
Magic Memory: A Memory-Centric Declarative
Programming Paradigm to Enable High Productivity

on Heterogeneous Systems
Eric Tang, James Hoe, Franz Franchetti

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA, United States
{erictang, jhoe, franzf}@andrew.cmu.edu

Abstract—Heterogeneous computing systems involving CPUs,
GPUs, FPGAs and even ASICs have already been shown to have
immense computational power for various applications. However,
programming these systems efficiently and effectively remains
a significant challenge. Traditional imperative programming
approaches result in complex programs that require expert-level
understanding in order to optimize or maintain. The declarative
programming model, Magic Memory, focuses on the behavior
of the program and thus hides the nature of the underlying
hardware that executes the program. In this model, computation
is expressed using mathematical functions between arrays. This
function can then be treated as an invariant that is always
held true. During steady state, computation is performed by
observing changes to these magic memory regions and then only
recomputing the values that are affected by the change. As a first
demonstration of this work, we utilize a CPU-FPGA system to
compute the PageRank of a graph and recompute the PageRank
after adding or removing an edge from the graph.

I. INTRODUCTION

Heterogeneous computing systems, which can be com-
posed of hardware such as Central Processing Units (CPUs),
Graphics Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs), and Application-Specific Integrated Circuits
(ASICs), are renowned for their exceptional computational
capabilities across a wide range of applications. These systems
leverage the unique strengths of each component to achieve su-
perior performance and efficiency. Despite their potential, the
effective and efficient programming of these systems can be
challenging. Traditional imperative programming approaches
often result in complex and convoluted code, demanding a
high level of expertise for optimization and maintenance.

The complexity of programming heterogeneous systems has
spurred interest in alternative programming models that can
simplify the development process while harnessing the full
power of the hardware. One promising approach is the declara-
tive programming model, which focuses on the behavior of the
program rather than the intricacies of the underlying hardware.
This paper introduces ”Magic Memory”, a declarative pro-
gramming model designed to abstract the details of hardware
execution. By expressing computation through mathematical
functions between arrays, Magic Memory allows developers

to define program behavior as invariants that are consistently
maintained.

Fig. 1: For x86 systems, Magic Memory regions utilize the
virtual memory addresses outside of the user space and the
kernel space. Here, the input Magic Memory region is a
dense matrix which represents a graph while the output Magic
Memory region is a vector with the PageRank of each node
of the graph.

Magic Memory enables programmers to describe computa-
tion using mathematical functions between regions of memory.
Input Magic Memory regions store data used as input to the
Magic Memory function, while output Magic Memory regions
store the function’s output based on the input region’s values.
When new data is written to the input memory region(s),
the values in the output memory region(s) are updated to
maintain the invariant. By describing the computation between
memory regions, the input and output data can be stored in
various places across the system, and this complexity can be
hidden from the user. The mathematical basis of the function
describing the relation between the memory regions allows a
code generation system, like SPIRAL [1], to understand the
computation and generate a program or hardware for a wide
range or architectures.

Figure 1 illustrates the virtual memory allocation of a Magic
Memory program in an x86 system, and Listing 1 shows a
code snippet for this program. The user virtual memory space

only uses the lower 48 bits of the 64 available bits in the
x86 system with the kernel virtual memory only using a small
portion of those upper bits. Magic Memory takes advantage
of this and is allocated in the unused address space of x86
systems. This large address space that is available enables
dense addressing for large sparse data structures. Then, as
described later on, these addresses are able to be translated
and utilize a wide range of sparse data structures. Furthermore,
since Magic Memory regions are allocated on the traditional
virtual memory stack, these regions can be relocated across
devices, allowing users to utilize various hardware accelerators
with minimal change to the original program.

As a first example, this programming model is realized
for the popular PageRank [2] algorithm using an FPGA. In
the PageRank algorithm, the graph nodes are assigned a rank
based on the number of edges coming in and out of each node.
The graph is allocated using a Magic Memory input region,
the ranking for each node is allocated to a Magic Memory
output region, and the relation between the two regions is
defined as the PageRank algorithm. This enables data analysts
to observe the effects of adding or removing an edge from the
graph from a single store to memory. In the magic memory
input region, the sparse nature of the graph is hidden from the
programmer, and a single load or store to memory is needed
to update the graph data structure. The magic memory output
region is allocated on the FPGA allowing for a specialized
sparse matrix vector multiplication (SpMV) accelerator to be
leveraged to perform the primary computation in the PageRank
algorithm. In this example, the algorithm implemented using
Magic Memory benefits because of its iterative nature, the
stream of updates to a sparse data structure, and the frequency
of these updates.

