Time (JIT)

compilation with the key difference that JIT compilation is seen in interpreted languages

rather than in compiled languages. Runtime compilation is used to improve the perfor-

mance of applications using runtime information and reduce the binary sizes of large

libraries. Parallel programming frameworks such as OpenCL [86] rely strictly on runtime

compilation to be portable across different hardware devices.

LibraryX utilizes all of these programming paradigms to optimize existing applica-

tions. Like the HotSpot JIT compiler [77], LibraryX focuses optimization on critical pieces

of a given computation rather than whole program optimization. LibraryX supports In-

spector/Executor for applications that are in constrained environments and cannot in-

troduce extra runtime overhead. Otherwise, LibraryX’s default model is lazy evaluation,

7



using this paradigm to capture and translate the computation to the SPIRAL internal

language, OL.

1.2.4 Runtime Systems

There have been many runtime systems and compilers for optimizing scientific applica-

tions for multi-device heterogeneity and performance portability. Runtime systems are

key components for providing support for multi-accelerator heterogeneity because they

need to orchestrate different devices and their runtimes. There are runtime systems that

support in-node heterogeneity, such as StarPU [10], OpenACC [75], OpenMP [76], and

OmpSs [28], while systems such as HPX [47], Charm++ [48], Legion [12], and ParSEC [17]

focus on distributed execution. These systems expose abstraction to hide the detail un-

derneath execution and have adopted heterogeneity in their stack. However, IRIS [52]

runtime provides heterogeneity support for extreme cases, such as multi-vendor hetero-

geneity in the same node. Moreover, some of the above mentioned runtime systems also

use concepts similar to DAG and task fusion optimization, like ParSEC [17] using DAG

fusion for the DPLASMA [16] math library while HPX [47] merges tasks at fine granular-

ity by using task inlining. Examples of other such math libraries built on top of a runtime

system are Chameleon [55] and MatRIS [72, 73], however, these libraries rely on other

vendor libraries that provide optimized kernels and do not generate the kernels from the

same abstractions. Portable abstraction Kokkos [29] exposes high-level constructs that

utilize heterogeneity. Recently, there has been work on tightly integrating compilers and

runtime systems to get optimized kernels that efficiently map to large distributed sys-

tems [95] [96]. These systems have special languages to express not only computations to

be performed in their domains, dense and sparse linear algebra, but also constructs for

how these computations should be mapped efficiently to distributed nodes from various

hardware platforms.

IRISX (the integration of LibraryX and the IRIS runtime system) is different from these

systems for a few key reasons. Once compiled, no source code modification is required

to make it portable to different multi-accelerator heterogeneous systems, providing pro-
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gramming productivity. Some effort in the literature [67, 84] showed the efficacy of such

an approach. With the combination of systems like LibraryX and IRIS, IRISX is able not

only to obtain architecture optimized kernels, but also it is able to step into the avenue of

adapting the kernel, DAG and task representation of that application that works best for

the given architecture and domain size, enabling performance portability.

1.2.5 Analysis and Code Generation

SPIRAL [32] is a code generation system that produces optimized C/C++ code for the

specific domain of signal processing. SPIRAL is composed of a series of transformation

stages that take compositions of mathematical expressions and produce optimized source

code for various target platforms. These layers include algorithmic breakdowns, loops

and indexing patterns, and abstract code for compiler transformations.

The SPIRAL internal language is called the Signal Processing Language (SPL). SPL

follows a point-free matrix vector formulation in which every operator is a matrix with

an implicit input vector x and an implicit output vector y. Operators can be composed

to create entire algorithmic expressions for a given computation. We describe some of

the core operators in SPL starting with the Discrete Fourier Transform (DFT) which is

represented in matrix form as

y = DFTnx, DFTn = [ωkℓ
n ]0≤k,ℓ<n, ωn = e−2πi/n. (1.1)

Along with the DFT we represent the n × n identity matrix as In and the stride permu-

tation matrix as Lmn
n . The stride permutation matrix rearranges the input elements as

in + j → jm + i, 0 ≤ i < m, 0 ≤ j < n. If the input vector x is a linearized n × m matrix

stored in row-major order, then Lmn
n will perform a matrix transposition on that input.

SPIRAL uses the Kronecker product to build larger expressions with these operators.

The Kronecker product of two matrices A and B can be expressed as

A ⊗ B = [ai,jB], for A = [ai,j], (1.2)

where all entries ai,j of A are replaced by the matrix ai,jB. Using the Kronecker product

with the identity matrix and DFT yields two expressions, In ⊗ DFTn and DFTn ⊗ In. In
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the former case, a nxn block diagonal matrix is created with DFT as each block, while

in the latter case a higher dimensional matrix is created with each entry having a block

diagonal structure using DFT. We can express the popular Cooley-Tukey FFT algorithm

using these primitives,

DFTn =
(
DFTm ⊗ Ik

)
Tn

k
(

Im ⊗DFTk
)

Ln
m, n = mk, (1.3)

where T is the twiddle matrix. The Kronecker product can also be used to build higher-

dimensional DFTs such as 2D and 3D DFTs. They take the form

DFTm×n = DFTm ⊗ DFTn, (1.4)

DFTk×m×n = DFTk ⊗ DFTm ⊗ DFTn. (1.5)

In addition to DFTs, SPL can define other operations like zero-padding, taking an input

and embedding it inside a larger input of zeros in all dimensions, and extraction/copy-

out, taking a smaller input out of a larger input. We first define the rectangular identity

matrix as

In×N = [In |0] , 0 ∈ Rn×(N−n) and IN×n = I⊺n×N . (1.6)

Using the rectangular identity, zero padding and extraction take the form

y = IN×n x and y = I⊺N×n x, (1.7)

where the rectangular identity copies elements from a vector x to the output vector y

with zeros everywhere else. Similarly, copy-out/extraction uses the transposed rectan-

gular identity matrix in zero-padding. These transforms can be performed on higher-

dimensional inputs using the Kronecker product. We take advantage of these mathemati-

cal properties to make implementation decisions that yield better performance on various

hardware platforms.

Σ-SPL. Once an SPL expression has been optimized it can be lowered to a Σ-SPL

expression. Σ-SPL introduces the concepts of abstract loops and indexing functions. This

enables loop-based optimizations previously unavailable in SPL alone. We discuss some

of the key operators in Σ-SPL starting with the row and column basis vectors.

e1×N
i = [0, ..., 0, 1, 0, ..., 0] ∈ R1×N eN×1

i =
[
e1×N

i
]⊺ (1.8)
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These basis vectors can be used to describe the basis Gather and Scatter matricies,

G f =
n−1

∑
i=0

en
i
(
eN

f (i)
)⊺ (1.9)

S f =
n−1

∑
i=0

(
eN

f (i)
)⊺en

i (1.10)

which are parameterized by an index mapping function

f : In → IN (1.11)

where Ik = {0, 1, ..., k − 1} is the integer interval from 0 to k − 1. We now define a few

basic index mapping functions

ın : In → In, i 7→ i (1.12)

(j)n : I1 → In, i 7→ j (1.13)

ℓmn
n : Imn → Imn, i 7→

⌊
i
n

⌋
+ m(i mod m). (1.14)

These index mapping functions provide the following properties

Gın = In Sın = In (1.15)

G(j)m = e1×m
j S(j)m = em×1

j . (1.16)

The Gather matrix indexes an input vector based on a provided linear mapping func-

tion. Similarly, a Scatter matrix writes the output based on a provided linear mapping

function. As these functions themselves are linear transforms, we can apply the tensor

product to index mapping functions f : Im → IM and g : In → IN as

f ⊗ g : Imn → IMN : i 7→ N f
( ⌊ i

n

⌋ )
+ g
(
i mod n

)
(1.17)

The tensor product definition gives the following compatibility conditions
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G f⊗g = G f ⊗ Gg (1.18)

G f⊗g⊗h = G f ⊗ Gg ⊗ Gh (1.19)

Gin⊗(j)n = Gin ⊗ G(j)n (1.20)

G(j)n⊗in = G(j)n ⊗ Gin (1.21)

G f ◦g = GgG f (1.22)

and the identity S f = G⊺
f for f , g, h ∈ ın, (j)m. Using these primitives, we can translate an

SPL expression into a Σ-SPL expression using the following basic translation rules.

Im ⊗An →
m−1

∑
j=0

S(j)m⊗ın AnG(j)m⊗ın (1.23)

Am ⊗ In →
n−1

∑
j=0

Sım⊗(j)n AmGım⊗(j)n (1.24)

Additionally, there are some optimization identities that can be applied to Σ -SPL

expressions that are listed below.

( m−1

∑
j=0

Aj
)

B =
( m−1

∑
j=0

AjB
)

(1.25)

B
( m−1

∑
j=0

Aj
)
=
( m−1

∑
j=0

BAj
)

(1.26)

G(j)m⊗ın Lmn
m = Gın⊗(j)m (1.27)

Beyond Linear Transforms. In recent years, SPIRAL has been expanded to domains

outside of FFTs and linear transforms, using another internal language called Operator

Language (OL) [31], a superset of SPL. OL introduces multi-linear operators into the SPI-

RAL system. These operations include scalar/dot product, convolution, filters/stencils,

and matrix multiplication. The OL representation of scalar product of two vectors of

length n with scalars α and β is,

y = ([α, β]⊗ In)x, x =

[
x1

x2

]
, (1.28)
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where x is a vertical concatenation of the two input vectors x1 and x2. Using OL, SPIRAL

can generate optimized code for other scientific domains, including graph analytics [83],

stencils and structured grids [56] [42] [68], and cryptography [98].

1.3 Contributions

In this dissertation, the goal is to demonstrate an approach that provides a separation of

concerns where scientific application developers can express computations using compos-

able operations (library calls) without low-level performance optimizations. By describ-

ing computations in this manner, an automated system can reason about performance

optimizations, providing an optimized implementation in place of the original library

implementation. This work provides the following contributions towards that goal.

• Recognizes that scientific library primitives have semantics that can provide a high-

level description of a computation independent of the primitive implementation.

• Develops an approach, LibraryX, that leverages the semantics of library calls by

treating them as specifications rather than implementations. Using techniques such

as preprocessor library interpositioning, Inspector/Executor, and operator overload-

ing, library calls can produce their semantic meaning for analysis and optimization.

• Library semantics can be taught to the SPIRAL code generation system to discover

optimizations through high-level analysis and automatically generate an implemen-

tation that has significant performance benefits. This enables whole computation

(solver) optimization as opposed to single kernel/primitive optimization.

• Optimizes both single-library and multi-library call sequences, addressing the com-

binatorial explosion problem of providing optimized primitives for all combinations

of library calls.

• Showcases how the interplay between code generation and an intelligent runtime

system can finetune application performance on diverse multi-accelerator hardware

platforms.
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• Demonstrates the efficacy of this approach by applying it to multiple domains within

scientific computing including spectral methods, graph analytics/sparse linear alge-

bra, and structured grids, and showed that it can be expanded to support additional

front-end languages and accelerators.

1.4 Thesis Outline

Chapter 2 presents the design details of the LibraryX framework. This design shows

how library calls are captured, how the code generation system SPIRAL optimizes and

produces an equivalent implementation, and finally how the optimized implementation

can be executed on various hardware platforms. In addition, a system walkthrough is

provided showing each step in detail for the specific example Hockney Freespace Convo-

lution.

Chapter 3 shows a specific instantiation of LibraryX for the graph analytics space,

called GBTLX. We introduce the system design for GBLTX and walk through a specific

example of how a graph analytics problem, triangle counting, can be optimized using this

system. Unlike the general LibraryX framework, GBTLX showcases a different strategy

for library capture and recognition, called Inspector/Executor. This showcases how the

main components of LibraryX can be specialized for different use cases.

Chapter 4 shows another instantiation of LibraryX, but for structured grid or stencil

applications, called ProtoX. The focus in this chapter is to showcase how the LibraryX

framework can be utilized by modern libraries that leverage modern software features.

Specifically, it discusses the capture mechanisms for user-defined lambda expressions us-

ing two different strategies, operation capturing, and callbacks.

Chapter 5 moves beyond LibraryX by introducing IRISX, a tight coupling LibraryX’s

code generation system SPIRAL with a heterogenous runtime system called IRIS. We show

the system design of IRISX and highlight the unique benefits of having a code generator

and runtime system communication with each other. Using a structured grid application,

we show how IRISX can achieve automatic performance portability from a single source
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through the tuned selection of computation kernels and task scheduling.

Chapter 6 discusses expanding the scope of LibraryX by modernizing legacy applica-

tions in Fortran and offloading to custom build accelerators. In the case of legacy applica-

tions, FortranX takes unmodified Fortran source code for cyclic convolution and replaces

it with an IRISX implemented version. For custom built accelerators, LibraryX_ASIC

demonstrates how an unmodified FFTW program can execute through LibraryX on a cus-

tom built FFT accelerator. Together, these two instantiations demonstrate the adaptability

of LibraryX to new frontend languages as well as new hardware platforms.

Chapter 7 presents detailed performance results of LibraryX and its various instantia-

tions. The first set of experiments talk about LibraryX, GBTLX, and ProtoX. It showcases

optimization of library call sequences within and across multiple domain specific libraries.

The next set of results focuses on IRISX, showing performance portability and scalability

for a structured gird application on large supercomputers. Finally, the last set of results

shows the expansion of LibraryX to new languages like Fortran and new accelerators.

Chapter 8 presents conclution remarks and future directions.
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Chapter 2

LibraryX Design and Example

Walkthrough

Domain-specific software libraries have been the de facto standard for achieving perfor-

mance productivity in scientific computing. These libraries provide key operators that

make efficient use of available hardware resources. Using software libraries, application

developers can focus on developing new algorithms efficiently, while library developers

can focus on the design and performance of library operators. However, this model has

opportunities for optimization both at the software and hardware level. At the software

level, there may be opportunities to fuse library calls, increasing arithmetic intensity and

data reuse, while removing unnecessary temporaries. At the hardware level, there may

be more efficient hardware to perform a specific computation, which is inaccessible due

to the library against which the application was written. The only way to introduce these

optimizations is to manually rewrite the library implementation by hand, removing the

library calls and productivity.

The focus of library developers is on providing a set of key operators for a specific

domain that provide good performance on hardware platforms [60] [27] [19]. These oper-

ators need to support a wide range of inputs and implementations, thereby providing

both portability and efficiency. By expanding the scope to include optimized sets of



Figure 2.1: Performance comparison between various vendors and LibraryX implementa-
tion of Hockney Freespace convolution (lower is better). LibraryX outperforms all vendor
implementations with speedups of 5x, 9x, and 8x respectively.

operators, the combinatorial explosion of new operators becomes difficult to maintain.

Additionally, executing on various hardware devices requires different implementations

for each operator with potentially non-uniform definitions, further burdening the library

developer.

Automated approaches such as general purpose [57] [58] and domain-specific com-

pilers [82] [100] [54] [45] [95] [96] could be used to resolve this abstraction breakdown.

Unfortunately, each of these falls short in keeping the library implementation view for

the application developer while providing the performance of a domain expert. General-

purpose compilers are unable to easily cross the library call boundary, often treating them

as black boxes. This limits the compilers ability to easily discover opportunities for op-

timization across library calls. Furthermore, while domain-specific compilers have the

necessary performance, they require either learning a new language to extract the correct

implementation or lack the interface to be readily utilized like a library. As a result, their

implementation needs to be manually introduced in a similar way as a domain expert,
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y =
(

Ik×K ⊗ Im×M ⊗ In×N
)(

iDFTK×M×N
)(

Diag f
)(

DFTK×M×N
)(

IK×k ⊗ IM×m ⊗ IN×n
)
x

(2.1)

Figure 2.2: Hockney Freespace Convolution illustration and SPL derivation from library
calls.

breaking the library productivity model.

To address this challenge of providing a standard interface with opportunities for ad-

vanced optimization, this paper presents LibraryX, a framework for optimizing algorithms

written with standard library operators. Rather than rewriting algorithms, LibraryX treats

library calls as specifications describing the computation to be performed, instead of im-

plementations. LibraryX uses these specifications to create an equivalent representation

of the computation. This representation is passed to the SPIRAL code generation system

to understand the computation and produce an optimized implementation for various

hardware backends. LibraryX then transparently executes the generated implementation

in place of the library-based implementation, writing the result to the user’s output buffer.

By treating library calls as specifications, LibraryX can optimize library-based algo-

rithms without modification of the source code implementation. With LibraryX, appli-

cation developers do not have to worry about interoperability of libraries for different

domains or different hardware targets. LibraryX can dynamically generate optimized

kernels for all recognized operators and redirect execution to any supported hardware

platform. This results in significant performance improvements as shown in Fig. 2.1, al-

lowing for a renewed focus on application features rather than performance engineering.
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2.1 Background

Large scientific applications rely heavily on software libraries as both a productivity tool

and a performance tool. Generally, scientific applications are written as a collection of

solvers performing a specific computation with glue logic to communicate information

between solvers. Scientific libraries abstract common computation patterns into functions

that application developers can leverage to implement their solvers. As solvers can span

a wide variety of domains, there are many scientific libraries that tackle a specific set

of operations within the space. Thanks to libraries, application developers can focus on

library interoperability within a solver as opposed to operator performance.

2.1.1 Main Example: Hockney Freespace Convolution

An important kernel within the scientific community is circular convolution, as it has a

wide application in spectral method calculations, PDE calculations, and other numerical

solvers. There are two high-level implementations of convolution, direct convolution and

FFT-based convolution. Direct convolution has a complexity of O(n2) when each of the

two inputs is of size n. For large inputs, this time complexity is not efficient, so application

developers use the FFT-based convolution with complexity O(n log n). This generally

involves three operations that can be easily implemented with software libraries. These

operations are a forward DFT on the two inputs, a pointwise multiplication of the forward

DFT intermediates, and an inverse DFT to get the convolved output.

The general form of circular convolution can be further specified depending on the

application. In the case of PDE solvers, specifically Poisson solvers in Freespace, the

Hockney Freespace convolution [43] is used. Unlike circular convolution with periodic

boundaries, Hockney Freespace convolution extends circular convolution for unbounded

domains. This is done through zero-padding the inputs to account for the infinite domain

before the convolution operation and extracting the specific resulting region of interest

afterwards. We illustrate the Hockney Freespace Convolution calculation in Fig. 2.2 along

with its mathematical specification, discussed in detail in subsequent sections.
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2.2 LibraryX Design

We discuss in detail the key stages of LibraryX shown in Fig. 2.3. In the first stage, a

library application’s computational directed acyclic graph (DAG) is captured. The DAG

is then unified into a single high-level description of the computation. This description

is then taken through the stages of the SPIRAL code generation system, generating opti-

mized source code. The generated code is then executed on a hardware target provided

at build time.

Figure 2.3: The flow of LibraryX from library call capture, to code generation, and finally
backend hardware execution. The LibraryX Runtime can be expanded to support any
new hardware platform or other runtime systems.

2.2.1 Capturing the Library Frontend

To capture a computation written using libraries without modifying the source imple-

mentation, there needs to be a mechanism to recognize and store library call information.

LibraryX’s top-level header file includes the original libraries header file along with a

section of key operators for that library in the shim. The shim contains LibraryX imple-
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mentations of these operators, rather than the base library implementation. At the end

of the shim are the preprocessor directives to replace the library operator calls with the

shimmed calls. This allows LibraryX to support any library-specific structs and utility

operations.

At runtime, the LibraryX optimized program calls the shimmed operations instead of

the library operations. By controlling the implementation, LibraryX can transform these

operators from performing operations to gathering information about the operator. This

information includes the function and its parameters, along with the SPL expression for

that operation, the SPIRAL equivalent representations of the given operation. After all the

operators have been collected LibraryX has created a computation DAG of the program

where the inputs and outputs are the edges and the operators are the nodes.

The LibraryX backend is invoked as part of the last library call in a multi-library-

call sequence. Here the LibraryX backend object is instantiated and a function pointer

for the generated code is declared. If that function pointer has not been populated, Li-

braryX will generate and compile the function and pass it to the function pointer. This

function pointer will then be used with the captured input and outputs to perform the

optimized computation. LibraryX can also intercept an output buffer’s memory access

function through operator overloading, placing the LibraryX backend in the access func-

tion directly rather than the final library call.

2.2.2 DAG Unification and Abstraction Lifting

SPIRAL needs to transform the DAG representation, consisting of nodes of the SPL ex-

pressions with edges that show how inputs and outputs flow, into a unified SPL expres-

sion. During this process, SPIRAL uses its internal database to determine if the incoming

DAG matches any known abstractions. If a match is found, SPIRAL will replace the DAG

representation with a single abstract expression of the computation. This moves from a

DAG representation from the library calls to a dataflow representation in SPL. This SPL

expression can then be manipulated with algebraic rules to optimize the expression. Some

of these rules are shown in Table 2.1. As part of the unification process, SPIRAL will con-
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figure which of these rules should be applied to the unified abstraction. For highly tuned

implementations, SPIRAL will also determine the application order of these rules. The

final optimized expression will go through SPIRAL’s code generation process providing

implementations for various hardware platforms. This process is what enables SPIRAL to

move from equation 2.1 to 2.2. This process will be shown in detail in Section 2.4.

2.2.3 SPIRAL Optimized Code Generation

After SPL unification and rule configuration, SPIRAL goes through its transformation

stages, producing optimized code for a specific target hardware platform provided by

the user. Within the SPL layer, SPIRAL has the flexibility to determine the best algorith-

mic implementation for an SPL expression. Examples include various FFT algorithms

like Cooley-Tukey and Rader, various NTT algorithms, and various graph analytics algo-

rithms. These decisions are a derived property of the configured rules, input, and target

device captured through the front-end of LibraryX.

After the top-level implementation decisions have been made in SPL, SPIRAL lowers

the SPL expression into a Σ-SPL expression. The Σ-SPL layer introduces loops and index-

ing functions for SPL operators. SPIRAL can perform optimizations such as loop merging

and index simplification through an extensive term-rewriting system.

The optimized Σ-SPL expression is then sent through SPIRAL’s basic block compiler

where traditional compiler operations can be performed. This layer, named internal code,

has an abstract representation of traditional source code similar to other compiler inter-

mediate representations. Optimizations performed at this level include dead code elimi-

nation, copy propagation, and memory pooling. The final optimized internal code is then

taken through a source code parser, which generates source code for the target platform.

In addition to the generated code, SPIRAL provides metadata about the generated

code and its parameters. This metadata includes any intermediate memory names, with

their types and sizes, kernel names, with their thread geometry and signature, as well

as expected number of inputs and outputs with their associated data types. LibraryX’s

kernel execution backend utilizes this metadata to perform proper setup for hardware
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execution.

2.2.4 Runtime Execution Environment (REE)

LibraryX abstracts hardware execution using an object-oriented design, instantiating the

appropriate hardware back-end based on flags passed at configure time. These backend

implementations vary slightly for CPUs, GPUs, and ASICs. Generally, all backends follow

three distinct phases: metadata parsing and setup, runtime compilation, and kernel exe-

cution with the user captured input and output. The generated code and fully initialized

backend are stored in memory for reuse within the program, with the generated code

being cached to disk for future program execution.

The simplest backend is the CPU backend. As the CPU is the host device on modern

systems, it is the default memory region of most programs and requires little in terms

of setup and execution. The metadata for the CPU backend are the kernel names for

initialization, kernel computation, and destruction. The initialization functions handle

any temporary memory space creation and constant values, while destruction frees the

memory. LibraryX uses dynamic library generation and linking for runtime compilation.

Invoking a standard compiler, LibraryX builds a dynamic library file with the generated

code and links to it, invoking the functions provided by the metadata.

