
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

A Basic Linear Algebra Compiler for Structured Matrices

Daniele G. Spampinato Markus Püschel
Department of Computer Science

ETH Zurich
{danieles, pueschel}@inf.ethz.ch

Abstract
Many problems in science and engineering are in practice
modeled and solved through matrix computations. Often, the
matrices involved have structure such as symmetric or trian-
gular, which reduces the operations count needed to perform
the computation. For example, dense linear systems of equa-
tions are solved by first converting to triangular form and
optimization problems may yield matrices with any kind of
structure. The well-known BLAS (basic linear algebra sub-
routine) interface provides a small set of structured matrix
computations, chosen to serve a certain set of higher level
functions (LAPACK). However, if a user encounters a compu-
tation or structure that is not supported, she loses the benefits
of the structure and chooses a generic library. In this paper,
we address this problem by providing a compiler that trans-
lates a given basic linear algebra computation on structured
matrices into optimized C code, optionally vectorized with
intrinsics. Our work combines prior work on the Spiral-like
LGen compiler with techniques from polyhedral compila-
tion to mathematically capture matrix structures. In the paper
we consider upper/lower triangular and symmetric matrices
but the approach is extensible to a much larger set including
blocked structures. We run experiments on a modern Intel
platform against the Intel MKL library and a baseline imple-
mentation showing competitive performance results for both
BLAS and non-BLAS functionalities.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Code Generation, Compilers, Opti-
mization; G.4 [Mathematical Software]: Parallel and Vector
Implementations, Portability

Keywords Program synthesis, Basic linear algebra, Struc-
tured matrices, DSL, Tiling, SIMD vectorization

1. Introduction
Linear algebra computations are crucial components in
many performance-critical algorithms in scientific com-
puting, graphics, communication, control, machine learn-
ing, and other areas. For large scale dense linear algebra,
high-performance software exists, usually built around the
basic linear algebra subroutines (BLAS) interface [6] and
LAPACK [2] or similar libraries [23]. Some shortcomings
however exist. First, many computations cannot always be
directly mapped to existing library functions; second, the
small size computations needed in many applications are
often not as optimized; third, fixed input size computations
(and their potential or smaller and faster code) are usually not
supported by specialized functions.

To address this problem, [21] proposed LGen, a program
generator for basic linear algebra computations (BLACs).
These perform fixed-size computations on matrices, vectors,
and scalars using product, sum, transposition, and scalar prod-
uct. LGen translates a BLAC into highly optimized C code
and implements an extensible approach to generating code
for vector instruction set architectures (ISAs). The generated
code showed competitive performance [21]. Internally, LGen
uses an approach similar to Spiral [19, 20] by using multi-
ple stages of domain-specific languages (DSLs) to perform
optimizations at the right level of abstraction.

Contributions. In this paper we extend LGen to support
BLACs with structured matrices. Specifically,

• We propose a methodology for the generation of opti-
mized code for small scale BLACs with structured ma-
trices (sBLACs). The approach combines LGen’s inter-
nal DSLs with ideas from polyhedral compilation. The
methodology is extensible to include a large set of pos-
sible matrix structures; In this work, we use lower/upper
triangular and symmetric as prototypical examples.
• We implemented the methodology in the LGen framework

to exploit redundancy and remove unnecessary computa-
tions, ensuring compatibility with the generation of vector
code. The artifact is available at [1].
• We show benchmarks of LGen-generated code with Intel

MKL and as baseline naïve code compiled with the Intel
compiler.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:
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D = AB + C
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X
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...
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Figure 1. Architecture of LGen [21].

2. Background: LGen
We introduce notation and provide a brief overview on the
original LGen. More details can be found in [21].

Basic linear algebra notation. In the following, we
denote matrices with A,B, ..., (column) vectors with x, y, ...,
and scalars with α, β, .... A basic linear algebra computation
(BLAC) on these computes a single output using product,
addition, transposition, and scalar product. Examples include
y = ATx+ αz or C = αAB + C +D.

For the purpose of this paper we introduce structured
matrices as addition to the type and thus expand the notion
of BLACs to sBLACs. Specifically, we consider lower/upper
triangular, symmetric, and all-zero matrices and denote the
associated types with L, U , S, and Z . For convenience we
will often denote such matrices with L, U , S, and Z. An
unstructured matrix is of type G. Finally, we also expand the
set of operators with the triangular solve written as x = L\y.

Program generation with LGen. For a given BLAC,
LGen assumes that the operands have fixed (and compatible)
sizes and data types (float or double) and generates optimized
C code, optionally vectorized using intrinsics. Its input lan-
guage is called LL (linear algebra language) and does not
accommodate structured operands. The main five steps of its
generation flow are shown in Fig. 1 and are briefly described
next. We use as example

D = AB + C, A,B,C,D ∈ R4×4. (1)

Step 1: Tiling in LL. The first step formally tiles the
BLAC recursively with fixed parameters (a degree of free-
dom; perfect divisibility is not required) and propagates the
tiling decision to the operands. If code for a ν-way vector ISA
is desired, the lowest level block size has to be ν to decom-
pose the computation into pieces, called ν-BLACs, that can
be mapped well to vector code. In our example, we consider

only one level of tiling with ν = 2:

