
Automatic Derivation and Implementation of Signal Processing Algorithms

Sebastian Egner
Philips Research Laboratories

Prof. Hostlaan 4, WY21
5656 AA Eindhoven, The Netherlands

sebastian.egner@philips.com

Jeremy Johnson
Mathematics and Computer Science

Drexel University
Philadelphia, PA 19104

jjohnson@mcs.drexel.edu

David Padua
Computer Science

University of Illinois
Urbana, IL 61801

padua@cs.uiuc.edu

Markus Püschel
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213
pueschel@ece.cmu.edu

Jianxin Xiong∗

Computer Science
University of Illinois

Urbana, IL 61801
jxiong@cs.uiuc.edu

Abstract

We present a computer algebra framework to automatically
derive and implement algorithms for digital signal process-
ing. The two main parts of the framework are AREP, a
library for symbolic manipulation of group representations
and structured matrices, and SPL, a compiler turning ma-
trix expressions into efficient imperative-style numerical pro-
grams.

1 Introduction

Fast implementations of signal transforms are of crucial im-
portance for real-time demands in signal processing. Many
digital signal processing (DSP) transforms are mathemati-
cally given as a multiplication of a matrix M (the transform)
with a vector x (the sampled signal). Examples are the dis-
crete Fourier transform (DFT), trigonometric transforms,
and the Hartley and Haar transforms, [17]. A fast algo-
rithm for these transforms can be given by a factorization of
M into a product of sparse matrices, [17, 21]. For example,
the well-known Cooley/Tukey algorithm, [3], also known as
fast Fourier transform (FFT), for computing the DFT can
be written as

DFTmn = (DFTm⊗1n) · T · (1m ⊗DFTn) · L,

where 1n denotes the identity matrix, T a diagonal matrix,
and L a permutation matrix both depending on m and n.

After expressing an algorithm as a matrix factorization,
the factorization must be converted into an efficient imple-
mentation, either in a high-level language such as C or FOR-
TRAN, or perhaps directly in assembly or machine code.
This is a fairly mechanical process, and, as we will see, can
be automated.

In this paper we present a computer algebra framework
to automatically derive and implement algorithms for DSP
∗The work of Jeremy Johnson, David Padua, Markus Püschel, and

Jianxin Xiong was supported in part by DARPA through research
grant DABT63-98-1-0004 administered by the Army Directorate of
Contracting. The work of Markus Püschel was supported by NSF
through award 9988296.

transforms. The two main parts of the framework are AREP,
a library for symbolic manipulation of group representations
and structured matrices, and SPL, a compiler turning ma-
trix expressions into efficient imperative-style numerical pro-
grams.

The algebraic methods of AREP allow the user to interac-
tively explore symmetries of discrete signal transformations
and to use these symmetries to obtain fast algorithms. Any
such algorithm can then be exported into the SPL language
where it can be further manipulated and compiled into FOR-
TRAN or C code. At the SPL level, alternative factoriza-
tions can be derived, and additional information needed for
the production and optimization of the resulting programs
can be inserted.

AREP and SPL are linked by a two-way interface which
allows the entire process of deriving and implementing a
fast algorithm to be automated, as is outlined in Figure 1.
However, AREP may well produce suboptimal algorithms
and must be seen as an exploration tool. SPL, on the other
hand, aims at high performance code of production quality
for DSP applications on various hardware and software plat-
forms. Currently the code produced by the SPL compiler
is of comparable efficiency to that of the FFTW package,
[8]. The approach as sketched in Figure 1 is similar to the
approach for creating VLSI implementations in [2], which
indeed marks the origin of AREP. SPL is under development
within the SPIRAL project, [12].

The paper is organized as follows. In Section 2 we present
an algorithm for deriving a sparse matrix factorization for a
certain class of matrices and introduce AREP which imple-
ments the procedure. Section 3 introduces the SPL language
for expressing matrix factorizations, and the SPL compiler
which translates them into efficient FORTRAN or C code.
We conclude the paper with a complete example of imple-
menting an 8-point discrete cosine transform (DCT) using
AREP and SPL according to Figure 1.

2 AREP: Generating Matrix Factorizations

In this section we will explain how a fast algorithm for a
DSP transform, given as a matrix M , can be derived auto-
matically. The basic idea has its roots in [11] and has been

1

DSP
transform

-?

AREP

fast
algorithm

-?

AREP/SPL

interface

SPL
program

-?

SPL Compiler

FORTRAN
program

-?

FORTRAN

compiler

fast
executable

Figure 1: Automatic Generation of Algorithm and Implementation of a DSP transform

further developed in [4, 7, 5, 13, 15]. The approach essen-
tially consists of two steps. In the first step, the “symmetry”
of M is computed. The “symmetry” is a pair of group rep-
resentations representing a certain invariance property of M
(cf. Section 2.2). In the second step, the group representa-
tions are decomposed stepwise. This gives rise to factorized
decomposition matrices and determines a factorization of M
(cf. Section 2.3). The factorization represents a fast algo-
rithm for computing the transform M . Intuitively speaking,
the “symmetry” captures a large part of the redundancy
contained in M , and the decomposition of the representa-
tions turns the redundancy into a fast algorithm.

For the convenience of the reader we will first introduce
the mathematical notation we are going to use. In Sec-
tion 2.2 we will define the term “symmetry” of a matrix,
and in Section 2.3 we explain how to use it to derive a ma-
trix factorization. In Section 2.4 we give a brief overview on
the GAP share package AREP, [6], which contains an imple-
mentation of the factorization procedure. We conclude this
section with some examples.

2.1 Mathematical Background

In this section we present the basic notation of represen-
tations and structured matrices we are going to use. For
further information on representation theory we refer the
reader to standard books such as [19].

