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ABSTRACT
Many applications in media processing, control, graphics,
and other domains require e�cient small-scale linear alge-
bra computations. However, most existing high performance
libraries for linear algebra, such as ATLAS or Intel MKL
are more geared towards large-scale problems (matrix sizes
in the hundreds and larger) and towards specific interfaces
(e.g., BLAS). In this paper we present LGen: a compiler for
small-scale, basic linear algebra computations. The input
to LGen is a fixed-size linear algebra expression; the output
is a corresponding C function optionally including intrinsics
to e�ciently use SIMD vector extensions. LGen generates
code using two levels of mathematical domain-specific lan-
guages (DSLs). The DSLs are used to perform tiling, loop
fusion, and vectorization at a high level of abstraction, be-
fore the final code is generated. In addition, search is used
to select among alternative generated implementations. We
show benchmarks of code generated by LGen against Intel
MKL and IPP as well as against alternative generators, such
as the C++ template-based Eigen and the BTO compiler.
The achieved speed-up is typically about a factor of two to
three.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Code Gen-
eration, Compilers, Optimization; G.4 [Mathematical Soft-
ware]: Parallel and Vector Implementations, Portability

Keywords
Program synthesis, Basic linear algebra, Small matrices, DSL,
Tiling, SIMD vectorization

1. INTRODUCTION
After decades of experience in high performance comput-

ing it is well understood how to develop fast dense linear
algebra code. For basic computations, commercial and non-
commercial high performance libraries exist that comply
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with the BLAS (basic linear algebra subroutines) interface;
higher level linear algebra routines such as LU or Cholesky
factorization are built on top of BLAS. These libraries pro-
vide excellent performance for the large problem sizes needed
in scientific computing and many other domains.

However, many performance-critical applications require
linear algebra computations at a smaller scale, often for
specific input sizes, and sometimes with no direct match
to BLAS functions. Examples include optimization algo-
rithms, Kalman filters, geometric transformations and other
routines that occur in media processing, computer vision,
control, and graphics. To provide better library support
for these, we propose a compiler that translates a basic lin-
ear algebra computation (BLAS or not BLAS) into e�cient
code. To better explain our contribution, we first give a brief
review of the related work.

High performance basic linear algebra libraries.
Several highly optimized BLAS libraries [7, 6] exist including
ATLAS [34], GotoBLAS [15], and Intel MKL [23]. However,
for smaller sizes, their performance can be suboptimal com-
pared to what is achievable (e.g., [29] and the results in this
paper) and the interface may not match a desired compu-
tation. For this reason, Intel IPP [22] includes a section
called Intel IPP MX devoted to small scale linear algebra
operations with a non-BLAS interface. IPP and MKL will
be among our benchmarks.

Generators for linear algebra. The libraries men-
tioned above are implemented and optimized by hand. Vari-
ous approaches have worked on automation. Among the ear-
liest e↵orts are PHiPAC [5] and the ATLAS generator [34],
which iteratively tune implementation parameters, such as
block size and loops order, using the runtime as feedback
(autotuning). Both are focused on BLAS and large sizes.

The Build to Order BLAS (BTO) [30, 3] is a domain-
specific compiler for matrix computations. BTO is not bound
to the BLAS interface and optimizes for loop fusion, data
partitioning, and parallelism using autotuning. However,
BTO relies on compilers for vectorization. A di↵erent gen-
erative approach is adopted by Eigen [18], uBLAS [33], and
the Matrix Template Library (MTL) [17]. They use C++
expression templates to optimize the code at compile time.
Optimizations include loop fusion, unrolling, and SIMD vec-
torization [16]. However, they lack runtime feedback and
hence do not support autotuning. We will use BTO and
Eigen as benchmarks.

FLAME [19] provides a methodology for automatically de-
riving algorithms for higher level linear algebra functions [4]
given as mathematical equations. The supported functions



are mostly those covered by the LAPACK library [1] and
the generated algorithms rely on the availability of an e�-
cient BLAS library. At an even higher level of abstraction
operates the linear algebra compiler presented in [8]. It de-
composes a linear algebra target equation into a sequence
of computations provided by BLAS or LAPACK and gener-
ates associated Matlab code. The approach exploits domain
knowledge and properties of the operands by rewriting and
inference rules. Both works are similar in spirit to ours (since
they start with a mathematical description) but target more
complex functions compared to the basic linear algebra com-
putations considered here.

Generators in other domains. Other program gen-
erators were developed for signal processing. For example,
gen↵t [13] generates the small size FFTs (codelets) needed
in FFTW [14], and Spiral [28, 27] uses domain-specific lan-
guages (DSLs) for optimizations such as loop merging [11]
and vectorization [10]. Our work aims to build a functional-
ity similar to gen↵t in [13] for basic linear algebra using an
approach similar to Spiral.