[D = AB+C]ν,ν
ν=2
= [D]2,2 = [A]2,2[B]2,2 + [C]2,2. (2)

Step 2: From LL to Σ-LL. The second step takes the
fully tiled BLAC in LL and rewrites it into a second DSL
called Σ-LL. This representation is still mathematical and
makes loops and data accesses explicit. The latter are captured
as explicit gather and scatter operators (functions) on matrices
to allow for reasoning and fusion through rewriting. A gather
g extracts a smaller matrix from a matrix, a scatter s writes a
smaller matrix into a larger all-zero matrix. Formally,

g = [i, j]m,nk,` : Rm×n → Rk×`,
A 7→ Ag = A[i : i+ k − 1, j : j + `− 1],

where the latter is Matlab notation. Note that we write the
function on the right (as common for indexing) because
gathers operate from the right. Indeed, if g′ = [i′, j′]k,`u,v
and gg′ = [i, j]m,nk,` [i′, j′]k,`u,v = [i + i′, j + j′]m,nu,v , then
(Ag)g′ = A(gg′).

The scatter is the dual of the gather:

s =
k,`
m,n[i, j] : Rk×` → Rm×n, A 7→ sA,

where B = sA is defined through B[i : i + k − 1, j :
j + ` − 1] = A and B is zero elsewhere. In this case
s′(sA) = (s′s)A for the natural definition of s′s. We will
often omit the domain and range parameters to simplify
representation.

In our example, from (2) we would obtain the following
Σ-LL BLAC:

D =
∑

i,j=0,2

2,2
4,4[i, j] (


 ∑

l,r,k=0,2

2,2
4,4[l, r]

(
A[l, k]4,42,2B[k, r]4,42,2

)

 [i, j]4,42,2

+ C[i, j]4,42,2

) . (3)

Step 3: Loop transformations. At this step a Σ-LL
BLAC can be transformed by manipulating summations,
gathers, and scatters. In the final code this would correspond,
e.g., to loop fusions or loop exchange. For example, starting
from (3) we can fuse loops by distributing the first gather
[i, j]4,42,2 (second line) over the innermost summation to obtain

D =
∑

i,j=0,2

[i, j]


∑

k=0,2

A[i, k]B[k, j] + C[i, j]


 . (4)

Step 4: From Σ-LL to C-IR. At this point the Σ-LL
representation in (4) has the following features: (a) the
number of summations and their order is defined, (b) (if
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A = Matrix(4, 4); L = LowerTriangular (4);
S = Symmetric(L, 4); U = UpperTriangular (4);

A = L*U+S;

Table 1. LL implementation of BLAC (5).

vector ISA) the entire formulation is decomposed into ν-
BLACs, meaning that all operations are performed on ν-tiles
of the input matrices. The translation between Σ-LL and C-
IR (LGen’s C-like IR) is performed by mapping summations
to loops, ν-BLACs to codelets, and gathers and scatters to
data accesses. ν-BLACs are the 18 single-operation BLACs
that operate on tiles of size ν × ν, 1× ν, ν × 1 with the four
BLAC operators [21]. They are preimplemented once for
every vector ISA. The gathers and scatters are associated to
a collection of vectorized data access basic blocks called
Loaders and Storers, that are used to perform low level
optimizations including handling leftovers [17].

Step 5: Performance test and autotuning. Finally,
LGen unparses the C-IR into vectorized C code and tests its
performance. Autotuning is used to find a good result among
available variants.

Introducing structures. Assume now the goal of gener-
ating code for the sBLAC

A = LU + S, A,L, U, S ∈ R4×4, (5)

which is analogous to the generic (1). By going through the
same process, LGen would produce the expression

A =
∑

i,j=0,2

[i, j]


∑

k=0,2

L[i, k]U [k, j] + S[i, j]


 . (6)

It is easy to notice that certain computations are redundant,
e.g., L[0, 2]U [2, j] and L[2, 2]U [2, 0]. Also, the standard
for symmetric matrices stores only one side of the matrix,
e.g., the lower one. In this case, access to S[0, 2] should
be replaced with S[2, 0]T . In the following sections we will
show how to perform these analyses and transformations with
LGen. We start with explaining our approach for describing
structures.

3. Structured Matrices
In this section we discuss how structures are defined in LGen.
The approach is designed to be extensible: adding a new
structure to LGen requires the inclusion of two different
interfaces, one towards the user and one towards LGen.

From a user perspective a structured matrix is just another
type of matrix within an LL input program. For example,
Table 1 shows a simple LL implementation of (5).

However a structured matrix also needs an internal inter-
face to LGen to enable its decomposition in Σ-LL. We build
this interface using the integer set library (isl) formalism
from [25].

Polyhedral sets and maps. The two essential concepts
used in our definition of structures are sets and relations
(called maps in [25]) of n-tuples of integers bounded by m
affine constraints. A set of such n-tuples is defined as

σ = ∪i{t ∈ Zn|∃c ∈ Ze : Ait+ Eic+ zi ≥ 0}, (7)

where Ai ∈ Zm×n, Ei ∈ Zm×e, zi ∈ Zm, and ≥ is com-
ponentwise. The existential quantifier allows us to identify
tuples at a stride. For example, the following sets

σ1 = {(i, j) | 0 ≤ i < 4 ∧ 0 ≤ j < 4},
σ2 = {(i, j) | ∃a, b : 0 ≤ i, j < 4 ∧ i = 2a ∧ j = 2b} (8)

can be used to represent all integer points in a square of size
4× 4 ( σ1) or those at a stride 2 (σ2). The first set would be
given by

A0 =

[
1

1
−1
−1

]
, E0 = 0, z0 = (0 0 3 3)T .