Representations A (complex) representation of a
group G is a homomorphism

φ : G→ GLn(C)

of G into the group GLn(C) of invertible (n × n)-matri-
ces over the complex numbers C. The degree of φ is n. If
A ∈ GLn(C), then φA : g 7→ A−1 · φ(g) · A is the conju-
gate of φ by A. If φ and ψ are representations of G, then

the representation φ ⊕ ψ : g 7→ φ(g) ⊕ ψ(g) =
[
φ(g) 0

0 ψ(g)

]
is called the direct sum of φ and ψ. The direct sum of n
representations φ1, . . . , φn is defined analogously. The rep-
resentation φ is irreducible, if it cannot be conjugated to be
a direct sum. Every representation φ (over C) can be de-
composed into a direct sum of irreducible representations by
conjugation with a suitable matrix A (Maschke’s Theorem).
The matrix A is not uniquely determined and is called a
decomposition matrix for φ. A representation φ is called a
permutation representation, if all images φ(g) are permuta-
tion matrices, and φ is called a monomial representation, if
all images φ(g) are monomial matrices. A monomial matrix
has exactly one non-zero entry in every row and column and
is hence a generalization of a permutation matrix.

Matrices We use the following notation to represent
matrices. [σ, n] = [δiσj | i, j = 1 . . . n] is the (n × n)-
permutation matrix corresponding to the permutation σ.

1n denotes the identity matrix of size n, diag(L) denotes a
diagonal matrix with the list L on the diagonal, [σ, L] is the
monomial matrix [σ, length(L)] · diag(L), ⊕,⊗ denotes the
direct sum and the Kronecker (or tensor) product of matri-

ces, respectively, and Rα =
[

cos(α) sin(α)
− sin(α) cos(α)

]
is the rotation

matrix for angle α.

DFTn = [ωk`n | k, ` = 0 . . . n− 1],

where ωn = e2πi/n, denotes the discrete Fourier transform
of size n. The following example states the interpretation of
the DFT in terms of representation theory.

Example 1 It is a known fact that DFTn maps the cyclic
shift in the time-domain into a phase change in the frequency
domain. In our notation,

[(1, 2, . . . , n), n] ·DFTn = DFTn ·diag(1, ωn, . . . , ω
n−1
n).

In terms of representation theory, DFTn decomposes the
permutation representation φ : x 7→ [(1, 2, . . . , n), n] of the
cyclic group G = Zn = 〈x | xn = 1〉 into the direct sum
φDFTn = ρ1⊕ . . .⊕ρn, where the irreducible representations
are given by ρk : x 7→ ωk−1

n , k = 1 . . . n.

2.2 Symmetry of a Matrix

The notion of symmetry has a two-fold purpose. First, it
catches the redundancy contained in the matrix M ; second,
it establishes the connection to representation theory, which
enables the application of algebraic methods to factorize M ,
as sketched in Section 2.3.

We consider an arbitrary rectangular matrix M ∈ Cm×n.
A symmetry of M is a pair (φ1, φ2) of representations of the
same group G satisfying

φ1(g) ·M = M · φ2(g), for all g ∈ G.

We will use a shorthand notation and write φ1
M−→ φ2. We

call G a symmetry group of M . With this general definition,
however, every matrix has arbitrary many symmetries. If,
for example, M is an invertible (n× n)-matrix and φ is any
representation of degree n of a group G, then M has the
symmetry (φ, φM). Thus, in order to catch the redundancy
contained in M , we will consider certain “types” of symme-
try arising from restrictions on the representations φ1, φ2:

1. Mon-irred symmetry: φ1 is monomial, φ2 is a direct
sum of irreducible representations.

2. Mon-mon symmetry: φ1 and φ2 are monomial.

In words, the matrix M has a mon-mon symmetry if there
are non-trivial monomial matrices L,R such that L ·M =
M · R. Similarly, the matrix M has a mon-irred symmetry

2

φ1

A1

��

M // φ2

A2

��
ρ1

D // ρ2

Figure 2: Factorization of M with symmetry (φ1, φ2)

if M is a decomposition matrix for a monomial representa-
tion φ. The rationale for considering the types of symmetry
above will become clear in Section 2.3. Algorithms for find-
ing symmetry are a main topic of [4, 5].

Example 2 Example 1 shows that the DFTn has the sym-
metry group G = Zn = 〈x | xn = 1〉 with symmetry (φ1, φ2):

φ1 : x 7→ [(1, 2, . . . , n), n],
φ2 : x 7→ diag(1, ωn, . . . , ω

n−1
n).

Note, that (φ1, φ2) is a mon-irred symmetry as well as a
mon-mon symmetry.

2.3 Matrix Factorization

Now we explain how to factorize a given matrix M, which
has an arbitrary symmetry (φ1, φ2). First, the representa-
tions φ1, φ2 are decomposed with matrices A1, A2, respec-
tively. This gives rise to two decomposed representations
ρ1 = φA1

1 , ρ2 = φA2
2 . Second, the matrix D = A−1

1 ·M ·A2 is
computed to obtain the commutative diagram in Figure 2.

Altogether, we obtain the factorization

M = A1 ·D ·A−1
2 . (1)

¿From representation theory we know that D is a sparse ma-
trix but the question of sparsity remains regarding the ma-
trices A1 and A2. The factorization in (1) is useful only if the
decomposition matrices A1 and A2 can themselves be deter-
mined as a product of sparse matrices. This is possible for
monomial representations (with certain restrictions on the
symmetry group G), as has been developed in [13, 14, 15],
and justifies the consideration of the two types of symmetry
described in Section 2.2:

1. Mon-irred symmetry: A1 is a decomposition matrix of
a monomial representation, A2 is the identity, since φ2

is already decomposed.

