
Accelerating High-Precision Number Theoretic Transforms using
Intel AVX-512

Sophia Fu
Carnegie Mellon University

Pittsburgh, USA
syfu@andrew.cmu.edu

Naifeng Zhang
Carnegie Mellon University

Pittsburgh, USA
naifengz@cmu.edu

Franz Franchetti
Carnegie Mellon University

Pittsburgh, USA
franzf@andrew.cmu.edu

1 Introduction
Fully Homomorphic Encryption (FHE) allows various platforms to
manipulate encrypted data offering ideal privacy protection. How-
ever, implementing FHE requires significant computing overhead,
which can make it impractical in several applications. Researchers
have previously addressed the computational overhead by develop-
ing accelerators specifically designed for FHE [6–8] or on server-
level GPUs [5, 9]. While proven effective, we seek to accelerate FHE
on CPUs, broadening the range of applications dramatically.

In this work, we choose to focus on Number Theoretic Transform
(NTT), which is the computational bottleneck of multiple state-of-
the-art FHE schemes that account for over 90% of FHE execution
time in practice [3]. The NTT algorithm primarily depends on three
integer modulo arithmetic operations; namely modular addition,
modular subtraction, and modular multiplication. Specifically, we
seek to optimize these operations on large multi-word integers of
128 bits and utilize Intel’s Advanced Vector Extensions 512 (AVX-
512) to parallelize our code.We then use these vectorized operations
to accelerate any 𝑛-point NTT algorithm on a single CPU core.

2 Background
In this section we introduce necessary background for understand-
ing AVX-512 and how it will be used to optimize multi-word arith-
metic in a parallel NTT algorithm.

2.1 AVX-512
AVX-512 uses 512 bit vectors, which can be manipulated using spec-
ified SIMD (Single Instruction Multiple Data) instructions. More
specifically, these vectors can handle eight 64-bit integers, allowing
us to perform eight modular operations in parallel. While it is pos-
sible to directly insert assembly instructions into the source code,
Intel also supports intrinsics which allows SIMD instructions to be
treated as C functions. Thus, by utilizing intrinsics, we are able to
incorporate AVX-512 directly into our code.

2.2 Multi-Word Arithmetic
To implement NTT, we first implement our three integer modulo
arithmetic operations: modular addition, subtraction, and multi-
plication. We use simple arithmetic and bitwise operations in C
to implement large integer arithmetic, utilizing both 128-bit and
64-bit representations. These scalar operations seek to primarily
optimize the modulus operation, especially modular multiplication.
To do so, we utilize the Karatsuba algorithm along with the Barrett
Reduction algorithm chosen by prior literature [8, 9]. For example
given 𝑥 ∗𝑦 where 𝑥 = (10𝑎+𝑏) and𝑦 = (10𝑐+𝑑), we can use smaller
bit widths and expand the equation to 100𝑎𝑐 + 10(𝑎𝑑 + 𝑏𝑐) + 𝑏𝑑 .

Using smaller bit widths allows us to perform multiplication more
efficiently and addresses overflow.

2.3 Number Theoretic Transform
NTT is an established algorithm to perform Discrete Fourier Trans-
form (DFT) on finite fields within 𝑂 (𝑛 log𝑛) time. Given an input
𝑥 = 𝑥0, ..., 𝑥𝑛−1, such that 𝑥 𝑗 ∈ [0,𝑚), where𝑚 is some modulus,
the outputs 𝑦 = 𝑦0, ..., 𝑦𝑛−1 are calculated using the equation:

𝑦𝑘 =

𝑛−1∑︁
𝑗=0

𝑥 𝑗𝜔
𝑗𝑘
𝑛 mod 𝑚 (1)

in which 𝜔𝑛 is the 𝑛𝑡ℎ primitive root of unity.
The NTT algorithm provides a more efficient implementation.

Instead, for a 𝑛-point NTT we have log2 𝑛 stages, where each stage
has 𝑛

2 butterfly operations. Each butterfly operation consists of a
modular multiplication, an addition and a subtraction. We choose
to use the Pease algorithm to maximize parallelism. In particular,
the butterflies in each stage have no dependencies on each other,
allowing us to calculate several butterflies in parallel.

3 Related Work
To date, SIMD intrinsics have primarily been used to parallelize
modular arithmetic on integers up to 64 bits for NTT calculations.
The Mathemagix library provides Intel AVX2 implementations of
modular arithmetic operations on 32 and 64-bit integers [4]. In-
tel HEXL [1] built upon these established algorithms, using Intel
AVX512-IFMA52 to continue to accelerate finite field arithmetic on
64-bit integers.