The second set requires the inclusion of i−2a ≥ 0, i−2a ≤
0, j − 2b ≥ 0, and j − 2b ≤ 0.

Maps in [25] are relations between sets and defined as:

ρ = ∪i{(t0, t1) ∈ Zn0 × Zn1 |
∃c ∈ Ze : Ait0 +Bit1 + Eic+ zi ≥ 0}.

We will use polyhedral sets to represent regions in matrices
and iteration spaces of computations and polyhedral maps
to represent access patterns of matrices and reorder iteration
spaces.

Internal representation of structures. We associate
every matrix with a pair of dictionaries called SInfo and AInfo.

SInfo associates regions of a matrix to structures. Its
entries have the formM : σ. For example, a matrix of type
L has the following SInfo:

L.SInfo =

{
G : {(i, j) | 0 ≤ i < 4 ∧ 0 ≤ j ≤ i}
Z : {(i, j) | 0 ≤ i < 4 ∧ i < j < 4}

}
.

This means that every scalar element in region L.SInfo[G] has
general structure, while every element in L.SInfo[Z] has a
zero structure. Note that this method allows the definition of
blocked structures (e.g., the top left quadrant is symmetric),
which appear in several applications.

Similarly we define the SInfo dictionaries of A, U , and S:

U.SInfo =

{
G : {(i, j) | 0 ≤ i < 4 ∧ i ≤ j < 4}
Z : {(i, j) | 0 ≤ i < 4 ∧ 0 ≤ j < i}

}
,

A.SInfo = S.SInfo = {G : {(i, j) | 0 ≤ i, j < 4}}.

AInfo associates regions of a matrix to information on how
to access blocks in that region. Entries for AInfo have the
general form

σ : (g : Rm×n 7→ Rr×c, p : Rr×c 7→ Rr×c),
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M ?M→M, M∈ {G,L,U}, ? ∈ {+, ·} (9)

αM→M, M∈ {G,L,U ,S} (10)

LT = U , UT = L, ST = S (11)

MMT is S, M isM∈ {G,L,U ,S} (12)

M is L, U ⇒ [M ]r,r is L, U (13)

Table 2. Examples of structure inference rules.

where g is a gather and p a permutation operator that can be
applied to a gathered block. In other terms, in region σ a block
should be accessed using the composed operator p(g(·)). For
example, assuming a symmetric S stores only its lower part,
it has the following AInfo:

{
{(i, j) | 0 ≤ i < 4, 0 ≤ j ≤ i} : ([i, j]4,41,1, id)

{(i, j) | 0 ≤ i < 4, i < j < 4} : ([j, i]4,41,1, id)

}
,

where id is the identity permutation. Accessing element (0, 3)
would yield id(S[3, 0]) = S[3, 0]. For matrices A, L, and U
the accesses are unmodified:

A.AInfo =
{
{(i, j) | 0 ≤ i, j < 4} : ([i, j]4,41,1, id)

}
,

L.AInfo =
{
{(i, j) | 0 ≤ i < 4 ∧ 0 ≤ j ≤ i} : ([i, j]4,41,1, id)

}
,

U.AInfo =
{
{(i, j) | 0 ≤ i < 4 ∧ i ≤ j < 4} : ([i, j]4,41,1, id)

}
.

Type inference rules. Finally, structures need to be prop-
agated through the tree of intermediate computations. We do
this with type inference rules from well-known mathematical
properties (Table 2).

4. Code Generation
In this section we present the main contribution of the paper:
an approach, and its implementation within LGen, to generate
optimized code for sBLACs. As running example we will use
the sBLAC in (5), which contains three differently structured
matrices. In the example we assume scalar (non-vectorized)
code as output.

The steps in the generation closely follow the ones of
the original LGen provided in Fig. 1, however with several
important changes as described here.

Step 1: Tiling and structure inference. Given the LL
program in Table 1 as an input, Step 1 proceeds as discussed
in Section 2. In addition, structure information is propagated
following the inference rules in Table 2. In our example, both
LU and LU + S are G.

Step 2: From LL to Σ-LL. The rewriting system men-
tioned in Section 2 is substituted with an intermediate new
module called Σ-CLooG based on the CLooG generator [3].
Next we briefly describe its design and how it is inserted into
the generation flow.

1"

2"
3"

4"
5"

LL BLAC

   -LL BLAC�!

StmtGen

CLooG

Set of tuples
<domain, schedule, body>

�"   -CLooG

Figure 2. Architecture of the Σ-CLooG rewriting system.

Σ-CLooG: Overview. Σ-CLooG is schematically shown
in Fig. 2. It consists of two main components: (1) the state-
ment generator StmtGen and (2) CLooG. We extended the
latter for this work with a backend to output Σ-LL.