1 int** _mx_graph = (int**)_mx_malloc(N*N*sizeof(float));
2 float* _mx_pagerank = (float*)_mx_malloc(N*sizeof(float));
3

4 _mx_memcpy(vec_mx, graph, NNZ*sizeof(float));
5

6 // Set up relationship between Magic Memory regions
7 _mx_setup(_mx_pagerank, algorithms::page_rank, _mx_graph);
8

9 // Check initial PageRank of node 3
10 printf("Node 3 PageRank = %f\n", _mx_pagerank[3]);
11

12 // Add an edge between nodes 3 & 4
13 _mx_graph[3][4] = 1;
14

15 // Check the new PageRank
16 printf("New Node 3 PageRank = %f\n", _mx_pagerank[3]);

Listing 1: PageRank Algorithm using Magic Memory. Here
the GraphBLAS Template Library (GBTL) [3] PageRank
algorithm is used to describe the invariant between Magic
Memory regions

II. METHODOLOGY

Software. Magic Memory is made accessible to the pro-
grammer through a simple header-only C library designed to
mimic the C standard library. The input and output Magic
Memory regions are allocated using Magic Memory equivalent
versions of the malloc and calloc functions. This function
returns an illegal address by taking advantage of the fact

that x86 64 virtual address space only uses 48 of the 64
available bits. The extra 16 bits are then used to identify
each Magic Memory region that is allocated, with each region
having 256TB of addressable memory. This enables Magic
Memory to support a dense address space for very large sparse
data structures. These regions can be initialized through a
Magic Memory memcpy that not only copies the data from
the source address but also initializes the relevant Magic
Memory metadata. Any attempt to read or write a Magic
Memory address triggers a segmentation fault and invokes a
custom segmentation fault signal handler. This handler reads
the 16 most significant bits in order to identify which Magic
Memory region is being read. The handler goes on to decode
the violating instruction and extracts relevant information,
including the type of memory transaction (read or write), the
address being accessed, and the register to store the result (for
read instructions).

Key metadata on each Magic Memory region is stored in
a struct that is created when each region is allocated. This
metadata contains information regarding the size, whether the
region is sparse, where this data is actually stored, which other
Magic Memory regions depend on the values from this region,
and what the relationship is between the Magic Memory
regions. Upon each Magic Memory load or store that occurs, a
segmentation fault occurs due to the illegal address that is be-
ing accessed. When the Magic Memory signal handler decodes
the index and region that the original program attempted to
write, the system references the corresponding struct to glean
enough information to update the appropriate sparse or dense
data structure and can propagate this information across the
system as needed.

Hardware. As a proof of concept, Magic Memory is
implemented on an Intel i7-10700 CPU running CentOS 6
with a Stratix 10 MX FPGA connected via PCIe Gen 3.
In addition to performing the computation of the invariant
between Magic Memory regions, the FPGA can own the
storage of the input and output Magic Memory regions. For
instance, while the user may access very large sparse matrices
using dense notation, the FPGA can store the matrix using
any sparse representation. This allows programs to avoid the
large amount of complexity necessary for maintaining sparse
data structures and the need to modify the program to support
various sparse formats. In addition to handling how data is
stored, this implementation of Magic Memory uses a hardware
accelerator to perform the necessary computation to maintain
the invariant. The FPGA interprets requests to these memory
regions by first identifying the type of request and where to
read or write the data. If it is a read request, the FPGA simply
responds with the appropriate data from the corresponding
location by writing to another memory-mapped FIFO. If the
CPU sends a read request to the output region before it is
ready then that request will be blocked until the computation
is complete. If it is a write request, the data is written to the
appropriate location and then the input is checked to see if the
output must be recalculated. If so, the compute kernel will be
invoked and the output will be updated when the computation

is complete. Finally, attempted writes to the output region
are ignored due to the fact that the output region is solely
dependent upon the values in the input region.