In this paper, we focus on expanding upon these kernels estab-
lished in Intel HEXL to larger integers of 128 bits, utilizing AVX-512.
Currently, for operations on 128-bit integers or larger, the GNUMul-
tiple Precision Arithmetic Library (GMP) is regarded as the state of
the art. Within GMP, multi-digit integers are represented using an
array of limbs, with each limb storing a part of the multi-precision
number that fits in a single machine word. Building upon these
ideas, we seek to represent 128 bit integers as two 64-bit numbers
and use AVX-512 intrinsics to parallelize several operations at once.

4 Proposed Approach
We first implement modular addition, subtraction, and multipli-
cation using AVX-512 instructions, to offer maximum parallelism.
Using these operations, we then parallelize butterfly operations in
the NTT algorithm.



PACT ’24, Oct. 13–16, 2024, Long Beach, USA Sophia Fu, Naifeng Zhang, and Franz Franchetti

// Parallel modular subtraction on 8 inputs, returning results in ch and cl
uint128_t submod128(__m512i* ch, __m512i* cl, __m512i ah, ..., __m512i ml) {

t30 = _mm512_sub_epi64(al, bl);
c1_m = _mm512_cmp_epu64_mask(al, bl, _MM_CMPINT_LT);
t28 = _mm512_mask_add_epi64(bh, c1_m, bh, one);
t29 = _mm512_sub_epi64(ah, t28);
i28_m = _mm512_cmp_epu64_mask(ah, t28, _MM_CMPINT_LT);
...
d3 = _mm512_add_epi64(d2, mh);
*ch = _mm512_mask_blend_epi64(i28_m, t29, d3);
*cl = _mm512_mask_blend_epi64(i28_m, t30, d1);

}

Listing 1: Modular subtraction C code using AVX-512.

4.1 SIMD Vectorized Modular Arithmetic
For each of the three modular operations, we first take a scalar al-
gorithm utilizing only 64-bit integers and translate each arithmetic
and bitwise operation to their AVX-512 equivalent. This allows us
to translate our code to handle eight operations in parallel.

Since AVX-512 can only support operations on 64-bit integers,
each 128 bit input is split and stored in separate vectors. Thus,
instead of taking in a single 128 bit integer a at a time, two 512
bit vectors are passed in as ah and al, representing eight 128 bit
integers. ah contains the upper 64 bits of each of the eight 128 bit
integers, and al contains the lower 64 bits. In Figure 1, we illustrate
our strategy of implementing a modular subtraction using AVX-512
which corresponds to the code is shown in Listing 1.

Figure 1: Overview of modular subtraction using AVX-512.

4.2 SIMD Vectorized NTT
Using our established parallel operations, we then integrate them
into the NTT algorithm. To do so, we must organize our data into
vector formats.

Twiddle Factor Vector Generation. A certain set of twiddle
factors are used for the butterflies in a each stage. These factors are
typically calculated prior to the NTT and stored within an array.

We want to load twiddle factors into arrays of vectors. For an
𝑛-point NTT, with log2 𝑛 stages and 𝑛

2 butterflies in each stage,

there are 𝑛∗log2 𝑛
2 twiddle factors to load. Since the upper 64-bits

and lower 64-bits of each factor are stored separately, we keep two
arrays of vectors, twdh and twdl, each with length 𝑛∗log2 𝑛

16 .
To load each vector, we first consider the initial three stages.

Each of the vectors in these stages holds eight non distinct integers
following a repeated pattern, allowing us to easily preload these
three vectors. These vectors are then loaded into the array such
that there are 𝑛

16 vectors corresponding to each stage.
Beyond the first three stages, we load our vectors sequentially.

At any given stage 𝑖 , there are 2𝑖−3 distinct vectors. These distinct
vectors are loaded into the array and copied for the remaining
𝑛
16 − 2𝑖−3 vectors for the given stage.
Generating Input Vectors. Given an 𝑛-point NTT, the inputted

array consists of 2𝑛 64-bit integers, where each pair of 64-bit inte-
gers represents one 128 bit integer. We first load these values into an
array of 𝑛4 vectors using the _mm512_load_epi64 instruction. Then,
we use _mm512_unpacklo_epi64 and _mm512_unpackhi_epi64 to
shuffle consecutive pairs vectors so that the two resultant vectors
hold the higher 64 bits of each input or the lower 64 bits respec-
tively. These vectors are stored into arrays xh and xl to be used as
our inputs to each butterfly in the first stage.