Optimizing compilers. A third approach to fast linear
algebra code is the use of optimizing compilers. Polyhedral
compilers can perform loop optimizations, tiling, and vector-
ization for imperfectly nested loops [21, 24]. Other vector-
ization techniques for loops include [26, 25, 2]. All these ap-
ply code transformations to expose code portions amenable
to optimizations such as vectorization. Since the scope is
more general, a specific linear algebra compiler should yield
better results. We benchmark against straightforward loop
code compiled with a state-of-the-art vendor compiler.

Contributions. We make the following main contribu-
tions:

• We present a novel approach to generating e�cient
code for basic linear algebra computations. The ap-
proach consists of two levels of mathematical DSLs
that are used to perform loop optimizations and vec-
torization. We explain the design and discuss limita-
tions.

• We present a vectorization methodology that is easily
portable to new vector architectures and that handles
left-over code e�ciently.

• We show performance benchmarks with libraries (In-
tel MKL and IPP), generators (BTO and Eigen), and
compiler-optimized code. The results show a signifi-
cant speed-up in many cases.

2. OVERVIEW
We present LGen, a compiler for performance-optimized

basic linear algebra computations (BLACs) of fixed size. By
“basic linear algebra” we mean computations on matrices,
vectors (which are viewed as special matrices), and scalars
that are composed from matrix multiplication, matrix ad-
dition, transposition, and scalar multiplication. We denote
scalars with ↵,�, . . . , matrices with A,B, . . . , and (column)
vectors with x, y, . . . . BLACs are specified by equations such
as ↵ = x

T
y, y = Ax, A = BC + ↵D +A, or

� = (Ax+ ↵y)T z + �. (1)

All terms on the right-hand side are inputs and the left-
hand side is the output (which can also be an input). A
valid input to LGen is for example (1) plus the data type
(currently float or double) plus the sizes of the objects, e.g.,
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Figure 1: Architecture of LGen.

A is 5 ⇥ 9, x has length 9, y and z have length 5. The
output is a C function (optionally vectorized using intrinsics)
implementing the given BLAC.

Next we give a high level overview of the code generation
approach. The details are explained in Sections 3 and 4.

Code generation overview. The basic structure of
LGen is shown in Fig. 1. The input is a BLAC as specified
above in what we call linear algebra language (LL). In the
first step a tiling strategy is chosen. This is done by anno-
tating the BLAC with a tile size (e.g., 3⇥ 2), which is then
propagated to derive the tile sizes of all in- and outputs.
Hierarchical tiling is possible. Next, the resulting LL ex-
pression is converted to another language called ⌃-LL that
is still based on linear algebra but makes access patterns
and loops explicit. At this level, loop merging and possible
loop exchanges are performed. Next, a C-intermediate rep-
resentation (C-IR) is generated to perform loop unrolling,
scalar replacement, and conversion into SSA form. Finally,
the C function is generated; its performance is used in a
feedback-driven search (autotuning).

If vectorized code (with intrinsics) is desired, the vector
length ⌫ of the ISA is an input together with the BLAC
and impacts the tiling decision. The generated code uses
a small set of pre-implemented building blocks, called ⌫-
BLACs. The process is explained in Section 4.

Discussion. A few aspects are worth clarifying about
our approach.

• Optimizations and problem size: In principle, our ap-
proach can generate code for any (but fixed) input
size. However, the optimizations performed by LGen
(register-level blocking, code style, vectorization) are
right now geared towards small, cache resident sizes.

• Relationship between BLAS and BLAC: BLAS con-
tains only a specific set of linear algebra computa-
tions: those needed by LAPACK. For these, the input
sizes are parameters, and strided data layouts are sup-
ported. In contrast, our BLACs allow for a larger set
of computations but are specialized to the input sizes,
and, at the moment, support only contiguous data.

• Relationship to Spiral: LGen is designed closely after
Spiral and also uses ideas from FLAME and HTA [20].
The input is a mathematical description and ⌃-LL is
a generalization of ⌃-SPL [11], which is also used for
loop optimizations. In contrast to OL [9], a previous



beta = Scalar ()

A = Matrix(5, 9)

x = Matrix(9, 1)

alpha = Scalar ()

y = Matrix(5, 1)

z = Matrix(5, 1)

Generate(beta = (A*x+alpha*y)^T*z + beta , opts)

Table 1: BLAC expression (1) as input to LGen.

Spiral-like attempt at linear algebra, LL is not point-
free, which has the benefit of yielding a more natural
representation.

3. SCALAR CODE GENERATION
We now describe step by step the program generation pro-

cess (Fig. 1) for scalar (non-vectorized) C code.

3.1 Input in LL
The input is a BLAC expressed in LL. Since the syntax is

straightforward we only show (1) as an example in Table 1.
The parameter opts (last line) specifies if scalar or vector-
ized code is desired, the precision (float or double), and the
search strategy. For the following explanations, we use a
simpler BLAC as running example, namely matrix-vector
multiplication of the form

y = Ax+ y. (2)

We will consider di↵erent sizes depending on the details to
be illustrated. The input is parsed into an expression graph.
We implemented a type system that determines the matrix
associated with every node of the graph and makes sure that
the expression is well-formed.