The GPU backend leverages the runtime compilation APIs provided by the various

GPU hardware vendors. As GPU’s have distinct memory spaces, LibraryX has to do some

additional setup for GPU kernel execution. SPIRAL metadata is initially parsed to gather

the number of temporary memory objects to allocate. In addition, the kernel names,

their launch parameters, and invocation order are collected. The generated code is then

compiled and invoked with the collected parameters, linking against the user’s memory

objects, and LibraryX created temporaries.

The ASIC backend draws from the techniques utilized in the CPU and GPU backends.

As ASICs can have a wide range of execution semantics, we discuss two techniques for

ASIC offloading. Some ASICs utilize an intrinsic or programming language extension

model similar to that of GPUs for execution. In this case, LibraryX can utilize the same
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dynamic library building strategy as the CPU backend. LibraryX queries the system

to find the intrinsic header files and bundles them into the runtime generated dynamic

library. Other ASICs only support running bytecode or machine-specific code. In this

case, LibraryX needs to invoke a separate toolchain to take the generated code, convert

it to the desired ASIC representation, execute the code, and then retrieve its results to

give back to the LibraryX program. This is achieved through invocation of toolchains via

subprocesses.

Hardware Target Redirection. REE enables LibraryX to execute a computation on a

target platform different from the system for which the source implementation was writ-

ten. By converting the user computation into a specification, LibraryX has the ability to

use any backend configured by the user. LibraryX only needs to keep track of the memory

space in which the user-provided inputs reside. Using the same library call capture idea,

LibraryX can capture hardware-specific memory creation calls for a given program. In the

captured calls, LibraryX sets flags for the memory space from which the user parameters

came from, enabling the movement of memory between distinct spaces transparently. The

preprocessor directives used for capturing memory creation calls come after LibraryX’s

definition. Therefore, LibraryX can perform memory creation and memory copies using

standard APIs even though the calls have been changed for the user program.
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1 #include <iostream>
2 #include <complex>
3 #include <vector>
4 #include "fftw3.h"
5 #include "Proto.H"
6 #include "libraryX.hpp"
7 using namespace Proto;
8 BoxData<double,1> zeroPad(BoxData<double 1>& input, std::vector<int> dim ={1,2,3}) {
9 BoxData output(Box(Point::Zeros(), Point({dim[0], dim[1], dim[2]})));

10 input.copyTo(output);
11 return output;
12 }
13 BoxData<double,1> extract(BoxData<double 1> large_out, std::vector<int> dim ={1,2,3}) {
14 BoxData small(Box(Point::Zeros(), Point({dim[0], dim[1], dim[2]})));
15 large_out.copyTo(small);
16 return small;
17 }
18
19 int main() {
20 int n = 32; int m = 32; int k = 128;
21 int N = 64; int M = 64; int K = 256;
22 u_int f = FFTW_ESTIMATE;
23
24 BoxData<double,1> input(Box(Point::Zeros(), Point({n-1,m-1,k-1})));
25 BoxData<std::complex<double>,1> input2(Box(Point::Zeros(), Point({N-1,M-1,(K/2+1)-1})));
26 BoxData<double, 1> output;
27
28 // will not be materialized
29 BoxData<double,1> linput;
30 BoxData<double,1> loutput(Box(Point::Zeros(), Point({N-1,M-1, K-1})));
31 std::vector<std::complex<double>> temp(N*M*(K/2+1));
32 std::vector<std::complex<double>> fout(N*M*(K/2+1));
33
34 buildInput(input);
35 buildInput(input2);
36
37 // no-op, just collecting parameters
38 linput = zeroPad(input, {N-1,M-1,K-1});
39
40 // no-op, just collecting parameters
41 fftw_plan p = fftw_plan_dft_r2c_3d(N, M, K, linput.data(), (fftw_complex*)fout.data(), f);
42 fftw_execute(p);
43
44 // no-op, just collecting parameters
45 auto complex_multiply = std::multiplies<std::complex<double>>{};
46 std::transform(out.begin(), //start location
47 fout.begin(), //end location
48 input2.data(), //2nd input
49 temp.begin(), //output
50 complex_multiply); //operator
51
52 // no-op, just collecting parameters
53 fftw_plan p2 = fftw_plan_dft_c2r_3d(N, M, K, (fftw_complex*)temp.data(), loutput.data(), f);
54 fftw_execute(p2);
55
56 // no-op, just collecting parameters
57 output = extract(loutput, {n-1,m-1,k-1});
58
59 // output now contains the correct result,
60 // but temporaries were never materialized
61 checkOutput(output);
62 }

Figure 2.4: Source code for Hockney Freespace Convolution. This sequential C++
code is transparently executed on a GPU after it is dynamically translated to CUD-
A/HIP/OpenCL.
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1 //libraryX.hpp
2 #ifndef LIBRARY_HPP
3 #define LIBRARY_HPP
4 BoxData<double,1> captured_in;
5 double *captured_in2;
6 BoxData<double,1> captured_out;
7 std::vector<std::string> script;
8 libraryx_zeroPad(BoxData<double 1>& input, std::vector<int> dim ={1,2,3}) {
9 captured_in = input;

10 std::string dims = to_string(dim);
11 script.push_back("I("+dims+ "),input");
12 }
13 libraryx_fft_r2c_3d(int x, int y, int z, double *input, fftw_complex *output, u_int flag) {
14 std::string dims = to_string(x) + "," + to_string(y) + "," + to_string(z);
15 script.push_back("DFT(" + dims +"), input, output");
16 }
17
18 libraryx_transform(InputIt first1, InputIt last1, OutputIt d_first, UnaryOp unary_op ) {
19 captured_in2 = (double*)get_pointer(last1);
20 script.push_back("Diag, last");
21 }
22
23 libraryx_fft_c2r_3d(int x, int y, int z, double *input, fftw_complex *output, u_int flag) {
24 std::string dims = to_string(x) + "," + to_string(y) + "," + to_string(z);
25 script.push_back("DFT(" + dims +"), input, output");
26 }
27
28 libraryx_extract(BoxData<double 1>& input, std::vector<int> dim ={1,2,3}) {
29 captured_out = output;
30 std::string dims = to_string(dim);
31 script.push_back("I("+ dims + "), output");
32
33 //create LibraryX Obj and generate code
34 LibraryXObj lb;
35 void (*funcPtr)(double*, double*, double*) = nullptr;
36 if(funcPtr == nullptr) {
37 funcPtr = lb.compile(script);
38 }
39 funcPtr(captured_out.data(), captured_in.data(),
40 captured_in2);
41 }
42
43 #define zeroPad libraryx_zeroPad
44 #define fftw_plan_dft_r2c_3d libraryx_fft_r2c_3d
45 #define fftw_plan_dft_c2r_3d libraryx_fft_c2r_3d
46 #define fftw_execute libraryx_execute
47 #define transform libraryx_transform
48 #define extract libraryx_extract
49 #endif

Figure 2.5: LibraryX header file showing LibraryX shimmed library calls using the C
preprocessor and library interpositioning.

1 //spiral_generated_code.cu
2 void generated_code(double *Y, double *X, double *symbl) {
3 ker_hockney0<<<g1, b626>>>(X);
4 ker_hockney1<<<g2, b627>>>();
5 ker_hockney2<<<g3, b628>>>(symbl);
6 ker_hockney3<<<g4, b629>>>();
7 ker_hockney4<<<g6, b631>>>(Y);
8 }

Figure 2.6: SPIRAL generated function which contains the GPU kernels to compute the
optimized Hockney Freespace Convolution.
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2.3 End-to-End Example: Hockney Freespace Convolution

We walk through how LibraryX optimizes Hockney Freespace convolution. We show the

following steps:

• Capturing library call semantics as a DAG specification.

• Recognizing and lifting DAG specification to high-level abstraction.

• Generating optimized implementations for the abstraction.

• Compiling and executing the generated code at runtime.

This process is done transparently to the user after compiling with a standard toolchain,

and can be thought of conceptually as moving from Fig. 2.4 to Fig. 2.5 during program

execution using code in Fig. 2.6.

Delayed Execution. To understand the Hockney computation, its semantics must

be captured. This is done through LibraryX’s lazy evaluation mechanism. Instead of

executing a library call, LibraryX captures and transforms that call into a no-op. This

allows LibraryX to side-effect the library call to expose its semantics details as SPL and

generate a computation DAG of the operation. For Hockney Freespace Convolution this

means that a sequence of SPL operators are generated consisting of the zero padding, the

FFT, pointwise multiply, inverse FFT, and output extraction. In extraction, LibraryX gets

invoked to call the rest of the system. This translation is shown in Table 2.2.

Abstraction Lifting and Code Generation. After a sequence of operations is captured

as an SPL DAG its needs to be recognized. We leverage SPIRAL’s extensive pattern match-

ing engine to discover if the input SPL DAG is a known pattern. If successful, the DAG

will be lifted into a single SPL expression that encapsulates the computation. This expres-

sion can then be optimized using algebraic manipulation rules as discussed in Section 2.4.

This optimized expression then goes through the SPIRAL code generation system, con-

sisting of algorithm selection, Σ-SPL, internal code, and finally source code for various

hardware targets.

Runtime Compilation. After code generation is complete, the generated code needs

to be compiled and linked to the running application executing in place of the delayed im-
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Figure 2.7: Optimized Hockney Freespace Convolution illustration and derivation. Li-
braryX automates what was done manually as part of a PhD thesis [90].

plementation. This is done through the LibraryX Runtime Execution Environment (REE).

The REE parses the generated metadata of the SPIRAL generated code to compile and

execute on a given target platform such as CPUs or GPUs. This runs the generated ker-

nels shown in Fig. 2.5 by populating and executing a static function pointer instantiated

by LibraryX. When the user then accesses the data from the output buffer, it is populated

with the output from the LibraryX kernels.

2.4 Hockney Freespace Convolution Optimization Derivation

Having shown the end-to-end transformation of Hockney Freespace convolution, we now

show how SPIRAL automates the process of DAG unification and abstraction lifting.

Given an input x = RNx×Ny×Nz where n = Nx, m = Ny and k = Nz, and N = 2n, M

= 2m, and K = 2k, Hockney Freespace convolution can be expressed as the point-free

composition of five distinct operations shown in SPL as equation 2.1. This equation was

semantically captured by LibraryX using Table 2.2. The colors for each operation represent

a unique function call in the source application, and the expression is applied from right

to left. This SPL composition can be optimized by applying mathematical transformation

rules and modifying each expression to provide significant computational benefits. In

equation 2.1, the composition of the expressions green and blue shows the zero expansion

of the input with the 3D forward DFT. Using identity expansion rules 2.1 and 2.1 in Table
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Table 2.1: FFT manipulation formulas using the Kronecker Product. Let A be n1 × m1, B
be n2 × m2, C be n3 × m3 and D be n4 × m4 matrices. For rules 2.1, 2.1 and 2.1, m1 = n3
and m2 = n4.

Property Operation

Identity Expansion Imn = Im ⊗ In (2.4)

Identity Associativity A ⊗ B = (A ⊗ In2 )(Im1 ⊗B) (2.5)

Mixed-Product1 (A ⊗ B)(C ⊗ D) = (AC)⊗ (BD) (2.6)

Mixed-Product2 (A ⊗ In2 )(Im1 ⊗B) = (In1 ⊗B)(A ⊗ Im2 ) (2.7)

Decomposition A ⊗ B = (A Im1 ⊗ In2 B) = (In1 A ⊗ B Im2 ) (2.8)

Left Identity Distribution In ⊗(AC) = (In ⊗A)(In ⊗C) (2.9)

Right Identity Distribution (AC)⊗ In = (A ⊗ In)(C ⊗ In) (2.10)

Permuted Commutativity A ⊗ B = Lmn
n (B ⊗ A)Lmn

n (2.11)

Structured Kronecker Product Am×m
i ⊗i In = Lmn

m

(⊕n−1
i=0 Am×m

i

)
Lmn

n (2.12)

Pruned DFT PrunedDFTn
N = DFTN×n IN×n (2.13)

Table 2.2: SPL formulation of standard library calls used to calculate Hockney Freespace
Convolution. Each expression has an input vector x multiplied by a matrix operation and
stored in an output vector y.

Library Call SPL Formulation

y = zeroPad1D(x,n,N) y = IN×n x

y = zeroPad2D(x,{k,m},{K,M}) y =
(

IK×k ⊗ IM×m
)
x

y = zeroPad3D(x,{k,m,n},{K,M,N}) y =
(

IK×k ⊗ IM×m ⊗ IN×n
)
x

Forward 3D FFT y = DFTk×m×nx
Element-wise Multiply y = Diag f x

Inverse 3D FFT y = iDFTk×m×nx
y = extract1D(x,N,n) y = In×N x

y = extract2D(x,{K,M},{k,m}) y =
(

Ik×K ⊗ Im×M
)
x

y = extract3D(x,{K,M,N},{k,m,n}) y =
(

Ik×K ⊗ Im×M ⊗ In×N
)
x

2.1 this expression can be rewritten as

(
DFTK ⊗ IMN

)(
IK ⊗DFTM×N

)(
IK×k ⊗ IMN

)(
Ik ⊗ IM×m ⊗ IN×n

)
. (2.3)

This expansion breaks the 3D zero expansion and the 3D DFT into a 2D expansion

and 2D DFT both in dimensions x and y, and a 1D DFT and a 1D zero expansion in

the z dimension. As these expressions are Kronecker products with identity matrices the

mixed-product2 rule 2.1 is applied given a reordered expression

(
DFTK ⊗ IMN

)(
IK×k ⊗ IMN

)(
IK ⊗DFTM×N

)(
Ik ⊗ IM×m ⊗ IN×n

)
. (2.14)

This reordering exposes another key optimization through the application of the right
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1 fftw_plan planx, plany, planz;
2
3 input = zeroPad(in, {N,N,N});
4
5 plan_x = fftw_plan_many_dft_r2c(
6 1, &N, N * N, input, NULL, 1,
7 N, output, NULL, 1, N/2 + 1,
8 FFTW_MEASURE);
9

10 plan_y = fftw_plan_many_dft(
11 1, &N, N * (N/2 + 1), output,
12 NULL, N/2 + 1, 1,
13 output, NULL, N/2 + 1,
14 1, FFTW_FORWARD, FFTW_MEASURE);
15
16 plan_z = fftw_plan_many_dft(
17 1, &N, N/2 + 1, output, NULL,
18 N * (N/2 + 1), 1, output, NULL,
19 N * (N/2 + 1), 1, FFTW_FORWARD,
20 FFTW_MEASURE);
21
22 fftw_execute(planx);
23 fftw_execute(plany);
24 fftw_execute(planz);

1 DFTI_DESCRIPTOR_HANDLE desc_x,
2 desc_y, desc_z;
3 input = zeroPad(in, {N,N,N});
4
5 DftiCreateDescriptor(&desc_x,
6 DFTI_DOUBLE, DFTI_REAL,
7 1, N);
8 DftiCreateDescriptor(&desc_y,
9 DFTI_DOUBLE, DFTI_COMPLEX,

10 1, N);
11 DftiCreateDescriptor(&desc_z,
12 DFTI_DOUBLE, DFTI_COMPLEX,
13 1, N);
14
15 DftiSetValue(desc_x,
16 DFTI_NUMBER_OF_TRANSFORMS,
17 N * N);
18 DftiSetValue(desc_x,
19 DFTI_OUTPUT_DISTANCE,
20 N/2 + 1);
21 DftiSetValue(desc_x,
22 DFTI_PLACEMENT,
23 DFTI_NOT_INPLACE);
24 DftiCommitDescriptor(desc_x);
25 DftiSetValue(desc_x,
26 DFTI_INPUT_DISTANCE, N);
27 /* ... 20 more lines ...*/
28 DftiComputeForward(desc_x,
29 input, output);
30 DftiComputeForward(desc_y,
31 output, output);
32 DftiComputeForward(desc_z,
33 output, output);

1 rocfft_plan plan_x, plan_y, plan_z;
2
3 input = zeroPad(in, {N,N,N});
4
5 size_t lengths_x[1] = {N};
6 rocfft_plan_description desc_x,
7 desc_y, desc_z;
8 rocfft_plan_description_create(
9 &desc_x);

10 rocfft_plan_description_create(
11 &desc_y);
12 rocfft_plan_description_create(
13 &desc_z);
14
15 rocfft_plan_description_set_data_layout(
16 desc_x,rocfft_array_type_real,
17 rocfft_array_type_hermitian_interleaved,
18 NULL, NULL, NULL, 1, NULL, 1);
19
20 rocfft_plan_create(&plan_x,
21 rocfft_placement_notinplace,
22 rocfft_transform_type_real_forward,
23 rocfft_precision_double,
24 1, lengths_x, N * N, desc_x);
25 /*...20 more lines...*/
26 rocfft_execute(plan_x,(void**)&input,
27 (void**)&output,info);
28 rocfft_execute(plan_y, (void**)&output,
29 nullptr, info);
30 rocfft_execute(plan_z,(void**)&output,
31 nullptr, info);

Figure 2.8: Library implementations to perform a zeroPad and 3D FFT as batches of 1D
FFTs in each dimension across FFTW/CuFFT, MKL, and RocFFT. This shows the com-
plexity of attempting to do the LibraryX transformations by hand, without opportunities
for library-call fusion.

identity rule 2.1 along with the associativity of matrix multiplication, allowing simplifica-

tion of the four terms into two terms shown below

(
DFTK IK×k ⊗ IMN

)(
Ik ⊗DFTM×N(IM×m ⊗ IN×n)

)
. (2.15)

This term shows that the zero expansion and 3D FFT can actually be performed as a

batch in the z-dimension of 2D DFTs in the xy-dimensions, called slabs, along with a 1D

DFT in the z-dimension, called pencils. We can recursively expand the multiplication of

the 2D DFT with identity again using the same rules 2.1, 2.1, 2.1 and 2.1. This gives us

(
DFTK IK×k ⊗ IMN

)(
Ik ⊗(DFTM IM×m ⊗DFTN IN×n)

)
, (2.16)

(
DFTK IK×k ⊗ IMN

)(
(Ik ⊗DFTM IM×m ⊗ IN)(Ik ⊗DFTN IN×n ⊗ IM)

)
, (2.17)

and, (
DFTK IK×k ⊗ IMN

)(
(Ik ⊗DFTM IM×m ⊗ IN)(IKM ⊗DFTN IN×n)

)
. (2.18)
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The final simplification shows that the expansion of the input for both terms only needs

to happen in the x and y dimensions, meaning only the 1D DFTs in x and y need to be

computed in expansion while the 1D DFT in z can be computed only on the initial input.

A similar expansion and simplification strategy can be applied to the composition of

the expressions in gold and purple, the extraction, and inverse DFT. By applying all the

rules shown previously we get the expression,

(IKM ⊗ In×N iDFTN)(IK ⊗ Im×M iDFTM ⊗ IN)
(

Ik×K iDFTK ⊗ IMN
)

(2.19)

In this form, the 3D inverse DFT is decomposed into batches of 1D DFTS in each dimen-

sion, and writing the result is done directly in the DFT rather than as a unique step after

the DFT operation.

In these new equations for the colors gold, purple, blue, and green every DFT is

composed with an identity expansion in its given dimension. This expression can be

optimized using rule 2.1, which introduces the pruned DFT [33], consuming the identity

matrices. This transforms equations 2.18 and 2.19 as follows

(
PrunedDFTk

K ⊗ IMN
)(

IK ⊗PrunedDFTm
M ⊗ IN

)(
IMN ⊗PrunedDFTn

N
)
, (2.20)(

IKM ⊗iPrunedDFTn
N
)(

IK ⊗iPrunedDFTm
M ⊗ IN

)(
iPrunedDFTk

K ⊗ IMN
)
. (2.21)

The new pruned equations 2.20 and 2.21 now express another transformation that involves

the red Diag in equation 2.1. When written completely the middle three expressions are

(
iPrunedDFTk

K ⊗ IMN
)
(Diag f )

(
PrunedDFTk

K ⊗ IMN
)
. (2.22)

Through the application of the right identity rule 2.1 and the structured Kronecker Prod-

uct rule 2.1 the expression can be simplified to be

(iPrunedDFTk
KDiag fi

PrunedDFTk
K)⊗i IMN . (2.23)

This exposes the key operation that a DFT followed by a pointwise multiplication followed

by an inverse DFT is actually a circular convolution, pruned in this case. Therefore, we

can finally simplify this term to be

(
PrunedCConv fi

k ⊗i IMN
)
. (2.24)
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Having completed all the transformations, the final expression for the Hockney Freespace

convolution is shown in equation 2.2.

Automation of Optimization. Unlike its specification, the LibraryX implementation

does not share kernels (colors) with the library-based implementation. This optimized

expression breaks the library call abstraction, moving from a 3D forward and inverse DFT

into a decomposition in each dimension of batched 1D DFTs. The expression also intro-

duces the pruned DFT due to the composition with the identity matrices. During the

transformation process, pruned circular convolution can be introduced, replacing the 1D

DFTs in the z-dimension. This results in significant memory savings by only expanding in

two of the three dimensions and reducing the number of operations by performing a con-

volution. These optimizations are the result of extensive study [90] on this computation,

which requires significant manual implementation to achieve good performance.

Introducing some of the LibraryX optimizations can be done through the libraries

themselves but requires a deep knowledge of each vendor library. Figure 2.8 shows dif-

ferent library implementations of a zeroPad followed by a 3D DFT broken down as 1D

DFTs batched in each dimension. For each library, this DFT breakdown can significantly

increase the number of lines of code in the implementation and removes any portabil-

ity between libraries. Even still, these implementations have to work on fully expanded

inputs as most libraries do not support pruning.

2.5 Summary

LibraryX is a framework for optimizing scientific applications written against multiple

domain-specific performance libraries that implement mathematical functionality. Li-

braryX demonstrates runtime full-program optimization at the solver level that optimizes

across library calls from multiple libraries, and utilizes both semantic knowledge of the

library calls as well as performance characteristics and requirements of the targeted hard-

ware. LibraryX is able to recognize and replace sequences (DAGs) of library calls within

a solver with an internal representation that captures the higher-level semantics of the
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computation. At run-time these DAGs are analyzed by the SPIRAL code generation sys-

tem, and an optimized implementation for the target hardware is created transparently

via run-time compilation and specialization.

The generated highly optimized and specialized implementation replaces the original

sequence of library calls behind their API calls, and through lazy evaluation (futures)

returns the final result to the user program as the return value of the last library call in

the sequence.
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Chapter 3

LibraryX for Graph Analytics: GBTLX

Graph algorithms have seen increased interest in recent years for a variety of reasons.

Whether this be for biology, cybersecurity, or social network analysis, researching graph

algorithms is a very important task in today’s computing landscape [13]. This involves

understanding, in detail, how graph algorithms perform on a variety of different types of

graphs. As a result, many groups are researching ways to improve graph algorithms and

processing across the entire system stack from algorithms and frameworks to hardware

accelerators for graph applications.

Graph algorithms expressed using a linear algebra formalism [51], as seen through

specifications such as the GraphBLAS Application Programming Interface (API) [20, 50]

or implementations like the GraphBLAS Template Library (GBTL) [6], provide the benefit

that the global behavior of the algorithm is easily understood and allows for optimizations

inspired by linear algebra. However, writing graph algorithms with matrices often results

in temporaries that are huge but normally would not need to be materialized, as they

will, for example, be reduced in a subsequent algorithmic step. Expressing this in such a

C/C++ library is challenging, as this leads to a combinatorial explosion in the API and a

large, repetitive code base to capture all cases where optimizations are necessary, across

all data formats, etc.

