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ABSTRACT
A recent trend in computing are domain-specific program
generators, designed to alleviate the effort of porting and re-
optimizing libraries for fast-changing and increasingly com-
plex computing platforms. Examples include ATLAS, SPI-
RAL, and the codelet generator in FFTW. Each of these
generators produces highly optimized source code directly
from a problem specification. In this paper, we extend
this list by a program generator for the well-known Floyd-
Warshall (FW) algorithm that solves the all-pairs shortest
path problem, which is important in a wide range of engi-
neering applications.

As the first contribution, we derive variants of the FW al-
gorithm that make it possible to apply many of the optimiza-
tion techniques developed for matrix-matrix multiplication.
The second contribution is the actual program generator,
which uses tiling, loop unrolling, and SIMD vectorization
combined with a hill climbing search to produce the best
code (float or integer) for a given platform.

Using the program generator, we demonstrate a speed-
up over a straightforward single-precision implementation
of up to a factor of 1.3 on Pentium 4 and 1.8 on Athlon 64.
Use of 4-way vectorization further improves the performance
by another factor of up to 5.7 on Pentium 4 and 3.0 on
Athlon 64. For data type short integers, 8-way vectorization
provides a speed-up of up to 4.6 on Pentium 4 and 5.0 on
Athlon 64 over the best scalar code.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Path and
circuit problems; D.1.3 [Programming Techniques]: Con-
current Programming; D.1.2 [Programming Techniques]:
Automatic Programming

General Terms
Algorithms, Design, Performance

Keywords
Floyd-Warshall algorithm, tiling, blocking, empirical search,
SIMD vectorization
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1. INTRODUCTION
The theoretical peak performance of off-the-shelf comput-

ing platforms continues to reliably increase exponentially
following Moore’s Law. However, a considerable fraction of
this performance increase is not obtained by boosting the
CPU frequency, but by microarchitectural innovations such
as deep memory hierarchies, special instruction sets, and,
more recently, multiple CPU cores. The resulting complex-
ity makes it extremely difficult for software developers to
write code that reaches the optimal possible performance,
even for single-processor machines. Compilers can mask
part of the platform’s complexity, but are general-purpose
tools and cannot be expected to perform optimizations rel-
evant to every specific problem domain.

Program generators and adaptive libraries. This
problem is particularly noticeable in the domain of numeri-
cal software. To solve it, a recent research trend has been the
development of domain-specific program generators and self-
adaptive libraries for well-understood numerical functional-
ity. There are several prominent examples. ATLAS is a pro-
gram generator for basic linear algebra subroutines (BLAS)
such as matrix-matrix multiplication (MMM). For MMM,
ATLAS generates implementations with different tilings (or
blockings) and degrees of unrolling. It uses empirical search
to find the best match to the given computer’s memory hi-
erarchy [19, 5]. A model-based, deterministic version of AT-
LAS was introduced in [20]. Other examples include FFTW,
a combination of program generator and adaptive library
for the discrete Fourier transform [8, 9]; SPIRAL, a pro-
gram generator for the entire domain of linear transforms
[17]; Bebop, an automatic tuning framework for sparse lin-
ear algebra problems [12, 5]; FLAME, a tuning framework
for higher level linear algebra problems [11, 3]; and TCE, a
program generator for tensor computations used in quantum
chemistry [1].

The all-pairs shortest path problem. The focus of
this paper is the all-pairs shortest path problem (APSP),
which finds the length of the shortest path for all source-
destination pairs in a (positively) weighted graph. It be-
longs to the most fundamental problems in graph theory.
For example, it is well known that almost all dynamic pro-
gramming problems can be equivalently viewed as problems
seeking the shortest path in a directed graph [6]. Accord-
ingly, there are many practical applications of shortest path
algorithms in a broad range of engineering fields, such as
geographical information systems, VLSI circuit routing, in-
telligent transportation systems (ITS), communication net-
works, and robotics. For example, computer network rout-



ing protocols such as the widely used Open Shortest Path
First (OSPF) protocol make use of these algorithms to min-
imize the network traffic and transmission time [15].

The APSP is solved by the well-known Floyd-Warshall
(FW) algorithm [2], which computes the solution inplace
from the weight matrix of the graph using a triple loop sim-
ilar to MMM, but involving only additions and minimum
operations, and with dependencies that restrict the order-
ing of the three loops (the k-loop has to be the outermost
one). To optimize cache performance, [18] introduced a tiled
version of the FW algorithm. Further improvements were
made in [16], which showed that the tiling can be done re-
cursively up to some chosen base case and combined with
a Z-Morton data layout to increase performance. The de-
gree of tiling and the base case size were found by search
using an adaptive library framework. However, [18, 16] fo-
cused on the exploitation of cache locality, and did not con-
sider broader ranges of techniques that are commonly used
for MMM. Further, vectorization for the latest generation
of SIMD architectures was not considered but is crucial to
achieve the best possible performance.

There are also a number of problems that are closely re-
lated to APSP, but with fundamentally different approaches
to their solutions. Updating an APSP solution when the
edge weights change dynamically is the subject of [4]. An
efficient algorithm for the point-to-point shortest path prob-
lem using Dijkstra-based search and landmarks to provide
lower bounds for the distance is presented in [10]. Finally,
there is also work on computing approximations of the short-
est paths to reduce computation time [7].

Contribution of this paper. The goal of this work was
to develop a thorough automatic tuning framework that pro-
duces very fast implementations of the FW algorithm. In
doing so, we could improve the previous performance con-
siderably. To achieve this, we built a program generator,
in design similar to ATLAS, that searches over different de-
grees of tiling and unrolling to produce the fastest code for a
given platform. Unlike ATLAS, our generator considers two
levels of tiling and, more importantly, can generate scalar
and SIMD vector code (we focused on Intel’s 4-way float
and 8-way short integer instructions).