3.2 Step 1: Tiling in LL
Tiling is a crucial locality optimization in linear algebra

[5, 34] for all levels of the memory hierarchy. Thus, the first
step in LGen (Fig. 1) is to fix a tiling strategy (the search
will then be able to explore di↵erent ones), which has to be
done in a way that works for all BLACs.

For a given BLAC, such as (2), tiling is defined as an
annotation in LL with two fixed tile size parameters r and
c. For example, tiling (2) with r = 2, c = 1 is expressed as

Tile2,1(y = Ax+ y) ⌘ [y = Ax+ y]2,1.

We use the square brackets for brevity.
In the next step, the top tiling decision is propagated in

the expression graph to derive the associated tiling decision
for the in- and output matrices. This is done using rewriting
with the rules shown in Table 2. Note that matrix multi-
plication introduces a degree of freedom (k) that will be
included in the search space. For a given BLAC, any tile
size r, c is allowed. This is important, as even expressions
with poor divisibility can then be tiled; accordingly, LGen
has to handle the left-over code e�ciently, a challenge that
is most interesting for vectorized code (see Section 4).

As a tiling example we consider (2) where A is 4⇥4, tiled
with r = 2, c = 1:

[y = Ax+ y]2,1 ! [y]2,1 = [Ax+ y]2,1

! [y]2,1 = [Ax]2,1 + [y]2,1

! [y]2,1 = [A]2,k[x]k,1 + [y]2,1, (3)

[heLi = heRi]r,c ! [heLi]r,c = [heRi]r,c
[heLi + heRi]r,c ! [heLi]r,c + [heRi]r,c
[hscalari · hei]r,c ! [hscalari]1,1 · [hei]r,c
[heLi · heRi]r,c ! [heLi]r,k · [heRi]k,c , 1  k  #cols (heLi)

h
heiT

i

r,c
! [hei]Tc,r

Table 2: Rewrite rules to propagate tiling decisions;
heLi, heRi, and hei are BLAC expressions.

+= +=

k = 2 k = 3

Figure 2: Visualization of (3) for k = 2 (homogeneous
tiling) and k = 3 (heterogeneous tiling).

with 1  k  4. The initial decision produces four tiling
variants for the inputs A and x, all of which are considered
in the search. Since we consider small problem sizes, we tile
scalar code for locality in the registers (and for vectorization
as explained later). In this case, following ideas from [35],
we require rc  NR (the number of logical registers) and
bound k depending on the size of the L1 I-cache.

If we apply an r ⇥ c tiling to an m ⇥ n matrix A, then
[A]r,c has dimensions dm

r e ⇥ dn
c e. The resulting matrix is

homogeneous if r|m and c|n or heterogeneous if tiles at the
borders have a di↵erent size. For example, Fig. 2 depicts
the structures resulting from two possible choices of k in
(3). The tiled matrix [A]2,k is 2 ⇥ 2 in both cases, but is
homogeneous for k = 2 and heterogeneous for k = 3.

Multilevel tiling is done by applying the tiling rules in
Table 2 to previously tiled equations. The only constraint
is that the created new tiles are not composed of subtiles of
di↵erent sizes. For example, further tiling of [A]2,3 in Fig. 2
with (r, c) 2 {(1, 2), (2, 2)} would not be allowed. Multilevel
tiling is used for vectorization in Section 4.

3.3 Step 2: Loop optimizations in ⌃-LL
After the tiling has been fixed we translate the resulting

LL expression into a language called ⌃-LL, which makes
access patterns and loops explicit as matrices and matrix
sums, respectively. ⌃-LL is still purely mathematical and
hence optimizations like loop merging and loop exchange can
be done without analysis. A more puristic motivation for ⌃-
LL is that it is a natural intermediate step when translating
a BLAC into loop code. ⌃-LL extends ⌃-SPL that is heavily
used in Spiral [28, 32].

⌃-LL. ⌃-LL includes gather and scatter matrices. They
are used to extract or insert submatrices from or to large
matrices. To explain the basic idea we will use Matlab-like
notation: A(k : `,m : n) is the submatrix of A obtained
from rows k to ` and columns m to n; A(k : s : `,m : t : n)
extracts rows and columns at strides s and t, respectively.
Assuming A is 3 ⇥ 3, then the the top left 2 ⇥ 2 submatrix
can be extracted using gather matrices as

A(0 : 1, 0 : 1) = GLAGR, GL = [ 1 0 0
0 1 0 ] , GR =

h
1 0
0 1
0 0

i
.