To address this issue, we are proposing GBTLX, a system that—to the user—looks like



a C++ class library based on GTBL, but under the hood is a code generation system based

on SPIRAL [32, 80, 81]. GBTLX solves the combinatorial explosion problem by analyzing

sequences of multiple GBTL calls to find temporaries that need not be materialized, and

specializes code for various data formats and instruction sets and other target platform

properties. In this paper, we present a first look at GBTLX where the applications are re-

stricted to triangle counting and k-truss enumeration, and we only target multicore CPUs

without targeting special instruction sets. We added algorithmic knowledge regarding

triangle counting and k-truss to SPIRAL based on previous HPEC Challenge submis-

sions [14,65]. The resulting performance is on par with the performance reported in these

submissions, which shows that GBTLX retains the software abstraction and maintainabil-

ity of GBTL while providing performance on par with hand-tuned implementations.

3.1 System Overview

We show an end-to-end example of our system. This example highlights the template that

will be used for any problem relating to graph processing.

A very common and easily expressible graph algorithm is to count the exact number

of triangles present in a given undirected input graph G. Through the language of linear

algebra, triangle counting can be formulated as

∆ = ||L .⊗ (L ⊕.⊗ L)||

where L is the lower triangular portion of the adjacency matrix representation of G, ⊕.⊗ is

the semiring used for matrix multiplication, .⊗ is the point-wise multiplication operator,

and ∆ is the exact number of triangles [78]. This formulation makes triangle counting

a great target application for a linear-algebra based library like GBTL. However, while

easy to write, the resulting GraphBLAS operations are quite expensive, resulting in poor

performance when executed.

We demonstrate the use of GBTLX for the triangle counting problem, showing how to

get better performance while writing a linear algebra-based application. We begin with

the structure of a GBTLX triangle counting application.
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1 //tcclass.hpp
2 #include <graphblas/graphblas.hpp>
3 #include "gbtlx.hpp"
4 template <Typename T>
5 void generateGraph(grb::Matrix<T> out, T row, T col) {
6 //create test graph for semantic capture
7 }
8
9 class TCProblem: public GBTLXProblem {

10 public:
11 TCProblem() : GBTLXProblem() {}
12 TCProblem(Signature &sig) : GBTLXProblem(sig) {}
13
14 virtual void randomProblemInstance() {
15 uint64_t *val = new uint64_t;
16 *val = 0;
17
18 // E.g., call external graph generator
19 const unsigned int N(10);
20 auto *L = new grb::Matrix<uint64_t>(N, N);
21 generateGraph<uint64_t>(L, N, N);
22
23 Signature s;
24 s.in.push_back(L);
25 s.out.push_back(val);
26 this->sig = s;
27 }
28 };
29
30 class TCSolver: public GBTLXSolver {
31 public:
32 virtual void semantics(GBTLXProblem &p) {
33 typedef grb::Matrix<uint64_t> MatrixT ;
34
35 MatrixT *inp = any_cast<MatrixT *>(p.sig.in[0]);
36
37 MatrixT B(inp->nrows(), inp->ncols());
38
39 //MatMul with mask
40 // B = L .* (L +.* L)
41 mxm(B, *inp , grb::NoAccumulate(), grb::ArithmeticSemiring<uint64_t>(), *inp, *inp);
42
43 //Perform reduction
44 uint64_t *out = any_cast<uint64_t *>(p.sig.out[0]);
45 reduce(*out, grb::NoAccumulate(), grb::PlusMonoid<uint64_t>(), B);
46 }
47 };

Figure 3.1: Structure of the Triangle Counting Problem Specification. In this file are the
user created derived classes of the GBTLXProblem and GBTLXSolver shown in Fig. 3.8.
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1 //tcdriver.cpp
2 #include "tcclass.hpp"
3 grb::Matrix<uint64_t> generateAndFill(std::string const &pathname) {
4 /*assign input data to input objects*/
5 }
6

7 int main(int argc, char **argv) {
8 //create GBTL initial objects
9 //load matrix from file argv[1]

10 grb::Matrix<uint64_t> L(generateAndFill(argv[1]));
11

12 uint64_t val = 0;
13

14 //Pass I/O for the Problem
15 Signature sig;
16 sig.in.push_back(&L);
17 sig.out.push_back(&val);
18

19 //create a Problem
20 TCProblem td(sig);
21

22 //create a Solver
23 TCSolver t;
24

25 //run the Solver on the Problem
26 t.solve(td);
27

28 std::cout << "Number of triangles " << val << std::endl;
29 }

Figure 3.2: Structure of the Triangle Counting Application.

3.1.1 User Code

Figures 3.1 and 3.2 illustrate a modified GBTL reference triangle counting application

for GBTLX. The first file is the problem specification file. This file includes the header,

gbtlx.hpp, which contains all the types, macros, and functions necessary to use GBTLX.

This file also consists of two derived objects, TCProblem and TCSolver. In TCProblem, the user

defines a method randomProblemInstance, creating a representative input for their appli-

cation through a graph generator. This method is called when generating the program’s

trace file. In addition, TCProblem captures the initial input and final output data struc-

tures for the application, encapsulated in the Signature class. TCSolver, contains GBTL

operations to count the number of triangles in the given adjacency matrix, defined in the

semantics method. This method uses the input and output defined in TCProblem as pa-

rameters to GBTL operations. In this case, the operations are based on the mathematical
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formulation described above. Finally, the HIGHPERFORMANCE macro, shown in Fig 3.8, allows

the make system to link and run the GBTLX generated algorithm.

The second file is the driver application, utilizing the derived objects. The user de-

clares and instantiates the initial input and final output variables, in the Signature, as

well as TCProblem and TCSolver. TCProblem takes the Signature object, binding it internally.

TCSolver then applies itself on TCProblem, using those bound member objects as param-

eters to the operations in the semantics function, thereby executing the application. The

method generateAndFill, is responsible for instantiating the associated input matrix along

the lower triangle.

3.1.2 Interface

The system header file gbtlx.hpp, wraps all GBTL operations and defines the base GBTLX

classes and abstract member functions. When the solve function is called, a computa-

tional trace file is generated from the GBTL functions wrapped in gbtlx.hpp. This trace

file contains a list of input/output data structures and operations performed by the ap-

plication. In this case, it includes the input matrix and the result, as well as the set of

operations performed on that input matrix to calculate the number of triangles. By defini-

tion, the operations are a matrix multiplication followed by a reduction. It is important to

note that during matrix multiplication, there is a mask of the input matrix L. This allows

encapsulation of both the point-wise multiply and the matrix multiplication in a single

step. This trace file, seen in Fig. 3.3, will be read as input into our SPIRAL backend for

analysis before producing the final binary.

1 //trace.txt
2 spiral_session := [
3 rec(op := "triangle_count"), //function name
4 rec(op := "MatrixCreation",row:= 90,col:= 90, ptr := 0x7fffff45bb30),
5 rec(op := "Matrix Multiplication",
6 output = IntHexString("0x7fffff45bb60"),
7 inputA = IntHexString("0x7fffff45bb30"),
8 inputB = IntHexString("0x7fffff45bb30"),
9 mask = IntHexString("0x7fffff45ba30")),

10 rec(op := "reduce(matrix->scalar)",
11 /*many more arguments*/ ),
12 ];

Figure 3.3: Generated Trace file for Triangle Counting.
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1 //spiral_script.g
2 //load SPIRAL graph package
3 Load(graph);
4 Import(graph);
5

6 //parse trace for operations
7 //perform constraint analysis
8 t := parse("spiral_session");
9

10 //If all constraints met generate code
11 //load Triangle Counting Options
12 opts := TCDefaults;
13 //t is now TriangleCount(param(TInt, "n"));
14 /*www.spiral.net for RuleTree Overview*/
15 rt := RandomRuleTree(t, opts);
16 srt := SumsRuleTree(rt, opts);
17 cs := CodeSums(srt, opts);
18

19 //create output file with generated code
20 //and attaches "spiral_solve" function through opts
21 PrintTo("solve.hpp", PrintCode("generatedFunction", cs, opts));

Figure 3.4: Example SPIRAL script for High-Performance Code Generation.

3.1.3 Code Generation

The code generation backend, SPIRAL, utilizes a script file, seen in Fig. 3.4, to generate

the high-performance equivalent of the operations in semantics. The script reads the trace

file and performs constraint analysis on the set of operations performed. For this example,

the system needs to determine that the set of operations includes a matrix multiplication

masked by the input matrix L, followed by a reduction. It also has to know whether or

not the input graph is undirected (i.e. the matrix is symmetric) in order to generate the

correct triangle counting algorithm. Finally, the system has to know that the output is a

scalar integer. After these constraints have been checked, a high-performance algorithm

is generated and the build system will link solve.hpp during the compilation of the final

high-performance binary, effectively replacing the GBTL operations. Figure 3.5 shows

an example of the generated triangle counting algorithm. The generated algorithm takes

advantage of an insight where the reduction can be fused with the inner loop of the matrix

multiplication and the results of the matrix multiplication do not need to be materialized

(the B matrix in line 41 of Fig. 3.1), reducing computation time [65].
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1 //solve.hpp
2
3 void spiral_solve(GBTLXProblem &p) {
4 //logic to parse the problem and call generatedFunction
5 }
6
7 void generatedFunction(uint64_t *res, uint64_t *IJ, uint64_t n) {
8 uint64_t t1;
9 t1 = 0;

10 for (int i1 = 1; i1 < n; i1++) {
11 int t2;
12 int *j1, *jm1;
13 t2 = 0;
14 j1 = (1 + IJ + n + IJ[i1]);
15 jm1 = (1 + IJ + n + IJ[(i1 + 1)]);
16 while (((((j1 < jm1))) && (((*(j1) < 0))))) {
17 j1 = (j1 + 1);
18 }
19 while (((((j1 < jm1))) && (((*(j1) < i1))))) {
20 int i2, t3;
21 i2 = *(j1);
22 int *j11, *j1m1, *j21, *j2m1;
23 t3 = 0;
24 j11 = (1 + IJ + n + IJ[i2]);
25 j1m1 = (1 + IJ + n + IJ[(i2 + 1)]);
26 j21 = (1 + IJ + n + IJ[i1]);
27 j2m1 = (1 + IJ + n + IJ[(i1 + 1)]);
28 while (((((j11 < j1m1))) &&
29 (((*(j11) < 0))))) {
30 j11 = (j11 + 1);
31 }
32 while (((((j21 < j2m1))) &&
33 (((*(j21) < 0))))) {
34 j21 = (j21 + 1);
35 }
36 while (((((((j11 < j1m1))) &&
37 (((j21 < j2m1)))))
38 && (((((*(j11) < i1))) &&
39 (((*(j21) < i1))))))) {
40 if (((*(j11) < *(j21)))) {
41 j11 = (j11 + 1);
42 } else if (((*(j21) < *(j11)))) {
43 j21 = (j21 + 1);
44 } else {
45 t3 = (t3 + 1);
46 j11 = (j11 + 1);
47 j21 = (j21 + 1);
48 }
49 }
50 t2 = (t2 + t3);
51 j1 = (j1 + 1);
52 }
53 t1 = (t1 + t2);
54 }
55 *(res) = t1;
56 }

Figure 3.5: Triangle Counting Algorithm generated by GBTLX. The algorithm is based off
prior work [65].

40



Figure 3.6: System overview of GBTLX from source C++ application to generated high-
performance application. An original GBTL program is modified into a GBTLX program.
That program is inspected through an interface, generating a trace file for the SPIRAL
backend to generate a high-performance algorithm. The first portion of the diagram is
the Inspector phase, where a computation is discovered, and the second portion of the
diagram is the Executor phase, where an optimized implementation is executed.

3.2 System Walkthrough

GBTLX is designed as a user-triggered inspector/code generator, in which user input is

given via Makefile targets. In this system, the user specifically decides what type of output

they desire. This could be reference, high-performance, or debug output, with the final

binary being created off of this decision. In addition, all GBTLX applications conform to a

delayed execution model. In this model, the set of operations that comprise an application

is captured and executed such that after the first input is given only the final output is

received. There is no inspection of temporaries between operations. This model allows

the SPIRAL backend to accurately generate high-performance code. Figure 3.6 illustrates

the system overview of GBTLX from user code to generated code.

3.2.1 User Application

The user written application has the same general format. First, the user defines two

derived classes, which are referred to as the problem specification. These classes embody

the graph problem that is written as seen in the previous example through the TCProblem

and TCSolver objects. These classes are derived from the base classes GBTLXProblem and
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GBTLXSolver, which are described in a later section.

The user then creates a separate main application file. In the main application, the user

declares the derived GBTLXProblem and GBTLXSolver objects. In addition, the user creates an

object Signature to encapsulate the initial input and the final output data structures. This

is necessary because the system creates mirrored data structures for use in any backend

generated functions. As an example, the system would convert an adjacency matrix into

a flattened one-dimensional array using a compressed sparse row format. The user then

places these data structures in a class called Signature, which is passed into the constructor

of GBTLXProblem. Finally, the user applies the GBTLXSolver to the GBTLXProblem, using the

member function solve. The main application is written separately from the problem

specification because of the trace file discussed in the next section.

3.2.2 GBTLX Interface

The interface, gbtlx.hpp, acts as the translator between GBTL and the SPIRAL backend.

All GBTL functions are blocking or synchronous functions; they must return before the

application can continue. In order to get GBTL to work within the delayed execution

paradigm, the system wraps all of the user facing operations using C macros as seen

in Fig 3.8 through OBSERVE. These macros allow the system to intercept GBTL functions

without modifying the GBTL library keeping usage the same. The system utilizes these

macros to trigger additional functionality depending on the given compile-time flag. As

a result, the system has transformed each of the GBTL operations into either blocking

or non-blocking functions, depending on the compile-time flag. Concretely, the GBTLX

header file, gbtlx.hpp, defines wrapped_<op> functions for every <op> function in GBTL and

defines macros like the ones at the bottom of Fig. 3.8 to intercept the GBTL function

and replace it with a GBTLX function providing different functionality. This is shown

explicitly for the operations mxm and reduce in Figure 3.8.
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3.2.3 GBTLXProblem/Solver

In addition to the wrapped functions, the GBTLX base classes, GBTLXProblem and

GBTLXSolver, are implemented in the interface. The GBLTXProblem class is the spe-

cific instance of a problem the user is trying to solve. Its abstract member function,

randomProblemInstance is responsible for creating a smaller representative problem used

during trace generation. This function’s written representation should match character-

istics of the original input dataset, like types and shape, and can be an external call to a

graph generator. In addition, GBTLXProblem’s implicit Signature captures the initial input

and final output for the user application. Signature is responsible for holding not only the

input and output of the application but also any additional data structures unique to the

problem.

GBTLXProblem’s complement, GBTLXSolver, contains the set of operations needed to

solve a problem generally. This is captured through GBTLXSolver’s abstract member func-

tion, semantics. In semantics, the user uses library-defined functions from a framework

like GBTL, placing in data structures from GBTLXProblem as necessary. GBTLXSolver’s solve

function either executes semantics, or is overridden, executing the SPIRAL generated func-

tion. Passing GBTLXProblem into solve allows for reuse of the GBTLXSolver on a variety of

GBTLXProblem classes with different properties. Figure 3.8 shows the the base classes of

GBTLX.

3.2.4 High-Performance

There are a few different targets that are available through GBTLX’s build system. The

most meaningful target is the high-performance target.

The high-performance target leverages the SPIRAL backend to generate a high-

performance equivalent of the GBTLXSolvers’ operations, replacing those operations. To

do this, the build system first links the problem specification file together with an in-

ternal driver application, used for computational trace generation. The internal driver

uses user-modified targets in the Makefile to replace derived GBTLX object names with
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generalized object names USER_PROBLEM and USER_SOLVER. Then the internal driver creates

a randomProblemInstance, and executes the GBTLXSolver’s semantics function on that in-

stance. Semantics calls the wrapped GBTL operations, which not only execute but also

print out information about that function to a trace file. This trace file would contain the

operations and the operations’ inputs and outputs, including operators and masks. These

pieces are important for the SPIRAL backend to accurately determine if optimization is

applicable.

The internal driver, seen in Fig. 3.7, is called in place of the user written driver because

of potential complexity in user applications. These applications could use large datasets,

causing extended computation times or have user unknown exceptions. The internal

driver instead creates a representative GBTLXProblem instance via the user implemented

randomProblemInstance, to save execution time. Trace generation does not complete if

there are application exceptions at run-time. Once the trace file is generated, the SPIRAL

backend is launched, generating the high-performance algorithm and linking it to the

final binary, by overriding solve with the function defined in solve.hpp. All of this is

done without the need for the user to delineate which region of their application could be

optimized.

1 //internal_driver.hpp
2 int main(int argc, char **argv) {
3 //create a Problem, randomInstance, and Solver
4 USER_PROBLEM p;
5 p.randomProblemInstance();
6 USER_SOLVER s;
7 //run Solver semantics
8 s.solve(p);
9 }

Figure 3.7: Structure of the GBTLX Internal Driver.

3.2.5 Reference/Debug

The other targets are the reference target and the debug target. In reference, instead of

creating an output file and launching the SPIRAL backend, the interface will call GBTL

directly to execute the original functions. This path is used for correctness verification and

is the default build option. Furthermore, the debug target will avoid delayed execution
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by allowing inspection of temporary objects used during computation. This is useful for

developers to understand how exactly their application is getting the final output.

1 //gbtlx.hpp
2 #ifdef HIGHPERFORMANCE
3 #include "solve.hpp"
4 #endif
5 //GBTLX objects for capture and execution
6 struct Signature {
7 vector<any> in;
8 vector<any> out;
9 vector<any> in_out;

10 };
11
12 class GBTLXProblem {
13 public:
14 GBTLXProblem() {}
15 GBTLXProblem(Signature &Sig) : sig(Sig) {}
16 virtual void randomProblemInstance() = 0;
17 Signature sig;
18 };
19
20 class GBTLXSolver {
21 public:
22 virtual void semantics(GBTLXProblem &p) = 0;
23 void solve(GBTLXProblem &p){
24 #ifdef HIGHPERFORMANCE
25 spiral_solve(p);
26 #else
27 semantics(p);
28 #endif
29 }
30 };
31
32 // mxm operation wrapper
33 template</*many more arguments*/ >
34 void wrapped_mxm(CMatrixT &C,
35 MaskT const &Mask,
36 AccumT accum,
37 SemiringT op,
38 AMatrixT const &A,
39 BMatrixT const &B) {
40 #ifdef OBSERVE
41 fprintf(stderr,
42 "rec(op := \"Matrix Multiplication...",
43 &C, &A, &B, &Mask);
44 mxm(C,Mask,accum,op,A,B);
45 #endif
46 #ifdef REFERENCE
47 mxm(C,Mask,accum,op,A,B);
48 #endif
49 }
50
51 // Do something similar for reduce operation
52 template</*many more arguments*/ >
53 void wrapped_reduce(/*many more arguments*/ ){
54 ...
55 }
56
57 //macro to intercept GBTL operations
58 #define mxm wrapped_mxm
59 #define reduce wrapped_reduce

Figure 3.8: Abbreviated GBTLX Interface between GBTL and SPIRAL.
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3.2.6 SPIRAL Extensions

The open-source SPIRAL backend has been extensively applied to the area of FFTs, and its

scope has been broadened to include new application domains. Within the SPIRAL sys-

tem is a mathematical descriptor language, Operator Language (OL). OL describes the set

of mathematical operations that are performed for a computation [35]. This set of opera-

tions is then placed in a rewrite system that works in a similar fashion to an optimization

problem, resulting in generated code. We add on to this system cursory mathematical for-

mulations for graph algorithms utilizing the existing infrastructure available in SPIRAL.

This specifically includes OL objects for triangle counting and ktruss enumeration, which

can target different hardware platforms. The details of the SPIRAL system are discussed

in the next section.

Figure 3.9: SPIRAL architecture, from library description to generated code.

3.3 Code Generation Explored: Triangle Counting

We highlight the process that the SPIRAL code generation system goes through to trans-

form a sequence of GraphBLAS library calls into a domain expert variant for the applica-
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tion triangle counting. We show the process for a much lower performing mathematical

expression of triangle counting to highlight the benefits of GBTLX. The general outline is

shown in Figure 3.9. SPIRAL takes as input the computation trace file, analyzing it and

creating a high level description of the algorithms’ mathematical representation. SPIRAL

then performs a series of search’s across a wide optimization space before returning do-

main expert C code. For a mapping of SPIRAL internal language to mathematics please

see Tables 3.1 and 3.2.

An easily expressible graph application is counting the exact number of triangles in

a given undirected graph G. A mathematical specification for counting these triangles is

given as

∆ =
1
6

Γ(A3). (3.1)

where A is a symmetric undirected adjacency matrix representing the input graph

G [21] and Γ is the trace operation, or the sum of the elements along the main diagonal.

While Equation 3.1 is a precise definition it does not achieve great performance due to the

extra computations being performed in the matrix multiplication.

Previous work [65, 66], recognizes that there are more efficient ways to compute the

number of triangles without the need to perform multiple matrix multiplications. SPIRAL

understands how to translate an application written using Equation 3.1 in GraphBLAS to

a domain expert variant.

OL

In the first stage, SPIRAL reads as input a computational trace file highlighting all major

operations and data structures used in the original application. This would be an input

matrix and a output variable, followed by two matrix multiplication calls and a reduction

call (trace) divided by six. SPIRAL then has to move these expressions into a directed

acyclic graph (DAG) with each operation being a node in the graph and each edge having

the input or output of that node. Additionally, each node contains carrier information,

or properties, about that operation such as matrix symmetry, density/sparsity, as well as

data masks and semirings.
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DAGs in SPIRAL are useful for pattern recognition and matching. Many times, there

is no one-size-fits-all algorithm for a specific input. DAGs allow SPIRAL to accurately de-

termine which algorithm best fits the input graphs’ constraints. In this instance, SPIRAL

first recognizes that the operations being performed correspond to a triangle counting

program. This done via a table lookup into known triangle counting mathematical for-

malization’s.

Once SPIRAL has understood the computation that is being performed, an internal

representation needs to be generated. This representation describes the computation and

synthesizes additional carrier information. The result is an initial SPIRAL OL formaliza-

tion that describes the triangle counting computation. In this example, we will say that

we have a sparse undirected symmetric graph of integers. The corresponding expression

after recognition is shown below.

TriCount(TSparse_Mat(TSemiring_Arithmetic(TInt)))

OL expressions like this could not be generated previously as there was no concept of

sparsity within SPIRAL. In many cases graph algorithms use sparse data formats for their

inputs and outputs because the graph datasets have a limited number of non-zero ele-

ments. As such, compressed representations are used to decrease the memory footprint

of the application, performing operations on only those non-zero elements. By introduc-

ing sparse data formats in SPIRAL, we now have a way to generate sparse algorithms

properly.

Expanded OL

Having the internal representation, SPIRAL then performs a series of transformations to

obtain the final domain expert kernel. The first transformation calls a RuleTree on the ex-

pression TriCount. The goal of the RuleTree is to determine which of the known algorithms

best matches the carrier information expressed in TriCount. This then transforms TriCount

into an expanded OL expression showing specific details of the selected algorithm. This

is written both mathematically and in the code below.
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∆ = ∆ + aT
n Anbn (3.2)

ts := TSparseArray(TInt, TSemiring_Arithmetic(TInt));

tsm := TSparse_Matrix(ts, "col");

rv := RowVec(tsm);

Equation 3.2 describes a sequence of multiplications in which the first multiplication fil-

ters a column of matrix A and then multiplies that column by a row of matrix A, thus

finding a triangle. This can be further optimized if the graph is symmetric using the lower

triangular matrix L to avoid overcounting. In code we represent this by a sparse array that

is promoted to a sparse matrix, marked with col to represent the orientation. This is then

encapsulated in a RowVec to perform the multiplication against the rows. This and other

such expressions are based on prior work [65].

Σ-OL

After creating the new expression, the next transformation stage, the Σ-OL formalization

[36], is called via SumsRuleTree. This transformation stage inserts loop expressions and

access pattern information for given inputs. SPIRAL organizes memory linearly, which

determines the proper structuring of the loops and strides. The Σ-OL expression for

triangle counting is shown below.