The input to Σ-CLooG is an LL sBLAC from Step 1 and
its output a translation of the input into an equivalent Σ-LL
formulation. For example, given the sBLAC (5), the following
Σ-LL expression is a possible output:

A =

2∑

i=0




i∑

j=0

[i, j](L[i, 0]U [0, j] + S[i, j]) (14)

+

3∑

j=i+1

[i, j](L[i, 0]U [0, j] + S[j, i])


 (15)

+

3∑

j=0

[3, j](L[3, 0]U [0, j] + S[3, j]) (16)

+

3∑

k=1

3∑

i=k

3∑

j=k

[i, j](L[i, k]U [k, j]). (17)

Note that redundant multiplications (with zero) do not occur
and that the symmetry of S is taken into account (i.e., only
the part below the diagonal is accessed).

To achieve this, the input sBLAC is transformed using the
information SInfo and AInfo of the matrices. This information
is used to produce a set of CLooG statements. Every such
statement is a triplet <domain, schedule, body> where: (a)
domain is a polyhedral set σ representing the iteration space
of the statement; (b) schedule is a polyhedral map ρ that
determines the traversal or scanning order of the domain’s
tuples; (c) body is a Σ-LL expression B. For example, the
statement

s = 〈σ = {(i, k, j) | k = 0 ∧ 0 ≤ i < 4 ∧ 0 ≤ j ≤ i},
ρ = ((i, k, j), (k, i, j)), (18)

B = [i, j](L[i, k]U [k, j] + S[i, j])〉
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is used to generate (14) and (16) (which is i = 3 in (14),
split off). In particular, the domain specifies the range of the
indices appearing in the body and the schedule their order.
Next we describe how StmtGen recursively creates statements
such as (18) by bottom-up processing the sBLAC expression
tree. We first explain the creation of domain and bodies. Once
the entire tree is processed, the schedule is fixed.

Step 2.1: Generating domains and bodies for opera-
tions on leaves. The first operation performed by StmtGen
is the creation of a unique index space for the input sBLAC.
For our running example, three indices are needed:

Ai,j = Li,kUk,j + Si,j .

Such an index space is then used to expand the SInfo and
AInfo dictionaries (see end of Section 3) of the occurring
matrices. In our case, the regions of the structured matrices
are expanded to prisms:

L.SInfo =

{
G : {(i, k, j)|0 ≤ i < 4 ∧ 0 ≤ k ≤ i}
Z : {(i, k, j)|0 ≤ i < 4 ∧ i < k < 4}

}
(19)

U.SInfo =

{
G : {(i, k, j)|0 ≤ k < 4 ∧ k ≤ j < 4}
Z : {(i, k, j)|0 ≤ k < 4 ∧ 0 ≤ j < k}

}
(20)

A.SInfo = S.SInfo = {G : {(i, k, j) | 0 ≤ i, j < 4}}. (21)

Similarly, AInfo is computed:

L.AInfo =
{
{(i, k, j) | 0 ≤ i < 4 ∧ 0 ≤ k ≤ i} :

([i, k]4,41,1, id)
}
,

U.AInfo =
{
{(i, k, j) | 0 ≤ k < 4 ∧ k ≤ j < 4} :

([k, j]4,41,1, id)
}
,

S.AInfo ={
{(i, k, j)|0 ≤ i < 4, 0 ≤ j ≤ i} : ([i, j]4,41,1, id)

{(i, k, j)|0 ≤ i < 4, i < j < 4} : ([j, i]4,41,1, id)

}
, (22)

A.AInfo =
{
{(i, k, j) | 0 ≤ i, j < 4} : ([i, j]4,41,1, id)

}
.

Next StmtGen builds a set of statements for every operator in
the input sBLAC bottom-up, starting from the inputs. In our
case the first operation is LU . To build statements for LU
we begin by determining its iteration space. In general, the
iteration space for matrix multiplication is a cuboid (Fig. 3(a)).
However given the presence of zero regions in (19) and (20),
the redundant zero computations can be excluded (Fig. 3(b))
by computing the iteration space as

iterSpaceLU = L.SInfo[G] ∩ U.SInfo[G] =

{(i, k, j) | 0 ≤ k < 4 ∧ k ≤ i, j < 4}.

In general (e.g., for vectorization), our approach computes
the iteration spaces for all combinations of nonzero operands
(e.g., GG, GL, ...) using Algorithm 1.

i

k

k

j

i

j

k

i

j

k

i

k

k

j

(a) (b)

Figure 3. Iteration space of LU with redundant zero compu-
tations (a) and without (b).

Data: Inputs I0, I1.
Result: Iteration space (iterSpace) of I0I1.
iterSpace← ∅;
for (M0 : σ0) ∈ I0.SInfo :M0 6= Z do

for (M1 : σ1) ∈ I1.SInfo :M1 6= Z do
// iteration space based on all pairs
// of input non-zero regions.
iterSpace = iterSpace ∪ (σ0 ∩ σ1);

end
end

Algorithm 1: Computing the iteration space for matrix
multiplication.

The next task is to separate initial accesses to the output
array from subsequent accumulations by splitting the iteration
space (see Fig. 4). This information is readily available from
the representation. In our example, we would split into the
two iteration spaces

iterSpaceinit
LU = {(i, 0, j) | 0 ≤ i < 4 ∧ 0 ≤ j < 4},

iterSpaceacc
LU = {(i, k, j) | 1 ≤ k < 4 ∧ k ≤ i, j < 4}.