Further, to apply the above techniques to the extent pos-
sible, we introduced one crucial algorithmic innovation: for
suitably chosen subproblems we were able to remove the loop
order restrictions and thus match the MMM implementation
more closely and further improve performance.

Comparing our generated scalar code to [16] on a Pen-
tium 4 for data type float, we could improve performance
from 8% to 32% and gained another speed-up of between
3.5 times and 6.2 times using 4-way vectorization. We also
show experiments with data type 16-bit short integer, where
8-way vectorization yields a speed-up factor of 2.6 to 5.8
over scalar integer code. The experiments also show that,
for vector code in particular, tiling and unrolling is crucial
to achieve the best performance. The results obtained on an
Athlon 64 show similar trends, but the 8-way vectorization
yields higher improvement than on a Pentium 4.

Organization of this paper. In Section 2 we explain
the standard FW algorithm and derive parameterized vari-
ants through tiling and unrolling. These constitute the im-
plementation space we search for the fastest on a given plat-
form. Section 3 explains how to vectorize all FW algorithms
derived previously for SIMD short vector architectures. Ad-

ditional details are provided for Intel’s SSE architecture.
The code generator and the search strategy for the fastest
implementation are described in Section 4. Section 5 shows
experimental results obtained with code generated and op-
timized for a Pentium 4 and an Athlon 64 using both float
and short integer data type and corresponding 4-way and 8-
way vector code, respectively. Finally, we offer conclusions
in Section 6.

2. FLOYD-WARSHALL ALGORITHMS
In this section we formally introduce the all-pairs shortest

path problem for a weighted graph and the original Floyd-
Warshall (FW) algorithm for its solution. Then we derive
different parameterized variants of the algorithm through
unrolling and tiling (or blocking). The FW algorithm has
a structure similar to a standard dense matrix-matrix mul-
tiplication (MMM); thus, the derived blocked variants are
similar to blocked MMM algorithms (for example those used
in ATLAS). However, there are also important differences
due to dependencies in the FW algorithm. As a conse-
quence, only some of the MMM optimizations and code
transformations are applicable. These differences also im-
pact the final performance one can expect and we discuss
them as we go along.

As in ATLAS, the rationale for suitable parameterization
of the algorithms is to connect them with a search (explained
in Section 4) that finds the best match for the computing
platform’s memory hierarchy.

We focus on standard scalar implementations in this sec-
tion. The corresponding vectorized algorithms, i.e., opti-
mized for short-vector SIMD instruction sets, are shown in
Section 3.

In the following, we denote matrices with A, B, C, matrix
elements with A[i][j], and submatrices Matlab-style with
A[i1 : i2][j1 : j2].

All-pairs shortest paths problem (APSP). Let G =
(V, E, w) be a given weighted graph with vertices v ∈ V =
{1, . . . , N}, edges (i, j) ∈ E ⊂ V ×V , and the positive weight
function w : E → R

+; w(i, j) is the “cost” of the edge (i, j).
We want to compute the minimum distance

distG(i, j) = min
P∈paths(i,j)

∑

(u,v)∈P

w(u, v)

of all pairs of vertices i and j in the graph G.
For the actual computation, we assume that the graph G

is given by the N ×N cost matrix

C with C[i][j] =











0 if i = j

w(i, j) if (i, j) ∈ E

∞ else

.

Then we want to compute the N ×N matrix

C′ with C′[i][j] = distG(i, j).

The FW algorithms considered in this paper compute the
solution inplace, i.e., C′ overwrites C.

FW algorithm. The FW algorithm [2] solves the APSP
using three nested loops as shown in Fig. 1.

The outermost k-loop updates the cost matrix C in each
of its N iterations. At the beginning of the kth iteration
the cost matrix C contains the cost of the shortest path for
all pairs (i, j) over all paths that only contain intermediate
nodes 1, . . . , k − 1. Now, for each pair (i, j), these costs



// standard FW algorithm
function FW(C, N)

for k=1:N
for i=1:N

for j=1:N
C[i][j] = min(C[i][j], C[i][k]+C[k][j]);

Figure 1: Standard FW algorithm.
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Figure 2: Access Pattern of the FW algorithm.

are compared (in a double loop) to the costs of paths via k
and the better ones are stored to C[i][j]. Fig. 2 visualizes
the corresponding access pattern of the cost matrix C in
relation to the three loop variables k, i, and j.

The algorithm requires exactly N3 additions and N3 min-
imum operations. The structure of the code is very similar
to a standard MMM. However, there is one important dif-
ference. In MMM the loops can be permuted into any order.
In the FW algorithm, the k-loop has to be outermost due
to dependencies in the computation; the order of the i- and
j-loop can be exchanged [18]. For MMM, it is known that
choosing the i- or j-loop as the outermost one is far su-
perior; this is one of the reasons why the performance of
MMM is not achievable with the FW algorithm. However,
as we show below, it is possible to remove the dependency
for subproblems, thus enabling an improved order of access.

Tiling the FW algorithm. Similar to MMM, the FW
algorithms can be improved for execution on a memory hi-
erarchy by tiling as was shown in [16, 18]. We are closely
following the approach taken by ATLAS and considering
three different classes of algorithms. Each is parameterized
by degrees of unrolling or by tile sizes: an iterative FW
variant (FWI) partially tiled and unrolled, a singly tiled
FW variant (FWT), and a doubly tiled FW variant (FWD)
to improve cache locality. Fig. 3 shows the different algo-
rithms, their recursive structure, and their parameters: U∗

and U ′
∗ are unrolling/tiling parameters, L∗ are cache tiling

parameters. FWT is used as subroutine in FWD and FWI is
used as subroutine in FWT. Note that FWI and FWT have
“abc variants,” which are only used as subroutines. In these
versions, the dependencies are removed (and with them the
need to have the k-loop as outermost) and MMM-style full
tiling becomes possible. The details on the three algorithms
including correctness proofs are provided next.

