
An Interval Compiler for Sound Floating-Point
Computations

Joao Rivera
Computer Science

ETH Zurich, Switzerland
hectorr@inf.ethz.ch

Franz Franchetti
Electrical and Computer Engineering

Carnegie Mellon University, USA
franzf@ece.cmu.edu

Markus Püschel
Computer Science

ETH Zurich, Switzerland
pueschel@inf.ethz.ch

Abstract—Floating-point arithmetic is widely used by software
developers but is unsound, i.e., there is no guarantee on the
accuracy obtained, which can be imperative in safety-critical
applications. We present IGen, a source-to-source compiler
that translates a given C function using floating-point into
an equivalent sound C function that uses interval arithmetic.
IGen supports Intel SIMD intrinsics in the input function using
a specially designed code generator and can produce SIMD-
optimized output. To mitigate a possible loss of accuracy due to
the increase of interval sizes, IGen can compile to double-double
precision, again SIMD-optimized. Finally, IGen implements an
accuracy optimization for the common reduction pattern. We
benchmark our compiler on high-performance code in the
domain of linear algebra and signal processing. The results show
that the generated code delivers sound double precision results
at high performance. In particular, we observe speed-ups of up
to 9.8 when compared to commonly used interval libraries using
double precision. When compiling to double-double, our compiler
delivers intervals that keep error accumulation small enough to
compute results with at most one bit of error in double precision,
i.e., certified double precision results.

Index Terms—floating-point arithmetic, source-to-source com-
piler, interval arithmetic, certified accuracy.

I. INTRODUCTION

Floating-point data types are a natural choice for software
developers when implementing numerical computations. They
are widely used in computer science and engineering, including
in cyber-physical systems that interact with the physical world.
Even relatively small embedded processors nowadays provide
floating-point units. For example, the recent Helium Vector
Extension [1] by ARM targets low-power microcontrollers and
supports vectorized single and half precision floating-point
operations.

Unfortunately, floating-point numbers do not exactly rep-
resent real values and thus can suffer from roundoff errors.
Their non-intuitive nature can make it hard to predict when
and how these errors accumulate to the extent that they
invalidate the final result. In the worst case this can have
catastrophic effects [2]. Thus, it is important to provide
guarantees (i.e, sound floating-point arithmetic) and do so
fast for any given input. The need for floating-point soundness
extends to different domains. For example, the work in [3]
highlights the need of soundness for the stability of control
systems. Similarly, [4] provides guarantees for a collision-
avoidance monitor using sound floating-point arithmetic in its

implementation. In abstract domains for verification, sound
floating-point arithmetic could replace rational arithmetic to
gain speed [5], [6]. For the robustness analysis of neural
networks, sound floating-point computations are essential [7],
[8]. Another direction is mixed-precision tuning in which tools
estimate error bounds on floating-point computations to select
a suitable precision [9], [10].

One common technique to guarantee soundness is static
code analysis based on abstract interpretation using intervals
or more complex polyhedra [11]. Many tools have emerged to
guarantee soundness by estimating roundoff errors using static
analysis [12]–[17]. However, since the input is not known, the
bounds become too lose. A more practical approach is thus
to rewrite the code to account for ranges, either from scratch
or using libraries [18]–[21]. The cheapest solution is interval
arithmetic [22], which treats all values as intervals that are
guaranteed to contain the true value. However, the manual
effort can be considerable, the resulting code can become
significantly slower than the original, and, most importantly,
too imprecise. Namely, intervals approximate conservatively
and thus the bounds can quickly become too loose to be helpful.
Thus, the challenges are accuracy (keeping intervals small),
fast execution, and automation.

Contributions. In this paper, we address this problem with
IGen, a source-to-source compiler for interval arithmetic. IGen
takes as input a C function doing floating-point computations,
possibly using SIMD intrinsics, and outputs a C function,
possibly optimized using intrinsics, that implements the same
function soundly using intervals.

We make the following contributions:
• The design and implementation of IGen, supporting a

significant subset of C.
• Support for a large subset of Intel AVX intrinsics in

the input using a generator that produces C code from
their XML specification as provided by Intel. In addition,
support for AVX intrinsics in the output function.