To derive the final domain and body of two CLooG state-
ments for the computation of LU , these need to be intersected
with the regions in the respective AInfo dictionaries, which ex-
plain how matrices are accessed. Since in our examples only
symmetric matrices have special access, nothing changes:

dominit
LU = iterSpaceinit

LU ,

domacc
LU = iterSpaceacc

LU ,

and using the gathers from AInfo we construct the associated
bodies (which in this case are the same):

Binit
LU = Bacc

LU = [i, j](L[i, k]U [k, j]).

The two statements are thus obtained:

sinit
LU = 〈dominit

LU , ∅, Binit
LU 〉,

sacc
LU = 〈domacc

LU , ∅, Bacc
LU 〉.
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i

j

k

iterSpaceaccLU

iterSpaceinit
LU

Figure 4. Iteration space of LU split into output initializa-
tion (black dots) and output accumulation (gray dots) space.

The schedules are left empty as they will be computed last.
The general version of this approach for arbitrarily structured
inputs is shown in Algorithm 2.

Data: iterSpaceinit, iterSpaceacc, I0, I1, and T .
Result: CLooG statements (stmts) for T = I0I1.
stmts← ∅;
for (σ0 : (g0, p0)) ∈ I0.AInfo do

for (σ1 : (g1, p1)) ∈ I1.AInfo do
for (σT : (gT , pT )) ∈ T.AInfo do

for σspace ∈ {iterSpaceinit, iterSpaceacc} do
dom← σ0 ∩ σ1 ∩ σT ∩ σspace;
if dom 6= ∅ then

// Gather + permute inputs and
multiply.

m← p0(g0(I0)) · p1(g1(I1));
// Permute + scatter output.
B ← g−1

T (p−1
T (m));

// Save new statement.
stmts← stmts ∪ {〈dom, ∅, B〉};

end
end

end
end

end
Algorithm 2: Building CLooG statements for matrix multi-
plication. One statement is created for every combination
of input and output regions that intersect the iteration space.
Schedules are generated separately.

Step 2.2: Generating domains and bodies for opera-
tions recursively. As mentioned, the generation of domains
and bodies is bottom up. In our example, the operation fol-
lowing LU is the addition LU + S. For the computation of
its CLooG statements, StmtGen uses an approach similar to
the one used before. However, as LU is not an input matrix,
its set of (already generated) CLooG statements is used as
input this time. As before we compute first the iteration space.

Using (21) we get the trivial result

iterSpace = {(i, k, j) ∈ σ | (M : σ) ∈ A.SInfo,M 6= Z}
= {(i, k, j) ∈ A.SInfo[G]}
= {(i, k, j) | 0 ≤ i, j < 4},

where A is the output of the operation.
Next, we derive the CLooG statements, i.e, a possible

splitting into domains and the associated bodies using a
general algorithm for matrix addition that operates analogous
to Algorithm 2. We do this by intersecting iterSpace with (a)
the domain of sinit

LU and (b) the regions from S.AInfo in (22).
Since there are two such regions (here denoted with σS,0
and σS,1) we obtain two domains. Both have initialization
accesses only and accumulating accesses do not occur:

dom0 = iterSpace ∩ dominit
LU ∩ σS,0

= {(i, 0, j) | 0 ≤ i < 4, 0 ≤ j ≤ i},
dom1 = iterSpace ∩ dominit

LU ∩ σS,1
= {(i, 0, j) | 0 ≤ i < 4, i < j < 4}.

Using sinit
LU and S.AInfo we compute the associated two bodies:

B0 = [i, j]
( Binit

LU︷ ︸︸ ︷
[i, j](L[i, k]U [k, j])[i, j] + S[i, j]

)

= [i, j]
(
L[i, k]U [k, j] + S[i, j]

)
,

B1 = [i, j]
( Binit

LU︷ ︸︸ ︷
[i, j](L[i, k]U [k, j])[i, j] + S[j, i]

)

= [i, j]
(
L[i, k]U [k, j] + S[j, i]

)
.

With the new domains and bodies we can finally construct
the statements that lead to the final output in (14)–(17):

s0 = 〈dom0, ∅, B0〉, s1 = 〈dom1, ∅, B1〉, s2 = sacc
LU .

Before feeding the statements to CLooG, StmtGen needs to
complete them with schedules.

We emphasize that the method sketched here on a simple
example can correctly derive and exploit intermediate struc-
tures including blocks in multi-level blocking of expressions
as complex as, e.g., A = (L0 + L1)S1 + xxT .

Step 2.3: Building the schedules. After Step 2.2 the
root operator contains all necessary statements for the given
sBLAC albeit without schedules. To add the schedules
we first compute a global order over the index space of
the sBLAC. This can be done by assuming performance
models for the operators as those discussed in [10, 26].
For our example, we assume the order (k, i, j), yielding
schedule = {((i, k, j), (k, i, j))}. Completing s0, s1, and s2
with schedule CLooG produces the expression in (14)–(17)
as the input to the next step in LGen.

Steps 3 to 5: From Σ-LL to output code. For scalar
code generation the remaining three steps are similar to the
original LGen (Section 2). From the Σ-LL in (14)-(17) we
generate the code in Table 3.