2. Mon-mon symmetry: A1 and A2 are decomposition
matrices of monomial representations.

The factorizations of A1 and A2 arise from a stepwise de-
composition of the corresponding representations along a
chain of normal subgroups, [14], which will not be further
explained here.

The algorithm for factoring a matrix with symmetry thus
reads as follows.

Algorithm 1 Given a matrix M to be factored into a prod-
uct of sparse matrices.

1. Determine a suitable symmetry (φ1, φ2) of M .

2. Decompose φ1 and φ2 stepwise, and obtain (factorized)
decomposition matrices A1, A2.

3. Compute the sparse matrix D = A−1
1 ·M ·A2.

Result: M = A1 · D · A−1
2 is a factorization of M into a

product of sparse matrices. This is a fast algorithm for eval-
uating the linear transformation x 7→M · x.

Algorithm 1 is implemented within the GAP share pack-
age AREP (see Section 2.4).

The following example applies Algorithm 1 to the DFT4.

Example 3 Let M = DFT4. M has the symmetry φ1 :
x 7→ [(1, 2, 3, 4), 4], φ2 : x 7→ diag(1, ω4, ω

2
4 , ω

3
4) (cf. Exam-

ple 2). φ2 is already decomposed, hence A2 = 14. Decom-
posing φ1 stepwise yields the decomposition matrix

A1 =
(DFT2⊗12) · diag(1, 1, 1, ω4) · (12 ⊗DFT2) · [(2, 3), 4].

We compute D = A−1
1 ·M ·A2 = 14 and get the Cooley/Tukey

factorization M = A1.

2.4 AREP

The implementation of Algorithm 1 is part of the package
AREP, [6], which has been created as part of the thesis re-
search in [4, 13]. AREP is implemented in the language
GAP v3.4.4, [9], a computer algebra system for computa-
tional group theory, and has been accepted as a GAP share
package. The goal of AREP was to create a package for com-
puting with group representations up to equality, not only
up to equivalence, as is done when using characters. In this
sense, AREP provides the data types and the infrastructure
to do efficient symbolic computation with representations
and structured matrices which arise from the decomposi-
tion of representations. The central objects in this package
are the recursive data types ARep and AMat.

An ARep is a GAP record representing a group repre-
sentation. The record contains a number of fields which
uniquely characterize a representation up to equality, e.g. de-
gree, characteristic, and the represented group always have
to be present. There are a number of elementary construc-
tors for creating an ARep, e.g. by specifying the images on
a set of generators of the group (ARepByImages). Further-
more, there are constructors building a structured ARep from
given AReps (e.g. DirectSumARep, InductionARep). The idea
is not to immediately evaluate such a construction, but to
build an ARep representing it. For example, an ARep rep-
resenting a direct sum has a field summands containing the
list of summands. Conversion to an (unstructured) matrix
representation is performed by calling the appropriate func-
tion. There are also functions converting an unstructured,
e.g. monomial ARep, into a highly structured ARep, e.g. a
conjugated induction of a representation of degree 1, which
is mathematically identical to the original one. Permuta-
tion and monomial representations have been given special
attention in the package since they are efficient to store and
to compute with and they were the central object of interest.

The data type AMat has been created according to the
same principle as ARep, as a GAP record representing a ma-
trix. Again, there are elementary constructors to create an
AMat, e.g. AMatPerm takes a permutation, a degree, and a
characteristic and builds an AMat which efficiently represents
a permutation matrix. Higher level constructors recursively
build the product, direct sum, tensor product, etc., of AMats
and are not evaluated unless an evaluation function is in-
voked. Since an AMat is not evaluated and the structure of

3

the corresponding matrix is maintained it provides an effi-
cient method for storing and manipulating sparse-structured
matrices. Matrix functions such as the determinant, trace,
and inverse can be evaluated directly on an AMat using well-
known mathematical rules, such as the determinant of the
product of matrices is equal to the product of the determi-
nants.

For a description of further capabilities of AREP we refer
the reader to the AREP manual and web page, [6].

2.5 Examples

In this section we apply Algorithm 1 to a number of signal
transforms. The following factorizations have been gener-
ated entirely automatically using AREP. Even the LATEX-
expressions displayed below have been generated. The def-
initions of the transforms follow [17]. The runtime in all
cases was less than 24 seconds CPU time (substantially less
time is required for all but the last example) on a Sun Ultra
5 with an UltraSPARC IIi CPU running at 440 MHz, 256
MB RAM, and running SunOS 5.7. The factorizations of
the DCT and Hartley transform are due to different mon-
irred symmetries with dihedral symmetry group. For more
examples see the website of [6].

DFT: Cooley/Tukey Algorithm 1 finds the Coo-
ley/Tukey factorization of DFTn as shown in Example 3
for n = 4.

DFT: Rader The Rader FFT, [16], computes a DFTp of
prime size p using two DFTs of size p−1. The factorization
algorithm finds this automatically.

DFT5 = [(4, 5), 5]·
(11 ⊕ ((DFT2⊗12) · diag(1, 1, 1, ω4) · (12 ⊗DFT2)))·
[(1, 4)(2, 5, 3), (a, b, c, 1, 1)] · (13 ⊕

[
1 4
1−1

]
) · [(1, 4)(2, 3, 5), 5]·

(11 ⊕ 1
4
· (12 ⊗DFT2) · diag(1, 1, 1,−ω4) · (DFT2⊗12))·

[(3, 4, 5), 5].

The factorization is due to a mon-mon symmetry with cyclic
symmetry group Z4. Lines 2 and 4 essentially contain a
DFT4, a, b, c are constants (not given here due to lack of
space).

DCT, type II The discrete cosine transform DCT (type
II) [unscaled] is defined as the matrix

DCTn =

[
cos

(
k(2`+ 1)π

2n

)
| k, ` = 0 . . . n− 1

]
.