Butterfly. Once the inputs are loaded, we can perform the butter-
fly operations. Each butterfly operation involves modular multipli-
cation, addition and subtraction. These butterflies can be performed
in parallel using our established modular operations. Thus, for a
𝑛-point NTT with 𝑛

2 butterflies, we only need to perform 𝑛
16 sets

of operations.
Shuffling. The results from each previous stage must be per-

muted for each decomposition. As shown in Figure 2, for the first
stage we can use _mm512_unpacklo_epi64 and _mm512_unpackhi
_epi64 as the results are ordered differently. For each of the other
stages, we use _mm512_permutex2var_epi64, permuting the vec-
tors ah and sh together, along with al and sl.

Figure 2: Shuffling between stages using AVX-512 permute
instructions.

5 Results
For performance evaluation, we benchmarked various sizes of NTT
on FASTER nodes at Texas A&M University [2]. We used the Intel
oneAPI DPC++/C++ Compiler 2023.2.0, running the code using a
single core on the Intel Xeon 8352Y (Ice Lake) processor. The run-
time of a single NTT was found by averaging the last 10 iterations
over 30 total runs, allowing the cache to warm and stabilize. We
excluded the data preprocessing time for our implementation and
other baselines.

We implemented various sizes of NTT using the GMP library as
a baseline. Furthermore, we used the SPIRAL NTTX package [9]
to generate efficient scalar C NTT implementations and compared
against them. In our implementation, one butterfly function (that



Accelerating High-Precision Number Theoretic Transforms using Intel AVX-512 PACT ’24, Oct. 13–16, 2024, Long Beach, USA

Figure 3: Runtime per butterfly for various NTT sizes.

computes 8 butterflies in parallel) consists of 332 lines of code and
takes 176 cycles when measured by LLVM Machine Code Analyzer.
From Figure 3, we see that compared to GMP, the vectorized code
offers 36 times speedup on average across all NTT sizes. Addition-
ally, compared to the SPIRAL-generated scalar code, we can still
offer around 2.2 times speedup on average.

Acknowledgments
This work used FASTER at Texas A&M University through alloca-
tion CIS230287 from the Advanced Cyberinfrastructure Coordina-
tion Ecosystem: Services & Support (ACCESS) program, which is
supported byNational Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296.

References
[1] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, and Vinodh Gopal.

2021. Intel HEXL: accelerating homomorphic encryption with Intel AVX512-
IFMA52. In Proceedings of the 9th on Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. 57–62.

[2] Timothy J Boerner, Stephen Deems, Thomas R Furlani, Shelley L Knuth, and John
Towns. 2023. ACCESS: Advancing Innovation: NSF’s Advanced Cyberinfrastruc-
ture Coordination Ecosystem: Services & Support. In Practice and Experience in
Advanced Research Computing. 173–176.

[3] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and Mingzhe Zhang.
2023. Tensorfhe: Achieving practical computation on encrypted data using gpgpu.
In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 922–934.

[4] Joris Van Der Hoeven, Grégoire Lecerf, and Guillaume Quintin. 2016. Modular
SIMD arithmetic in Mathemagix. ACM Transactions on Mathematical Software
(TOMS) 43, 1 (2016), 1–37.

[5] Özgün Özerk, Can Elgezen, Ahmet CanMert, Erdinç Öztürk, and Erkay Savaş. 2022.
Efficient number theoretic transform implementation on GPU for homomorphic
encryption. The Journal of Supercomputing 78, 2 (2022), 2840–2872.

[6] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-
grammable accelerator for fully homomorphic encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 238–252.

[7] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas
Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel Sanchez.
2022. Craterlake: a hardware accelerator for efficient unbounded computation
on encrypted data. In Proceedings of the 49th Annual International Symposium on
Computer Architecture. 173–187.

[8] Deepraj Soni, Negar Neda, Naifeng Zhang, Benedict Reynwar, Homer Gamil,
Benjamin Heyman, Mohammed Nabeel, Ahmad Al Badawi, Yuriy Polyakov, Kellie
Canida, et al. 2023. Rpu: The ring processing unit. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 272–
282.

[9] Naifeng Zhang and Franz Franchetti. 2023. Generating number theoretic trans-
forms for multi-word integer data types. In IEEE/ACM International Symposium
on Code Generation and Optimization (CGO).


	1 Introduction
	2 Background
	2.1 AVX-512
	2.2 Multi-Word Arithmetic
	2.3 Number Theoretic Transform

	3 Related Work
	4 Proposed Approach
	4.1 SIMD Vectorized Modular Arithmetic
	4.2 SIMD Vectorized NTT

	5 Results
	References