122



for( int i = 0; i <= 2; i++ ) {
for( int j = 0; j <= i; j++ ) {

A[4*i+j] = L[4*i] * U[j] + S[4*i+j];
}
for( int j = i + 1; j <= 3; j++ ) {

A[4*i+j] = L[4*i] * U[j] + S[i+4*j];
}

}

for( int j = 0; j <= 3; j++ ) {
A[j+12] = L[12] * U[j] + S[j+12];

}

for( int k = 1; k <= 3; k++ ) {
for( int i = k; i <= 3; i++ ) {

for( int j = k; j <= 3; j++ ) {
A[4*i+j] += L[4*i+k] * U[4*k+j];

}
}

}

Table 3. Output C code for sBLAC (5).

5. Vectorization
Enabling vectorization introduces at least one level of tiling
for ν-BLACs as discussed in Section 2, Step 1. We now dis-
cuss how this affects the internal representation of structures.
We again use our example sBLAC (5) assuming we want to
vectorize for a machine with a 2-way vector ISA (ν = 2).

Internal representation of tiled structures. When a
structured matrix is ν-tiled for vector instructions, it is viewed
as a matrix of ν × ν blocks. Viewed like this, the matrix will
still have structure. For example an L or U matrix will retain
its structure. In principle, this could be derived automatically.
We chose to incorporate this information into our system by
providing the associated definitions of SInfo and AInfo for
the blocked matrix in each case and for a generic block size.
This definition can then be instantiated for specific cases.
For example, for a ν-tiled symmetric matrix (instantiated for
ν = 2) one gets

[S]2,2.SInfo =

{
G : {(0, 2), (2, 0)}
S : {(0, 0), (2, 2)}

}
,

[S]2,2.AInfo =

{
{(0, 0), (2, 0), (2, 2)} : ([i, j]4,42,2, id)

{(0, 2)} : ([j, i]4,42,2, (·)T )

}
.

This specifies, for example, that the tile at (0, 2) is accessed as
S[2, 0]T . Next we sketch how these new definitions interact
with the approach of Σ-CLooG.

Σ-CLooG and vectorization. Vectorization introduces
a coarser basic block definition for the matrices. From the
CLooG perspective, this only means the construction of
sparser domains of the statements, where polyhedral points
are accessed at a stride as in (8). The approach taken in
Algorithm 2 (and similarly those taken by the other operators)
would then derive more structure combinations. For example,
consider the computation of [L]2,2[U ]2,2. The iteration space

would be constructed based on the following combination of
structures:

L U G LGLU
GU GGG L U LU

+=

.

This yields four initialization statements for the four different
structure combinations (i.e., LU , LG, GU , and GG in the
first output square) and a single accumulation statement.
Completing with addition, and using the schedule defined in
Step 2.3, it produces the following Σ-LL output:

A = [0, 0](L[0, 0]U [0, 0] + S[0, 0])

+ [0, 2](L[0, 0]U [0, 2] + (S[2, 0])T )

+ [2, 0](L[2, 0]U [0, 0] + S[2, 0])

+ [2, 2](L[2, 0]U [0, 2] + S[2, 2])

+ [2, 2](L[2, 2]U [2, 2]).

The above expression is completely decomposed into ν-
BLACs and thus in principle mappable to vector code. How-
ever, it features different kinds of tiles (e.g., L[0, 0] is L,
L[2, 0] is G, and S[0, 0] is S) that enforce different kinds
of computations (e.g., L[0, 0]U [0, 0] is an LU multiplication
while L[2, 0]U [0, 0] is GU ). Simply ignoring the structure by
using generic ν-BLACs is not possible since, by convention,
data accesses above the diagonal are not allowed for L,U ,S .

Mapping structures to vector code. As explained in
Section 2, the translation between Σ-LL and C-IR is based
on three collections of codelets called Loaders, Storers, and
ν-BLACs. The first two handle data accesses while the latter
does the computation. When mapping structured ν-BLACs
to vector code we use the generic computation but extend the
Loaders and Storers to prevent illegal accesses. For example,
consider the load of the lower triangular block L[0, 0]. The
expected behavior of the Loader would be the following:

[
`0,0 x
`1,0 `1,1

]
Load−−→

[
`0,0 0
`1,0 `1,1

]
. (23)

Here, a 0 is inserted by the Loader in place of x and used in
the computation. Once matrices are loaded, the computations
can be performed using the original 18 ν-BLACs (a slight
inefficiency) introduced in Section 2.

6. Discussion
In this section we discuss some limitations and the extensibil-
ity of our approach and generator.

Limitations. The first limitation is that right now we do
not take advantage of structure in ν-BLACs (e.g., as appears
in the ν × ν blocks on the diagonal after blocking an L or
U ). For small ν the penalty is likely negligible, but for larger
ν and relatively small matrices, some performance could be
gained by implementing special ν-sBLACs.

Second, our approach always assumes matrices repre-
sented as full m × n arrays, with redundant regions not to
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be accessed. For the structures discussed here, this is stan-
dard. However, for diagonal or tridiagonal matrices, a special
format (storing only the nonzero elements) could be advan-
tageous. In the generator we did implement a separation be-
tween physical and logical layout of matrices but did not use
it yet for this case. Further, the structure should be describable
by the affine index equations (7) provided by isl.