The scaled version of the DCT (type II) multiplies the (k, `)
element of the matrix by the scaling factor ck where ck =
1/
√

2 for k = 0 and ck = 1 elsewhere. Below is the generated
factorization for the unscaled DCT8. A similar factorization
can be obtained for the scaled variant.

DCT8 =
[(2, 5)(4, 7)(6, 8), 8] · (12 ⊕ R 3

8π
⊕R 15

16π
⊕R 21

16π
)·

[(2, 4, 7, 3, 8), (1, 1, 1,
√

1
2
, 1, 1, 1, 1)]·

((DFT2⊗13)⊕ 12) · [(5, 6), 8]·
(14 ⊕ 1√

2
·DFT2⊕12) · [(2, 3, 4, 5, 8, 6, 7), 8]·

(12 ⊗ ((DFT2⊕12) · [(2, 3), 4] · (12 ⊗DFT2)))·
[(1, 8, 6, 2)(3, 4, 5, 7), 8].

Hartley transform The discrete Hartley transform
DHTn is defined as the matrix

DHTn =
[
cos
(

2k`π
n

)
+ sin

(
2k`π
n

)
| k, ` = 0 . . . n− 1

]
.

The algorithm finds automatically the following factoriza-
tion for DHT8.

DHT8 = [(1, 8)(2, 4)(3, 6)(5, 7), 8]·
(12 ⊗ ((12 ⊗DFT2) · [(2, 3), 4] · (DFT2⊕12)))·
[(2, 7, 6, 8, 5, 4, 3), 8]·
(14 ⊕− 1√

2
·DFT2⊕12) · [(5, 6), 8] · ((DFT2⊗13)⊕ 12)·

[(2, 5, 3, 6, 4)(7, 8), (1,−1,−
√

2,−
√

2,
√

2,
√

2,−1,−1)]·
(16 ⊕DFT2) · [(2, 5, 8, 7, 3, 4), 8].

Haar transform The Haar transform HT2k is defined
recursively by:

HT2 =

[
1 1

1 − 1

]
, HT2k+1 =

[
HT2k ⊗ [1 1]

2k/2 · 12k ⊗ [1 −1]

]
,

for k ≥ 1. A fast algorithm for the Haar transform fol-
lows directly from the definition. For k = 3 we build the
corresponding matrix and input it into the factorization al-
gorithm.

HT8 = [(1, 8, 6, 4, 2, 7, 5, 3), 8]·
(diag(−

√
2,
√

2)⊕ 14 ⊕DFT2) · [(1, 5, 4, 8, 6, 3, 7, 2), 8]·
(12 ⊗ ([(1, 2), 4] · (DFT2⊕ 2 12) · [(2, 3), 4] · (12 ⊗DFT2)))·
[(1, 8, 4, 7)(3, 6, 2, 5), (1, 1, 1, 1,−1,−1,−1,−1)].

The factorization is based on a mon-irred symmetry. The
symmetry group has been recognized as an iterated wreath
product, [18].

3 SPL: Implementing Matrix Factorizations

In Section 2 we have seen that algorithms for signal trans-
forms can be described by matrix factorizations and that it is
possible in many situations to automatically derive such fac-
torizations using the AREP library. A matrix factorization
produced by AREP in the form of an AMat-object can be con-
verted to an SPL program and compiled by the SPL compiler
to produce an efficient numeric program corresponding to
the matrix factorization. Moreover, the SPL programming
environment includes tools for obtaining alternative matrix
factorizations that may lead to improved performance of the
resulting numeric code. Performance can be investigated
using a GAP interface (other interfaces for MATLAB and
Maple have also been developed) that makes it easy to ob-
tain and analyze timings for alternative SPL expressions.

SPL is a domain-specific programming language for ex-
pressing and implementing matrix factorizations. It was
originally developed to investigate and automate the imple-
mentation of FFT algorithms, [1] (there it was called TPL).
As such, some of the built-in matrices are biased towards
the expression of FFT algorithms, however, it is important
to note that SPL is not restricted to the FFT. It contains
features that allow the user to introduce notation suitable
to any class of matrix expressions.

This section summarizes the SPL language and outlines
the features and structure of the SPL compiler and program-
ming environment. A more complete discussion of SPL and
the SPL compiler can be found in [22].

3.1 SPL Language

An SPL program is essentially a sequence of mathemati-
cal formulas built up from a parameterized set of special

4

matrices and algebraic operators such as matrix composi-
tion, direct sum, and the tensor product. The SPL language
uses a prefix notation similar to lisp to represent formulas.
For example, the expressions (compose A B) and (tensor
A B) correspond to the matrix product A · B and the ten-
sor product A⊗B respectively. The language also includes
special symbols such as (F n) and (I m) to represent the
discrete Fourier transform matrix Fn and the identity ma-
trix Im (this notation differs from that used previously). In
addition to the built-in symbols the user can assign an SPL
formula to a symbol to be used in other expressions. More-
over, new parameterized symbols can be defined so that SPL
programs can refer to other sets of parameterized matrices.

For example, the Cooley-Tukey factorization of F4 from
Example 3 is represented by the SPL expression

(compose
(tensor (F 2) (I 2)) (T 4 2)
(tensor (I 2) (F 2)) (L 4 2)

)

The parameterized symbols (T 4 2) and (L 4 2) cor-
respond to a diagonal matrix called the twiddle factor ma-
trix and a permutation matrix called a stride permutation
respectively. In general, the expressions (T m*n n) and
(L m*n n) correspond to matrices Tmnn and Lmnn defined
by Tmnn (emi ⊗ enj) = ωijmn(emi ⊗ enj) and Lmnn (emi ⊗ enj) =
(enj ⊗emi), where eni is the vector with a one in the i-th loca-
tion and zeros elsewhere and ωmn is a primitive mn-th root
of unity.