Similarly, defining the scatter matrices SL = GR and SR =



Matlab-like ⌃-LL

B = A(b : s : e, b0 : s0 : e0) B = GL(h
d!r
b,s )AGR(h

d0!r0
b0,s0 )

A = zeros(r, r0)
A(b : s : e, b0 : s0 : e0) = B A = SL(h

d!r
b,s )BSR(h

d0!r0
b0,s0 )

Table 3: Gathers and scatters associated with ex-
tracting and inserting matrices. A is r ⇥ r

0 and B is
d⇥ d

0. In the first column e = b+ sd and e

0 = b

0 + s

0
d

0.

GL, we can insert a 2⇥ 2 matrix B into a 3⇥ 3 matrix A as

A = SLBSR.

In general, we parametrize gathers and scatters with a sym-
bolic index function h. Specifically, for r � d,

h

d!r
b,s : Rd ! Rr

, i 7! b+ is.

The associated gathers are now defined such that the second
row in Table 3 holds. The scatters are analogously defined
as SL(h) = GR(h), SR(h) = GL(h), such that the third row
in Table 3 holds.
To simplify notation in the following, we will omit L and

R, and write for example GL(h
d!r
b,s ) = G

d,r
b,s or simply Gb,s

if the dimensions are evident or simply Gb if s = 1.
Using gathers and scatters, tiled computations can be ex-

pressed as summations. Consider, for example, the tiled
matrix-vector multiplication [y]2,1 = [A]2,2 · [x]2,1 with A 2
R4⇥4 and x 2 R4. The computation on the tiles is visualized
in Fig. 3. In ⌃-LL, this is expressed as
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3X

j=0,2

Si (GiAGj) (Gjx) .

We use
P

i=0,k for summations with increment k > 1. In
the equations we applied simplification properties shown in
Table 4. If we want to express the computation down to
the scalar level, we need to apply the same reasoning to the

+= + +

Figure 3: Tiled matrix-vector multiplication [y]2,1 =

[A]2,2 [x]2,1 with A 2 R4⇥4 and x 2 R4. White regions,
created using scatters, contain zeros.

hn0,N
b,s � hn,n0

b0,s0 = hn,N
b+sb0,ss0 (4)

GL(h) = SL(h)
T (5)

Gn,n
0,1 = Sn,n

0,1 = In (6)

SL(h) · SL(h
0) = SL(h � h0) (7)

GL(h) ·GL(h
0) = GL(h

0 � h) (8)

GL(h
s!d
i,1 )

d�1X

i0=b,s

SL(h
s!d
i0,1 ) = Gs,d

i Ss,d
i = Is (9)

Table 4: Simplification properties for gathers and
scatters; � is function composition and In is an n⇥n

identity matrix. (9) holds if i 2 (b : s : d).

[heLi]r,c + [heRi]r,c !
X

i,j

Si (GiheLiGj + GiheRiGj) Sj (10)

[heLi]r,k · [heRi]k,c !
X

i,j,k

Si (GiheLiGk · GkheLiGj) Sj (11)

[hscalari]1,1 · [hei]r,c !
X

i,j

Si (hscalari · GiheiGj) Sj (12)

[hei]Tr,c !
X

i,j

Sj (GiheiGj)
T Si (13)

Table 5: Rules to recursively translate LL into ⌃-LL.

computation between submatrices:

y =
3X

i=0,2

3X

j=0,2

Si

⇥
1X

i0=0

1X

j0=0

Si0

0

B@Gi0

2⇥2z }| {
GiAGj Gj0| {z }
scalar

1

CA

0

B@Gj0

2⇥1z}|{
Gjx| {z }

scalar

1

CA

=
X

i,j,i0,j0

SiSi0 (Gi0GiAGjGj0) (Gj0Gjx)

=
X

i,j,i0,j0

Si+i0 (Gi+i0AGj+j0) (Gj+j0x)

The latter corresponds to a tiled implementation with four
loops.

In summary, ⌃-LL makes the index functions explicit as
symbolic objects that can be manipulated through rewrit-
ing. Possible loops are made explicit as mathematical sum-
mations. Since the language is mathematical, rewrite rules
are simply mathematical identities.

LL to ⌃-LL. The translation from LL to ⌃-LL is done
by rewriting the expression graph with tiling information.
The rewrite rules are shown in Table 5. As before heLi and
heRi refers to the left- and right-hand side of an expression.

Simplifications and loop fusion. The ⌃-LL expres-
sion obtained from a straightforward translation will not rep-
resent an e�cient program since every read and write yields
a gather or scatter object. Thus we simplify by rewriting
with a set of mathematical identities (see Table 4) that re-
duce the number of these objects. In particular, gathers and
scatters can cancel each other if subsequent reads and writes
are not to overlapping locations or they can be fused by
composing the index functions (a strided access of a strided
access yields a strided access).