∆ =
n−1

∑
i=0

m−1

∑
j=0

S(j)i⊗(j)j
◦
(

In ⊗ (.)1×1→1) ◦ G(j)i⊗(j)j
(3.3)

ISum(i, n,

ISum(j, m,

Scat(fTensor(fBase(i), fBase(j)))

* RowVec(tsm)

* Gath(fTensor(fBase(i), fBase(j)))))

Equation 3.3 begins with a loop over all rows n by the outermost ISum followed by

a loop over all elements in a row of length m. Within the second loop, we start with

the Gath which holds the access pattern for gathering the nonzero elements of the row

49



and column vector to be compared (sets of edges per vertex), followed by a RowVec to

intersect(multiply) them and determine if a triangle exists. This is completed with a Scat,

to accumulate the intermediate result into a scalar variable. Furthermore, fBase is an

access function in a given dimension, and fTensor tensors access functions together for

multi-dimensional access.

One of the issues at the Σ-OL stage is that the generated expression is still a bit too

generic for the problem we want to solve, triangle counting. The Scat is writing out the

result based on the variables i and j, based on the matrix within the RowVec. However,

triangle counting wants accumulation to be applied to a single result scalar for all row/-

column multiplications. To solve this, SPIRAL uses rewrite rules, expression modifiers

triggered by certain patterns of expressions. SPIRAL has an established rewrite rule that

it can apply here to change the Scat to solve this issue. The new expression is shown in

3.4.

∆ =
n−1

∑
i=0

m−1

∑
j=0

Sı1 ◦
(

In ⊗ (.)1×1→1) ◦ G(j)i⊗(j)j
(3.4)

UnifyKernel(ISum(i, n,

ISum(j, m,

Scat(fId(1))

* RowVec(tsm)

* Gath(fTensor(fId(i), fBase(j))))))

In addition to changing the Scat, SPIRAL also added a decorater object called UnifyKernel.

This decorator object is used during code generation to further assist the system in proper

code layout. In this specific case, the decorator is used to unify the Scat and Gath within

the actual multiplication operation defined by the RowVec object. The decorator will move

the indexing into the variables that RowVec will generate. Decorators can also be used to

add preamble/epilogue code to a kernel, such as algorithm-specific data structures and

data cleanup. In most cases these decoraters are added within the rewrite framework,

only becoming visible as SPIRAL traverses the ruletrees, but are shown directly for clar-

ity.
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Optimized code

The final transformation converts the previous expression to intermediary code called

icode, which then becomes C code. In the icode stage, classical compiler optimizations

are performed, such as dead code elimination, copy propagation, and array scalarization.

This is then translated into C code, as seen in Fig. 3.5 which is linked back to the original

application to produce the final output binary.

3.4 Hardware Backends and Parallelization: Triangle Counting

In addition to generating pure sequential code, GBTLX can also generate parallel im-

plementations for some graph algorithms. GBTLX can target CPUs and GPUs for code

generation and use a variety of different programming models on those platforms, such as

OpenMP, CILK, pthreads on CPU and CUDA, HIP on GPU. This is enabled through differ-

ent code generation backends available within SPIRAL [34]. The traditional DefaultCodegen,

parses SPIRAL’s intermediate representation into C Code. Other code generation objects

like OpenMPCodegen and CUDACodegen parse for their own specific hardware backend.

These code generation objects are actually quite simple to implement within SPIRAL

thanks to inheritance. Take for example a OpenMP pragma based parallel programming

model. The SPIRAL OpenMPCodegen object will inherit from the DefaultCodegen object taking

with it all the fields, some previously shown. Now, it can introduce new objects like

parallel loops and barriers as new fields in its class. This will not affect the default object

and allows reuse of core default OL expressions like the ones above. It can even go on to

modify some of those objects without interfering with the default behavior. We go on to

show how GBTLX can easily take current graph expressions and make them parallel.

CPU

We begin on the CPU side, showing how a parallel Triangle Counting implementation can

be generated using the expressions seen previously.
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tsm := TSparse_Mat(TSemiring_Arithmetic(TInt))

TriCount(tsm).withTags([AParSMP(4)])

The OL expression shown mirrors that of the previous expression, but with a new

modifier, withTags. This modifier tells the SPIRAL system to break down the expression

with a new set of OL objects based on the parameter provided. In this case, the parameter

AParSMP(4) says to use the OpenMP code generator object with four threads. This will

then trigger the options to point to the new code generator object. From here we get a

similar expanded OL expression, but a new Σ-OL expression.

∆ =
n−1

∑
i=0︸︷︷︸

smp(4),
reduction

m−1

∑
j=0

Sı1 ◦
(

In ⊗ (.)1×1→1) ◦ G(j)i⊗(j)j
(3.5)

The new Σ-OL expression seen in Equation 3.5 has many similarities with the previous

expression except for the outermost loop. Instead of a traditional loop, there is now a

parallel accumulation loop. During parsing, this loop will generate alongside a parallel

for pragma with a reduction clause on the implicit output Y using four threads. Its also

important to highlight that just like in the previous example this Σ-OL expression is not

complete for triangle counting. SPIRAL again utilizes the rewrite rule system to get the

optimized triangle counting Σ-OL expression, now with the new SMP_Accum object.

GPU

GPU parallelization within GBTLX shares many similarities with CPU parallelization

from an expression standpoint. The main differences lie in how SPIRAL recognizes GPU

architectural features.

tsm := TSparse_Mat(TSemiring_Arithmetic(TInt))

TriCount(tsm).withTags(

[ASIMTKernelFlag(ASIMTGridDimX(80)),

ASIMTBLockDimX(256)])

Our OL expression for Triangle Counting remains unchanged for code generation on

GPUs, but now has a new GPU tag, ASIMTKernelFlag. SPIRAL supports generalized SIMT
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allowing for code generation for any SIMT architecture; the generated kernel will be

unparsed using the domain language such as CUDA [7]. Within this tag is a reference

to ASIMTGridDimX, as GPUs have a three dimensional thread geometry in the form (x, y, z).

For our triangle counting example, we only use the X dimension.

Algorithmically, the implementation of triangle count differs on the GPU when com-

pared to the CPU due to the massively parallel architecture of the GPU. Instead of having

an outermost loop on the number of rows n, the implementation now loops on all ele-

ments of the column, m. This better saturates the GPU compute units as there are more

elements in all the rows than there are numbers of rows. The computation is partitioned

so that each thread on the GPU gets a neighborhood based on m and another neigh-

borhood from the row n that m belongs to [14]. These neighborhoods are intersected to

discover triangles. For this example, the SPIRAL representation remains mostly intact,

only changing in loop structure and indexing.

∆ =
m−1

∑
j=0︸︷︷︸

grid(80),
block(256)

Sı1︸︷︷︸
reduce(grid)
reduce(block)

◦
(

In ⊗ (.)1×1→1) ◦ G(j)j⊗(j)i
(3.6)

The TriCount expression is broken down into its Σ-OL expression, shown in Equation

3.6, placing the GPU tags in the appropriate locations. During the breakdown, the tag is

passed to each of the individual components that make up the expression. The outermost

loop of our computation holds the dimension tag of our SIMT architecture. This tag is

broken down into the grid and block in order to allow SPIRAL to map threads to all cores

of the GPU. The core of the computation, RowVec, remains unchanged while the Gath has

an updated indexing function to match the loop interchange. The UnifyKernel will update

the indexing for the input graph data format.

Unlike the OpenMP implementation, there is not a way to gather all the intermediate

results across the GPU with just a loop-level expression. Therefore, in the breakdown,

the Scat is tagged with additional reduction statements. The first reduction is at the lo-

cal level, reducing intermediate results of a thread group into a single variable based on
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Table 3.1: OL Object primitives with mathematical meaning. A complete formalization
can be found in previous work [36] [32]. Table 3.2 shows examples of functions for f used
in the Gath, Scat and Diag primitives.

Primitive Math

Gath Gn→N
f : ∑n−1

i=0 [e
n×1
i e1×n

f (i) ]
⊤

Scat Sn→N
f : ∑n−1

i=0 en×1
i e1×n

f (i)

Diag Dn→C
f : In → C

RowVec 1T
n ◦ (In ⊗ (.)1×1→1)

COND g(x) 7→
{

OL1, if g(x)
OL2, otherwise

IterVStack [−]n−1
i=0 Ai =


A0
A1
· · ·

An−1


IterHStack [|]n−1

i=0 Ai = ([−]n−1
i=0 Ai)

⊤

the previous expression’s output. The second reduction is at the group level, adding all

the group level results to the final implicit output, Y. These reductions have synchroniza-

tion/atomic points that will be included within their respective stages.

During code generation, a sequence of passes are performed in order to place in the

final architectural features present on GPUs. This includes marking arrays as global ar-

rays versus shared arrays, setting up specific memory properties such as cache sizes and

partitions, and setting up host and device memory copies. During these passes, the vari-

able tsm becomes a shared memory array with a unique location per thread on each core

to prevent any data races. Finally, the generated code will contain both the computational

kernel and a function that wraps the kernel launch. The kernel will be launched with the

values present in ASIMTGridDimX and ASIMTBlockDimX.

3.5 Towards a generalized Graph Framework

Triangle counting serves as a simple example to illustrate the different functions and

operators used by GBTLX to generate graph processing applications. Table 3.1 highlights

the subset of functions and operators that needed to be updated with the SPIRAL code
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Table 3.2: OL Function primitives with mathematical meaning. A complete formalization
can be found in previous work [36] [32].

Primitive Math

fId(i) ın : In → In; i 7→ i
fBase(j) (j)n : I1 → In; i 7→ j

fStack f [-] g: Im+n → IN ; i 7→
{

f (i), if i < m
g(i − m), if i > m

fTensor f ⊗ g : Inm → INM; in + j 7→ N ∗ f (i) + g(j)

generation system to support additional applications outside of triangle counting. Table

3.2 shows some of the indexing functions f used for the primitives in Table 3.1.

Broadly, SPIRAL has high level OL objects which apply mathematical expression to

implicit input and output objects. The Diag operator for example performs the haddamard

product, or element-wise multiplication, of the input, while the RowVec performs the scalar

product of input elements. Both operators rely on functions such as the constant function,

updating with a constant value, or a more complex tensor function, dynamically changing

value based on the index. These mathematical operators can be composed together to

obtain a concise, point-free representation of the computation.

The general flow of OL operators involves gathering a set of elements performing

some computational updates and scattering the results back to the output. Taking this

pattern, we could write a simple operation that gathers elements from a matrix, scales

them by a value from a separate vector, and writes them to a temporary output vector. This

expression would be the composition of the operators Scat, Diag(fConst), and Gath, where

the function Gath reads from a two-dimensional linear input, scales by the constant value

by Diag and writes the result to the output vector. This computation once looped over all

columns is the axpy-based sparse matrix vector multiplication (SpMV) the cornerstone for

algorithms like push breadth-first search [11]. In fact, if Diag is replaced with a RowVec, the

resulting mathematical expression is the SpMV based on the dot product which is used

in the first search for the pull width [11]. These two expressions can then be wrapped in a

COND, a switch statement for OL expressions, resulting in direction optimizing breadth-first

search, expressed in a fully point free matter.
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3.5.1 Capturing Algorithms with embedded Language Constructs

Unlike Triangle Counting, some algorithms written in GraphBLAS do not use Graph-

BLAS primitives entirely. For these algorithms, core language constructs, such as loops

and conditionals, are required to completely express the algorithm. This proves to be a

challenge for GBTLX, as it is not a general language parser, independent of the semantic

capture mechanism employed. We discuss two options available for the system as cur-

rently designed to support algorithms using language constructs, using the examples of

Direction Optimizing Breadth First Search (DO-BFS) and Betweeness Centrality shown in

the evaluation section.

The first and simplest option is to ignore the language construct and optimize sub-

sections of the code that rely on primitives. In the case of DO-BFS, the main language

construct is the conditional that decides whether to use the push phase or the pull phase,

and the loop within each phase to determine how many iterations to perform. As the core

operations are written in the library, we can generally ignore these statements, matching

the signature of the push/pull implementations to capture the required inputs from the

user.

The previous approach comes with some performance shortcomings, as DO-BFS can

use custom data structures that can significantly improve performance when deciding

which phase to employ. The same can be said for Betweeness Centrality, which contains

loop structures that can be merged to improve data reuse. For this reason, another ap-

proach is to mix GraphBLAS primitives with function call representations of core language

constructs. In C++, for loops can be represented using std::for_each and conditionals

can be represented using conditional, both members of the C++ Standard Library. These

functions use lambda expressions to describe the loop/conditional body and have no re-

strictions on using external library calls. Therefore, using the C preprocessor, we can

shim std::for_each and std::conditional to capture external loops and the loop body,

as well as the conditional and if-then-else branch bodies. A similar approach is used for

the pointwise multiplication in Hockney Freespace convolution using std::transform.
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3.6 Summary

GBTLX is a LibraryX implementation that focuses on sparse linear algebra implementa-

tions of graph analytics. GBTLX, interprets GBTL as an embedded DSL and leverages

code generation and automatic performance tuning to overcome the problem of combina-

torial explosion in the GraphBLAS API and to avoid materialization of huge non-essential

temporaries. Using the example of triangle counting, we showcase the design of the

GBLTX system to discover a computation pattern and provide it as a specification for

the SPIRAL code generation system for analysis and optimization. within SPIRAL are a

series of transformation stages that introduce new algorithms and implementations for

different hardware devices. SPIRAL’s operators have been extended to support a variety

of primitives in graph processing through the language of linear algebra.
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Chapter 4

LibraryX for Structured Grids: ProtoX

There is a myriad of application areas in the field of scientific computing and engineer-

ing where numerical solutions to partial differential equations (PDEs) are required to be

computed. Numerical methods like the finite difference method (FDM), finite element

method (FEM), finite volume method (FVM) and multigrid method are used to approxi-

mate the solutions to these PDEs. The key components of these algorithms are the stencil

and pointwise operations. Stencils are defined as a linear transformation,

S(x)i = Σjαjxi+j, (4.1)

where i, j ∈ ZD with D denoting the number of space dimensions, α denotes the weight

and x is the multidimensional data array.

Typically these numerical algorithms are iterative in nature resulting in performing

the stencil operations multiple times. Writing codes for these stencil based methods from

scratch can be quite a cumbersome task for anyone. As such developers turn to libraries

that provide stencil operations for them. One such library is Proto. It is a domain specific

library written in C++ that provides a high level of abstraction for solving various PDEs

using some of the aforementioned numerical methods.

Proto’s abstraction enables ease of programmability, but has drawbacks when it comes

to performance. Many of Protos’ abstractions can be fused and optimized together, re-

sulting in better performance. However, abstraction fusion is something no compiler can



easily perform. This results in additional burden on the library developers to manually

introduce these optimizations. To enable abstraction fusion in Proto, we propose ProtoX,

which is a C++ library based on Proto and runs a code generation system SPIRAL [36,81]

in the backend. The concept of using SPIRAL in the backend and a C/C++ based library

in the front has shown positive results in the past [35, 83]. Some of the related works in

the area of optimizing stencil computation with either automatic code generation or by

optimizing data movement involved while performing stencil operation are discussed in

the next section.

4.1 ProtoX

In this section we will describe the structure of ProtoX. The idea is to interpret Proto

as a Domain Specific Language (DSL) with the help of SPIRAL. This is done by first

interpreting an example from Proto as a mathematical specification and then map the

Proto program specification to an OL expression. It is then broken down into a Σ−OL

expression which introduces loop fusion. This will help generate a highly optimized C++

code. Here we will explain these ideas with respect to the 2D Poisson equation. The

design layout for ProtoX is shown in Fig 4.1

4.1.1 2D Poisson equation Example

The Poisson equation is given as,

∆ϕ(x, y) = ρ(x, y), x, y ∈ Ω := [0, 1]× [0, 1], (4.2)

where ρ is a given function and ϕ is what we are solving for. ∆ is the Laplace operator.

We use the 5-pt stencil as a second order finite difference approximation of the Laplacian.

The Jacobi iteration method is implemented in Proto to find the solution of (4.2). Let

h denote the mesh spacing for the discretized domain Ω, then the Jacobi formula for a

single iteration n is given as

ϕn
i := ϕn−1

i + λ(S(ϕ)n−1
i − ρ), (4.3)
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Figure 4.1: ProtoX design layout starting with a problem specification from Proto to the
final optimized code generated using SPIRAL

where λ = h2/4D with D being the dimension of the input and S(ϕ)i = ∑
s∈Z2

asϕi+s is the

5-point stencil applied to the input data ϕn−1
i .

4.1.2 Algorithm Description

In Proto, the domain space Ω is divided into several boxes and (4.2) is solved for each

point in the box and then information is exchanged between the boxes to update the

corresponding box data. The three main steps involved in this algorithm are

1. Applying the 5-pt Laplacian stencil to the initial guess given for ϕ.

2. Approximate the new value for ϕ using the Jacobi iteration method shown in (4.3).

3. Check the latest approximation of ϕ against the convergence criterion. Max norm is

used in Proto to check for convergence.

We would like to note that in Proto each of the steps described in the algorithm above

correspond to separate C++ function calls. Figure 4.3 provides the code sample that

is used in Proto to solve (4.2). We can observe that the code reads in the same way
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Figure 4.2: DAG for the Poisson problem in Proto.

as discussed in the algorithm above indicating an ease of use from a user perspective.

However, this leads to intermediate data holders generating too much memory traffic.

Hence, some optimization techniques need to be applied either at a compiler level or at

an algorithmic level to overcome this issue.

1 // Defining the 5-pt Laplacian stencil
2 Stencil<double> laplace = Stencil<double>::Laplacian();
3 double lambda, wgt, dx; //parameters to function defined externally
4 for (int iter = 0; iter < maxiter; iter++){
5 ...
6 // Solve for all boxes with each Box of size 64x64
7 for (auto dit=phi.begin();*dit != dit.end();++dit){
8 BoxData<double>& phiPatch = phi[*dit]; //pointer to individual box in patch
9 BoxData<double>& rhoPatch = rho[*dit]; //pointer to individual box in patch

10

11 // Compute the Laplacian
12 BoxData<double> temp = laplace(phiPatch,wgt);
13

14 // Jacobi iteration
15 forallInPlace(jacobiUpdate, phiPatch, temp, rhoPatch,lambda);
16 }
17 // Computing || ||_{inf}
18 double resmax=computeMaxResidualAcrossProcs(phi, rho, dx); //norm across patches
19 }

Figure 4.3: Sample Proto code for the 2D Poisson problem
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Operation Description

(Am×n ◦ Bp×q) Operator composition: AB if n = p

(Am×n ⊕ Bp×q) Direct sum operation:
[

A
B

]
(Am×n ⊗ Bp×q) Tensor product:


A00B · · · A0,n−1B

...
. . .

...
Am−1,0B · · · Am−1,n−1B


[
−
]

Vertical stacking
[

Am×n
Bp×q

]
[
−
]k

i=0 Iterative vertical stack
In Identity matrix In×n
pwr×s

x 7→ f (x) Pointwise operation
(a, b, c) Row vector with three entries a, b and c

Table 4.1: List of some operations used in SPIRAL for this work is shown here. The
matrices Am×n and Bp×q are considered as operators with A : Rn → Rm and B : Rq → Rp.

4.1.3 SPIRAL Implmentation

Figure 4.2 provides the data flow for the algorithm discussed above. The first step in

generating an optimized code using SPIRAL is to understand the data flow of the problem

specification. Consequently, this data flow needs to be translated into OL with the help of

the different operations shown in table 4.1.

We will consider the case where the size of each Box in Proto for this problem specifi-

cation is n × n with m × m total elements in the box including ghost cells. The resulting

OL expression corresponding to that data flow is shown below.

Poissonℓ,w,a
n,m,t →

Jacobin,m,w,l

∥.∥n,m,a
∞

 ◦


 In2

Laplace

⊕ In2

 ◦ X, (4.4)

Laplacen,m,t → Scattern2×m2 ◦ [Filt(t)]m
2

i=0, (4.5)

Jacobin,m,w,l → (1, w,−λ)⊗ In2 , (4.6)

∥.∥n,m,a
∞ → Max ◦ pwn×n

x 7→|x| ◦ (0, 1/(a2),−1)⊗ In2 . (4.7)

Here X denotes the linearized input vector. For this problem specification it contains

the initial data for ϕ and ρ with ϕ being of size m × m or m2 and ρ is of size n2. Hence,
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X is of size n2 + m2. t denotes the filter taps corresponding to the 5-pt stencil. Its a

3 × 3 matrix with entries as [0, 1, 0], [1,−4, 1] and [0, 1, 0] for the first, second and third

row respectively. This matrix is flattened out and is iteratively applied to the input vector

with the proper shifts. Scattern2×m2 denotes the scatter matrix [15] in SPIRAL. ℓ, w and , a

are scalar parameters used for the Jacobi iteration and the Laplacian.

The next step is to rewrite the OL breakdown rules shown in (4.4)-(4.7), in terms of

Σ−OL. This is where loop merging is introduced, which helps in fusing different Proto

abstractions, resulting in a considerable amount of performance gain. At this stage, the

computation broken down to a per point granularity rather than the entire input, which

enables fine grained operation merging. A sample of the Σ−OL expression for this prob-

lem its specification is shown below.(
N−1

∑
j=0

Srj MaxNorm Gsj

)
◦
(

N−1

∑
j=0

Spj Jacobi Gqj

)

◦
(

N−1

∑
j=0

Suj Laplace Gtj

)
.

(4.8)

The G and S are the gatther and scatter functions that are used in SPIRAL to read and

write data [36]. The subscripts tj, uj, qj, pj, sj and rj are the functions that indicate how

many points should be read for each operation (like the Laplace, Jacobi and MaxNorm in

this case) as well as how many points should be written after the computation is complete.

1 //spiral_generated.hpp
2 void Poisson_2D_fused(double *Y, double *X, double weight1, double lambda1, double *rhs,
3 double a_h1, double *retval1){
4 for(int i1 = 0; i1 <= 4095; i1++) {
5 double s20, s21, s22;
6 int a48, b15;
7 b15 = ((66*(i1 / 64)) + (i1 % 64));
8 a48 = (b15 + 67);
9 s20 = X[a48];

10 s21 = ((X[(b15 + 1)] - (4.0*s20)) + X[(b15 + 66)] + X[(b15 + 68)] + X[(b15 + 133)]);
11 s22 = rhs[i1];
12 Y[a48] = ((s20 + (weight1*s21)) - (lambda1*s22));
13 *(retval1) = ((((*(retval1) >= fabs((((1.0/(a_h1*a_h1))*s21)-s22))))) ? (*(retval1)) :
14 (fabs((((1.0/(a_h1*a_h1))*s21) - s22))));
15 }
16 }

Figure 4.4: SPIRAL generated CPU code for the merged 2D Poisson equation for a Box of
size 64 × 64. All the abstractions from Proto have been fused into one single function call
with a single loop.
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1 //spiral_generated.hpp
2 #include <omp.h>
3 #include <math.h>
4 const int NUM_THREADS = 4;
5
6 //SPIRAL code for OpenMP
7 void possion_2d(double *Y, double *X, double weight1, double lambda1, double a_h1,
8 double *rhs, double *retval1) {
9 #pragma omp parallel num_threads(4)

10 #reduction (max : retval)
11 {
12 { /* begin parallel loop */
13 int tid1 = omp_get_thread_num();
14 for(int i1 = tid1; i1 <= 4095; i1 += 4) {
15 int a51, b15;
16 double s28, s29, s30, s31, s32;
17 b15 = ((66*(i1 / 64)) + (i1 % 64));
18 a51 = (b15 + 67);
19 s28 = X[a51];
20 s29 = ((X[(b15 + 1)] - (((4.0)*(s28)))) + X[(b15 + 66)] + X[(b15 + 68)] + X[(b15 + 133)]);
21 s30 = rhs[i1];
22 s31 = ((s28 + ((weight1)*(s29))) - (((lambda1)*(s30))));
23 Y[a51] = s31;
24 s32 = max(*(retval1), abs((((((1.0) / (((a_h1)*(a_h1))))) *(s29))- (s30))));
25 *(retval1) = s32;
26 }
27 } /* end parallel loop */
28 }
29 }

Figure 4.5: SPIRAL generated code for OpenMP using four threads.