2.1 Iterative FW algorithm: FWI
Before we introduce the iterative FW algorithm (FWI),

we need to generalize the FW algorithm in Fig. 1. Namely,
we replace the one matrix C in FW by three matrices A, B,
and C, which may be different or not. The result is FWgen
as shown in Fig. 4. A contains the distances from i to k, B
the distances from k to j and C the shortest distances from

FWI FWT FWD

FWI FWIabc FWT FWTabc

FWI FWIabc FWIabc

(U  U )

(U  U U )( U  U )

L

L
1

(U  U U )

L L L

L
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L
1
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(U  U U )

(U  U )

Figure 3: Parameterized FW algorithms considered
in this paper. The algorithms arise from different
levels of tiling and unrolling.

// generalized FW algorithm
function FWgen(A, B, C, N)

for k=1:N
for i=1:N

for j=1:N
C[i][j] = min(C[i][j], A[i][k]+B[k][j]);

Figure 4: Generalized FW algorithm.

i to j, which will be updated.
If A = B = C, FWgen reduces to the standard FW algo-

rithm. In the following we will always work with the gener-
alized version.

Tiling and unrolling: FWI. As the first optimiza-
tion we tile and unroll FWgen similar to MMM. However,
because of the mentioned dependencies, a full tiling is not
possible, i.e., only the i- and j-loop can be tiled. We per-
form this tiling and unroll the two innermost loops to ob-
tain the FWI shown in Fig. 5. FWI is parameterized by the
tiling/unrolling factors Ui and Uj . Note that the FWI in
[16] is equivalent to our FWgen.

Special case: FWIabc. To solve the APSP for an
N × N cost matrix C, FWI is called as FWI(C, C, C, N).
However, we will use FWI below as a subroutine with pos-
sibly distinct inputs A, B, C. If the matrices A, B, C are
known to be mutually distinct, then the dependencies are
removed and we can 1) reorder the loops to make the k-loop
innermost; and 2) introduce full tiling. We call the resulting
routine FWIabc. It is shown in Fig. 6 and is parameterized
by the tiling/unrolling factors U ′

i , U
′
j , U

′
k.

Note that the outermost loop in the inner loop nest of
FWIabc is the k′-loop for register blocking and instruction
level parallelism as in ATLAS.

// iterative FW algorithm (FWI)
// tiling factors Ui and Uj
function FWI(A, B, C, N)

for k=1:1:N
for i=1:Ui:N
for j=1:Uj:N

// loops below are completely unrolled
for i’=i:1:i+Ui-1
for j’=j:1:j+Uj-1

C[i’][j’] = min(C[i’][j’], A[i’][k]+B[k][j’]);

Figure 5: FWI parameterized by Ui, Uj .



// FWI for 3 distinct matrices (FWIabc)
// tiling factors Uk, Ui, and Uj
function FWIabc(A, B, C, N)

for i=1:Ui’:N
for j=1:Uj’:N
for k=1:Uk’:N

// loops below are completely unrolled
for k’=k:1:k+Uk’-1
for i’=i:1:i+Ui’-1
for j’=j:1:j+Uj’-1

C[i’][j’] = min(C[i’][j’], A[i’][k’]+B[k’][j’]);

Figure 6: FWIabc parameterized by U ′

i , U ′

j , U ′

k.

// tiled FW algorithm (FWT)
// tile size: L1 x L1
function FWT(A, B, C, N, L1)

// A_ij: L1 x L1 submatrix (i,j) of A, i.e.,
// A[(i-1)*L1+1:i*L1][(j-1)*L1+1:j*L1];
M = N/L1;
for k=1:1:M

// phase 1
FWI(A_kk, B_kk, C_kk, L1);
// phase 2
for j=1:1:M, j!=k

FWI(A_kk,B_kj,C_kj, L1);
// phase 3
for i=1:1:M, i!=k

FWI(A_ik, B_kk, C_ik, L1);
// phase 4
for i=1:1:M, i!=k
for j=1:1:M, j!=k

FWIabc(A_ik,B_kj,C_ij, L1);

Figure 7: FWT parameterized by the tile size L1

and the parameters of FWI and FWIabc.

2.2 Tiled FW algorithm: FWT
To enhance cache performance, cache tiling of the FW al-

gorithm was introduced in [16, 18]. Following this idea we
introduce FWT, a singly cache tiled version of the FW algo-
rithm. The tiles, in turn, are handled by FWI and FWIabc
introduced before. FWT takes the tile size L1 in addition
to the parameters of FWI and FWIabc.

Phases in FWT. The FWT computes the result looping
over the tiles in a specific order obeying the dependencies
of the algorithm. As shown in Fig. 7, the outermost loop in
FWT iterates from 1 to M = N/L1, which is the number of
tiles. If FWT is chosen as FW implementation, it is called
as FWT(C, C, C, N), i.e., with the same input tiles.

Within FWT, the argument tile of size N is divided into
tiles of size L1. For a fixed k, all of the tiles are updated
using four distinct phases, visualized in Fig. 8. At the kth
iteration, in phase 1, FWI is called to update the diagonal
tile Ck,k itself. Phase 2 updates all tiles Ck,j in the same
row as the diagonal tile and phase 3 updates the respective
column of tiles Ci,k using FWI. Note that in the phases 1, 2,
and 3, the subroutine FWI is invoked as FWI(C, C, C, L1),
FWI(A, C, C, L1), and FWI(C, B, C, L1), respectively. Since
two or more of the argument tiles are the same, the loop
order restriction should be observed, which implies that
FWIabc cannot be used in place of FWI.