The power of SPL for expressing alternative algorithms
is illustrated by the following list of formulas corresponding
to different variants of the FFT, [10, 20, 21]. Each of the
formulas was obtained using the Cooley-Tukey factorization
and elementary properties of the tensor product. The sym-
bol R8 refers to the eight-point bit-reversal permutation.

Apply Cooley/Tukey inductively

F8 = (F2 ⊗ I4)T 8
4 (I2 ⊗ F4)L8

2

Recursive FFT

F8 = (F2 ⊗ I4)T 8
4 (I2 ⊗ ((F2 ⊗ I2)T 4

2 (I2 ⊗ F2)L4
2))L8

2

Iterative FFT (Cooley/Tukey)

F8 = (F2 ⊗ I4)T 8
4 (I2 ⊗ F2 ⊗ I2)(I2 ⊗ T 4

2)(I4 ⊗ F2)R8

Vector FFT (Stockham)

F8 = (F2 ⊗ I4)T 8
4L

8
2(F2 ⊗ I4)(T 4

2 ⊗ I2)(L4
2 ⊗ I2)(F2 ⊗ I4)

Vector FFT (Korn/Lambiotte)

F8 = (F2 ⊗ I4)T 8
4L

8
2(F2 ⊗ I4)(T 4

2 ⊗ I2)L8
2(F2 ⊗ I4)L8

2R8

Parallel FFT (Pease)

F8 = L8
2(I4 ⊗ F2)L8

4T
8
4L

8
2L

8
2(I4 ⊗ F2)

L8
4(T 4

2 ⊗ I2)L8
2L

8
2(I4 ⊗ F2)R8

These formulas are easily translated into SPL programs. The
following SPL program corresponds to the formula for the
iterative FFT on 8 points.

(define R8 (permutation (1 5 3 7 2 6 4 8)))
(compose

(tensor (F 2) (I 4)) (T 8 4)
(tensor (I 2) (F 2) (I 2)) (tensor (I 2) (T 4 2))
(tensor (I 4) (F 2))
R8

)

In general, an SPL program consists of the following con-
structs. Note that this list refers to SPL 3.28 (the cur-
rent version) and will be extended in future versions (see
http://polaris.cs.uiuc.edu/∼spl)

(1) matrix operations

(tensor formula formula ...)
(compose formula formula ...)
(direct_sum formula formula ...)
(conjugate formula permutation)
(scale scalar formula)

(2) direct matrix description:

(matrix (a11 a12 ...) (a21 a22 ...) ...)
(sparse (i1 j1 a1) (i2 j2 a2) ...)
(diagonal (d1 d2 ...))
(permutation (p1 p2 ...))

(3) parameterized matrices:

(I n)
(F n)
(T mn n)
(L mn n)
...

(4) scalar expressions:

+, -, *, /, % # arithmetic operators
pi # scalar constants
exp(), cos(), sin(), ... # scalar functions
w(n,k) # exp(2*pi*i*k/n)
w(n) # w(n,1)
...

(5) symbol definition:

(define name formula) # define a formula
(define name const-expr) # define a constant
(primitive name ...) # introduce new primitive
(operator name ...) # introduce new operator
(template [condition] pattern (i-code-list))

In addition to these constructs, lines beginning with “;”
are comments. Templates are used to define new parameter-
ized matrices and operators. They also define the semantics
of SPL programs and are used to control the generation of
code by the SPL compiler. Templates are defined using an
language independent syntax for code called i-code.

3.2 Formula Translation and the SPL Compiler

The SPL compiler consists of six stages: (1) parsing, (2)
semantic binding, (3) type control, (4) optimization, (5)
scheduling, and (6) code generation. The parser builds an
abstract syntax tree (AST). The AST is converted to inter-
mediate code (i-code) using templates to define the seman-
tics of different SPL expressions. The i-code is expanded
to produce type dependent code (e.g. double precision real
or complex) and loops are unrolled depending on compiler
parameters. After intermediate code is generated, various
optimizations such as constant folding, copy propagation,
common sub-expression elimination, and algebraic simplifi-
cation are performed. Optionally, data dependency analysis

5

is used to rearrange the code to improve locality and pipelin-
ing. Finally, the intermediate code is converted to FOR-
TRAN or C, leaving machine dependent compilation stages
(in particular register allocation and instruction scheduling)
to a standard compiler – the code generator could easily
be modified assembly or machine code directly. Different
options to the compiler, command line flags or compiler di-
rectives, control various aspects of the compiler, such as the
data types, whether loops are unrolled, and whether the op-
tional scheduler is used. Some compiler optimizations and
instruction scheduling can also be obtained at the SPL level,
by transforming the input formulas.

SPL formulas are compiled to code sequences by applying
a compilation scheme to the formula and using recursion on
the structure of the formula. For example, a composition
A·B is compiled into the sequence t = B·x; y = A·t mapping
input signal x into output signal y with intermediate signal
vector t. In the same way, the direct sum compiles into
operations acting on parts of the input signal in parallel.
The tensor product of code sequences for computing A and
B can be obtained using the equation A ⊗ B = Lmnm (In ⊗
A)Lmnn (Im ⊗B).

For example, the code produced an SPL program corre-
sponding to the 4-point Cooley/Tukey algorithm from Ex-
ample 3 is

subroutine F4(y,x)

implicit complex*16(f), integer(r)
implicit automatic(f,r)
complex*16 y(4), x(4)

f0 = x(1) - x(3)
f1 = x(1) + x(3)
f2 = x(2) - x(4)
f3 = x(2) + x(4)
y(3) = f1 - f3
y(1) = f1 + f3
f6 = (0.00000000d0,-1.00000000d0) * f2
y(4) = f0 - f6
y(2) = f0 + f6
end

In this example, two compiler directives were added: one
giving the name F4 to the subroutine and one causing com-
plex arithmetic to be used in the resulting code. Looking
at this example, one already sees several optimizations that
the compiler makes (e.g. multiplications by 1 and -1 are
removed). More significantly, multiplication by the permu-
tation matrix L4

2 is performed as re-addressing in the array
accesses. Another important point is that scalar variables
were used for temporaries rather than an array. This has
significant consequences on the FORTRAN compilers effec-
tiveness at register allocation and instruction scheduling.