1 //spiral_generated.hpp
2 #include "hip/hip_runtime.h"
3
4 __global__ void ker_code0(double *X, double *Y, double weight1, double lambda1,
5 double a_h1, double *retval1) {
6 if (((((256*blockIdx.x) + threadIdx.x) < 4096))) {
7 double s21, s22;
8 int a66, a67, b16;
9 a66 = (threadIdx.x + (256*blockIdx.x));

10 b16 = ((66*(a66 / 64)) + (threadIdx.x % 64));
11 a67 = (b16 + 67);
12 s21 = X[a67];
13 s22 = ((X[(b16 + 1)] - (4.0*s21)) + X[(b16 + 66)] + X[(b16 + 68)] + X[(b16 + 133)]);
14 Y[a67] = ((s21 + (weight1*s22)) - (lambda1*X[(a66 + 4356)]));
15 *(retval1) = ((((*(retval1) >= fabs((((1.0 / (a_h1*a_h1))*s21) - s22))))) ?
16 (*(retval1)) :
17 (fabs((((1.0 / (a_h1*a_h1))*s21) - s22))));
18 }
19 }
20 void possion_2d(double *Y, double *X, double weight1, double lambda1, double a_h1,
21 double *rhs, double *retval1) {
22 dim3 b17(256, 1, 1), g1(17, 1, 1);
23 hipLaunchKernelGGL(ker_code0, dim3(g1), dim3(b17), 0, 0, X, Y, weight1, lambda1, a_h1, retval1);
24 }

Figure 4.6: SPIRAL generated code for AMD GPUs.

Once the optimization process in Σ−OL is complete, an intermediate representation

of the expression is generated, which produces the final optimized code for various hard-

ware platforms. Figures 4.4, 4.5, and 4.6 show the generated code for the 2D Poisson prob-
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lem as captured and optimized using SPIRAL, targeting various hardware platforms. The

code is generated for the Box size of 64 × 64 with the overall domain size being 256 × 256.

We can see that in comparison to the original code in Proto (see Fig. 4.3), which has

various library calls for the different computational kernels required, the SPIRAL gener-

ated code produces a single kernel for the entire computation. In this kernel, all three

operations, Laplace, Jacobi, and MaxNorm are fused into one single loop, significantly

improving data locality, arithmetic intensity, and kernel launch overhead.

ComputeFlux X

ConsToPrim1 Deconvolve

ConsToPrim2

WavespeedConvolve

U

ComputeFlux Y

FluxDiv X

RHS

FluxDiv Y

Figure 4.7: Dataflow for the spatial discretization for the 2D Euler equations implementa-
tion in Proto.

4.2 Σ-OL transformations in 2D Euler equations

We showcase some more Σ-OL optimizations for the 2D Euler equations example. Figure

4.7 shows the computational DAG of the 2D Euler equations, specifically for the spa-

tial discretization portion. It takes, as input, a multi-dimensional vector, U, consisting of

four matrices stacked on top of each other. Then it moves through a series of pointwise

operations such as ConstToPrim1 and ConstToPrim2, as well as some stencil operations

such as Deconvolve and Convolve. Focusing on these operations, we show two key fu-

sion opportunities available in this computation, namely fusion of a stencil followed by a
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pointwise operation and fusion of a pointwise operation followed by a stencil. We first

begin by showing the OL formulas for each of the operations discussed, ConstToPrim1,

ConstToPrim2, Deconvolve, and Convolve. For each expression, we use an input box

(matrix or tensor depending on the input dimension) of length n in each dimension.

The key benefits of performing these two fusions are an increase in arithmetic intensity

and a decrease in the overall memory footprint. If each operation exists in isolation, they

need to write out the entire output before the next operation can occur. However, if these

operations are fused, only the working set within the kernel will change. This working

set will be significantly smaller than writing out the entire intermediate memory to move

between operations.

ConsToPrim(1 and 2)n,γ →
(

I3n2 ⊕ pPrimn,γ

)
◦

 I3n2

(In2 ⊕ StatePrimX2rhon ⊕ StatePrimY2rhon ⊕ In2)


◦ (In2 ⊕ StatePrimXn ⊕ StatePrimYn ⊕ In2)

(4.9)

StatePrimXn → X2×n×n⊙
(

Pointwisen×n
x 7→1/x (X1×n×n)

)
(4.10)

StatePrimYn → X3×n×n⊙
(

Pointwisen×n
x 7→1/x (X1×n×n)

)
(4.11)

StatePrimX2rhon → Pointwisen×n
x 7→x2 (StatePrimXn)⊙ (X1×n×n) (4.12)

StatePrimY2rhon → Pointwisen×n
x 7→x2 (StatePrimYn)⊙ (X1×n×n) (4.13)

pPrimn,γ →
(

0,
−(γ − 1)

2
,
−(γ − 1)

2
, (γ − 1)

)
⊗ In2 (4.14)

Deconvolven → (−1/24, 1)⊗ I4n2 ◦

⊕4
i=1Filt · Xi×n×n

⊕4
i=1In2,i · Xi×n×n

 (4.15)

Convolven → (−1/24, 1)⊗ I4n2 ◦

⊕4
i=1Filt · ConsToPrim1n

⊕4
i=1In2,i · ConsToPrim2n

 (4.16)
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4.2.1 Fusing Stencil followed by Pointwise

The first optimization we discuss is fusing a stencil operation that is followed by a point-

wise optimization. This is a relatively simple optimization as there are no complicated

data dependency analyses that need to be performed. At a high level, this optimization

requires verifying the iteration spaces of the stencil output and the pointwise match and

that all output points needed for the pointwise for a given iteration are precalculated

by the stencil. We show the Σ-OL transformations for Deconvolve and ConsToPrim2 to

highlight this type of fusion. For each of these expressions, we only show the Σ-OL for

one component for simplicity, and add the subscript m to signify the total number of

components.

Deconvolven →
(n−2)(n−2)

∑
j=0

Sjm (−1/24, 1)m ◦

Filt · Gk

G f


m

(4.17)

Equation 4.17 shows the Σ-OL for Deconvolve that introduces the gather and scatter

functions. The first operation is a vertical stack that places a stencil on top and collects the

center of the stencil underneath. For the stencil gather function, we define the indexing

function f where f = (
⌊

j
n

⌋
× n + j mod n) + n. In this formula n is the number of

columns in the input matrix. This function helps to capture the value of the input vector

that corresponds to the center of the stencil. To capture each point of the stencil, we use

the piecewise gather function called the stack [−], expressed with the variable k. For the

five-point stencil case, k captures the center f along with the other 4 points f − n, f − 1,

f + 1, and f + n storing them as a linearized array in row-wise order (points above the

center, followed by points along the center, followed by points below the center). As the

other gather function only requires the center, we use f . The two resulting points are

used for the scalar product with the row vector containing the points −1
24 and 1, before the

output is written.
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ConsToPrim2n,γ →
n∗n

∑
j=0

Sg

(
pPrimn,γ

)

◦

 I3

(StatePrimX2rhon ⊕ StatePrimY2rhon)


◦ (StatePrimXn ⊕ StatePrimYn)Gg

(4.18)

Equation 4.18 shows the Σ-OL for ConsToPrim2. Here, the function g captures a point

across all components as required to perform the pointwise function. It is another piece-

wise gather function collecting the same point at component stride, n2. This will give

us a collection of j, j + n2, j + 2 × n2, and j + 3 × n2. Within SPIRAL, we verify that the

iteration space of Deconvolve matches the iteration space of ConsToPrim2. If this is true,

we can merge expressions by placing the operations in ConsToPrim2 immediately after

the expression in Deconvolve. The final expression is shown below.

Deconvolven + ConsToPrim2n,γ →
(n−2)∗(n−2)

∑
j=0

Sg

(
pPrimn,γ

)

◦

 I3

(StatePrimX2rhon ⊕ StatePrimY2rhon)


◦ (StatePrimXn ⊕ StatePrimYn)GgSjm (−1/24, 1)m

◦

Filt · Gk

G f


m

(4.19)

4.2.2 Fusing Pointwise followed by Stencil

The second optimization that we discuss is how to fuse a pointwise that is immediately

followed by a stencil. Unlike the previous optimization, it is not as simple as perform-

ing an iteration space analysis and then merging. This is because the pointwise needs

to be performed for every point of the stencil operation before the stencil operation can

be performed successfully. The general process for this optimization requires merging

68



the indexing of the gathers for both the pointwise and stencil together at the beginning

of the operation, then performing the pointwise on the updated set of input points fol-

lowed by the stencil. Due to extra complexity in the case of ConsToPrim1 and Convolve,

we showcase the example of reordered ConsToPrim2 and Deconvolve to illustrate this

optimization.

To begin, we pull the gather expressions from each of the Σ-OL operators to the be-

ginning of the expression as shown below.

Gk

G f


m

· Gg (4.20)

We now want to unify the Gather expressions so that we can perform the pointwise on

all the required points of the filter. To do this, we use the distributive property of gather

functions, allowing us to compose the k, g, and f expressions defined previously. This

produces

Gk · Gg

G f · Gg


m

. (4.21)

We recognize that the points needed for the stencil are defined in k and f , while

the points in g describe the stride capture that point across the four input components

to perform the pointwise. Therefore, we perform a function composition to pull the

indexing mapping functions together along with a reordering to first gather the points

for the stencil and then gather for each stencil point the required component points to

perform the pointwise. We see this unified expression below.

Gg◦km

Gg◦ fm

 . (4.22)

We can further unify the stack of Gathers into a single Gather stacking the indexing

functions which we unify with the new capture function u shown below.

Gu (4.23)
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After capturing all the points, we need to apply the pointwise operation to each set

of points captured by the new gather. We show this in the expression below. Unlike

equation 4.18 we have to change the domain of this expression to only compute over the

set of points we gathered instead of the whole input. We show that u is based on the

outer loop variable using the subscript j. The scatter function c is a strided write which

writes each value at the number of component stride. This groups the points required for

the stencil at unit stride, as each group of stencil points is stacked on top of each other for

each component.

ConsToPrim2n,γ →
u

∑
l=0

Sc

(
pPrimn,γ

)

◦

 I3

(StatePrimX2rhon ⊕ StatePrimY2rhon)


◦ (StatePrimXn ⊕ StatePrimYn)Guj

(4.24)

Having updated ConsToPrim2 we can now merge it inside of Deconvolve where we

use new gather functions to index over the output of ConstToPrim2 rather than the entire

input coming in. The first function h is a unit stride read of the points required for the

stencil, as each group of stencil points is stacked on top of each other. The second function

d is a strided read, finding the center of each stencil depending on which component its

calculating. The final expression is shown below.

ConstToPrim2 + Deconvolven →
(n−2)(n−2)

∑
j=0

Sjm (−1/24, 1)m ◦

Filt · Gh

Gd


m

◦
u

∑
l=0

Sc

(
pPrimn,γ

)
◦

 I3

(StatePrimX2rhon ⊕ StatePrimY2rhon)


◦ (StatePrimXn ⊕ StatePrimYn)Guj

(4.25)

In Equation 4.25 we have a Gather function that is based on the outer loop variable j,

collecting a number of points required for the stencil and for each set of points performing

the pointwise operation based on domain of u. This is written to a temporary vector that
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is accessible by the gather functions h and d to perform the stencil and produce the result.

Although the pointwise is shown as a loop in this expression, it is fully unrolled in the

generated code as a performance optimization, which is why there is no dependence on

the loop variable l.

4.2.3 Nesting Optimizations

Having shown how to fuse a pointwise followed by a stencil along with a stencil followed

by a pointwise, we can recursively perform these optimizations to our entire 2D Euler

equations computation. This will significantly reduce the memory footprint of the ap-

plication as now the only boundary between kernels is the stencil boundary, a current

hard boundary within ProtoX. By performing these optimizations recursively, there exist

opportunities to find other optimizations. In the case of the 2D Euler equations example

after fusing Deconvolve and ConsToPrim2 and fusing ConsToPrim1 with Convolve, we

can notice that the iteration spaces for both kernels are the same, (n − 2)2 the iteration

space of the stencil. This allows us to fuse those two kernels together as long as we do

the instruction scheduling such that the final reduction takes the result of those two fused

expressions.
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4.3 Capturing Modern Language Features

1 void f_consToPrim_(
2 double*& a_W,
3 const double*& a_U,
4 double a_gamma)
5 {
6 double rho = a_U[0];
7 double v2 = 0.0;
8 a_W[0] = rho;
9

10 double v_1, v_2;
11 v_1 = a_U[1] / rho;
12 v_2 = a_U[2] / rho;
13 a_W[1] = v_1;
14 a_W[2] = v_2;
15 v2 = v_1*v_1+v_2*v_2;
16

17 a_W[3] = (a_U[3] - .5 * rho * v2) * (a_gamma - 1.0);
18

19 }

Figure 4.8: User-defined Pointwise operation in Proto, which is passed as part of the
general Pointwise infrastructure.

Proto is a modern library that contains modern features, including the ability to lever-

age user-defined pointwise functions expressed as lambdas as shown in Fig. 4.8. Given

that these are outside the base library, it is difficult to provide OL expressions easily.

ProtoX uses two approaches to capture these lambda expressions. The first approach in-

volves overriding primitive data types in the base language. By overriding all primitive

types, ProtoX is able to overload all assignment and arithmetic operators for these data

types. During execution, ProtoX then prints each operation within the lambda expression

in SPIRAL’s IR. This translation follows the three-address code model seen in most com-

pilers which breaks arithmetic expression chains into one output two input expressions,

passing the intermediate outputs while unwinding the chain. Using traditional compiler

optimizations in SPIRAL, like strength reduction, SPIRAL can optimize the captured IR

to produce an optimized implementation shown in Fig. 4.9. Currently, ProtoX is able

to capture these types of lambda expressions given the following criteria, only primitive

types are used, basic if-then-else control flow, no loops, and no data dependent control

flow.

72



1 func(TVoid, "f_consToPrim", [ Y, X, gamma1 ],
2 loop(i1, [ 0 .. 1599 ],
3 decl([ a36, a37, a38, a39, a40, s24, s25, s26 ],
4 chain(
5 assign(s24, nth(X, i1)),
6 assign(nth(Y, i1), s24),
7 assign(a36, add(i1, V(1600))),
8 assign(s25, div(nth(X, a36), s24)),
9 assign(nth(Y, a36), s25),

10 assign(a37, add(i1, V(3200))),
11 assign(s26, div(nth(X, a37), s24)),
12 assign(nth(Y, a37), s26),
13 assign(a38, add(i1, V(4800))),
14 assign(a39, sub(gamma1, V(1.0))),
15 assign(a40, mul(V(0.5), a39)),
16 assign(nth(Y, a38), sub(mul(a39, nth(X, a38)), add(mul(a40,
17 mul(mul(s25, s25), s24)), mul(a40, mul(mul(s26, s26), s24)))))
18 )
19 )
20 )
21 )

Figure 4.9: SPIRAL optimized IR for a captured lambda function.

Given the significant number of constraints on direct lambda capture, ProtoX intro-

duces another capture mechanism for lambdas as callback functions within SPIRAL gen-

erated code. ProtoX has demonstrated that operation fusion between stencil and point-

wise operations is great for performance and callbacks provide that functionality without

inspection. ProtoX wraps the lambda in an OL container, capturing its arguments and

function name. SPIRAL then embeds these callbacks into stencil operations when pos-

sible. During runtime compilation it binds those lambda expression declarations to the

generated code allowing the generated code to invoke those functions.

4.4 Summary

ProtoX is the LibraryX implementation for structure grid applications. ProtoX interprets

the C++ domain specific library Proto, enabling optimization for key operators, stencil

and pointwise. Using the SPIRAL code generation system, ProtoX can optimize structured

grid applications by providing optimized implementations of stencils and pointwise oper-

ations, while also finding opportunities to perform operation fusion. This fusion includes

a pointwise followed by a stencil, a stencil followed by a pointwise, and iteration space
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merging. These optimizations enable a significant reduction in temporary memory and

an increase in arithmetic intensity. As Proto is a modern library that uses modern C++

language features, ProtoX is designed to support capturing these features. This includes

the ability to capture arbitrary pointwise functions as SPIRAL IR or reference pointwise

functions directly through function callbacks.
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Chapter 5

Extending the LibraryX Backend: IRISX

Modern high-performance computing (HPC), cloud, and embedded systems have become

increasingly heterogeneous with multiple coexisting accelerators. These accelerators pro-

vide significant performance benefits, with the trend of accelerators being predicted to

intensify in the future with various kinds of accelerators co-existing for various computa-

tions. Although these heterogeneous systems provide significant performance improve-

ments, they introduce two key challenges [92]. The first challenge is performance porta-

bility, where a common abstraction is employed to ensure programming productivity,

which contains architecture-optimized implementations for different hardware platforms.

Abstractions such as Kokkos [29] or code generation systems such as SPIRAL [32] aim to

address this challenge. The second challenge is efficient utilization of multiple accelerators

housed in a single node, as data movement and orchestration of multiple accelerators in-

creases the complexity of building portable code. Runtime systems such as StarPU [10] or

IRIS [52] focused on providing solutions for orchestration and data movement challenges

in diverse heterogeneity through task graphs. As these challenges will only become more

complicated, a new portable abstraction is needed that addresses both.

There also exists a third connected challenge, tuning, based on factors from the ap-

plication and specific hardware being utilized. These factors include kernel implementa-

tion, computation representation based on concurrency, number of devices, and efficient



scheduling to reduce unnecessary data movement. Although solutions involving tuning

have been incorporated with prior challenges individually, they must all be combined

to achieve the best performance. Therefore, an application using an ideal portable abstraction

should have the ability to automatically adapt itself based on the architectures and number of de-

vices in a node to provide the best performance by dynamically employing optimized kernels with

the right granularity and a graph representation of the computation that enables efficient orches-

tration. To the best of our knowledge, no such solution exists.

This work presents IRISX, a dynamic trade-off system for harnessing multi-accelerator

heterogeneity that strives towards providing the ideal solution mentioned above. IRISX

exposes architecture-agnostic high-level interfaces to applications which provide func-

tional portability, and at runtime, it establishes an active interaction between the SPIRAL

code generation engine that generates architecture-optimized kernels and the heteroge-

neous runtime IRIS [71] to efficiently orchestrate computation to ensure performance.

IRISX goes beyond the state-of-the-art efforts by employing dynamic adaptation through

re-organizing the computation at the kernel and task graph levels to provide efficient

execution using various underlying heterogeneous processors.

When invoked from the application, IRISX discovers the underlying heterogeneous ar-

chitectures, generates the optimized kernels for those architectures, and automatically cre-

ates a directed acyclic graph (DAG) that is, task graph. IRISX then automatically performs

data movement among heterogeneous processors, while leveraging scheduling strategies

to ensure concurrent utilization. This process involves a model-guided search for the best

configuration that takes advantage of various opportunities for kernel, task, and graph

concurrency depending on hardware resources. Moreover, IRISX can dynamically dis-

cover a functional execution by employing a memory model if the size of a problem would

exceed the memory of the available hardware and can reduce the memory footprint by

regenerating fused kernels if needed. Using the class of structured grid problems, IRISX

demonstrates the wide variety of execution scenarios based on accelerator computation

capabilities and problem size, where it is capable of efficiently finding the optimal kernel

and graph-level computation granularity for various heterogeneous systems. By consid-
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ering state-of-the-art high-performance computing platforms (Frontier, Aurora, ExCL and

Cades cloud), IRISX demonstrates its capability of providing a portable interface that

dynamically selects the best configuration to provide the best performance.

5.1 IRISX Design

We discuss the main components of IRISX, shown in Fig. 5.1, its design flow, and high-

light novel functionality enabled by the dynamic interactions and tight coupling of these

systems.

5.1.1 Components

SPIRAL. The code generation system, SPIRAL, has been in development for more than

25 years [5]. SPIRAL was originally developed to generate optimized kernels for linear

transforms like the discrete Fourier transform (DFT), discrete sine, and cosine transforms.

The internal language of SPIRAL, the Signal Processing Language (SPL) [94], was criti-

cal to enabling optimization in both the selection and the implementation spaces of the

FFT algorithm. SPL has since been generalized to the mathematical language called Op-

erator Language (OL) [31], which expands the scope of SPIRAL to application domains

other than signal processing. Recent work in the areas of graph algorithms [83], partial

differential equations (PDE) [68], and cryptography [98] showcases the use of SPIRAL in

different scientific domains.

IRIS Runtime. 2024 R&D 100 award winner, IRIS [22, 52] is an intelligent task-based

runtime designed for diverse heterogeneity. IRIS is designed to work with heterogeneous

computing systems that comprise multicore CPUs, GPUs (NVIDIA, AMD, Intel), DSPs

(Qualcomm Hexagon), and FPGAs (Xilinx, Intel). It accommodates kernels written in

various programming languages, including OpenMP, OpenCL, CUDA, HIP, XilinxCL, In-

telCL, Hexagon C++, and OpenACC. IRIS provides fundamental abstractions, tasks to

express a computation, and memory objects to express data needed by the task. Both

task and memory objects are architecture-agnostic. Three levels of abstraction are there
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Figure 5.1: IRISX Design. Top: The three main components and the flow of the IRISX
system are shown. Bottom: The detailed software stack of the IRISX system is shown.



for computation, 1) kernel is the collection of instructions, 2) task is a collection of ker-

nels where a single task can point to one or multiple kernels, and 3) DAG is the directed

acyclic graph of tasks where data dependencies are expressed using edges between dif-

ferent tasks. At runtime, tasks invoke kernels suitable for a particular architecture. Simi-

larly, IRIS memory objects are orchestrated at run-time, including memory allocation and

transfer among devices without user intervention. In addition, IRIS provides a rich set of

schedulers to efficiently schedule a DAG of tasks.

1 #include <iostream>
2 #include <vector>
3 #include "fftx.hpp"
4 #include "irisx.hpp"
5

6 int main(int argc, char** argv) {
7 int n,m,k;
8 n = 8;
9 m = 8;

10 k = 8;
11 int length = n*m*k*2;
12 std::vector<int> sizes{length, length, length, n, m, k};
13 double *Y, *X, *sym;
14 X = new double[length];
15 Y = new double[length];
16 sym = new double[length];
17 generateInputBuffer(X, sizes);
18 std::vector<void*> args{Y,X,sym};
19

20 IRISXProblem mdp(args,sizes,"mddft");
21 mdp.readKernels();
22 mdp.createGraph();
23 mdp.transform();
24

25 for(int i = 0; i < n*m*k; i++) {
26 std::cout << Y[i] << std::endl;
27 }
28 return 0;
29 }

Figure 5.2: Example of the IRISX API shown here for a multidimensional discrete Fourier
transform (MDDFT) kernel, which is part of the FFTX [35] library. This design allows
functional portability to various hardware platforms, and performance portability by dy-
namically generating optimized kernels and scheduling them on all available hardware
platforms.

5.1.2 Flow in IRISX

To provide performance portability, IRISX combines an architecture-agnostic front end,

architecture-optimized code generation, and the dynamic capability of modifying the
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computation representation at different granularity. To enable such a combination, IRISX

provides a simple class-based API (Fig. 5.2) to access its functionality. The user speci-

fies an IRISX object that takes in its constructor all the input and output objects of the

computation and their sizes and instantiates the object’s virtual semantics function with

the Operator Language (OL) description of the problem to be solved. The user then calls

the three core functions, readKernels, createGraph, and transform, to generate architecture-

optimized code, create the architecture-agnostic task graph, and execute the task graph.