The major part of the computation is done in phase 4 by
updating all of the remaining tiles Ci,j . It is a crucial insight
that in phase 4 the 3 tiles considered in each step are al-
ways known to be distinct; thus, FWIabc with its improved
tiling structure (Fig. 6) can be used to improve performance.
Within each FWT, FWIabc is called M(M − 1)2 = O(M3)
times while FWI is only called M(2M − 1) = O(M2) times.

k

k Ckk

L1

N

(a) Phase 1

k Ckk Ckj

j

(b) Phase 2

k

Ckk

Ciki

(c) Phase 3

CijCiki

j

Ckj

(d) Phase 4

Figure 8: Visualization of the 4 phases in FWT.

This implies that the FW performance can approach that of
MMM for large M .

Special case: FWTabc. Analogous to FWIabc, we
consider and also define FWTabc as a version of the FWT
that can be used when the input matrices are mutually dis-
tinct. Compared to FWT, all calls to FWI are replaced by
calls to FWIabc. FWTabc is used as subroutine in FWD
that is introduced next.

2.3 Doubly tiled FW algorithm: FWD
We implement another level of tiling in the doubly tiled

FW implementation (FWD). FWD requires two blocking
parameters L1 and L2 and calls FWT and FWTabc as child
routines. Although any number of tilings is possible, we lim-
ited it to two levels since the incremental improvement with
more blocking levels turned out to be insignificant. This sec-
ond level of tiling enables locality for two levels of caches.
Note that ATLAS only tiles for one level of cache.

2.4 Correctness of FWI, FWT, and FWD
We will use the following notation in this section. Given

two matrices A and A′ of the same size, A = A′ signifies that
A and A′ reside in the same memory location. On the other
hand, A 6= A′ means that A and A′ reside in different mem-
ory locations with no overlapping region. Further, given two
functions F and F ′, F () = F ′() means that F () and F ′()
yield the same result for all possible choices of input.

Theorem 1. FWI(A, B, C, N) = FWgen(A, B, C, N).

Proof. We will show a slightly stronger statement,
namely that in FWgen (see Fig. 4) the state of C at the end
of each k-iteration does not depend on the order in which
the pairs (i, j) were processed. In particular, this enables
the tiling of the i- and j-loop in FWI (see Fig. 5). We have
to consider four cases.

Case 1 (A = B = C): Assume the outer loop variable k
is fixed. The update in FWgen can be written in this case
as

C[i][j] ← min(C[i][j], C[i][k] + C[k][j]). (1)

First, we assert that for i = k and j = k, C[i][j] does not
change. (These are all elements in the same row or column
as C[k][k], i.e., those on the cross in Fig. 2.) Namely, in
these cases,

C[i][k] ← min(C[i][k], C[i][k] + C[k][k]) = C[i][k],

C[k][j] ← min(C[k][k], C[k][k] + C[k][j]) = C[k][j].

Now, consider the remaining elements C[i][j], i 6= k, j 6= k.
From (1) and the above, we can see that the new value of
C[i][j] is solely determined by the value of C[i][j], C[i][k],
and C[k][j] at the (k − 1)th iteration. This implies that
there is no dependency on the processing order of i and j as
desired.



Case 2 (A = C 6= B): The update operation in FWgen
can be written as

C[i][j] ← min(C[i][j], C[i][k] + B[k][j]). (2)

Note that B is never updated. Further, for j = k,

C[i][k] ← min(C[i][k], C[i][k] + B[k][k]) = C[i][k],

i.e., C[i][k] is unchanged. Since C[i][j] depends only on the
the values of C[i][j] and C[i][k] at the previous iteration
and the constant B[k][j], there is again no dependency on
the processing order of i and j.

Case 3 (B = C 6= A): The proof is the same as case 2
except that A is constant and that C[k][j] does not change
at the kth iteration.

Case 4 (A 6= C and B 6= C): With constant A and B,
C[i][j] at each iteration is not affected by the processing
order of i and j.

Theorem 2. FWIabc(A, B, C, N) = FWgen(A, B, C, N)
if A 6= C and B 6= C.

Proof. FWgen(A, B, C, N) does not modify A and B.
C is modified by FWgen as follows

C[i][j] ← min
(

C[i][j], min
k∈{1,...,N}

(A[i][k] + B[k][j])
)

.

Since the minimum operator is associative and commutative
with respect to k, the result does not depend on the process-
ing order of i, j and k. In particular, the order in FWIabc
can be chosen.

Theorem 3. FWT(C, C, C, N) = FW(C, N).

Proof. In FWT, there are two subroutines: FWI and
FWIabc. FWI can be replaced by FWgen by Theorem 1.
FWIabc can also be replaced by FWgen by Theorem 2. The
replacements yield the original blocked FW algorithm intro-
duced in [18] as “BlockedAllPairs,” which was proved to be
equal to FW. This yields the result.

Theorem 4. FWD(C, C, C, N) = FW(C, N).

We only sketch the proof as it does not introduce any new
ideas, but would be lengthy to carry out in detail. FWD
calls two subroutines: FWT and FWTabc. Having the same
tiling structure as FWT, FWD(C, C, C, N) is equivalent to
FWT(C, C, C, N) if the following two conditions hold

1. FWT(A, B, C, N) = FWgen(A, B, C, N), and

2. FWTabc(A, B, C, N) = FWgen(A, B, C, N) for A 6=
B 6= C 6= A.

Condition 1 holds for A = B = C by Theorem 3. The cases
B = C 6= A and A = C 6= B can be shown by extending
the proof in [16] for the recursive FW algorithm (FWR).
(They showed that FWR(A, B, C) and FWI(A, B, C) give
the same result for a tiling factor of 2, where their FWI is
the same as our FWgen.) Condition 2 follows from the proof
of Theorem 2, which shows that the result is independent of
the processing order of i, j, and k.