Loop exchange. The order of loops in the generated
loop nests is in principle a further degree of freedom of the
generation process. Instead of enlarging the search space
we determine nest-wise local orderings, using what we call
a priority matrix (⇧). Every time a summation is created
using rules from Table 5, its indices are associated with new
rows of ⇧. Columns of ⇧ are related to factors that can in-
fluence performance. In our study we consider three factors:
instruction-level parallelism (ilp), temporal locality (tl), and
spatial locality (sl).

Every entry ⇧(i, f) estimates the (positive) impact on f

of increasing index i before other indices of the summation.
For example, ⇧(i, tl) > ⇧(j, tl) means that increasing index i

before j has better temporal locality. In general, this value
can depend on the operation and on the tiling level. For
example, following the discussion in [35] about loop ordering
for matrix multiplication we use the following criteria for
rule (11) in Table 5 assuming we are at an outer level of
tiling:

• Temporal locality: varying k has larger impact as we
keep operating on same output elements, ⇧(k, tl) = 1,
⇧(p, tl) = 0, p 2 i, j.

• Spatial locality: Row-major indices have larger impact,
⇧(i, sl) = 0, ⇧(k, sl) = 1, and ⇧(j, sl) = 2.

• Ilp: moving along the dimensions of the output matrix
has larger impact, ⇧(p, ilp) = 1, p 2 i, j, ⇧(k, ilp) = 0.

Using the above criteria we obtain the following matrix ⇧:

⇧ tl sl ilp
i 0 0 1
j 0 2 1
k 1 1 0

We determine the order of the indices in two steps: (a) we
sort the columns by priority given to the performance fac-
tors; (b) we sort the rows of ⇧ in ascending lexicographical
order. In our example, assuming priority (tl, sl, ilp), with tl
being highest, we would determine the order (i, j, k); giv-
ing higher priority to spatial locality, i.e., assuming priority
(sl, tl, ilp), yields (i, k, j).

3.4 Step 3: C-IR optimizations
⌃-LL expressions are converted into a C-intermediate rep-

resentation (C-IR) that we use for applying a set of code-
level optimizations, such as loop unrolling of the lowest lev-
els of tiling, scalar replacement, and conversion into SSA
form. Translation into C-IR first requires binding internal
matrices of a ⌃-LL expression graph to arrays in memory.
Input and output matrices are bound to input and output
arrays, internal operators to temporary arrays, and gathers
and scatters to arrays associated with the expressions they
multiply.

After matrix binding, memory references are used in com-
bination with code templates associated with the ⌃-LL op-
erators to produce C-IR code. The access patterns are de-
duced from the index mapping functions of the gathers and
scatters and incorporated in the reference objects. For ex-
ample, the code template for scalar addition can be de-
scribed through the pseudocode in Table 6. The codelet
makes the following assumptions: (a) left and right are
scalar expressions; (b) the reference objects (e.g., inL) con-
tain all the information necessary to locate the position of
the scalars within eventual larger matrices.

genAdd(B, expr , left , right):

// code for expr = left + right

inL = getReference(left)

inR = getReference(right)

out = getReference(expr)

B <- Mov (Add inL[0,0], inR[0,0]), out[0,0]

Table 6: Code generation template for scalar addi-
tion; the object B refers to a basic block of the code.

Finally, the C-IR code is unparsed into C.

3.5 Step 4: Performance evaluation and search
After the C function is generated, it is executed and its

performance is measured and used for autotuning. The num-
ber of functions that can be generated depends on the de-
grees of freedom introduced by tiling in Step 1. If more
than one function can be generated, LGen explores them
(at present) either by exhaustive or by random search.

4. VECTOR CODE GENERATION
In the previous section we described the generation of

scalar code for fixed-size BLACs using LGen. However, to
obtain high performance, vectorization for SIMD ISAs is
crucial. In this section, we explain how LGen generates C
code including intrinsics to explicitly use vector instructions.
The vector length (e.g., 4 for SSE float) is denoted with ⌫.

An important feature of our approach is extensibility. This
means that porting to a new vector architecture is a straight-
forward, non-creative e↵ort. Our solution does this concep-
tually as it was done in Spiral [10]. Specifically, we identify
a few basic vectorized building blocks, called ⌫-BLACs, that
need to be available to our system: porting to a new instruc-
tion set simply requires their implementation.

The generation process extends the one for scalar code
introduced in Section 3 in the following way: (a) LGen re-
ceives the input BLAC together with the vector length ⌫ of
the ISA; (b) before tiling for registers, we apply a first level of
tiling (⌫-tiling) to match to the ⌫-BLACs; (c) ⌫-BLACs are
associated with a set of pre-implemented codelets that are
generated at C-IR level; (d) left-over code (for parts smaller
than ⌫) is also vectorized by embedding into ⌫-BLACs using
a pack-compute-unpack approach.

We now describe the ⌫-BLACs, tiling, code generation,
and the handling of left-over code.