Extensibility. We designed our approach to be extensi-
ble to new structures. Provided a structure satisfies the con-
straints mentioned above, extension requires the addition of:

• A structure definition: SInfo and AInfo dictionaries (see
Section 3).
• A set of Loaders and Storers: vectorized codelets for

accessing ν-sized matrices with the new structure.

As an example we briefly discuss the addition of banded
matrices, which have a non-zero region within two delimiting
diagonals of the matrix. As in the triangular case, the scalar
definition of their SInfo would contain two regions, a general
region for the band and one or two zero regions outside the
band. Producing vector code for a ν-way vector ISA would
require special Loaders and Storers at the border of the band.
For example, consider a banded matrix of size 4ν × 4ν with
bandwidth k. If ν|k then we would need only (unit) triangular
matrices at the border:



G G L Z
G G G L
U G G G
Z U G G


 , (24)

otherwise, if ν - k and assuming k < ν, we would need


B K Z Z
J B K Z
Z J B K
Z Z J B


 , (25)

with B, J , and K respectively band, “almost” upper, and
“almost” lower triangular structures. If a banded matrix is also
symmetric then support can be added by combining the SInfo
description sketched in (24) and (25) with an AInfo similar to
the one described for the general case in Section 3.

Blocked structures as, for example,
[
G L
S U

]

can be added by recursively fusing the SInfo and AInfo
dictionaries of the occurring structures. This is possible since
isl supports unions of regions as shown in (7).

7. Experiments
In this section we provide an experimental evaluation of
our approach. We divide our experiments into the three
categories shown in Table 4, a division according to express
the compatibility of the sBLACs with the BLAS. Specifically

Category Label sBLAC Sizes

BLAS
dsyrk Su = AAT + Su A ∈ Rn×4

dtrsv x = L\x L ∈ Rn×n

BLAS-like
dlusmm A = LU + Sl L,U ∈ Rn×n

dsylmm A = SuL+A Su, L ∈ Rn×n

Non-BLAS composite A = (L0 + L1)Sl + xxT L0, Sl ∈ Rn×n

Table 4. Experimental categories. For S we specify whether
lower (l) or upper (u) part is used.

we chose two sBLACs that match BLAS, two sBLACs that
are available in BLAS but without support for structures
(BLAS-like), and an sBLAC that can only be implemented
using more than one BLAS or BLAS-like function (Non-
BLAS). Matrices are implemented using double precision
arrays 32-bytes aligned. All of them are fully stored in row-
major order and in the case of triangular and symmetric
matrices only half of the matrices are used.

Experimental setup. We executed our tests on an Intel
Core i7-2600 CPU (Sandy Bridge microarchitecture) 3.3
GHz, AVX, 32 kB L1 D-cache, 256 kB L2 cache, under
Ubuntu 14.04 with Linux kernel v3.13. We disabled Intel
Turbo Boost to minimize measurement instabilities. We
compare with: (a) the Intel MKL library v11.2, (b) naïve
code compiled with Intel icc v15, and (c) code generated by
LGen without support for structures. MKL was reported as
the most competitive alternative to the previous LGen [21].
Further, starting with v11.2 it adds support for small-scale,
double precision matrix multiplication (dgemm). BLAS tests
are implemented using the matching BLAS functions. BLAS-
like tests are implemented using dtrmm (dlusmm) and dsymm
(dsylmm). The composite test is implemented using MKL_-
Somatadd, dsyr, and dsymm. We do not rearrange matrices when
testing MKL (e.g., zeroing a half triangular matrix when used
in place of a general one).

Naïve code is scalar, unoptimized, handwritten, straight-
forward code with hardcoded sizes of the matrices. The goal
is to compare with compiler optimizations.

All tests were compiled using icc with flags -O3 -xHost
-fargument-noalias -fno-alias -no-ipo -no-ip. The MKL tests
use flags obtained from the Intel MKL Link Line Advisor1.

Measuring approach. All plots show performance in
flops per cycles (f/c) on the y-axis and the size parameter
n in doubles on the x-axis. Assuming balanced additions
and multiplications, the peak performance of the CPU is
8 f/c. The parameter n is always increased up to the L2
cache boundaries. All tests were run with warm cache. Every
point on the graphs is the median of 30 repetitions and
quartile informations are reported with whiskers. In most
cases, however, these are too small to be visible.

1 https://software.intel.com/en-us/articles/
intel-mkl-link-line-advisor
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Figure 5. BLAS category: (a)–(b) dsyrk (f = 4n2 + 4n)
and (c)–(d) dtrsv (f = n2 + n). In (b) and (d) all sizes are
multiple of the vector length (ν = 4). LGen w/o structures is
missing in (c) and (d) as the triangular solve operator is not
supported by such an approach.

Remarks on plots. We compute performance as the ratio
of flop count taking structures into account (f underneath
each plot) to measured time to solution. This way the plots
can provide an estimate of the CPU utilization as well as
carrying information about time speedup (as f/c1

f/c2
= c2

c1
).

Every plot shows the L1 boundary determined by working
set size (size of all inputs and outputs of an sBLAC). All plots
have the same legend show on top of each figure.