3. SIMD VECTORIZATION
Recent generations of general-purpose microprocessors in-

troduced vector SIMD (single instruction, multiple data) in-
structions that operate on short vectors (length 2 to 16) of
floating-point or integer data types. For example, Intel’s
newest Pentium 4 features the third generation of stream-
ing SIMD extensions called SSE3.

In this section we explain how we vectorize the FW al-
gorithms introduced in Section 2 and thus extend our code
generator to produce SIMD vector code. Then we provide
further details for the actual implementation on Intel’s SSE
architecture.

Vectorization of FW algorithms. All computation
of the FW algorithms introduced in Section 2 is done in the
two iterative leaf routines FWI and FWIabc (see Figs. 5
and 6). The regular structure of both routines allows us to
vectorize the innermost loop in these routines and thus the
entire computation in all FW algorithms. All our matrices
are stored linearly in memory using the row-major storage
scheme (also called C storage scheme). This means that
C[i][j] and C[i][j + 1] are adjacent in memory.

We vectorize FWI and FWIabc for arbitrary vector length,
denoted by ν. To express the vectorized implementation, we
introduce three generic ν-way vector instructions. Later in
this section we explain how to implement these operations
using 4-way and 8-way SSE instructions.

• v add(a,b): elementwise addition of vectors a and b.

• v min(a,b): elementwise minimum of vectors a and b.

• v dup(a): creates a length-ν vector that contains the
value of the scalar a in all vector elements.

SIMD vector code for FWI and FWIabc is obtained by
standard loop vectorization as briefly explained next.

The first code in Fig. 9 shows the innermost loop of FWI
and FWIabc. We require that ν|Uj . We see that the j′-loop
accesses contiguous data B[k][j′] and C[i][j′] for all values
of i and k and that A[i][k] is independent of j′. Instead
of unrolling the j′ loop as in FWI and FWIabc, we first
vectorize the loop and then unroll it.

To obtain the second code in Fig. 9, we tile the j′-loop
into a j0-loop with Uj/ν iterations and a j1-loop with ν
iterations.

The actual vectorization is done by executing the ν iter-
ations of the j1-loop in parallel using ν-way vector instruc-
tions; the result is the third code in Fig. 9. Fig. 10 shows
the tile elements that are involved in a v add() operation.
The remaining outer j0-loop will be unrolled.

SIMD vector architectures are most (sometimes only) ef-
ficient if contiguous, aligned vectors are loaded and stored.
From the row-major format follows that the vectors B[k][j0 :
j0 +ν−1] and C[i][j0 : j0 +ν−1] are contiguous in memory.
To guarantee alignment, we place our matrices such that
A[0][0], B[0][0], and C[0][0] are stored at a correctly aligned
address, allowing us to use efficient vector memory access.
Loading the vector of identical elements

[

A[i, k], . . . , A[i, k]
]

requires a scalar load and a duplication of the constant into
all vector elements using v dup().

Using the vector minimum operation requires a vector
store for each result vector C[i][j0 : j0 + ν − 1], even though
typically only few changes of C[i][j] throughout the algo-
rithm occur. This increases memory traffic considerably but



// original unrolled loop
for j’=j:1:j+Uj-1

C[i][j’] = min(C[i][j’], A[i][k]+B[k][j’]);

// tiled loop
// j0 loop will be unrolled
for j0=j:v:j+Uj-1

// j1 loop will be done in parallel
// using v-way vector instructions
for j1=0:1:v-1

C[i][j0+j1] =
min(C[i][j0+j1], A[i][k] + B[k][j0+j1]);

// vectorized loop
// this loop will be unrolled
for j0=j:v:j+Uj-1

// this implements the j1-loop
// using v-way vector instructions
C[i][j0:j0+v-1] =

v_min(
C[i][j0:j0+v-1],
v_add(

v_dup(A[i][k]), B[k][j0:j0+v-1]));

Figure 9: Vectorization of the innermost loops in
FWI and FWIabc. From top to bottom: innermost
loop in FWI; the same loop tiled with tile size ν; the
tiled loop vectorized.

C[k][j:j+v-1]

C[i][j:j+v-1]C[i][k]

k

k

i

j

v

N

Figure 10: Access pattern of the vectorized version
of FWI/FWIabc.

is compensated by the efficient vector minimum in the SSE
implementation.

The code for the fully vectorized FWI implementations
(FWIV and FWIVabc) can be obtained as shown in Fig. 9.

Intel SSE. We refer to the SSE instruction set family
(SSE/2/3) as SSE and generate 4-way 32-bit single-precision
floating-point and 8-way 16-bit integer FWIV/FWIVabc im-
plementations. In all implementations we use Intel’s pro-
prietary C extension implementing intrinsic functions and
vector data types to avoid assembly coding [13].

SSE requires data to be 16-byte aligned and accessed in
16-byte units (one ν-way vector) to use the very efficient
vector load and store instruction movaps or movdqa for 4-way
float or 8-way integer, respectively. We store our matrices
at addresses that are multiples of 16 bytes to enable vector
memory access.

The elementwise vector addition v add() is implemented
by addps in the 4-way float case and by paddw in the 8-way
integer case.

The elementwise vector minimum v min() is implemented
by minps in the 4-way case and by pminsw in the 8-way case
to perform 4 or 8 minimum operations in parallel by one
instruction without the necessity of additional compare or
jump instructions.
v dup() is implemented by first loading the scalar into the
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Figure 11: Architecture of the APSP program gen-
erator and optimizer.