III. EXAMPLE APPLICATION: INTERACTIVE PAGERANK

PageRank is a common algorithm used by search engines to
rank web pages in search results. This algorithm uses the links
coming to and from each page and the quality of the pages
that the links come from in order to create the ranking. In
PageRank, the input region is the graph of hyperlinks in matrix
format with each element being the probability of jumping
from node to node. An important property of a hyperlink
matrix is that the sum of every column must be one. Therefore
if a node (column) has no outgoing edges (elements within a
column), that column will have a uniform distribution such
that this property is maintained.

The PageRank algorithm then iteratively performs a Sparse
Matrix dense Vector (SpMV) multiplication. The matrix rep-
resenting the graph is multiplied by the current PageRank and
the PageRank is updated with the output of this operation. This
process is repeated until the difference between each iteration
is less than some small epsilon. The output memory region
stores the rank of each node in the input graph. While SpMV
is a computation common in many graph applications, efficient
SpMV is difficult due to the large amount of accesses to
random memory locations. For this reason, a high performance
hardware accelerator on the FPGA would greatly improve the
performance of this application along with many more.

Magic Memory Implementation. With Magic Memory,
the graph is allocated as a matrix in a Magic Memory input
region and the PageRank vector is allocated as a Magic
Memory output on an FPGA. When writing the Magic Mem-
ory input region, the memory address is broken down to
determine the row and column index of the data access. The
row and column index are then used to index into the sparse
data structure that is used to store the graph. By hiding the
sparse data format from the programmer, this introduces a
level of separation between the application description and
the software or hardware implementation that is used behind
the scenes in order to achieve good performance. The core
computation of PageRank (SpMV) is implemented in hardware
on the FPGA to take advantage of the sparse data format. The
Compressed Sparse Row (CSR) representation of the matrix,
the read pattern of the data and column arrays follows a simple
sequential pattern which lends itself to using a burst coalesced
Load-Store Unit (LSU). This LSU buffers contiguous memory
requests for the largest possible burst. In order to utilize this
hardware, each row is stored as a chunk of elements of a fixed
size with the excess entries simply set to 0. By using a set size,
the loop that iterates over the nonzeros of each row is able to
be fully unrolled at compile time with no extra control logic
inside the loop needed to check to see if the end of the row
has been reached. This also allows for the LSU selected to
have a bandwidth that matches the number of entries needed
to fill the fully unrolled loop. Since each element of the output
vector can be computed independently, the loop that iterates

Read (µs) Write (µs)

Memory-Mapped Access 5.46 0.54
Magic Memory 6.6 1.57
Difference 1.14 1.03

TABLE I: Memory Mapped FIFO Latency

over these elements is pipelined and a loop iteration is able to
be scheduled every cycle.

IV. EVALUATION

We measure the overhead of the Magic Memory abstraction
by performing a memory-mapped FIFO latency test. This
involves measuring the read and write latency to the memory-
mapped FIFO on the FPGA for one million accesses. Table 1
shows the latency from directly writing to the memory-mapped
FIFOs versus the latency from writing to the FIFOs with the
Magic Memory programming model. These results show that
an additional 3000 cycles are required for a read or write to
an address with the Magic Memory abstraction.

While this is not ideal, it is comparable to other common
memory accesses such as a TLB miss or a lower level cache
miss. Additionally, this overhead can be minimized by utilizing
interrupts instead of signals. When invoking the signal handler,
the CPU must switch from user mode to kernel mode and then
back again before the program can resume. By utilizing an
interrupt, this expensive switching between kernel mode and
user mode could be avoided and this overhead can be reduced
dramatically. Finally, one can directly boot the machine in
kernel mode. While this is not ideal from a security standpoint,
it does solve the problem of the need to switch between
different operating modes.

Comparison to CPU Baseline. The FPGA being targeted
for this application is a Stratix 10 PAC card with 32 GB of
DDR4 memory. As a comparison to Magic Memory, we use a
CPU implementation that also computes the SpMV using the
CSR representation of the matrix. This program is run on an
Intel Xeon Platinum 8256 as a baseline comparison.