At runtime, the readKernels function, shown in 1 , causes SPIRAL to ask IRIS for the archi-

tectures of interest and the number of resources, using those values to generate variants of

optimized code, such as code with varying levels of concurrency via kernel fusion. This

is done for each provided architecture and includes additional metadata for the IRIS run-

time system. In 2 , the createGraph function parses the metadata to create the intermediate

memory objects and the task graph in the IRIS runtime. Within this step is a profile-based

autotuning system, which determines the specific concurrency variant of the generated

kernels, and which kind of scheduling should be performed for this particular input. Fi-

nally, the transform function, shown in 3 runtime compiles and executes the code based

on the best-tuned profile discovered. Here, the IRIS runtime does on-the-fly device mem-

ory creation and task orchestration. The generated code and profile are cached for future

reuse based on problem size and hardware resources.

In summary, IRISX enables the interaction between code generation in SPIRAL and

runtime orchestration in IRIS to deliver the targeted dynamic system. Through such

interaction, the main objective is not only to enable portability, but also to find the right

representation of the computation that provides the best performance on the underlying

heterogeneous systems. The various extensions that enable IRISX are further elaborated

in the rest of the section.

80



5.1.3 SPIRAL and IRIS Interaction through Metadata Capture and Runtime

Compilation

SPIRAL needs to provide not only optimized kernels but also kernel metadata that the

IRIS runtime can use to execute the computation and schedule tasks. This is done by

generating metadata that describe the computation flow to the runtime system. SPIRAL

provides information on all intermediate memory objects, including a number of param-

eters, types, and sizes. Additionally, SPIRAL provides the kernel launch semantics for

each of the generated kernels so that IRIS can launch them appropriately. Finally, SPI-

RAL provides information on the number and types of input arguments that are required

for the generated code. SPIRAL helps IRIS identify opportunities for kernel-level concur-

rency by writing intermediate results to different memory objects for concurrent kernels.

In this way, dependency analysis can be performed on the computation DAG to provide

opportunities for concurrent scheduling.

IRISX compiles the generated OpenMP, OpenCL, CUDA and HIP kernels to create

and cache the individual binaries to be invoked and orchestrated by IRIS. The runtime

compiler takes the generated code and produces the final kernel binaries. This is then

ingested by IRIS during task graph execution to find the appropriate kernel to execute.
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(b) DAG fusion using automatic data flow in IRIS. A different representation of (a).  
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(c) DAG with task fusion in IRIS to reduce the number of tasks. A different representation of (a) and (b)

DAG 0 DAG 4 DAG 5 DAG 6 DAG 7DAG 1 DAG 2 DAG 3

FUSED T1 FUSED T2 FUSED T3 FUSED T4 FUSED T5 FUSED T6 FUSED T7

main

FUSED T0

DAG 0 DAG 4 DAG 5 DAG 6 DAG 7DAG 1 DAG 2 DAG 3
DAG 7

T2

T0 T1

T3

T6

T4 T5

T7

T8

T11

T9 T10

T12

T13

T16

T14 T15

T17

T18

main

T2

T0 T1

T3

T6

T4 T5

T7

T8

T11

T9 T10

T12

T13

T16

T14 T15

T17

T18

main

DAG 0

19 Kernels 
for DAG 0 

T2

T0 T1

T3

T6

T4 T5

T7

T8

T11

T9 T10

T12

T13

T16

T14 T15

T17

T18

main

15 Kernels 
for DAG 0 

T1

T0

T4

T2 T3

T5

T8

T6 T7

T9

T12

T10 T11

T13

T14

main

T0

T2

T1

T3

T5

T4

T6

T8

T7

T9

T10

main

11 Kernels
for DAG 0

8 Kernels 
for DAG 0 

main

T0

T1

T2

T3

T4

T0

T2

T1

T3

T5

T4

T6

T7

main

5 Kernels 
for DAG 0 

(a) DAG Serial: Basic Task 
Graph from Proto in IRIS 

(d) IRIS task representation of the same computation using various kernel fusion options from SPIRAL.

Figure 5.3: Pictorial depiction of the task graph generated in IRIS and the different fusion
combinations available in IRIS and SPIRAL which are are combined in IRISX. Figure 5.3-a
depicts the first possibility where the given DAG is executed in a serial manner. Figure 5.3-
b increases the concurrency in the DAG by doing data flow informed DAG fusion. Figure
5.3-c depicts the combination of DAG fusion with task fusion capability in IRIS where all
the kernels in a given single DAG (like in fig. 5.3-a) are fused in one task. Figure 5.3-d
represents IRIS task graphs for different kernel fusion options generated using SPIRAL
that are used by IRISX

5.1.4 IRIS DAG Generation and Optimization

Denoted by 2 is phase-2 of IRISX shown in Fig. 5.1 where the computation is expressed

using architecture-agnostic APIs from IRIS runtime. The metadata generated by SPIRAL

is used in this phase. Each task points to the kernels generated by SPIRAL, where kernel

arguments are expressed using IRIS memory objects. During this phase, no architectural

details are expressed and no memory transfer between devices is specified; rather, existing

features of IRIS runtime can facilitate data transfer among devices. Therefore, this phase is

crucial to enabling functional portability. This phase also enables dynamic transformation
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of the representation of the computation through DAG and Task fusion.

DAG Fusion. IRIS DAGs are represented as graph objects. Each DAG execution re-

quires data transfer from the host to device and sends the final result back. Serial execu-

tion of DAGs are shown in Fig. 5.3-a, where such data transfers take place. IRIS has been

enhanced with the capability of fusing multiple DAGs which can increase concurrency in

the DAG thereby enabling the simultaneous usage of multiple devices (such as multiple

GPUs) or the streams in capable devices (such as simultaneously multi-kernel execution

in the same GPU using streams). IRISX utilizes these features by combining multiple

graph objects, which in turn enables DAG fusion. The pictorial depiction of DAG fusion

is shown in Fig. 5.3-b where it shows the increased concurrency. Moreover, DAG fusion

reduces unnecessary data movement. Although DAG fusion capabilities have already

been explored in other efforts by manual implementation, IRISX performs the fusion of

DAGs completely transparently when the option is enabled.

Task Fusion. While DAG fusion increases the concurrency in the DAG, it also in-

creases task management overhead because tasks are orchestrated simultaneously among

heterogeneous devices. To address high task management overhead, IRISX can fuse mul-

tiple IRIS tasks together. This new fused task inherits all the kernels of previous tasks.

Since all kernels are combined in a single task, task fusion reduces concurrency. More-

over, the IRIS runtime extension to support task fusion uses a single stream to serially

execute the kernels. IRISX automatically merges multiple tasks and adds those merged

tasks to the IRIS graph object, which then significantly reduces the total number of tasks

in a graph object. The impact of task fusion on DAG fusion is shown in Fig. 5.3-c.

5.1.5 Data Flow, Scheduling and Runtime Orchestration in IRISX

After phase 2, tasks are submitted to IRIS runtime, shown by 3 . During metadata gener-

ation, SPIRAL augments memory access information (such as read, write, or read/write),

which is embedded into IRIS tasks in phase 2. Using this information, IRIS performs data

flow analysis to create the necessary dependencies to build a DAG to determine which

tasks can be executed concurrently. The upper box of 3 shows the creation of DAG
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in Fig. 5.1. After creating the DAG, IRISX can employ different scheduling algorithms

available in IRIS or a custom scheduling algorithm written for a specific problem or ar-

chitecture. Being fully aware of the architectures, tasks, and DAG, IRISX creates a custom

scheduler in phase 2 to enable concurrent execution in phase 3. Taking into account the

custom scheduler, the dynamic platform loader for IRIS runtime (shown in the second

layer from the top in 3 ) loads the binary created by runtime compilation in phase 1 and

invokes the corresponding kernel from the IRIS tasks.

Scheduling can be done on a heterogeneous system by utilizing all or a subset (for

example, scalability in terms of the number of GPUs) of the computing devices. IRISX

enjoys this flexibility through the IRIS runtime, which can use environment variables to

choose different architectures or schedulers without changing the implementation. There-

fore, IRISX can dynamically change the number of devices without any change in the

source implementation.

Memory orchestration is a challenging task that is required to support concurrent ex-

ecution in diverse heterogeneity. IRIS runtime is equipped with automatic and efficient

memory movement (such as device-to-device) based on the data flow defined DAG [71].

To take advantage of this capability, IRISX binds the IRIS memory objects to the host

memory space that IRISX captures from the application. Once the mapping is established

in phase 2, IRIS runtime performs necessary device memory creation and movement au-

tomatically during execution.

5.1.6 Code Generation and Kernel level Fusion

The SPIRAL code generation system provides the ability to control for various degrees of

kernel fusion. This enables SPIRAL to generate different kernel variants of the compu-

tation as shown in Fig. 5.3-d. During code generation, SPIRAL transforms the provided

OL expression into a Σ-OL expression which makes loops and indexing patterns for the

input and output explicit for all operators. From here, Σ-OL’s robust rewriting system [36]

can be used to configure kernel level fusion in generated code. SPIRAL exposes fusion

opportunities in the form of the stack ([−]) operator. At code generation time, each Σ-OL
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operator within the stack can be a different kernel or can be fused together to form a

larger kernel. This fusion is available only if the domains of each operator are the same

and changes the amount of work per thread, not the thread geometry. Given a stack of

N operators with the same domain, SPIRAL can choose to create up to N concurrent ker-

nels each with T work per thread or one kernel with N ∗ T amount of work per thread.

This can be further generalized to N/G concurrent kernels where G is a specific number

of groups. Kernel fusion affects the amount of temporary memory a set of kernels re-

quires, as temporary memory reuse can be employed as the concurrency width decreases.

Generally, the smaller the number of kernels, the less temporary memory is required.

5.1.7 Model-seeded Tuning

IRISX’s dynamic nature allows for a wide range of possibilities to represent the compu-

tation on different hardware architectures. On the kernel side this includes configuring

the granularity of concurrency in the generated kernels (Kernel fusion). IRISX supports

higher concurrency by splitting independent work into different kernels or bundling work

together into fat kernels. When the graph of tasks (i.e. DAG) is created, there are different

ways to organize it. This includes no fusion, which creates a task graph per operation,

and dag fusion, which creates a large graph of all operations. Finally, task fusion, which

bundles sets of tasks together into a single fused task within the task graph.

A model-seeded tuning approach that uses analytical memory models and empirical

profiles to find which representation of computation provides a functional and efficient

execution. When IRISX runs for the first time, it empirically collects the profiles for the

possible combinations to determine the best-performing option for a given input (one time

effort). To reduce the number of combinations on the kernel side, IRISX employs an ana-

lytical memory model to determine if certain variants will fit given the application mem-

ory requirements. IRISX queries the amount of available device memory and compares it

with the total size of the memory objects used in a DAG. IRISX can eliminate execution

of any variant that uses excess memory automatically and discover the functional variant

of the kernels. The best option is cached for reuse in all subsequent iterations/executions
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of the program so that the application gets optimal performance. Building a sophisticated

model is not the focus of the work; however, this simplistic model shows the efficacy and

opens the door for future research opportunties.

5.2 Summary

IRISX is a novel and dynamic system that provides high-level abstraction for performance

portability for multi-device heterogeneity. By providing a hardware-agnostic API, IRISX

enables the generation of architecture-optimized kernels for different heterogeneous accel-

erators, determines the best computation representation by employing run-time reshaping

of the computation graphs, and efficiently schedules the computation graph to take advan-

tage of concurrency. It enables dynamic interaction between the SPIRAL code generation

engine and the IRIS runtime to make an application adapt for the underlying set of ac-

celerators in a heterogeneous system. IRISX demonstrates that careful selection of kernel,

task, and graph representation is critical to obtaining the best performance for varying

sets of accelerators with various computation capabilities. Additionally, IRISX shows its

efficacy for future heterogeneous systems with multi-kind accelerators by scaling beyond

the vendor boundary.
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Chapter 6

Expanding the Scope: LibraryX-ASIC &

FortranX

LibraryX has been designed for C/C++ libraries and can run on hardware platforms that

have defined software stacks. However, scientific software has a long history in languages

like Fortran, with many legacy applications written in Fortran. Similarly, new hardware

accelerators don’t have the same software stack support as current hardware, making it

difficult for application developers to port their applications easily to these accelerators.

To address these two challenges, we extend LibraryX to support legacy Fortran applica-

tions, via FortranX, and to support new hardware accelerators with LibraryX-ASIC.

6.1 FortranX

Fortran has a long history in scientific computing due to its mathematical basis and strong

compiler support. However, over the past few decades support for new features in Fortran

has decreased dramatically in favor of more popular languages like C++ and Python.

This poses a great challenge to legacy Fortran applications that have no modern language

implementation. These applications do not benefit from new programming models or

new hardware platforms without significant development effort.

To combat this development effort and leverage new features we propose FortranX.



FortranX is a compiler framework that recognizes and optimizes key algorithms in Fortran

applications, without source code modification. FortranX uses a custom compiler pass to

capture the semantics of the algorithm. This semantic description is passed to IRISX [84]

to perform optimization and execution. IRISX is a tight coupling of the SPIRAL [32]

code generation system and the IRIS runtime system. SPIRAL generates architecturally

optimized code for various hardware platforms, while IRIS [53] dynamically executes

those kernels on any available hardware platform, allowing automated portability.

Figure 6.1: FortranX Toolflow
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6.2 FortranX Design

FortranX has four distinct phases, computation capture, semantic analysis and lifting,

code generation, and task scheduling/execution. Each phase uses a different internal

framework to perform the specific operation. This entire process is done transparently to

the user.

The first phase involves a custom compiler pass as part of the GCC [24] compiler

toolchain. This compiler pass walks the GCC Intermediate Representation (IR) tree to dis-

cover the computation’s implementation. Unlike general-purpose optimizations, this pass

is specialized for known computation patterns. This includes library calls and perfectly

nested loops. If successful, the semantic analysis phase is invoked using IRISX.

During semantic analysis, the computation pattern is tested against a known compu-

tation database. This is done using the SPIRAL code generation system within IRISX.

If there is a computation match, the computation is lifted into a high-level computation

abstraction expressed in Operator Language (OL) [31]. The OL abstraction is then broken

down through SPIRAL’s code generation system to provide an optimized implementation

for various hardware platforms.

After code generation, IRISX’s runtime system, IRIS, takes the generated kernels and

creates a task graph for the computation. This task graph leverages metadata provided

SPIRAL include task dependency information, kernel launch parameters, and temporary

memory objects. This completed task graph is invoked via a function pointer that is

passed back to the compiler pass. The compiler pass replaces the computation’s initial

IR with the provided function pointer, before creating the final binary. The end-to-end

process flow for FortranX is shown in Fig. 6.1.

6.3 LibraryX-ASIC

With the end of Dennard scaling, hardware developers have begun to build domain-

specific accelerators to increase computing performance. These accelerators provide two

key benefits over general purpose hardware: performance and energy efficiency. Accel-
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Figure 6.2: Overview of the FFT accelerator microarchitecture.

erators have custom circuits for critical operations in their domain, enabling increased

energy efficiency for their workloads.

While accelerators have many benefits, they also have a few challenges specifically

in programmability and adoption. Accelerator designers define their unique end-to-end

software stack for developer use. This is challenging because it requires developers to po-

tentially learn a new programming model to access the accelerator. This becomes increas-

ingly more complicated for each new accelerator introduced, thereby limiting program

portability.

To address these issues of programmability and portability of accelerator devices, we

propose LibraryX-ASIC. LibraryX-ASIC is an automated framework designed to hide the

complexity of accelerator offload behind domain-specific software libraries. Using the

library’s standard interface, LibraryX-ASIC recognizes the operation, generates an opti-

mized accelerator implementation, and offloads it to the accelerator automatically, popu-

lating the output buffer upon completion. This relieves the programmer from having to

worry about various accelerator offload paradigms. We show how LibraryX-ASIC can be

utilized through an FFT benchmark and an FFT accelerator.

6.3.1 FFT Accelerator

The FFT accelerator is designed to address two primary challenges — flexibility and pro-

grammability, in existing FFT hardware implementations by following the design prin-
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ciples outlined in [89]. The key observation is that software flexibility in libraries like

FFTW [37] arises from recursion where the base cases are small sized FFTs known as

codelets. Thus flexibility in hardware can be retained by designing highly configurable

hardware codelets and a surrounding architecture that orchestrates their execution.

Similar to an FFTW plan, the FFT computation on the accelerator is defined by a se-

quence of descriptors containing the configuration parameters for the hardware codelet.

Descriptors are fetched from a local instruction memory and then decoded to obtain con-

figuration parameters including input/output base address and stride, batch size, FFT

radix, and compute ordering. The codelet datapath can be reconfigured to compute dif-

ferent small sized FFTs and also reordered between element-wise multipliers and a trans-

poser. Details of the accelerator microarchitecture are presented in Fig. 6.2. The codelet

datapath has been silicon-verified in an FFT accelerator [88] consisting of a radix-8 FFT

core and eight element-wise multipliers to accelerate a radix-8 twiddle codelet of FFTW.

1 #include <iostream>
2 #include <complex>
3 #include <vector>
4 #include "fftw3.h"
5 #include "LibraryX-ASIC.hpp"
6 using namespace std;
7 int main() {
8 int N = 64;
9 int sign = -1;

10 u_int f = FFTW_ESTIMATE;
11 vector<complex<float>> input(N);
12 vector<complex<float>> output(N, 0.0);
13

14 buildInput(input);
15

16 //call is replaced with accelerator offload and executed
17 fftwf_plan p = fftwf_plan_dft_1d(N, (fftwf_complex*)input.data(),
18 (fftwf_complex*)output.data(), sign, f);
19 fftwf_execute(p);
20

21 //output buffer contains accelerator result
22 checkOutput(output);
23

24 fftwf_destroy_plan(p);
25 return 0;
26 }

Figure 6.3: Example FFT program. This FFT application written against FFTW will be
executed on an FFT acclerator without user modification using LibraryX-ASIC. The output
buffer will be populated as if nothing changed.
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6.4 End-To-End Example: FFT

We describe the LibraryX-ASIC system design using a simple FFT program shown in Fig.

6.3. We discuss how FFT library calls are recognized and captured. We then describe the

high-level process to generate equivalent accelerator code using SPIRAL. Finally, we show

how that code is compiled and executed on the accelerator.

1 #include "model.h"
2 #include "utils.h"
3 #include "accel.h"
4

5 Program dft_desc[7] = {
6 {CONFIGI, 8, 0, 0, 1, 0, 1, 1, 0, 8},
7 {MEMI, MEM_IN, 1, 8, 0xFF, LOCAL_MEM, 0},
8 {MEMI, MEM_DIAG, 1, 8, 0xFF, LOCAL_MEM, LOCAL_MEM_REGION_SIZE};
9 {MEMI, MEM_OUT, 1, 8, 0xFF, LOCAL_MEM, 0};

10 {CONFIGI, 8, 0, 0, 0, 0, 1, 1, 1, 8};
11 {MEMI, MEM_IN, 1, 8, 0xFF, LOCAL_MEM, 0};
12 {MEMI, MEM_OUT, 1, 8, 0xFF, LOCAL_MEM, 0}
13 };
14

15 void dft64(float *Y, float *X) {
16 enter();
17 float *T23;
18 T23 = initTwiddles64();
19 dmaLoad(LOCAL_MEM, 0, 0, 8, 1, X, 8, 8, 8);
20 dmaLoad(LOCAL_MEM, 1, 0, 8, 1, T23, 8, 8, 8);
21 // Invoke Accelerator
22 executePlan(0, dft_desc);
23 dmaStore(LOCAL_MEM, 0, 0, 1, 8, Y, 8, 8, 8);
24 exit();
25 }

Figure 6.4: SPIRAL generated code for the FFT accelerator. This code uses information
from SPIRAL’s FFT description include input ranges and input and output strides.

Capturing Library Calls. LibraryX-ASIC uses a function call capturing technique

called delayed execution to intercept library calls at runtime. This transforms library

calls from operations performed on inputs and outputs to specifications describing the

computation to be performed. In the case of FFTs this includes the type of transform, its

dimensionality, and the types for the call’s input and output. LibraryX-ASIC implements

its delayed execution mechanism through preprocessor directives, with the equivalent

library call stored in the LibraryX-ASIC header file, which gets replaced at compile time.

At runtime the LibraryX-ASIC captured call is invoked. Here, LibraryX-ASIC extracts
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the library call information, building an SPL expression that describes the library call’s

semantics. This SPL expression is then passed to the SPIRAL system for code generation.

SPIRAL Code Generation. The captured SPL expression is sent to the SPIRAL code

generation system for ASIC implementation. This SPL expression goes through a series of

transformation stages within SPIRAL that implement and optimize the FFT calculation.

In the first stage, a specific algorithm is selected to instantiate the FFT. As the FFT acceler-

ator natively supports radix-8 codelets, SPIRAL specializes its algorithmic breakdown for

radix-8.

After algorithm selection, SPIRAL lowers the SPL expression to a Σ-SPL expression.

This expression introduces abstract loops, access patterns, and operations that will be

performed in each step of the FFT calculation. SPIRAL converts these expressions into

instructions for the FFT accelerator, walking the loops and access patterns to generate the

load, store, and computation instructions.

These instructions are called internal code, an intermediate representation similar to

other general-purpose compilers. The FFT accelerator exposes an intrinsic C library for

computation offload, SPIRAL produces the intrinsic code for the FFT computation. Along

with the actual operation, SPIRAL also produces the setup code to move the pointers

from the host device to the accelerator, and performs memory cleanup once the operation

is complete. An example generated FFT implementation is shown in Fig. 6.4.

Figure 6.5: High level abstract system model of the CPU-accelerator system. The model
consists of a CPU controller coupled to the accelerator, fast on-chip local memory, and
main memory. The micrograph shows a silicon-verified FFT accelerator implementing a
part of the architecture in Fig. 6.2.
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Runtime Compilation and Execution. LibraryX-ASIC compiles the generated code

into a dynamic library, which it then immediately links to. This enables access of the

generated functions using the user’s input and output buffers. The generated program

in Fig. 6.4 consists of two parts: the host code defined on line 16 in function dft64()

which runs on a controlling CPU and the accelerator code defined by the data structure,

dft_desc, that is executed on the FFT hardware. To facilitate code generation targeting

the accelerator, we have designed an API that enables data movement to/from on-chip

local memory and main memory, accelerator invocation, and the FFT accelerator program

itself. We outline the execution flow of the program on a high level abstract machine

shown in Fig. 6.5. The three main components are (1) main memory with a mechanism

for data transfer, (2) the accelerator which interfaces to fast on-chip local memory, and (3)

a controller CPU coupled to the accelerator.

Figure 6.6: Flow chart demonstrating the execution of the generated accelerator program.

Fig. 6.6 now walks through the execution of the generated program. The program first

initiates input data transfer from main memory to the accelerator’s local memory with

the function call to dmaLoad(). Once data transfer is complete, the accelerator is invoked

from the CPU and passes a memory pointer to the base address of the descriptor array,
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dft_desc. The accelerator program is defined by this array which constructs the byte

code that programs the accelerator. The accelerator then fetches, decodes, and executes

all descriptors in the program. Finally, the accelerator signals completion to the CPU and

a DMA store request is issued to transfer output data from local memory back to main

memory. At function call exit the accelerator output now exists in the output buffer.

6.5 Conclusion

We discuss the expansion of LibraryX in two key areas, new frontend programming lan-

guages, with FortranX, and as a framework for accelerator offload with LibraryX-ASIC.