⌫-BLACs. A ⌫-BLAC is a BLAC with the following
characteristics: (a) only one operator is used; (b) it can be
e�ciently implemented on a vector ISA: for this we require
that every matrix involved has size 1⇥ ⌫, ⌫ ⇥ 1, or ⌫ ⇥ ⌫.

The four operators in LL (multiplication, addition, scalar
multiplication, transposition) yield the 18 ⌫-BLACs in Ta-
ble 7. Porting LGen to a new vector ISA requires only the
implementation of these (and associated packing routines
explained later) using intrinsics. An example ⌫-BLAC is
shown in Table 8. Note that we use unaligned instructions.
Codelets always assume that vectors and matrix rows are
contiguous in memory. This means that a single codelet can
be associated with more than one ⌫-BLAC (e.g., in the vec-
tor addition x + y in Table 8, x and y can be both row or
column vectors).

Tiling for ⌫-BLACs. Once ⌫ is provided to LGen, it



Operator Required ⌫-BLACs

Addition

(3 ⌫-BLACs) +

+

+

Scalar

Multiplication

(7 ⌫-BLACs)

Matrix

Multiplication

(5 ⌫-BLACs)

Transposition

(3 ⌫-BLACs)

T
T

T

Table 7: 18 required ⌫-BLACs to vectorize LL.

blac_nu2_xpy(B, refx , refy , out):

B <- Mov (mmLoaduPd refx[0,0]), vx

B <- Mov (mmLoaduPd refy[0,0]), vy

B <- mmStoreuPd (mmAddPd vx, vy), out[0,0]

Table 8: ⌫-BLAC codelet for x + y and ⌫ = 2; x and
y are either ⌫ ⇥ 1 or 1⇥ ⌫.

performs a first level of tiling with (r, c) 2 {(1, ⌫), (⌫, 1),
(⌫, ⌫)}. For example, consider (2) where A is 3 ⇥ 4, ⌫ = 2,
and we tile with (r, c) = (⌫, ⌫) to get

[y]⌫,1 = [A]⌫,⌫ [x]⌫,1 + [y]⌫,1,

or visually

+=�
1

�

For simplicity, we separately consider the ⌃-LL expres-
sions [z]⌫,1 = [A]⌫,⌫ [x]⌫,1 and [y]⌫,1 = [z]⌫,1 + [y]⌫,1. Follow-
ing the procedure described in Section 3, we obtain

z =
X

j=0,⌫

S

⌫,3
0

⇥�
G

⌫,3
0 AG

⌫,4
j

� �
G

⌫,4
j x

�⇤
(14)

+
X

k=0,⌫

S

1,3
2

⇥�
G

1,3
2 AG

⌫,4
k

� �
G

⌫,4
k x

�⇤
(15)

and y =S

⌫,3
0

�
G

⌫,3
0 z +G

⌫,3
0 y

�
(16)

+ S

1,3
2

�
G

1,3
2 z +G

1,3
2 y

�
(17)

Eqs. (14)–(15) describe the same computation but performed
using tiles of di↵erent size. The same holds for (16)–(17).
In particular, (14)–(16) map directly to ⌫-BLAC codelets,
while (17) needs additional work to be mapped. We de-
scribe both situations next.
⌫-BLAC code generation. The codelets for the ⌫-

BLACs are pre-implemented and are retrieved using the pa-
rameter ⌫ and the required precision (to date we support

genAdd(B, expr , left , right , opts):

// code for expr = left + right

inL = getReference(left)

inR = getReference(right)

out = getReference(expr)

nu, prec = opts[nu], opts[precision]

vecSize = sizeof(left)

nublac = getNuBLAC(Add , vecSize , nu, prec)

nublac(B, inL , inR , out)

Table 9: Code generation template for addition; the
object B refers to a basic block of the code.

SSE). Hence the code generation template for scalar code in
Table 6 is extended as shown in Table 9.

Left-over code handling. Expressions such as G1,3
2 z+

G

1,3
0 y (adding two vectors of length one) in (17) do not con-

form to any ⌫-BLAC with ⌫ = 2. The basic idea is to
embed these BLACs into a (larger) ⌫-BLAC of appropriate
type. For example a small matrix-vector multiplication is
embedded as shown here:

= =�
�

�

In LGen, this is done by pack and unpack routines that
perform the embedding of the operands. These are also pre-
implemented using intrinsics and selected upon code gener-
ation. Since the BLAC code is unrolled, the compiler will
be able to perform some dead code elimination (e.g., right
above the last row of the matrix and associated operations
can be removed).

5. EXPERIMENTS
In this section we show performance benchmarks of BLAC

code generated by LGen.
Experimental setup. We divide our experiments into

four categories depending on the type of functionality gen-
erated:

• Simple BLACs: y = Ax (smv) and C = AB (smm).
• BLACs that closely match BLAS: y = ↵x+ y (saxpy),

y = ↵Ax+�y (sgemv), and C = ↵AB+�C (sgemm).
• BLACs that need more than one BLAS call: y = ↵Ax+

�Bx (sgesummv), ↵ = x

T
Ay (sblinf), and C = ↵(A0+

A1)
T
B + �C (sgemam).