Parameter Description

Problem size and data type

N input size

data type float or short integer

vectorized yes or no

FW algorithm

FW FW algorithm (FWI, FWT or FWD)

(Ui, Uj) Unrolling factors for FWI kernel

(U ′
i , U

′
j , U ′

k
) Unrolling factors for FWIabc kernel

L1 level-1 tile size for FWT and FWD

L2 level-2 tile size for FWD

Table 1: Input parameters to the APSP program
generator.

lowest vector element using movss in 4-way mode. In 8-way
mode the 16-bit integer is loaded into a standard integer
register using mov and then copied to the vector register
using movd. Then a vector broadcast is used to copy vector
element 1 to all other vector elements. It is shufps for 4-way
float. For 8-way short integer mode we use the instructions
punpcklwd to copy the scalar from element 1 to elements 1
and 2 and then punpckldq to copy this pair to the remaining
three pairs of the 8-way vector.

4. AUTOMATIC TUNING
In Sections 2 and 3 we introduced parameterized scalar

and vector variants of the FW algorithms (FWI, FWT and
FWD) obtained through tiling and unrolling. To obtain an
optimized implementation we now follow the approach of
ATLAS: using automatic program generation coupled with
search to find the best algorithm and parameter choice for
the given platform.

In the following we overview the program generator and
explain the search strategy to find the best implementation.

4.1 Overview
Fig. 11 shows an overview of our APSP program genera-

tion and optimization approach. The diagram is similar to
the diagram of ATLAS in [20].

At the heart of the optimization is a code generator, which
takes as input the problem size N , the data type, and a set
of parameters that uniquely specify an FW implementation
from Section 2 or 3 (see Table 1). The output is the corre-
sponding implementation.

The program generator is wrapped into a feedback loop



Parameter Description

C1, C2 level-1 and level-2 cache size

data type float or short int

vectorized yes or no

Nmin minimum input size

Nmax maximum input size

Table 2: User-specified parameters.

that is controlled by a search engine. The search engine gen-
erates different input configurations for the program gener-
ator to find the best implementation according to a search
strategy (explained below).

The search engine takes several user-specified parameters
as input (see Table 2). These parameters dictate the desired
range of problem sizes N (for simplicity we restrict ourselves
to two-power sizes), the desired data type (which is passed
along to the program generator), and the sizes of level-1 and
level-2 cache. The latter are used to compute initial block
sizes for FWT and FWD in the search.

4.2 Search Strategy
In this section we describe the search strategy to find op-

timal parameters for our parameterized FW variants. Due
to the large parameter space an exhaustive search is not
practical, and we use a combination of exhaustive and hill
climbing schemes. In essence, for each FW algorithm we
first find a “reasonable” choice of parameters, then we fur-
ther refine the parameters using hill climbing. This strategy
is different from the orthogonal line search used in ATLAS.

The outline of the search for each problem size N with
Nmin ≤ N ≤ Nmax is as follows and will be explained in
detail below.

1. Initial guess of unrolling parameters:

(a) Find best (Ui, Uj) for FWI with N = 64.

(b) Find best (U ′
i , U

′
j , U

′
k) for FWIabc with N = 64.

2. Optimize FWI:

(a) Set (Ui, Uj) as found in step 1(a).

(b) Refine (Ui, Uj) by hill climbing.

3. Optimize FWT:

(a) Set (Ui, Uj , U
′
i , U

′
j , U

′
k) as found in step 1(b).

(b) Set L1 to an analytical estimate.

(c) Refine (L1, Ui, Uj , U
′
i , U

′
j , U

′
k) by hill climbing.

4. Optimize FWD:

(a) Set (Ui, Uj , U
′
i , U

′
j , U

′
k) as found in step 1(b).

(b) Set (L1, L2) to analytical estimates.

(c) Refine (L1, L2, Ui, Uj , U
′
i , U

′
j , U

′
k) by hill climbing.

The same search strategy is used for scalar and vector
code. The search was designed with the underlying assump-
tion that the best unrolling parameters for different FW al-
gorithms and different input sizes would be similar but not
necessarily the same. We provide further details.

Step 1: Initial guess for unrolling parameters. To
find the best unrolling parameters for FWI, we choose a

problem size of N = 64. Then, we consider all unrolling
parameters (Ui, Uj) with 1 ≤ Ui ≤ 16 and 1 ≤ Uj ≤ 32 (two-
powers only) for scalar code and restrict to ν ≤ Uj ≤ 32 for
vector code.

For FWIabc, we choose again a problem size of N = 64,
and set U ′

k = 1. Then, we search exhaustively by considering
all unrolling parameters (U ′

i , U
′
j) with 1 ≤ U ′

i ≤ 16 and
1 ≤ U ′

j ≤ 64 (two-powers only) for scalar code and restrict
to ν ≤ U ′

j ≤ 64 for vector code. Finally, with the best
(U ′

i , U
′
j) found, we consider all possible choices of U ′

k with
1 ≤ U ′

k ≤ 32 (two-powers only).
Although this search is much faster than a fully exhaustive

search, a pairwise exhaustive search for (Ui, Uj) or (U ′
i , U

′
j)

still generates a large number of cases to measure. Nev-
ertheless, this step does not consume much time since the
problem size is very small.

From this point on, searches are done by hill climbing,
where the performances with a unit-step change in all di-
rections are measured, and the best direction is chosen as
the next state. The search is terminated when all of the
neighbors have lower performance than the current state,
i.e., upon reaching a local maximum. Thus a good choice of
an initial value is crucial for the quality of the search result.

By starting from the best unrolling factors found at step
1, the hill climbing search at the steps 2, 3, and 4 completes
in a reasonable time even for large input matrices.

Step 2: Optimization for FWI. The unrolling pa-
rameters (Ui, Uj) found in step 1 are further optimized by
hill climbing.