FortranX is designed to modernize legacy Fortran applications, interally leveraging per-

formance portability and heterogeneity capabilities of IRISX. Using a custom compiler

pass, FortranX can recognize computation patterns and pass the specification to IRISX

for analysis and code generation. This optimized implementation can then execute on a

variety of different hardware platforms automatically.

LibraryX-ASIC is an automated framework for software portability on custom acceler-

ators. LibraryX-ASIC uses the semantics of library calls to recognize computations, gener-

ates an optimized implementation using the SPIRAL system, and executes the generated

code on the accelerator device. Using an example of an FFT program and an FFT accel-

erator, LibraryX-ASIC demonstrates significant performance improvements compared to

the original software library implementation without software modification.
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Chapter 7

Evaluation

7.1 LibraryX Results

To evaluate LibraryX, we show LibraryX as the optimization backend for a few key do-

main libraries in scientific computing. These domains include FFTs/NTTs, stencils and

structured grids, and sparse linear algebra. We describe our applications in each domain

along with the hardware used for these experiments. We focus on results for GPU-based

systems from all major vendors because of their popularity as the main computational

unit on modern systems. We compare the runtime performance of our implementation

against vendor libraries and state-of-the-art tools when applicable. The hardware devices

we used are shown in Table 7.1. The libraries and compilers used are shown in Table 7.2.

Table 7.1: Heterogeneous systems used in this work.

GPU H100 Titan V MI250X Max 1100

Vendor Nvidia Nvidia AMD Intel
#Cores 16896 5120 14080 56
Max Freq 1980 MHz 1530 MHz 1700 MHz 1550 MHz
RAM Size 80 GB 32 GB 128 GB 48 GB
Bus Type HBM3 HBM2 HBM2e HBM2e
Toolkit CUDA-12.2 CUDA-11.3 ROCm-6.2.0 oneAPI-2024.02



Table 7.2: Libraries and Frameworks used in this work.

Library Version Compiler

cuFFT 11.7 cuda 11.4
rocFFT 1.0.28 rocm 6.2
MKLFFT 2024 oneAPI-2024.07
ICICLE v2.8.0 cuda 12.2
Proto main cuda 11.4
GraphBLAST v0.1.0 cuda 11.4
Galois v3 cuda 11.4
LaGraph 4Jan2021 oneAPI-2022
SuiteSparse v4.0.1 oneAPI-2022
GraphIT/G2 main oneAPI-2022

7.1.1 Applications

PSATD. Pseudo-spectral-analytical time-domain method [101] is a computational solver

in WarpX [30], an advanced electromagnetic and electrostatic Particle-In-Cell code. This

algorithm approximates spatial derivatives with high-order discrete expressions to miti-

gate numerical dispersion in finite-difference algorithms. PSATD consists of three main

operations, namely resample, FFT, and sparse-matrix vector multiplication (spmv). The

Resample operation takes as input an irregular tensor, called a brick, and performs a copy

to a fixed size in all dimensions, FFT of the well formed tensor to move to frequency

space, half-point shift with the nth root of unity, and then inverse FFT to move back to

real space with the new well-formed dimensions. This Resample is done for every brick

in the input. After resampling, an FFT is performed for each well-formed brick. This

FFT’d result is iterated in all dimensions, and a pencil, a vector of elements across bricks

at each index point, is extracted and multiplied with a unique sparse matrix generated at

each index point. An inverse FFT is applied to this result, and resampled for each brick

of the output.

NTT. The Number Theoretic Transform is an algorithm for performing polynomial

multiplication. Like the FFT the NTT moves between spaces, transforming a polyno-

mial from its coefficient form to its evaluation form. This in turn reduces the time com-

plexity of polynomial multiplication from O(n2) to O(n log n). Modern crypotgraphic
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schemes, such as fully homomorphic encryption (FHE), heavily rely on polynomial arith-

metic, which makes the NTT incredibly important for those computations.

3D Euler Equations. The 3D compressable Euler equations are used in the study of

gas dynamics and take the form shown below,

∂U
∂t

+∇ · F⃗(U) = 0. (7.1)

A fourth-order finite volume method [69] can be used to solve equation 7.1 which involves

two phases, a time integration step, and a spatial discretization step. The most compu-

tationally expensive component is the spatial discretization step and is implemented as a

sequence of stencil and pointwise operations.

Triangle Counting. An easily expressible graph application is to count the exact num-

ber of triangles in a given graph G. A mathematical specification for counting these

triangles is given as

∆ =
1
6

Γ(A3). (7.2)

where A is a symmetric adjacency matrix representing the input graph G [21] and Γ is the

trace operation, the sum of the elements along the main diagonal. Libraries like Graph-

BLAS [51] [20] [6] implement high performance graph operations through the language

of linear algebra. As A is a sparse matrix, we can use these libraries to implement triangle

counting.

7.1.2 LibraryX Discussion

We show the results of the LibraryX implementation against vendor libraries or state-

of-the-art tools for each application. We measure execution time using timing functions

without warm-up and exclude any initial data transfers or setup operations. For appli-

cations outside of FFTs, we show results only on Nvidia platforms because they only

provide Nvidia compatible implementations.

PSATD. The LibraryX implementation of PSATD is compared with two vendor library

implementations in Fig. 7.1. We see that LibraryX outperforms the vendor implementa-

tion across both vendor platforms achieving speedups of 3.4x, and 2.3x respectively. There
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Figure 7.1: PSATD Performance Estimate between LibraryX and various vendors. Li-
braryX achieves estimated speedups of 3.4x and 2.3x across different vendor platforms.

are a few key reasons for this performance improvement, which stem from the ability of

LibraryX to break the library call abstraction. In the resample, there is a copy followed by

an FFT. This operation can be fused if the FFT library supports a guru interface for vari-

able geometry which the vendor libraries do not support but LibraryX does. Additionally,

in order to use a batched FFT call, the input bricks need to be the same dimension, as the

vendors do not support variable geometry batched FFTs. The next optimization is to

have a lookup table for the half-point shift omega value instead of calculating it on the fly,

along with fully unrolling the spmv. Finally, when written against libraries, there are three

passes through the data to perform the input half-shifts, spmv, and output half-shifts. By

merging operations, LibraryX performs the computation with a single pass over the data.

NTT. The LibraryX implementation of NTTs builds on previous work to extend SPI-

RAL to support NTTs [98] [99]. This work enables SPIRAL to perform NTTs of arbitrary

bit-width that transparently executes using the native machine word width, providing

significant speedup. We compare the LibraryX implementation of the NTT to a state-of-
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Figure 7.2: Performance comparison of NTTs between ICICLE and LibraryX on the Nvidia
H100. For different bit-widths and NTT sizes LibraryX significantly outperforms ICICLE.

the-art library for high performance cryptographic acceleration called ICICLE [46]. ICI-

CLE has a very good generalization of NTTs of varying bit widths. Figure 7.2 shows the

performance of LibraryX and ICICLE for two bit widths 256 and 384 bit, for a number of

different NTT sizes on an NVIDIA H100. For all sizes, LibraryX outperforms ICICLE with

an average speedup of 13x for 256-bit and 4.8x for 384-bit. LibraryX enables developers

to take advantage of the library interface of ICICLE while providing the performance of

SPIRAL-generated NTT kernels.

3D Euler Equations. We compare the performance of LibraryX for the spatial dis-

cretization portion of the 3D Euler equations against the structured grid library Proto [3].

Proto is a domain-specific library for PDE solvers that easily expresses key operations.

LibraryX leverages previous work that extends SPIRAL to support PDE solvers by opti-

mizing the generation of their key computations, stencils, and pointwise operations [68].

Figure 7.3 shows the performance of LibraryX and Proto for Euler equations for two dif-

ferent input grids 32 cubed and 64 cubed on a Nvidia Titan V. LibraryX outperforms
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Figure 7.3: Performance comparison of the spatial discretization of the 3D Euler Equations
between LibraryX and Proto on the Nvidia Titan V. LibraryX significantly outperforms the
Proto implementation.

Proto by 48x and 43x for each size, respectively. The significant improvement is the result

of SPIRAL being able to find opportunities for kernel fusion of pointwise kernels into

stencil kernels. This reduces round-trips to global memory by removing temporaries and

reduces kernel launches for different operations. We recognize that Proto is designed

as a productivity library rather than a performance library, and we expect other stencil

libraries to get similar performance improvements. The key impact of LibraryX is that

Proto developers can take advantage of these optimizations without changing their Proto

implementation.

Triangle Counting. We compare the LibraryX implementation of triangle counting

against two graph processing frameworks GraphBLAST [97] and Galois [74]. The Graph-

BLAST framework is an extension of GraphBLAS [20] which expresses graph algorithms

through the language of linear algebra. Galois is a data-parallel framework that can be

applied to graph analytics applications. Figure 7.4 shows the performance across each

framework on a variety of datasets. These datasets range from small graphs of ∼ 5 thou-
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Figure 7.4: Performance comparison between state-of-the-art graph processing frame-
works and LibraryX for Triangle Counting on an Nvidia Titan V. LibraryX outperforms
both tools for a range of datasets.

sand nodes and ∼ 14 thousand edges to ∼ 3.9 million nodes and ∼ 34 million edges. We

see that across the datasets LibraryX outperforms both GraphBlast and Galois. LibraryX

is around 5x faster than GraphBLAST and around 200x faster than Galois. LibraryX

uses SPIRAL’s triangle counting implementation [83] which is based on optimizations

found in previous work [61] [14]. The SPIRAL implementation parallelizes the graph over

the edges rather than the vertices, performing a set intersection, the core operation, per

thread rather than across threads. This results in significant performance improvements

and better load balancing. LibraryX can be used by libraries like GraphBLAS to optimize

algorithms such as triangle counting.

7.1.3 Explaining Performance: Hockney Freespace Convolution

We provide a detailed performance breakdown to understand why the optimizations pro-

vided by LibraryX in Hockney Freespace Convolution produce the performance benefits

discussed previously. First, we show the scalability of the LibraryX implementation on
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Figure 7.5: Scalability results of Hockney Convolution on an MI250X system. We see for
a range of sizes that LibraryX provides significant performance improvements compared
to the vendor library implementation of ∼ 8×, ∼ 10×, and ∼ 4× from left to right.

an AMD system for various powers of two domain sizes compared to the vendor library

rocFFT in Fig. 7.5. For smaller sizes, we see an order of magnitude improvement in per-

formance, decreasing to ∼ 4× for the largest supported size in LibraryX. Generally, this

performance improvement is the result of significant memory savings through the im-

plementation of our algorithm. The LibraryX implementation uses pruned FFTs to avoid

computing on zero elements. As the input is domain doubled this results in a memory

saving of 8× the amount of data as the library implementation. To show this completely,

we calculate the theoretical memory performance on the AMD MI250X system for the

library and the vendor implementation for an input size of 128 cubed. The formula for

FFT memory traffic is defined as M = 5 ∗ N3 ∗ d where d is the size of the data type.

The library implementation must perform the complete cube expansion N = 256, while

for the LibraryX implementation N = 128. This results in values of NLibrary = 671MB

and NLibraryX = 83MB, an 8× reduction. Dividing these values by the MI250X memory

bandwidth of 3.2TB/s gives us memory times of 0.2 ms and 0.026 ms respectively, which
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is the order of magnitude reduction we see for smaller sizes.

Figure 7.6: Hockney Convolution performance for 128 cubed if SPRIAL generated imple-
mentations of each of the library calls without any additional optimization. The perfor-
mance is almost matching, indicating that cross-library-optimization is critical for perfor-
mance.

Although the theoretical performance holds for smaller sizes, for the 128 cubed case

our performance is only ∼4× better. The reason we are not seeing ∼ 10× performance

improvements is because the vendor FFT implementation, the main bottleneck of this

computation, performs better than the LibraryX implementation for larger FFTs. More

work needs to be done to improve the compute performance of larger FFTs to get closer

to theoretical performance improvements. Digging into this further, if we call the SPIRAL

generated implementations of each of the library calls without cross-library optimization,

as shown in Fig. 7.6, we see that the performance gap reduces as we increase the problem

size, eventually becoming equal. This showcases the real benefits of cross-library-call op-

timization; just replacing library calls with better implementations does not give the same

performance improvements. Each library can finetune their implementation at various

sizes to outperform the others.
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Table 7.3: Dataset Description Table [62] [26]

Dataset Vertices Edges Diameter

ca-GrQc 5,242 14,496 17

ca-Hepth 9,877 25,998 17

amazon0302 262,111 1,234,877 32

Cit-Patents 3,774,768 16,518,948 22

com-livejournal 3,997,962 34,681,189 17

7.2 More GBTLX Results

We compare the GBTLX implementations of Triangle Counting, Direction Optimizing

Breadth-First Search, and Betweeness Centrality on a variety of different input graphs

ranging from small graphs with ∼5,000 nodes and ∼30,000 edges to large graphs with

∼4 million nodes and ∼40 million edges [62] [26]. A full description can be seen in

Table 7.3. None of the graphs were pre-sorted and all graphs are made symmetric and

undirected. All CPU experiments were run on an Intel Skylake architecture with 4 cores

and 8 threads. We use the Intel icpx c++ compiler provided in the Intel oneApi BaseToolkit

version 2022.1.2 with OpenMP for parallelization across all CPU experiments. All GPU

experiments were run on an Nvidia Titan V GPU with 80 Streaming Multiprocessors. We

use the cuda-11.3 toolkit for the nvcc compiler.

7.2.1 Parallel CPU Results

Figures 7.7, 7.8 , and 7.9 show the performance of GBTLX compared to a wide range of

different graph libraries and frameworks. We begin with the Triangle Counting perfor-

mance seen in Figure 7.7. GBTLX has significant performance improvements over the

other graph frameworks as the graphs increase in size. For small graphs, GBTLX is 3x

faster than Galois, while being 1.2x slower than GraphIT and LAGraph. Moving to larger

graphs, GBTLX is at least 3x faster than every other framework. We again attribute this

performance improvement to the algorithmic implementations for triangle counting dis-
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Figure 7.7: Parallel CPU performance of Triangle Counting across frameworks. The y-axis
is log scale.

cussed earlier.

Direction Optimizing Breadth First Search performance is shown in Figure 7.8. This

application experiences some performance slowdown when compared to all other frame-

works. For small graphs, we see a 1.7x slowdown, while for larger graphs, it is closer

to 1.2x. Unlike Triangle Counting, getting performance for Breadth First Search requires

specific data structure support and deep knowledge of parallelization frameworks. We

noticed in our testing that for small graphs, the overhead of the OpenMP parallelization

library is double the actual execution time of the serial code for our implementation. In

the event that this time could be ignored or a serial implementation could be run for small

graphs, our implementation would be very competitive with both Galois and LAGraph.

As we move towards larger graphs the our implementation is within the same order

of magnitude when compared to the other frameworks except for GraphIT. We attribute

our slowdown for large graphs to a lack of specific thread-safe data structures such as a

bitvector and a queue used in pull and push respectively. We expect our performance to

rival the other frameworks with the introduction of customized data structures.
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Figure 7.8: Parallel CPU performance of Direction Optimizing Breadth First Search across
frameworks. The y-axis is log scale.

Figure 7.9: Parallel CPU performance of Betweenness Centrality between GBTL and Ga-
lois. The y-axis is log scale.

Figure 7.9 shows the comparison between our implementation of Betweenness Central-

ity and Galois. Unfortunately, both GraphIT and LAGraph only perform the algorithm

on a subset of nodes, not the entire graph, so we were unable to include them in this

comparison. Again, we see a slowdown of our algorithm compared to the Galois imple-

mentation. As a more complex algorithm, it is clear that performing purely library call
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fusion is not enough to give performance improvements rivaling that of a more mature

parallelization framework like Galois, and further research is required. One such area

is to perform a batched version of Betweenness Centrality. In this implementation, the

outer loop is unrolled so that multiple vertices path counts and betweenness scores are

updated together. However, this incurs additional space overhead, so it must be carefully

orchestrated. In addition, Betweenness Centrality can be implemented in such a way that

it uses both push and pull implementations for the forward and backward stages. This

is something we would like to explore, but at this time, we only use the push implemen-

tation for both phases. This will also affect our parallelization scheme when using both

push and pull phases.

Figure 7.10: GPU performance of Direction Optimizing Breadth First Search across frame-
works. The y-axis is log scale.

7.2.2 GPU Results

Figure 7.10 shows the performance of Direction Optimizing Breadth First Search. For

small to medium-sized graphs, we are competitive or achieve speedup compared to

G2 [18], the GPU extension to GraphIT, but both frameworks fall short of GraphBLAST.
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Unlike both frameworks, GraphBLAST is a hand-optimized framework for graph pro-

cessing and has some specific optimizations that neither of the automatic frameworks

currently support. Furthermore, we see a significant slowdown of our code relative to G2

for the largest graph. We attribute this to a synchronization overhead and a lack of load

balancing for very large graphs. Both G2 and GraphBLAST have very specific techniques

to avoid using grid-level synchronization, a design decision made in GBTLX.

Finally, for Betweenness Centrality we were not able to compare to the other frame-

works mentioned. Only G2 has a Betweenness Centrality implementation, but it again

only goes over a subset of nodes in the graph rather than the entire graph, which our al-

gorithm is tuned to do. Our implementation parallelizes vertices across the sets of cores,

computing the Betweenness Centrality score on a per core basis, rather than using all

cores for one vertex. This parallelization scheme was chosen to reduce the number of

grid-wise synchronization calls. More research needs to be done to support per vertex

Betweenness Centrality utilizing the full GPU architecture.

7.3 More ProtoX Results

In Fig. 7.11, we provide a comparison of the run time between Proto and ProtoX for the 2D

Poisson equations. We compare three different box sizes - 64× 64, 128× 128 and 256× 256.

We keep the number of boxes fixed to 4× 4. This makes the corresponding domain sizes of

the problem as 256 × 256, 512 × 512, and 1024 × 1024, respectively. We ran both the Proto

code and the ProtoX code for 100 iterations. We can observe from the graph that ProtoX

performed up to 2× faster than the base Proto code for the 2D Poisson problem. These

results were obtained on a local CPU machine with 2.3GHz Quad-core Intel i7 processor.

In addition to the 2D Poisson equation we also compared the ProtoX implementation

of the 2D Euler equations for the serial CPU case. In Fig. 7.12 we see that we gain up to

8× speedup over the base Proto code. The reason for this performance improvement

in both problems is due to ProtoX kernel fusion capabilities outlined previously. By

fusing pointwise and stencil operations, ProtoX is able to significantly reduce the memory
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Figure 7.11: Run time comparison between the reference Proto code and the ProtoX code
generated code for CPU. Here we are comparing different Box sizes ranging from 64 × 64
to 256 × 256 for a fixed 100 iterations. We can observe that the ProtoX is performing up
to 2× faster than the base Proto code.

footprint of its implementation. Combine this with traditional compiler optimizations and

memory pooling results in such a large performance win.

As shown in the previous LibraryX results section, ProtoX also supports the 3D Euler

equations on GPU systems. For this case we also compared the callback approach on GPU.

This case is more general than the other tested cases as ProtoX doesn’t have to ingest the

pointwise functions. Instead, it calls the functions as attached kernels or standalone ker-

nels depending on if fusion is available. As shown in Fig. 7.13, ProtoX still achieves good

performance with callbacks compared to the base implementation of Proto on GPU, with

up to 15× speedup. This speedup is the result of being able to reduce the kernel launch

overhead for kernels that are fused within ProtoX, a significant performance inhibitor for

small box sizes.
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Figure 7.12: Performance comparison between the Proto and ProtoX implementations of
the 2D Euler Equations on CPU.

Figure 7.13: Performance comparison between the Proto and ProtoX implementations of
the 3D Euler Equations on GPU using function call backs.



Table 7.4: Heterogeneous systems used in this research.

System GPUs CPU Compiler Vendor Runtime

Total 6 GPUs Intel Xeon CPU Max 9470C, ICPX-2025.0.0 oneAPI-2024.07
Aurora 6× Intel Data Center 52 cores

GPU Max 1550

Total 8 GPUs AMD EPYC 7702, Clang-17.0.0 ROCm-6.2.0
Frontier Total 4/8 AMD 128 cores

250X GPUs/GCDs

Equinox Total 4 GPUs Intel Xeon CPU E5-2698, GNU-11.4.0 NVHPC-24.3
4× NVIDIA V100 20 cores

Total 2 GPUs AMD Ryzen GNU-11.4.0 NVHPC-24.3
Zenith 1 Nvidia GTX 3090 Threadripper 3970X, ROCm-6.2.0

1 AMD Radeon RX 6800 32 cores

Total 8 GPUs AMD EPYC 7763, GNU-8.5.0 CUDA-11.7
Cades Cloud 4× NVIDIA A100 128 cores ROCm-5.1.2

4× AMD MI100

Milan Total 2 GPUs AMD EPYC 7513, GNU-11.4.0 NVHPC-24.3
2× NVIDIA A100 64 cores

7.4 IRISX

7.4.1 Heterogeneous Systems

To evaluate the portability of IRISX for performance in heterogeneous systems, we con-

sider the heterogeneous systems in Table 7.4. To ensure a wide range of architectures,

we considered Frontier, which has eight AMD MI250X GPUs, Aurora with 6 Intel Data

Center GPUs, and Equinox node from ExCL [2], which has 4 NVIDIA V100 GPUs. To

represent a case of diversity in node heterogeneity, we considered Cades, a cloud system

with four Nvidia A100 GPUS and four AMD MI100 GPUs. Similarly, the Zenith node

in ExCL is used to represent in-node heterogeneity with two different consumer-grade

GPUs, Nvidia GTX 3090 and AMD Radeon RX 6800. The considered systems represent

different architectures in multi-accelerator and multi-vendor environments used to test

IRISX’s performance portability for diverse heterogeneity.
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7.4.2 Library and Application: Proto and the 3D Euler Equations

Proto. In this work we are able to target a class of motifs [9], namely the operations on

a structured grid, that appear in multiple PDE-based applications, with the help of Proto

[3]. It’s a C++ library that focuses on providing optimized numerical approximations

to various PDE based model problems. It provides high-level of abstractions for many

popular numerical methods like finite difference (FDM), finite volume (FVM) and finite

element (FEM) along with multigrid and adaptive mesh refinement (AMR) methods, that

are used to solve PDE models numerically on structured grids. A broad range of operators

involved with these methods can be represented as a composition of stencil and pointwise

operations. For example, the Poisson equation, which is a fundamental equation in the

field of fluid dynamics, is mathematically represented in the case of 2 dimensions (2D) as

shown in equation 4.2, where one can use the Jacobi method to iteratively compute the

solution of (4.2). Here, the 2D Laplacian ∆ϕ is computed as a 5-point stencil obtained via

FDM,

∆ϕi,j =
ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − 4ϕi,j

h2 , (7.3)

where h is the grid spacing used. The Jacobi iterative formula is given in equation 4.3.

One can represent this computation in Proto with approximately the same number

of lines of code as the mathematical formulation for this problem. This is done using

the Stencil::Laplacian() function within the Stencil class with appropriate shifts and

weights associated with the 5 - point Laplacian stencil (weights are the coefficients (1, 1,

1, 1, -4) from (7.3)) and the Jacobi iteration can be done in a pointwise fashion with the

help of the forall(func, args, ...) function in Proto.

This example shows that one can use multiple combinations of stencils (like the 3D

7 - point Laplacian stencil, 27- point Laplacian for higher orders, stencils for computing

flux divergence and many more) and pointwise functions (different types of forall()

functions) available in Proto to compute complex PDE applications that are based on

the structured grid motif. Hence, by showcasing a capability to work with such a library

provides us with an opportunity to target applications like computational fluid dynamics,
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magnetohydrodynamics, particle methods, and many more. In this work, we have used

an extension of Proto called ProtoX [68], which is a domain specific language with Proto

as its front end and SPIRAL as its back end.