• Support for intervals with endpoints in double-double
precision. Using this precision can keep error accumulation
small enough to compute certified results in double
precision.

• An algorithmic accuracy transformation for the common
reduction pattern in linear-algebra-type computations and
beyond.



• A thorough evaluation of execution time and accuracy on
a variety of benchmarks.

II. BACKGROUND: INTERVAL ARITHMETIC

Interval arithmetic [22] is a classical tool for sound com-
putation with floating-point values. Instead of representing
a real value by a float, one uses an interval with floating-
point boundaries that contains the real value. Computations on
reals are then done by operations on intervals that preserve
soundness, i.e., the result of any interval operation is again
guaranteed to contain the real result.

Formally, an interval â = [ainf, asup] is defined as the set of
real numbers between and including its endpoints, which are
floating-point values:

[ainf, asup] = {x ∈ R |ainf ≤ x ≤ asup},

where R is the set of all real numbers. ainf and asup are the
lower and upper endpoints respectively. Operations on intervals
are done using the endpoints. For example, the addition and
multiplication of intervals is computed as:

â+ b̂ = [RD(ainf + binf),RU(asup + bsup)],

â · b̂ = [min
(
RD(ainf · binf),RD(ainf · bsup),

RD(asup · binf),RD(asup · bsup)
)
,

max
(
RU(ainf · binf),RU(ainf · bsup),

RU(asup · binf),RU(asup · bsup)
)
],

where RD(x) is the downward rounding function and RU(x) is
the upward rounding function. The use of these rounding modes
ensures soundness. Since changing the rounding mode is usually
expensive on processors, one uses the identity RD(−x) =
−RU(x) to use only one rounding mode. For example, the
interval addition then takes the form

â+ b̂ = [−RU((−ainf)− binf),RU(asup + bsup)] .

Another common trick avoids the negation operation of the
lower endpoints by keeping them negated by default [23]. This
way interval addition only requires two additions and interval
multiplication eight multiplications and six comparisons (max
and min require 3 comparisons each).

III. IGEN OVERVIEW

In this paper we present IGen, a source-to-source compiler
that translates a numerical C program performing floating-point
computations to an equivalent sound numerical C program
using interval arithmetic. By sound we mean that the resulting
intervals are guaranteed to contain the result of the original
program if it were performed using real arithmetic.

Fig. 1 shows the high-level architecture of IGen. The input
is a C function, possibly using SIMD intrinsics, performing
floating-point computations and a target precision for the
interval endpoints. This target precision can be either single
or double precision (the default) or the higher double-double
precision [24], which we explain in Section VI. The output is an
equivalent C function performing the same computation soundly
using interval arithmetic, optionally optimized with SIMD

Fig. 1. High-level architecture of IGen.

intrinsics. In the first step, IGen uses the Clang LibTooling
library [25] to construct the abstract syntax tree (AST) of
the computation. The AST is then traversed and, for each
node, IGen produces an equivalent set of interval operations,
possibly in increased precision. The interval operations are
provided by an interval library that we developed as part
of IGen. This library supports all the basic operations, and
elementary functions in all precisions and is also optimized
for SIMD instructions.

The support of SIMD intrinsics in the input function is
handled by a generator that automatically produces the interval
implementation of (a large subset of) SIMD intrinsics from its
XML specification. IGen then transforms each intrinsic to its
equivalent interval implementation.

Finally, IGen performs an algorithmic accuracy transforma-
tion. Using Polly [26], it detects the reduction pattern, which
is particularly sensitive to error accumulation, and replaces
each reduction by an input-cognizant algorithm as explained
in Section VI.

Section IV explains the design and implementation of the
compiler in detail. Section V details the implementation of the
generator to support SIMD intrinsics in the input. In Section VI,
we explain the methods used to increase precision and to
improve the accuracy of reductions.

IV. SOURCE-TO-SOURCE INTERVAL COMPILER

In this section, we describe our interval compiler IGen in
detail. For the needed interval arithmetic in the output function,
we implemented our own library which is described first. Then
we explain the compilation process and the implementation of
custom language extensions in our compiler.