Changing the code type to real, #codetype real, breaks
up complex numbers into real and imaginary parts which
gives the chance for further optimizations. In the case above
the (complex) multiplication vanishes.

subroutine F4(y,x)

implicit real*8(f), integer(r)
implicit automatic(f,r)
real*8 y(8), x(8)

f0 = x(1) - x(5)
f1 = x(2) - x(6)
f2 = x(1) + x(5)
f3 = x(2) + x(6)
f4 = x(3) - x(7)

f5 = x(4) - x(8)
f6 = x(3) + x(7)
f7 = x(4) + x(8)
y(5) = f2 - f6
y(6) = f3 - f7
y(1) = f2 + f6
y(2) = f3 + f7
y(7) = f0 - f5
y(8) = f1 + f4
y(3) = f0 + f5
y(4) = f1 - f4
end

In the previous example, we produced straight-line code.
The SPL compiler is also capable of producing code with
loops. For example, the formula In ⊗ A has a straight-
forward interpretation as a loop with n iterations, where
each iteration applies A to a segment of the input vec-
tor. The SPL compiler is instructed to generate code using
this interpretation by the following template in which ANY
matches any integer and any matches any SPL expression.
More details on the template mechanism may be found in
[22].

(template (tensor (I ANY) any)
;; ---- Imm @ Bpq parameters: self(ny,nx), m,B(p,q)
;; ---- compute y = (I tensor B) x
;; $p1 and $p2 refer to the first and second parameters,
;; resp. The fields nx and ny refer to the row and
;; column dimension nx_1 = nx - 1 and ny_1 = ny - 1
(

do $p1
$y(0:1:$p2.ny_1 $p2.ny) =

call $p2($x(0:1:$p2.nx_1 $p2.nx))
end

))

The following example shows how to use the SPL com-
piler to combine straight-line code with loops using formula
manipulation and loop unrolling (loop unrolling is controlled
by the compiler directive #unroll). Using a simple property
of the tensor product, I64⊗F2 = I16⊗ (I2⊗F2). This iden-
tity is used to control blocking in the code produced by SPL
compiler.

; compute I_64 @ F_2 using I_16 @ (I_2 @ F_2)
#datatype real
#unroll on
(define I2F2 (tensor (I 2) (F 2)))
#unroll off
#subname I64F2
(tensor (I 16) I2F2)

The resulting code is

subroutine I64F2(y,x)

implicit real*8(f), integer(r)
implicit automatic(f,r)
real*8 y(64), x(64)

do i0 = 0, 15
y(4*i0+2) = x(4*i0+1) - x(4*i0+2)
y(4*i0+1) = x(4*i0+1) + x(4*i0+2)
y(4*i0+4) = x(4*i0+3) - x(4*i0+4)
y(4*i0+3) = x(4*i0+3) + x(4*i0+4)

end do
end

SPL clearly provides a convenient way of expressing and
implementing matrix factorizations; however, it can only
be considered as a serious programming tool, if the gener-
ated code is competitive with the best code available. One

6

strength of the SPL compiler is its ability to produce long se-
quences of straight-line code. In order to obtain maximal ef-
ficiency small signal transforms should be implemented with
straight-line code thus avoiding the overhead of loop control
or recursion. One of the fastest available packages for com-
puting the FFT, FFTW, [8], utilizes this idea; however, the
code generation facilities of FFTW are restricted to several
FFT algorithms. SPL offers far greater generality yet the
efficiency of the resulting code is comparable to FFTW (see
[22] for timing comparisons).

3.3 The SPL Programming Environment

The SPL programming environment does not only supply a
compiler but it also provides tools for generating SPL pro-
grams and interfacing with MATLAB and the computer al-
gebra systems GAP, [9] and Maple. SPL programs can be
manipulated using algebraic properties of the operators and
symbols involved. Such properties are codified as rewrite
rules. All of the FFT variants previously listed are easily
generated using the Cooley-Tukey factorization and proper-
ties of the tensor product. Using the rewrite rules one can
derive alternative SPL programs for computing the same
signal transformation. Each formula can then be compiled,
timed, and compared so that the one with the best perfor-
mance is selected. Tools for generating and analyzing SPL
programs can be found at [12].

In the next section we show an interface between SPL
and AREP that allows us to generate SPL programs from
GAP. In addition to producing SPL programs from GAP, we
can read SPL programs into GAP and use the symbolic com-
putation capabilities of GAP to verify the correctness of SPL
programs. Finally, we have an interface between MATLAB
and SPL which allows us to generate and time SPL pro-
grams from MATLAB. Using the interface we can generate
many different SPL programs and analyze their performance
(e.g. using MATLAB’s plotting features).

4 Example: Automatic Implementation of an 8-
point DCT

In this section we derive an algorithm and the corresponding
implementation of an 8-point DCT according to the proce-
dure sketched in Figure 1. Note that the DCT algorithm
derived by AREP and the generated Fortran program re-
quire the same number of arithmetic operations as the best
algorithms known (29 additions and 12 multiplications, e.g.,
[17]).