• Micro BLACs: three BLACs from previous cases (smv,
smm, and sblinf) using very small matrices and vec-
tors.

In the first three cases we use matrices with narrow rectan-
gular shapes (panels) or small squares (blocks). This choice
is due to their importance [15, 31]. The sizes are either
n ⇥ 4 or 4 ⇥ n, chosen to fit into L1 D-cache, or 4 ⇥ 4. For
Micro BLACs, the matrices are n⇥ n with 2  n  10.

We run our tests on an Intel Xeon X5680 (Westmere EP
microarchitecture), 3.3 GHz, SSE 4.2, 32 kB L1 D-cache,
under RHEL Server 6 with kernel v.2.6.32. Intel’s SpeedStep
and Turbo Boost technologies were disabled during the tests.

We considered only single precision code and compared
against (a) Intel MKL v.11, (b) Intel IPP v.7.1, (c) Eigen
v.3.1.3, (d) BTO v1.3, and (e) handwritten code. The lat-
ter is scalar, non-unrolled code and comes in two versions:



(a) A is n⇥ 4. (b) A is 4⇥ n.

(c) A is n⇥ 4, B is 4⇥ 4. (d) A is 4⇥ 4, B is 4⇥ n. (e) A is 4⇥ n, B is n⇥ 4. (f) A is n⇥ 4, B is 4⇥ n.

Figure 4: Simple BLACs. (a)–(b): y = Ax; (c)–(f): C = AB.

with hardcoded problem sizes (fixed size) and with problem
sizes passed as parameters (general size). MKL and IPP are
provided as binary code. Code obtained from LGen, Eigen,
BTO, as well as all the handwritten kernels were compiled
using icc v.13.1 with flags -O3 -xHost -fargument-noalias
-fno-alias -ip -ipo.

LGen uses a random search with a sample size of 10.
BTO’s kernels were generated disabling multithreading, and
enabling loop tiling. In Eigen we used fixed-size Map in-
terfaces to existing arrays, no-alias assignments, and en-
abled SSE code generation. In MKL, we implemented sge-
summv with two calls to cblas_sgemv, sblinf as a combina-
tion of cblas_sgemv and cblas_sdot, and sgemam as a call
to MKL_Somatadd

1 followed by cblas_sgemm.
All plots show performance in flops per cycle (f/c) on the

y-axis, and on the x-axis the size of the largest dimension
of the matrices involved. The theoretical peak performance
of the platform is 8 f/c in all cases (assuming balanced adds
and mults). However, our plots are scaled to 6 f/c for better
readability.

Time is measured under warm-cache conditions. Because
of the short execution times of the kernels, we adopt a two-
loops measuring strategy. The outer loop repeats the mea-
surement to return median and quartile information. The
inner loop reduces the error by executing the target code for
at least 108 cycles. The data points reported in the plots
are always medians of 20 repetitions, and for each point, we
also report using whiskers the most extreme data points that
fall in the range [1.5q1, 1.5q3] following [12] (q1 and q3 are
respectively the lower and upper quartiles). In most cases
the variation is negligible.

Case 1: Simple BLACs. Fig. 4 shows performance
results for the BLACs smv and smm. For smv with vertical

1
MKL_Somatadd is a non-BLAS function provided by Intel

MKL.

A (Fig. 4(a)), LGen performs between 1.8⇥ and 3⇥ better
than Eigen. With horizontal A (Fig. 4(b)) and for larger n

LGen performs within 10% of IPP and Eigen. For smm we
consider four scenarios. In the panel-block case (Fig. 4(c))
LGen performs about 2.5⇥ faster than MKL. In the block-
panel computation (Fig. 4(d)) the improvements reduce to
10% for larger sizes. For the panel-panel products the speed-
up is again a factor of about 3⇥ over the competition in
Fig. 4(e)) and about 2⇥ for the rank-4 update in Fig. 4(f).
Unfortunately, we could not compare against BTO due to
exceptions raised by the generated code. Downwards spikes,
such as in Fig. 4(e), are related to suboptimal tiling decisions
resulting either from the random selection during search or
from current multilevel tiling limitations (see Section 3.2).

Case 2: BLACs that closely match BLAS. The
results are shown in Fig. 5. For saxpy (Fig. 5(a)) MKL and
the icc-compiled fixed size code attain the same performance
which is about 15% higher than LGen. sgemv (Figs 5(b)–
(c)) and sgemm (Figs 5(d)–(g)) have a performance behavior
very close to the one previously observed for smv and smm.