3D Euler Equations. The application in Proto that we are using is the 3D compressible

Euler equations, which are used in the study of gas dynamics [63, 70]. It is a hyperbolic

conservation equation which is expressed in Equation 7.1, where U = (ρ, ρu⃗, ρE) rep-

resents the conserved quantities of mass, momentum and energy. Here ρ is the mass

density, u⃗ = (ux, uy, uz) is the velocity and E is the energy per unit mass. A fourth-order

accurate FVM as derived by McCorquodale et al. in [70] is used to solve (7.1) in Proto.

The algorithm is divided into two main parts-

1. Temporal discretization

• For a given solution ⟨U⟩(tn) of (7.1) at time tn, the solution for the next time

step ⟨U⟩(tn +∆t) = ⟨U⟩(tn+1) is computed using the fourth order Runge-Kutta

(RK4) scheme as

⟨U⟩(tn) +
1
6
(k1 + 2k2 + 2k3 + k4) + O((∆t)5), (7.4)

where for each j ∈ [1, 4], k j = − d⟨U⟩(j)

dt ∆t and ⟨U⟩(j) = ⟨U⟩(0) + 1
2 k j with

⟨U⟩(0) = ⟨U⟩(tn).

2. Spatial discretization

• Method-of-lines approach is used in [70], where fourth-order quadratures in

space are used to compute the flux integrals.

The solution is computed in an iterative fashion where each k j in the RK4 computation

requires one to go through the spatial discretization step. Being a fourth order accurate

solution, the algorithm to compute the spatial discretization is much more compute in-

tensive compared to the time integration part of the overall algorithm. The DAG used

to solve the spatial part in Proto is shown in Fig. 5.3-a. The same figure also indicates

the sequential manner in which Proto computes the given problem. SPIRAL is used to
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generate the architecture optimized code only for the spatial discretization part of this

problem. Moreover, this application provides an opportunity to test the various fusion

combinations available in the IRIS runtime system. We focus on 32, 64, 128, and 256 size

Boxes or subdomains in three dimensions, with a range of domain decompositions.

Table 7.5: All DAG configurations in IRISX.

Configuration Concurrency Task Async
Overhead

DAG Serial Least Middle Yes
DAG Fusion Most Most Yes
Task Fusion + DAG Fusion Middle Least No

7.4.3 DAG Configurations

Table 7.5 highlights all the configurations tested in the experimentation for the 3D Euler

equations example. These configurations are divided into three groups, DAG Serial, DAG

Fusion, and Task Fusion + DAG Fusion. Within each group is the option of configuring

various levels of Kernel Fusion. Each group has three major characteristics: the amount

of concurrency, the amount of task overhead, and the support for asynchronous execution.

With asynchronous execution enabled, the IRIS runtime uses ten streams (CUDA and

HIP) or device queues (OpenCL) per GPU to concurrently execute the kernels, with three

streams reserved for data transfers. However, the Task Fusion case cannot take advantage

of the asynchronous tasking features of IRIS since IRISX fuses all tasks in a single task, as

shown in Fig. 5.3-c.

For each of the machines, Frontier, Aurora, and Equinox, we tested seven different

combinations of box and domain sizes for the 3D Euler equations application. For each

box and domain, we choose four GPU configurations for Frontier, Aurora, and Equinox,

resulting in 84 different values for each of the three DAG configurations across the three

systems for different box and domain sizes. There are a few missing box and domain

sizes, for which the value was not generated due to system memory limits.
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7.4.4 Custom Scheduling

To maximize parallelism and minimize data movement, IRISX schedules individual DAGs

on different GPUs for the DAG configurations DAG Fusion and Task Fusion + DAG Fusion.

Since the boxes do not share any dependencies as shown in Fig. 5.3-b, and -c, scheduling

the DAGs/Boxes on different GPUs ensures minimal data transfers. There exists only an

initial host to device transfer and another device to host transfer after the DAG completes.

The DAG Serial does not exhibit such inter-DAG/Box concurrency, therefore, the default

IRIS dynamic scheduler (first to finish) is used, which incurs device to device transfers.

7.5 IRISX Results and Discussion

This section evaluates IRISX for different DAG and kernel configurations on various ma-

chines while scaling on various numbers/kinds of GPUs. All experiments were performed

without the need to modify the source code. After compilation, the number of GPUs is

changed using environment variables, showcasing IRISX’s functional portability. The pur-

pose of this section is to demonstrate two key properties of IRISX. The first is to demon-

strate how different DAG representations perform when the input size, architecture, and

number of devices are changed, demonstrating the need for a dynamic system like IRISX

that can find the best-performing DAG configuration. The second is to show that vary-

ing the size and number of kernels further impacts the performance of the computation

and can aid in discovering functionality. The rest of the section discusses these two areas

in detail and includes 1) impact of DAG configurations for small- and large-sized ker-

nels, 2) impact of kernel fusion and functionality discovery, 3) multi-vendor scalability, 4)

comparison with Proto library, and 5) overhead and limitations.

All results are presented as the execution time of the task graph. The 84 combinations

(# of GPUs configurations * # of machines * # of Box and Domain combination) are run

10 times for each of the three DAG configurations. Even though we performed experi-

ments using nine Box and Domain sizes, three of them are shown, as they showcase all

performance variations.
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(a) Aurora-32 (b) Frontier-32

(c) Equinox-32 (d) Aurora-256

(e) Frontier-256 (f) Equinox-128

(g) Equinox-256

Figure 7.14: Results for various box and domain sizes across Aurora, Frontier and
Equinox, for each DAG configuration. The first three graphs (read left to right then
top down) shows the results for a small Box Size (32). The second three graphs shows
the results for a large Box size (128 and 256) on modern supercomputers. The last graph
shows large Box size on older hardware.



7.5.1 Task Graph Level Representation

Figure 7.14 shows a handful of key results when varying DAG configurations in IRISX.

Figures 7.14a, 7.14b, 7.14c, show the performance for graphs with smaller kernels, while

Figs. 7.14d, 7.14e, 7.14f, and 7.14g show the performance for graphs with larger kernels

(kernels sizes vary due to box sizes). The results presented show 2 × 2 × 2 decompo-

sitions. There are three groups of DAG configurations, DAG Serial, DAG Fusion, and

Task Fusion + DAG Fusion (shown in Fig. 5.3-a, -b and -c). The DAG Serial group has

the least concurrency, where IRISX creates a task graph for each box that runs serially.

The DAG Fusion group has the highest concurrency, as it is able to use multiple GPUs

for different boxes and CUDA and HIP streams (Frontier and Equinox) and OpnenCL

device queues (Aurora) simultaneously for each box. Finally, the Task Fusion + DAG

Fusion group trades off higher concurrency for less task overhead and can only leverage

inter-GPU concurrency because of custom scheduling without supporting multi-stream

execution. We discuss in more detail the variation of Figure 7.14 by Box size.

Impact of GPU computation Power for Small Boxes. Figures 7.14a, 7.14b, 7.14c, show

the performance of a Box of size 32 on each of the machines — Aurora, Frontier, and

Equinox. For all three figures, we see that DAG Serial provides worse performance as

we increase the number of GPUs. This is because of the increased device to device data

movement as DAGs for a single Box are scheduled on multiple GPUs. For DAG Fusion

we see a small amount of scalability for larger numbers of GPUs as seen in Aurora, but

mostly remains either flat or performs worse as we increase the number of GPUs as seen

on Frontier and Equinox respectively. To understand why we are seeing this almost flat

trend line, we used NVIDIA’s Nsight system and AMD’s Rocprof to quantify the task

and kernel management overhead. Through profiling, we found that the summation of

data movement and kernel execution time is insignificant compared to the total execution

time. Most of the execution time is spent performing runtime orchestration for task and

kernel management. Therefore, even with more GPUs there is little scalability because

any increase in parallelism is overcome by the overhead. Task Fusion + DAG Fusion sig-
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nificantly reduces this overhead, which is why there is scalability across the machines for

this DAG configuration. For this small size, task and kernel management/orchestration

overhead is significantly reduced by fusing all the tasks and their kernels for the Box into

a single task.

It is important to note that the gap between DAG Fusion and Task + DAG Fusion

widens significantly as we move from Fig. 7.14a to Fig. 7.14c. This is because of the

relative computation power of each GPU for this type of computation. Generally, the

newer GPUs in Aurora and Frontier have less kernel launch overhead; hence the gap is

smaller than Equinox with V100 GPUs. Moreover, Aurora’s GPU has the strongest double

precision performance; therefore, it has the smallest gap between DAG Fusion and Task

Fusion + DAG Fusion. Meanwhile, the opposite can be said for Equinox, as the GPU is

much older.

Impact of Multi-stream Execution for Large Boxes. Figures 7.14d, 7.14e, 7.14f, 7.14g

show the scalability of larger boxes on each of the machines, Aurora, Frontier, and Equinox.

Just like small Boxes, DAG Serial exhibits no scalability due to significant device to device

memory transfers per Box. In Aurora and Frontier, we see that both DAG Fusion and Task

Fusion + DAG Fusion provide scalability as we increase the number of the GPUs, with

Task Fusion + DAG Fusion being better in Aurora and alternating slightly on Frontier

before converging. In contrast, on Equinox for both Box sizes 128 and 256 DAG Fusion

was considerably faster than DAG Fusion + Task Fusion. This is the result of two things:

the ratio of the kernel size to the relative GPU computation power, and the effect of

multi-stream execution. As these box sizes are significantly larger than the first three

graphs, the execution time per kernel is significantly longer. This enables better usage of

multi-stream execution, allowing better utilization of the GPU as different boxes can be

executed concurrently on multiple streams. Figures 7.14d and 7.14e also use multi-stream

execution but the GPUs on these machines are significantly more powerful than the ones

in Equinox, especially for double precision calculations. For this reason, there is not as

much opportunity to have overlapping streams because the kernels themselves complete

so quickly.
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General Statistics Across Configurations. Of the 84 configurations we tested, 60 used

small Boxes, 32 and 64 Box sizes, while 24 used larger boxes, 128 and 256 Box sizes.

For small Boxes, Task Fusion + DAG Fusion performed the best in 66 configurations,

while DAG Fusion performed the best for 2 configurations across the three machines. For

large Boxes, Task Fusion + DAG Fusion performed the best in 8 configurations, while

DAG Fusion performed the best in 13 configurations across the three machines. Therefore,

for different architectures with varying computation power, number of devices, and input

sizes, statically selecting one task graph representation could result in a significant perfor-

mance loss depending on problem size, demonstrating the necessity of IRISX which can

automatically adapt the best performing graph representation.

7.5.2 Kernel-Level Representation and Functionality Selection

Not only can IRISX dynamically select DAG configurations, IRISX can enable dynamic

interaction between IRIS and SPIRAL to vary the degree of kernel fusion provided by

SPIRAL. This changes the number of kernels and the relative computation per kernel, the

amount of temporary memory required, and the overall concurrency for a given compu-

tation. Generally, a larger number of kernels indicates lighter kernels (fewer operations)

with more concurrency and larger memory footprint, while a smaller number of kernels

indicates heavier kernels (more operations) with less concurrency and smaller memory

footprint. We discuss how introducing kernel fusion impacts the variability of the Euler

equations applications.

Varying Kernel Implementations. Figure 7.15 shows the performance comparison

when adding the maximum kernel fusion available in IRISX. For each of the machines

tested we compare the maximum kernel case of 19 kernels with the maximum fusion case

of 5 kernels (the first and last DAG in Fig. 5.3-d), for the DAG configuration Task Fusion

+ DAG Fusion with a Box size of 32 and a Domain size of 256. We see an interesting

trend on Frontier and Equinox, where initially the introduction of kernel fusion increases

performance. This aligns with the general trend that introducing more fusion results in

better performance for small box sizes. However, as the number of GPUs increases, there
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(a) Aurora

(b) Frontier

(c) Equinox

Figure 7.15: Effects of Kernel Fusion on the performance variability for various machines
for the 32 Box Size and 256 Domain size with DAG Configuration Task Fusion + DAG
Fusion. As the number of devices increases lighter kernels perform better.



Figure 7.16: Different kernel variants for the Euler equations run on consumer-grade
GPUs present in the Zenith node of ExCL. The 19 kernel case represents lighter more
concurrent kernels while the 5 kernel case represents heavier less concurrent kernels.

is a cross-over point where kernel fusion provides worse performance due to the increased

computation per individual kernel. This increased computation is good when there are

less opportunities to schedule kernels as there are less devices to utilize, but more devices

enable parallel execution that can amortize the overhead. On Aurora, we believe this trend

will be visible if we were able to extend beyond six GPUs.

Our results so far indicate that there exists a profound relationship between kernel

size and performance variability. Figure 7.14 shows this variability when comparing the

small Box graphs with the large Box graphs. Figure 7.15 goes one step further by fixing

both the DAG configuration and the Box Size but varying the implementation between

lighter kernels and heavier kernels, showing a trade-off between them depending on the

number of available devices. To further understand the performance impact of varying

kernel size, we ran five variants of the SPIRAL generated code with varying numbers

of kernels, 19, 15, 11, 8, and 5 (portrayed in Fig. 5.3-d). We ran these kernels on the

Zenith machine with two consumer grade GPUs, 1 Nvidia GPU, and 1 AMD GPU as this

hardware will most clearly showcase variability given their relative computation power
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compared to the previously tested machines. We see in Fig. 7.16 using DAG Fusion, the

kernel variant that performs the best depends on which hardware device is being used.

If the Nvidia GPU is used, 8 kernels perform the best, while when the AMD GPU is

used, 11 kernels perform the best. The factors that influence which implementation is the

best are the amount of computation per kernel, kernel launch time, and ability to leverage

multi-stream execution as well as the runtime orchestration. IRISX is able to automatically

discover which implementation provides the best performance.

Functionality Discovery. In addition to kernel-level concurrency, IRISX can discover

functionality for applications or what the minimum amount of resources is needed to

successfully execute and terminate. As seen in Figs. 7.14e and 7.14g, there are certain

sizes for which the Euler Equations application does not execute due to insufficient mem-

ory requirements. IRISX leverages its internal memory prediction model, calculating the

memory needed for the application and the SPIRAL generated temporary memory and

comparing it against the amount of system memory available. This allows IRISX to signif-

icantly prune the search space for valid configurations to empirically test for performance.

These features add another dimension to IRISX capabilities. Varying the number of

kernels suggests opportunities for the runtime system to gather kernel specific metrics and

inform the code generation system to generate new variants on-the-fly that better utilize

available hardware resources. Furthermore, the application developer no longer has to

manually implement functionality testing, as that can be abstracted away through IRISX.

IRISX can directly inform the user of the configurations that can be executed successfully.

7.5.3 Multi-vendor Scalability

So far, IRISX has shown performance portability across different systems with the same

vendor architecture. However, IRISX is capable of utilizing and orchestrating different

kinds of accelerators in the same system without source code modification, making it

ready for future heterogeneous systems where different types of accelerators might exist

in a single node. Figure 7.17 shows the speedup of the Euler Equations application on

the Cades Cloud system. This system has a multi-vendor compute node with four Nvidia
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Figure 7.17: Speedup across the vendor boundary using the Cades Cloud Machine. For
one, two, and four GPU cases Nvidia GPUs are used and for six and eight GPU cases two
and four AMD GPUs are added.

GPUs and four AMD GPUs. IRISX is capable of running seamlessly on one or all devices

available on this platform by configuring a single environment variable. IRISX shows an

increasing speedup as the number of processors increases for large box sizes even when

the number of processors exceeds a single vendor. While the current state-of-the-art HPC

systems do not have such multi-vendor accelerator environment, cloud and experimental

computing facilities already have such deployment. Moreover, this demonstration shows

that IRISX is not bound to any set/kind of architecture, being flexible for any future

extremely heterogeneous systems.

7.5.4 Comparison with Proto

Figure 7.18 shows the performance difference between the 3D Euler equation imple-

mented in Proto library without SPIRAL and the best configuration picked by IRISX on

Milan, a two Nvidia A100 GPU node in ExCL. For this performance comparison, we time

the computation time for Proto and IRISX considering that one-time code generation per-

formed by IRISX was done previously. We see that on 1 GPU IRISX provides a significant
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Figure 7.18: Speedup of the best implementation across all configurations in IRISX com-
pared to the base Proto library on Milan.

speedup in the range of 3.3× all the way to 10× across the problem sizes. A similar

trend can be seen for two GPUs with speedups in the range of 2.8× up to 8.8× across the

problem sizes.

7.6 FortranX Results

We show the performance results of FortranX compared to a library baseline for the cyclic

convolution kernel. Cyclic convolution is a critical operation in the areas of numerical

methods and spectral methods. This kernel uses an FFT-based implementation rather

than direct convolution due to algorithmic complexity benefits. The FFT-based cyclic

convolution consists of a forward FFT, a pointwise multiplication, and an inverse FFT.

The results are shown in Fig. 7.19. FortranX leverages SPIRAL to provide algorithmic

optimizations to the cyclic convolution kernel, which includes library-call fusion along

with kernel execution on the GPU through IRIS. We demonstrate that FortranX achieves

up to ∼15.7x improvement over the serial Fortran implementation. Further tuning can be

achieved to get even better performance.
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Figure 7.19: Comparison of Fortran, FortranX, SPIRAL, and vendor implementations of
cyclic convolution. The y-axis is log scale.

7.7 LibraryX-ASIC

We show preliminary results of LibraryX-ASIC for FFTs of various sizes against software

implementations.

7.7.1 Experimental Setup.

We show both CPU and GPU performance results as baselines to compare against

LibraryX-ASIC. On CPU, we run FFTW on a 20-core Intel Xeon E5-2698v4 and for GPU

evaluation, we run cuFFT on an Nvidia H100. Accelerator performance results are based

on a cycle-accurate accelerator model that is calibrated against real silicon measurements

from test chips [88, 89] taped on a TSMC 28nm process. The performance model simu-

lates the abstract machine model shown in Fig. 6.6, where the controlling CPU is a single
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Figure 7.20: FFTW on CPU vs. LibraryX-ASIC on accelerator system.

core of the Intel Xeon E5-2698 CPU, main memory consists of 256 GB of RDIMM DDR4,

and the accelerator interfaces to 256 kB of banked, SRAM-based local memory. The FFT

accelerator core accelerates a radix-8 twiddle codelet. For GPU comparisons, we target

off-chip HBM3e DRAM with the same accelerator configuration.

7.7.2 Results.

The execution times in microseconds are shown in Fig. 7.20 and 7.21 for power-of-8

1D complex FFTs ranging from 8 to 4096. LibraryX-ASIC targeting the CPU-accelerator

system achieves speedups of 11x – 23x as compared to running FFTW on CPU only. The

performance results demonstrate an order of magnitude improvement in execution time

for a real FFT program running on the custom FFT ASIC through the LibraryX-ASIC

framework.
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Figure 7.21: cuFFT on GPU vs. LibraryX-ASIC on accelerator system.

Compared to cuFFT running on an H100 GPU, LibraryX-ASIC also provides up to an

order of magnitude speedup at smaller size FFTs. Improved speedup against the GPU

at larger FFT sizes can be achieved by scaling the number of hardened codelets in the

FFT accelerator. These results demonstrate the LibraryX-ASIC framework automatically

targeting a custom FFT accelerator through CPU and GPU FFT library calls.
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Chapter 8

Conclusion and Future Work

Although there has been a large body of work in optimizing scientific computing applica-

tions, there has been little work in bridging the gap between application productivity and

performance. In most cases, applications developers have to make the decision between

using clean interfaces, such as domain specific libraries, versus expert implementations.

This is because libraries offer a balance of performance and productivity, but can leave

significant performance on the table. A performance expert can unlock that performance

at the cost of removing the library calls themselves. This results in unmaintainable appli-

cations that have to be constantly rewritten for each new hardware platform.

This works makes the following contributions. First, it introduces the LibraryX frame-

work, a system that recognizes library call sequences and provides the optimizations

done by performance experts in scientific computing. LibraryX uses a combination of

library call capture, code generation, and runtime compilation to modify the implemen-

tation of a scientific computing application without source code modification. Second, it

demonstrates the efficacy of LibraryX in key domains of scientific compupting, includ-

ing spectral methods, graph analytics and sparse linear algebra, and structured grids.

LibraryX demonstrates how its internal code generation system, SPIRAL, can be taught

performance optimizations such as kernel fusion to significantly reduce a computation’s

data footprint and increase its arithmetic intensity. Finally, it shows how LibraryX can be



expanded to support external runtime systems such as IRIS, fixed-function ASICs, and

other front-end languages such as Fortran. In particular, this thesis shows the following:

• Recognizes that scientific library primitives have semantics that can provide a high-

level description of a computation independent of the primitive implementation.

• Develops an approach, LibraryX, that leverages the semantics of library calls by

treating them as specifications rather than implementations. Using techniques such

as preprocessor library interpositioning, Inspector/Executor, and operator overload-

ing, library calls can produce their semantic meaning for analysis and optimization.

• Library semantics can be taught to the SPIRAL code generation system to discover

optimizations through high-level analysis and automatically generate an implemen-

tation that has significant performance benefits. This enables whole computation

(solver) optimization as opposed to single kernel/primitive optimization.

• Optimizes both single-library and multi-library call sequences, addressing the com-

binatorial explosion problem of providing optimized primitives for all combinations

of library calls.

• Showcases how the interplay between code generation and an intelligent runtime

system can finetune application performance on diverse multi-accelerator hardware

platforms.

• Demonstrates the efficacy of this approach by applying it to multiple domains within

scientific computing including spectral methods, graph analytics/sparse linear alge-

bra, and structured grids, and showed that it can be expanded to support additional

front-end languages and accelerators.

8.1 Limitations

Although extensible for a variety of scientific domains, LibraryX has some limitations in

how it can be applied along with overhead through its runtime approach. LibraryX relies
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on a library interface with function calls that it can replace. LibraryX is unable to generally

parse core language features, such as loops and conditionals, meaning that any algorithm

that has core logic outside a function call cannot be recognized. This is specifically an issue

for computations that use data-dependent control flow, which LibraryX does not support.

In addition, LibraryX operates under the assumption that intermediate dataholders are

not referenced during the computation.

The overhead of LibraryX is generally negligible, with the exception of the code gener-

ation system. By using preprocessor directives library calls are replaced at compile time,

with much simpler logic than the original operation. Additionally, DAG creation and gen-

erated kernel runtime compilation have little performance impact. The code generation

time can be significant, depending on the analysis time. This is significantly reduced by

caching both on disk and in program memory and can be amortized for large program

runs.

Similarly, IRISX is a dynamic runtime system, resulting in overhead in different stages

of execution. IRISX relies on SPIRAL to generate computation kernels at runtime, which

depends on the number of architectures, the OL description, the size of the problem,

and the number of kernel variants. However, this is a one-time cost as there is a layered

caching system in both the memory of the running program and on disk. The IRIS runtime

system also has task management and kernel launch overhead, which IRISX alleviates

through various fusion and performing memory optimizations to reduce the footprint of

temporary memory.

8.2 Future Work

In this section we discuss the possible directions for future work.

• Move the LibraryX framework from a combined compile-time and runtime approach

to a purely compile time approach using standard compiler toolchains like LLVM

or MLIR.
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• Expand to other domains in scientific computing including Particle methods and

Dense linear algebra/Machine Learning.

• Provide general API support such that other code generation approaches, runtime

compilation schemes, and programming models can leverage the LibraryX frame-

work. Particular targets that can reason about optimizations like FLAME [39] and

Polly [38] are good candidates for extensions to LibraryX.

• Show more examples of frontend languages that utilize LibraryX such as Python,

Rust, and Julia.

• Begin the process of generalizing from specific cases to entire domains within scien-

tific computing.
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