BLAS category. For dsyrk (Figs. 5(a)–(b)) LGen is up
to 2.5× faster than MKL when data fit in L1 and around
1.6× when data fit in L2. Comparing with icc-compiled code
LGen is in general 1.6× faster. In all cases, icc performs
unrolling and vectorization of the innermost loop of length
four. However, icc does not modify the loop nest to increase
reuse by blocking. In the case of dtrsv (Figs. 5(c)–(d))
all competitors perform equally. For larger sizes casting
the computation in terms of matrix-vector multiplication
becomes more crucial, an optimization that also icc applies
by unrolling and vectorizing the innermost of the two loops
in the handwritten code. In this case we could not generate
code using the old LGen approach as it lacks the structure
support required by the triangular solve.

BLAS-like category. The first test in the BLAS-like
category is dlusmm (Figs. 6(a)–(b)). Here LGen is up to
3.5× faster than icc and up to 2× faster than MKL for
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Figure 6. BLAS-like category: (a)–(b) dlusmm (f =
1
3 (2n3 + n) + n2) and (c)–(d) dsylmm (f = n3 + n2). In (b)
and (d) all sizes are multiple of the vector length (ν = 4).

data in L1 (1.4× for data in L2). In this case exploiting the
structure of both L and U avoids about one third of redundant
computations. icc on the other hand fails to perform and take
advantage of proper tiling for locality. In dsylmm (Figs. 6(c)–
(d)) LGen is up to 7× faster than icc-compiled code and, for
sizes up to the L1 boundary, about 1.4× faster than MKL.
Further investigations revealed that code generated with LGen
produces high pressure on the shuffle unit of the CPU. This
could be due to an excessive amount of transpositions in the
innermost loops and could be handled by introducing block
permutations in between (non-fused) gathers.

Non-BLAS category. Fig. 7 shows results for composite.
Although more complicated, this sBLAC contains a multipli-
cation term structurally similar to the one in dsylmm, thus the
similarity between the two performance profiles.

8. Related work
In this section we describe three lines of related work:
linear algebra libraries, program generators, and polyhedral
optimization.

Structured matrices and linear algebra libraries. High
performance linear algebra libraries such as Intel MKL [15]
and libraries derived with the FLAME approach [14] provide
functions for structured matrices but focus on those defined
by BLAS [11]. Further, they focus on the larger sizes needed
by LAPACK in scientific computing. BLIS [22] is a frame-
work for instantiating a set of functions larger than BLAS

125



Naïve (icc 15)Intel MKL 11.2LGen LGen w/o structures

4

3

2

1

0

Performance [f/c] vs. n [double]

16 30 44 58 72 86 100

L1
LGen

Naïve

MKL

LGen w/o

(a)

4

3

2

1

0

Performance [f/c] vs. n [double]

16 32 48 64 80 96

L1

(b)

Figure 7. Non-BLAS category: (a)–(b) composite (f =
n3 + 5

2 (n2 + n)). In (b) all sizes are multiple of the vector
length (ν = 4).

from a set of microkernels but does not focus on structured
matrices. Our approach is fully generative, taking only the
sBLAC as input, and especially targets small scale and fixed
size computations.

Domain-specific languages and generators. Eigen [13]
provides vectorized (up to SSE 4) code generation based on
expression templates. It supports a variety of functionalities
and exposes structures such as band, triangular, and symmet-
ric matrices to the programmer. However, an approach based
on C++ metaprogramming lacks autotuning capabilities and
requires a non-negligible effort in extensibility. Further, the
optimization favors certain computations [21].

The CLACK compiler [7] and the DxTer system [18] take
linear algebra computations as input and manipulate them
into a form suitable for efficient mapping to BLAS functions.
They do not generate BLAS or BLAC functions, with or
without structures.

VOBLA [4] is a linear algebra DSL with the goal of gen-
erating high-performance OpenCL code for BLAS and LA-
PACK functionalities. The DSL describes linear algebra com-
putations using basic operators and array access patterns.
Access patterns are used to separate matrix structures from
storage formats. VOBLA finally relies on polyhedral compi-
lation techniques to generate parallel GPU code.

The work in [9, 24] presents two extensions of Spiral for
the generation of general, large-matrix multiplication code.

Polyhedral optimization. The work in [16] presents a
multi-level tiling algorithm capable of separating full and par-
tial tiles with non-fixed tile sizes. Optimizing compilers based
on the polyhedral model [8], such as [5] and [12], resched-
ule computation and data accesses to enhance locality and
expose parallelization and vectorization opportunities. In this
work we use polyhedral tools (i.e., isl [25] and CLooG [3])
to manipulate BLACs at a higher level of abstraction.

9. Conclusion
In this paper we addressed the problem of generating efficient
code for small, basic linear computations where structured

matrices appear, such as triangular or symmetric. Structures
enable the elimination of redundant accesses and compu-
tations and the introduction of new functions such as the
solution of triangular systems. We introduced a methodology
to represent and manipulate such computations based on the
polyhedral representation of the structures they contain. We
extended an existing compiler for small, basic linear alge-
bra computations with our approach and showed competitive
results when applied to computations with triangular and
symmetric matrices. However, the approach is not limited
to the structures just mentioned and we discussed how the
formalism could handle more of them, such as band and com-
posite matrices. For future work we plan to include more
matrix storage formats in our system and exploit structures
for the generation of higher level linear algebra functions.
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