Step 1: Deriving a sparse matrix factorization
Within GAP (using AREP) we create the matrix M = DCT8

and decompose it with an implementation of Algorithm 1.
Each symmetry type, as presented in Section 2.2, has its
own implementation of Algorithm 1. Here we use a “perm-
irred” symmetry, a special case of a mon-irred symmetry.
The output is an AMat (cf. Section 2) which represents the
factorization already shown in Section 2.5. In order to fac-
tor the DCT using perm-irred symmetry it is necessary to
first transpose the DCT and then take the transpose of the
resulting AMat. The transpose of the DCT of type II is the
DCT of type III. Thus the example calculation is performed
using a DCT of type III and the resulting factorization is
then transposed to obtain a factorization of the DCT of type

II. Note that the representation of the DCT and its factor-
ization is exact since the occurring cosines can be expressed
as differences of cyclotomic numbers which are provided in
GAP (E(n)= ωn).

gap> RequirePackage("arep");
gap> M := MatSPL(Transform("DCT3",8));
gap> A := MatrixDecompositionByPermIrredSymmetry(M);
gap> A := TransposedAMat(A);
AMatPerm((2,5)(4,7)(6,8), 8) *
DirectSumAMat(

IdentityPermAMat(2),
RotationAMat(3/8),
RotationAMat(15/16),
RotationAMat(21/16)

) *
AMatMon(Mon(

(2,4,7,3,8),
[1, 1, 1, 1/2*E(8)-1/2*E(8)^3, 1, 1, 1, 1]

)) *
DirectSumAMat(

TensorProductAMat(
DFTAMat(2),
IdentityPermAMat(3)

),
IdentityPermAMat(2)

) *
AMatPerm((5,6), 8) *
DirectSumAMat(

IdentityPermAMat(4),
(1/2*E(8)-1/2*E(8)^3) * DFTAMat(2),
IdentityPermAMat(2)

) *
AMatPerm((2,3,4,5,8,6,7), 8) *
TensorProductAMat(

IdentityPermAMat(2),
DirectSumAMat(

DFTAMat(2),
IdentityPermAMat(2)

) *
AMatPerm((2,3), 4) *
TensorProductAMat(

IdentityPermAMat(2),
DFTAMat(2)

)
) *
AMatPerm((1,8,6,2)(3,4,5,7), 8)

This is the AMat representation of the factorization of
DCT8 presented in the AREP example section. The factor-
ization can be verified by expanding the AMat (convert to
a matrix) and comparing it to the defining matrix.

gap> MatAMat(A) = TransposedMat(M);
true

Step 2: Translating into a SPL program The AMat A
is translated into a SPL program and exported into the file
dct.spl. The translation is performed in two steps using an
intermediate data structure (not explained here). In order
to use the following commands, several the files containing
the GAP programs for AREP-SPL interface must be loaded
(these files may be obtained from [12]).

gap> S := SPLAMat(A);
gap> ExportSPL("dct.spl", S);

The file dct.spl contains the SPL program

(compose
(permutation (1 5 3 7 2 8 4 6))
(direct_sum

(I 2)
(R 3/8)

7

(R 15/16)
(R 21/16)

)
(permutation (1 4 8 7 5 6 3 2))
(diagonal (1 1 1 sqrt(1/2) 1 1 1 1))
(direct_sum

(tensor
(F 2)
(I 3)

)
(I 2)

)
(permutation (1 2 3 4 6 5 7 8))
(direct_sum

(I 4)
(compose

(diagonal (sqrt(1/2) sqrt(1/2)))
(F 2)

)
(I 2)

)
(permutation (1 3 4 5 8 7 2 6))
(tensor

(I 2)
(compose

(direct_sum
(F 2)
(I 2)

)
(permutation (1 3 2 4))
(tensor

(I 2)
(F 2)

)
)

)
(permutation (8 1 4 5 7 2 3 6))

)

Note that version 3.28 of the SPL compiler does not di-
rectly support the rotation matrices R. Therefore, it is nec-
essary to first expand the rotations before attempting to
compile the resulting SPL program. This can be done using
the command PrepareForExportingSPL.

Step 3: Compiling to a FORTRAN program The
SPL compiler translates the SPL program into a FORTRAN
program performing different optimizations (see Section 3).
The option ”-R” creates a program for real input vectors.

spl -R dct.spl > dct.f

The file dct.f contains a FORTRAN 77 program:

subroutine sub(y,x)

implicit real*8(f), integer(r)
implicit automatic(f,r)
real*8 y(8), x(8)

f0 = x(8) - x(1)
f1 = x(8) + x(1)
f2 = x(4) - x(5)
f3 = x(4) + x(5)
f4 = f1 - f3
f5 = f1 + f3
f6 = x(7) - x(2)
f7 = x(7) + x(2)
f8 = x(3) - x(6)
f9 = x(3) + x(6)
f10 = f7 - f9
f11 = f7 + f9
f12 = f8 - f6
f13 = f8 + f6
f14 = 0.7071067811865476d0 * f13
f15 = 0.7071067811865476d0 * f12

f16 = f5 - f11
y(1) = f5 + f11
f18 = f0 - f15
f19 = f0 + f15
f20 = f2 - f14
f21 = f2 + f14
y(5) = 0.7071067811865476d0 * f16
f23 = f10 + f4
f24 = (-0.5411961001461969d0) * f10
f25 = 0.9238795325112867d0 * f23
f26 = 1.3065629648763766d0 * f4
y(3) = f24 + f25
y(7) = f26 - f25
f29 = f18 + f20
f30 = (-1.1758756024193591d0) * f18
f31 = 0.1950903220161286d0 * f29
f32 = (-0.7856949583871018d0) * f20
y(2) = f30 + f31
y(8) = f32 - f31
f35 = f21 + f19
f36 = 0.2758993792829431d0 * f21
f37 = (-0.8314696123025452d0) * f35
f38 = (-1.3870398453221475d0) * f19
y(4) = f36 + f37
y(6) = f38 - f37

end

Similarly, a C program could have been generated using
the command

spl -R -xlanguage=c dct.spl > dct.c

The correctness of the resulting FORTRAN or C pro-
grams can be verified by comparing it to the code generated
for the defining matrix of the eight-point DCT. The com-
mand CompareExternallySPL compares the output of two
SPL programs computed from a random input vector (it is
also possible to test on a complete basis). The output of
the comparison is true if the output vectors are within a
specified numerical threshold. In addition, the norm (max
norm by default) of the difference of the output vectors is
returned.