Step 3: Optimization for FWT. There are six pa-
rameters (L1, Ui, Uj , U

′
i , U

′
j , U

′
k) to be optimized in this step.

The unrolling parameters found at step 1(b) are used as the
initial state.

The initial state for the tile size L1 is determined using a
simple analytical model in the spirit of [20] and explained
next. Inspecting FWT in Fig. 7 (see also the visualization
Fig. 8) shows that at most three tiles are concurrently used
as working set. By requiring that they fit into level-2 cache,
the tile size should satisfy

3L2
1 ≤ C2, (3)

where C2 is the level-2 cache size (measured in the size of
the chosen data type). Thus, we set

L1 =
⌊

√

C2/3
⌋

. (4)

Note that we choose level-2 cache, since on modern plat-
forms it is almost as fast as the level-1 cache. Thus, if only
one level of blocking is chosen, it should be for the level-2
cache.

Step 4: Optimization for FWD. Since there are two
blocking parameters L1 and L2, we use the above model for
both levels of cache:

L1 =
⌊

√

C1/3
⌋

and L2 =
⌊

√

C2/3
⌋

, (5)

where C1 is the level-1 data cache size (measured in the size
of the chosen data type).

After that we use a hill climbing search to further optimize
all parameters.

5. EXPERIMENTAL RESULTS
In this section we present performance results obtained

with our generated code. We first explain the experimental



setup. Then we show and discuss performance plots for the
generated scalar and vector code of data types float and
short integer.

Platform. The experiments were conducted on two plat-
forms: 1) Pentium 4, 3.6 GHz (model number 560), with
16 KB L1 cache, 1 MB L2 cache, and 1 GB main mem-
ory, and 2) Athlon 64, 2.4 GHz (model 4000+), with 64 KB
L1 cache, 1 MB L2 cache, and 1 GB main memory. The
operating system is SuSE Linux 9.3. We used the GNU C
compiler 3.3.5 (gcc) with flags “-O3 -march=pentium4” for
scalar code, and the Intel C++ compiler 9.0 (icc) with the
flag “-O2” for vector code. We performed a small search to
make sure we use the best compiler and compiler flags.

We used both single precision float and short integer (16-
bit). In both cases, we considered corresponding short vec-
tor data types provided by Intel’s SSE: 4-way for float and
8-way for short integer. Note that double precision should
be unnecessary for practically all application since the FW
algorithms are numerically very stable (since they involve
only additions). For short integers, overflow may occur de-
pending on the weights and the graph size and structure.

Implementation of the minimum operation. Half of
all operations in the FW algorithm are minimum operations,
which can be expensive. The vectorized code uses v min im-
plemented as explained in Section 3. For scalar minimum
operations, we tried to make the compiler use predicated
move instructions cmov, but only succeeded by resorting to
inline assembly. Due to the side effects of inline assembly on
register allocation and instruction scheduling, the straight-
forward implementation was ultimately the fastest:

#define MIN(a, b) ((a) < (b) ? (a) : (b))

Cost matrix generation. As input to all FW al-
gorithms, we generated bidirectional directed graphs with
random weights from 1 to 10 using the graph generation
package provided by [14]. The number of nodes N in the
graphs was constrained to be a power of two in the range
64 ≤ N ≤ 4096, and the number of edges in the graph was
set to approximately N2/3. We also experimented with two
extreme edge densities, a fully connected graph and a ring,
but the influence on the performance was not noticeable.
This behavior was also mentioned in [18].

We compute the performance numbers as (2N3)/runtime,
i.e., we count both additions and minimum operations as 1.

5.1 Benchmarks on Pentium 4
Scalar code. In the first experiment, we compared

our best generated scalar code for data type float against
a standard triple-loop implementation (Fig. 1) and against
the fastest implementation we found in the literature [16].
The authors kindly provided us with their code. Their al-
gorithm first permutes the input matrix into the Z-Morton
data layout and then uses a recursive multilevel tiling algo-
rithm until a base case size is reached, at which point their
FWI (our FWgen) is used. Search is used to find the best
base case size with a tiling factor of two (the same in ev-
ery level). No unrolling is performed and the loop exchange
based on FWIabc is not performed. We call their implemen-
tation ZM-FWR.

Fig. 12(a) shows the performance achieved in each case.
Our generated code is separated into the three discussed
FW variants (FWI, FWT, FWD). The best of those run
between 21% and 29% faster than the standard implemen-

tation and between 8% and 32% faster than ZM-FWR. Fur-
ther, our best code reaches 28% of the scalar peak perfor-
mance. Matrix-matrix multiplication using ATLAS’ search
reaches about 70% [20]. The loss is due to the k-loop be-
ing the outermost loop and due to the minimum operations,
which produce branches.

Fig. 12(a) also shows that FWT and FWD exhibit similar
performance while both are superior to FWI. The sudden
drop for FWT at N = 4096 is because the hill climbing
search fell into a local maximum. By manually tuning the
parameters one can remove that behavior.

Vector code (float). Fig. 12(b) compares the perfor-
mance of our best generated vector implementations for data
type float with our best scalar implementation. The vector
code is up to about 5.7 times faster, exceeding the vector
length 4 and reaching up to 5.3 GFLOPS. We see super-
linear speed-up because we are not close to the machine’s
peak performance and so other factors can contribute sig-
nificantly. For example, vectorization reduces the code size
and enables larger blocks to be unrolled. The performance
of the vector code using FWT and FWD is roughly equal.
FWI performs poorly for N > 256 (the L2-cache boundary),
which shows that tiling is mandatory for good vector code
performance. Using compiler vectorization (icc) in tandem
with our program generator yields only marginal improve-
ments of up to 20%.