Various different types of datasets were used to evaluate
the FPGA design. The first example utilizes a graph with
100k nodes, where each node has 32 edges. This graph is
constructed in such a way that it perfectly fits the hardware
generated for the FPGA and serves to provide an upper bound
on the performance that can be expected from hardware.
Following this, other graphs with other average degrees are
used to investigate how this kernel fairs for graphs that do
not always use the maximum bandwidth to load useful data.
In Figure 2, the runtime of SpMV for various different graph
sizes is shown. Due to the nature of the hardware, the number
of elements in each row of the matrix does not affect the
running time of the FPGA. For this reason, for a graph where
the maximum number of edges for each node is less than
the block size (32 in this case) and a set number of nodes,
the runtime is constant. This can be observed in the figure
where the blue bars are a constant height. For the CPU
implementation, the average degree of the graph is directly

Fig. 2: Comparison of SpMV kernel on FPGA versus baseline
CPU implementation. All graphs used to generate the sparse
matrix have 100,000 nodes which makes the SpMV operation
a 100k x 100k sparse matrix multiplied by a 100k dense vector.
By varying the number edges in graph, the sparsity of the
matrix is changed

correlated with the runtime of the graph. However, even with
graphs of an average degree of 4 the FPGA implementation is
still able to provide a near 6x improvement over the baseline
CPU implementation.

V. RELATED AND FUTURE WORK

Magic Memory provides users with a simple program-
ming model for programming heterogeneous systems. In order
to realize this, the design time for writing and designing
hardware for the FPGA must be shortened. In the current
implementation, designing and testing a hardware accelerator
required a large amount of time. However, research efforts on
creating domain-specific FPGA overlays could address this
issue. The Gorilla (now called Primate) project creates an
overlay generator to create a soft processor with specialized
functional units for various applications [4]. Using this tool,
an efficient hardware accelerator can be created on the FPGA
for an invariant declared by a C++ program.

Other algorithms that could benefit from Magic Memory
in the future will require a different API for accessing data.
While a dense addressing mode is beneficial when trying to
perform random reads and writes into the graph, many other
graph algorithms follow a more regular access pattern that
is based on each node or edge or even the neighbors of
each node. Furthermore, the structure of the sparsity greatly
affects the optimal algorithm and corresponding data formats
for a given graph algorithm. In breadth first search (BFS),
the average degree of the node determines whether a top-
down or bottom-up algorithm yields better performance [5].
Using Magic Memory to use a declarative programming model
to describe BFS without constraining how this computation

is performed, the appropriate data format and computational
algorithm can be used with minimal changes to the original
source code.

The current bottleneck of streaming Magic Memory re-
quests to the FPGA will be addressed as future technologies
emerge. CXL is an upcoming technology that allows for fast
cache-coherent memory across PCIe Gen 5. This allows for
Magic Memory regions to be allocated in the FPGA NUMA
domain and utilize shared memory to communicate with the
CPU. The FPGA can then be designed to intercept Magic
Memory requests and eliminate the need for a signal handler.

VI. CONCLUSION

The Magic Memory programming model can be used to
effectively describe computation for a heterogeneous system.
By using a declarative programming paradigm to describe
computation at a high level between virtual memory regions, a
separation between the algorithm description and the hardware
computation is introduced. The application programmer is
able to focus on the algorithm in question and does not
need to be an expert hardware engineer in order to make
use of the resources available, Meanwhile, the system is able
to allocate the data to the appropriate hardware target and
can utilize programs for whichever architecture best fits. In
this work, it is shown that Magic Memory can be useful for
specific data analysis algorithms such as PageRank. However,
current limitations, such as the need to design custom hardware
accelerators, inhibit the fast adoption of this programming
model. With future improvements to the shared memory model
across heterogeneous systems with CXL, as well as support
for generalized overlays making FPGAs increasingly more
programmable, the Magic Memory programming paradigm
will be able to more effectively leverage the capabilities of
state-of-the-art accelerators.

VII. ACKNOWLEDGMENTS

This work is supported in part by PRISM, one of seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

REFERENCES

[1] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “Spiral: Extreme
performance portability,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1935–1968, 2018.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120.
[Online]. Available: http://ilpubs.stanford.edu:8090/422/

[3] “Graphblas template library (gbtl), version 3.0,” Available at
https://github.com/cmu-sei/gbtl, June 2020.

[4] M. Lavasani, L. Dennison, and D. Chiou, “Compiling high throughput
network processors,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p. 87–96.
[Online]. Available: https://doi.org/10.1145/2145694.2145709

[5] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-
first search,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’12.
Washington, DC, USA: IEEE Computer Society Press, 2012.