Se := PrepareForExportingSPL(S);
Sd := TerminateSPL(Transform("DCT2",8));
gap> CompareExternallySPL(Se,Sd);
[true, "8.881784e-16"]

Step 4: Compiling to an executable A standard FOR-
TRAN compiler produces executable machine dependent
code, taking care of the special properties of the underly-
ing hardware (such as number and type of registers etc).

f77 -c dct.f

The final result is a module to apply the DCT8 to a real
input signal of FORTRAN type double precision.

The performance of the compiled SPL program can be
measured from within gap using the function MeasureSPL,
which returns runtime in nanoseconds. The program ob-
tained from the factored DCT matrix ran in 120 nanosec-
onds (on the Sun Ultra 5 described previously) compared to
286 nanoseconds for the program generated from the defin-
ing matrix.

gap> MeasureSPL(Se);
120
gap> MeasureSPL(Sd);
286

8

5 Future Work

AREP and SPL are both subjects of ongoing research, [12].
The main question arising from the factorizations shown in
Section 2.5 is to understand the group theoretical properties
of the transforms in terms of signal processing. The goal of
SPL is to develop into a mature programming environment
and library of highly efficient portable and adaptable DSP
algorithms. Production of code for multiprocessor architec-
tures and special purpose hardware will also be considered.

References

[1] Auslander, L., Johnson, J. R., and Johnson,

R. W. Automatic implementation of FFT algorithms.
Tech. Rep. 96-01, Dept. of Math. and Computer Sci-
ence, Drexel University, Philadelphia, PA, June 1996.
Presented at the DARPA ACMP PI meeting.

[2] Beth, T., Klappenecker, A., Minkwitz, T., and

Nückel, A. The ART behind IDEAS, vol. 1000 of
LNCS. Springer, 1995, pp. 141–158.

[3] Cooley, J. W., and Tukey, J. W. An Algorithm
for the Machine Calculation of Complex Fourier Series.
Math. of Computation 19 (1965), 297–301.

[4] Egner, S. Zur Algorithmischen Zerlegungstheorie
Linearer Transformationen mit Symmetrie. PhD the-
sis, Universität Karlsruhe, Informatik, 1997.

[5] Egner, S., and Püschel, M. Fast Discrete Signal
Transforms and Monomial Representations of Finite
Groups. Submitted for publication.

[6] Egner, S., and Püschel, M. AREP – Constructive
Representation Theory and Fast Signal Transforms.
http://www.ece.cmu.edu/∼smart/arep/arep.html,
1998. GAP share package and manual.

[7] Egner, S., and Püschel, M. Automatic Generation
of Fast Discrete Signal Transforms. IEEE Trans. on
Signal Processing (2001). To appear September.

[8] Frigo, M., and Johnson, S. G. FFTW: An adap-
tive software architecture for the FFT. In ICASSP ’98
(1998), vol. 3, pp. 1381–1384. http://www.fftw.org.

[9] The GAP Team. GAP – Groups, Algorithms, and
Programming. University St. Andrews, Scotland, 1997.
http://www-gap.dcs.st-and.ac.uk/∼gap/.

[10] Johnson, J., Johnson, R., Rodriguez, D., and

Tolimieri, R. A Methodology for Designing, Modify-
ing, and Implementing Fourier Transform Algorithms
on Various Architectures . IEEE Trans. Circuits Sys.
9 (1990).

[11] Minkwitz, T. Algorithms Explained by Symmetry,
vol. 900 of LNCS. Springer, 1995, pp. 157–167.

[12] Moura, J. M. F., Johnson, J., Johnson,

R., Padua, D., Prasanna, V., Püschel,

M., and Veloso, M. M. SPIRAL: Portable
Library of Optimized SP Algorithms, 1998.
http://www.ece.cmu.edu/∼spiral/.

[13] Püschel, M. Konstruktive Darstellungstheorie und Al-
gorithmengenerierung. PhD thesis, Universität Karls-
ruhe, Informatik, 1998. Translated in [14].

[14] Püschel, M. Constructive Representation Theory and
Fast Signal Transforms. Tech. Rep. Drexel-MCS-1999-
1, Drexel Univ., Philadelphia, 1999. Translation of [13].

[15] Püschel, M. Decomposing Monomial Representations
of Solvable Groups. Tech. Rep. Drexel-MCS-1999-2,
Drexel Univ., Philadelphia, 1999. Submitted for publi-
cation.

[16] Rader, C. M. Discrete Fourier Transforms When the
Number of Data Samples is Prime. Proceedings of the
IEEE 56 (1968), 1107–1108.

[17] Rao, K. R., and Yip, P. Discrete Cosine Transform.
Academic Press, 1990.

[18] Rockmore, D. A Wreath Product Approach to Signal
Processing, 1999. Talk at IMACS-ACA.

[19] Serre, J. Linear Representations of Finite Groups.
Springer, 1977.

[20] Tolimieri, R., An, M., and Lu, C. Algorithms for
Discrete Fourier Transforms and Convolution, 2nd ed.
Springer, 1997.

[21] Van Loan, C. Computational Framework of the Fast
Fourier Transform. Siam, 1992.

[22] Xiong, J., Johnson, J., Johnson, R., and Padua,

D. SPL: A Language and Compiler for DSP Algo-
rithms. In Proc. PLDI (2001).

9