Vector code (short integer). The performance with
data type short integer is shown in Fig. 12(c), which ex-
hibits essentially the same behavior as Fig. 12(b) for float.
The vector code reaches 9.2 GIPS, which is about 4.1 times
faster than the best scalar code. As in the case of data type
float, FWT and FWD show similar performance while FWI
performs poorly beyond the L2-cache boundary. The com-
piler vectorization (using icc) showed no improvement over
our best scalar code.

Parameters found. For FWD and float, the parameters
found are shown in Table 4.

5.2 Benchmarks on Athlon 64
Scalar code. Fig. 13(a) compares the performance of the

different scalar FW algorithms. The best scalar code runs
between 44% and 78% faster than the standard implemen-
tation and between 13% and 50% faster than ZM-FWR. It
seems that the Athlon benefits more from unrolling, since
it has a 64 KB traditional L1 instruction cache whereas
the Pentium only has a 12 KB micro ops trace cache. Ta-
ble 4 shows that larger unrolling factors where found on the
Athlon.

Fig. 13(a) also shows that for larger problem sizes the
performance of FWT and FWD decreases below FWI. This
is different to the Pentium and may be due to the Athlon’s
different cache structure.

Vector code (float). Fig. 13(b) compares the differ-
ent vectorized FW algorithms. The best generated vector
code is up to 3 times faster than the best scalar code with
data type float, reaching up to 3.5 GFLOPS. Similarly to
the performance characteristics on the Pentium, FWI’s per-
formance starts to deteriorate for N > 256 while the tiled
versions (FWT and FWD) further gain performance. The
improvement using compiler vectorization (icc) was only up
to 30%.

Vector code (short integer). The performance with
data type short integer is shown in Fig. 13(c). We see a
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Figure 12: Performance comparison on Pentium 4.
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Figure 13: Performance comparison on Athlon 64.

float [MFLOPS] short integer [MIPS]

Pentium 4 Athlon 64 Pentium 4 Athlon 64

Standard 795 719 1443 925

Scalar best 992 1273 2322 2082

Vector best 5298 3513 9200 9983

Table 3: Best obtained performance.

similar behavior as for data type float. The vector code
reaches close to 10 GIPS for a speed-up of up to 5 times
over scalar code.

Parameters found. For FWD and float, the parameters
found are shown in Table 4.

5.3 Additional Experiments
The best achieved performance from the above experi-

ments on both platforms is summarized in Table 3.
Below we discuss in greater detail the relative performance

of our generated scalar and vector implementations on Pen-
tium 4 and Athlon 64 across both data types, investigate the
benefit of FWIabc (Fig. 14), and investigate the benefits of
adaptation (Fig. 15). Note that the scales in the plots differ.

Scalar code vs. standard implementation. Fig. 14(a)
compares our best scalar code to the standard implementa-
tion. The speed-up is higher on Athlon (40–80% for float
and around 100% for short integer) than on Pentium, and

higher for short integer than for float.
As an additional experiment (not shown) we modified ZM-

FWR to use the data type short integer; this resulted in a
70% lower performance than the standard implementation
on Pentium 4, and a 30% lower performance on Athlon 64.

Vector code vs. scalar code. Fig. 14(b) compares the
performance of our best vector implementations with our
best scalar implementations. For 4-way float the speed-up
is around 2.5–3 on Athlon and around 5 for Pentium. The
latter compensates for the poor scalar performance. For 8-
way short integer the speed-up is 4–5 on Athlon and 3–4 on
Pentium.

Effect of the optimization using FWIabc. We eval-
uate the benefit of the subroutine FWIabc. Fig. 14(c) shows
the performance gain of the best generated vector code over
the best generated vector code without using FWIabc. It
shows considerable gains for sizes outside the L2 cache: up
to a factor of more than 2 for Athlon and short integer. The
scalar code did not benefit significantly from FWIabc.

Effect of adaptation. To show the need for platform
adaptation, we performed crosstiming experiments. First,
we measure the best code generated for the Athlon on the
Pentium and record the speed-up to the best performance
on the Pentium 4. Fig. 15(a) summarizes the results. As
expected the speed-up is generally smaller than 1, i.e., a
slow-down. Up to 40% can be lost through porting. For
float vector code, the loss is marginal.

Fig. 15(b) shows the same experiment with the roles re-
versed. The result are comparable.
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Figure 14: Speed-up on Pentium 4 and Athlon 64 for both float (solid) and short integer (dashed).
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Figure 15: Crosstiming between Pentium 4 and Athlon 64 for both float (solid) and short integer (dashed).
The best generated implementation for one platform is benchmarked on the other platform.

6. CONCLUSIONS
We believe that domain-specific program or library gener-

ators are the future, at least for well-understood numerical
kernel functionality. The science of building these genera-
tors is still in a very early stage, as this is a rather recent
trend and only few examples exist so far. To further advance
the area it is thus necessary to explore program generation
for other domains and the present paper is a contribution in
this direction.

On the algorithmic side, the main contribution of the pa-
per is the subroutine FWIabc, which does not incur the de-
pendencies of FW and can hence be structured like a matrix-
matrix multiplication with the k-loop as the innermost loop.
This in turn enabled us to follow closely the approach of
ATLAS, but to go beyond it through two levels of cache
blocking and SIMD vectorization.

The experimental results offer some surprises, at least to
the authors, which is typical for the domain of performance
optimization and one of the main reasons why empirical
search has become a popular optimization strategy. Un-
derstanding and modeling the performance behavior or the
parameters found would be worthwhile. Finally, it is worth
pointing out the considerable, sometimes even superlinear,
speed-up that we obtained by vectorization. Vectorization
is often neglected in work on performance optimization but
is mandatory if highest performance is desired.
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