Case 3: BLACs that need more than one BLAS
call. The results are shown in Fig. 6. Eigen’s ability
to generate fused loops results in comparable performance
between BLACs in Case 2 and 3 (e.g., smv-based expres-
sions in Figs. 6(d), 6(b), and 5(c)). On the other hand, we
notice that slight changes in computational patterns (e.g.,
from smv in Fig. 4(b) to sgesummv in Fig. 6(b)) can di-
minish the capability of icc to apply loop-level optimiza-
tions. The combination of BTO’s autotuning capabilities
and icc’s autovectorization achieves similar performance to
LGen (about 4 f/c) for the case of sgesummv with horizontal
panels (Fig. 6(b)). For sgemam (Figs 6(e)–(h)) all compet-
ing curves except MKL perform below 1 f/c.

Case 4: Micro BLACs. Finally, we report on small
size code in Fig. 7. In this case LGen produces fully unrolled
code with vectorized left-over computations. In case of smv



(a) x of length n. (b) A is n⇥ 4. (c) A is 4⇥ n.

(d) A is n⇥ 4, B is 4⇥ 4. (e) A is 4⇥ 4, B is 4⇥ n. (f) A is 4⇥ n, B is n⇥ 4. (g) A is n⇥ 4, B is 4⇥ n.

Figure 5: BLACs that closely match BLAS. (a): y = ↵x+ y; (b)–(c): y = ↵Ax+ �y; (d)–(g): C = ↵AB + �C.

(a) A and B are n⇥ 4. (b) A and B are 4⇥ n. (c) A is n⇥ 4. (d) A is 4⇥ n.

(e) A0, A1 are 4⇥ n, B is
4⇥ 4.

(f) A0, A1 are 4⇥ 4, B is
4⇥ n.

(g) A0, A1 are n⇥ 4, B is
n⇥ 4.

(h) A0, A1 are 4⇥ n, B is
4⇥ n.

Figure 6: BLACs that need more than one BLAS call. (a)–(b): y = ↵Ax + �Bx; (c)–(d): ↵ = x

T
Ay; (e)–(h):

C = ↵(A0 +A1)
T
B + �C.

and smm, LGen exhibits improvements between 1.25⇥ and
3.5⇥ compared to icc fixed size, which is the best competing
code. For sblinf we achieve a speedup as high as up to 6⇥
with respect to Eigen.

Remarks. From the plots we can observe that certain
shapes are favored by the existing libraries and generators
we compared with. For instance, looking at Fig. 6 we can

quickly identify that the most competitive plots (b), (d),
(f), and (h) involve horizontal panels. In contrast, LGen
produces across most functions and sizes a performance in
the 3–6 f/c range. Also worth noting is that the compiler
fails to optimize straightforward loop code, even when spe-
cialized to the problem size.



(a) y = Ax (b) C = AB (c) ↵ = x

T
Ay

Figure 7: Micro BLACs. All matrices are squared of size n⇥ n.

6. LIMITATIONS AND FUTURE WORK
We discuss a list of current limitations of LGen and ex-

plain how they may be overcome in future work:
Fixed size code. LGen generates code that is special-

ized to the input sizes of the operands. It is important to
stress that many relevant applications outside the scientific
computing domain fulfill this constraint. However, for many
other applications a library for general input sizes is still de-
sirable. One possible solution to achieving this could be the
recursion step closure technique developed in [32].

Data type. At present, LGen only supports real float-
ing point data; extension to complex numbers will mainly
impact the vectorization strategy.

Contiguous data. LGen only handles computations on
contiguous data structures. Allowing for parametric gather
and scatter operators in ⌃-LL could resolve this issue.

Matrix structure. We currently assume general ma-
trices, but special knowledge about the structure of matrices
(e.g., symmetric), if it exists, can be used to define more e�-
cient algorithms for certain operations. Structured matrices
could be introduced by extending the type system of LGen
and the backend.

Search methods. Our search strategies are very lim-
ited at the moment: exhaustive and random search. Thus
better code may be within LGen’s scope but cannot be
found. We plan to extend LGen with well-known search
algorithms used in various autotuning approaches.

Higher level algorithms. The current LGen only sup-
ports BLACs, i.e., no LAPACK functionality such as LU or
Cholesky factorization. We believe this extension is pos-
sible using a FLAME-like approach that decomposes these
functions into BLACs.

7. CONCLUSION
Currently, there is no consolidated solution that provides

high performance code for arbitrary small linear algebra
computations. With this paper we aimed to make a first
step focusing on basic computations of fixed size. The other
main goal was to do so with mathematical DSLs that en-
able optimizations at a high level of abstraction, in a way
that closely resembles Spiral for linear transforms. In this
paper, we already used the DSLs for vectorization and for
simple loop optimizations. In future work we plan to extend
the approach towards generalized interfaces and higher level
linear algebra functions.

The performance of the code generated by LGen is com-
petitive and mostly better than prior work on the small fixed

sizes considered. However, we believe that more can be
achieved with better vectorization, better search, and the
possible use of models to determine optimization parame-
ters.
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