A. Interval Library

Our interval library is intended to be fast, precise, and
tightly coupled with our compiler. As explained in Section II,
we use only upward-rounding and represent an interval [a, b]
as the pair (−a, b) for efficiency. The library does not fully
comply with the relatively new IEEE standard for interval



TABLE I
SUPPORTED OPERATIONS IN OUR INTERVAL LIBRARY.

Type Operations

Arithmetic Add, Sub, Mul, Div, Neg
Comparison <, ≤, >, ≥, =, 6=
Elementary Sqrt, Abs, Floor, Ceil, Exp, Log, Trigonometric
Other Casts, Three-valued logic, Auxiliary functions

arithmetic [27] since we do not provide support for decorations,
nor address the standard’s accuracy requirements for double-
double. Decorations are tags attached to an interval to provide
additional information about how that interval was derived.

Basic interval types and operations. We use standard
floating-point types to store the endpoints, i.e., the library
supports single precision and double precision interval data
types named f32i and f64i, respectively. In addition, we also
support an interval data type for double-double precision named
ddi, explained later in Section VI. The library implements all
basic arithmetic operations including addition, multiplication,
division, along with comparison operations and elementary
functions. Table I shows a more comprehensive list of the
supported operations.

Vectorized intervals. Using intrinsics, we also provide a
vectorized implementation of the basic operations for double
precision by storing the intervals in SSE registers similar to
the work in [28]. Note that a double precision interval can fit
exactly in a m128d vector type. Vectorized implementations
for arithmetic operations are implemented accordingly. For
example, an interval addition can now be computed with a
single SIMD instruction.

Elementary functions. We use the CRlibm [29] library as
the building block to support interval elementary functions (see
Table I). CRlibm guarantees that the result of an elementary
function is computed as if done in infinite precision and then
rounded, i.e., at most 1 bit of precision is lost. The interval
implementation for monotonic elementary functions, e.g., sqrt
and log, is straightforward, by applying the corresponding
CRlibm elementary function to each endpoint. For non-
monotonic functions such as sine, we first divide the function
into monotonic sections and determine in which sections
the endpoints are located. Then, we apply the corresponding
CRlibm function to the endpoints.

Handling NaN and infinity. Endpoints of intervals can
become NaNs or infinity and it is important to handle these
cases correctly and soundly. This situation means that we have
lost information or possibly the operation performed was invalid.
In particular, any interval containing at least one NaN means
that an invalid operation was performed and thus, the floating-
point represented by the interval could be anything, including
a NaN. For example, sqrt([−1, 1]) = [NaN, 1]. Further, the
interval [−∞,∞] means the represented number could be any
floating-point except a NaN, and [∞,∞] means that the value
is larger than the maximum representable floating-point. Finally,
[1,∞] represents any value greater or equal to one.

Example input function:

1: double foo(double a, double b) {
2: double c; // Decl
3: c = a + b + 0.1; // Expr
4:
5: if (c > a) { // Stmt
6: c = a * c;
7: }
8: return c;
9: }

.IGen output function:

1: #include "igen_lib.h"
2:
3: f64i foo(f64i a, f64i b) {
4: f64i c;
5: f64i t1 = ia_add_f64(a, b);
6: f64i t2 = ia_set_f64 (0.099999999999999992 ,

0.100000000000000005);
7: c = ia_add_f64(t1 , t2);
8:
9: tbool t4 = ia_cmpgt_f64(c, a);
10: if (ia_cvt2bool_tb(t4)) { //It may signal exception
11: c = ia_mul_f64(a, c);
12: }
13: return c;
14: }

.Fig. 2. Interval transformation of function foo.

We extensively tested the basic operations and elementary
functions of our library to verify that these cases are handled
soundly. In the test cases, we randomly tested combinations of
NaNs, infinity, Zero and other special inputs such as denormals
in the endpoints of intervals. We validated the result against
MPFI [21], which is a multi-precision library for interval
arithmetic.

B. Interval Compiler

We now explain the compilation process shown in Fig. 1 in
detail. After generating the AST using Clang, IGen visits the top
nodes to perform the necessary transformations. Clang specifies
three types of basic nodes: declarations (Decl), statements
(Stmt), and expressions (Expr)1. Decl nodes declare variables,
functions, fields, etc. Expr nodes represent binary or unary
operations, function calls, constants, and others. Finally, Stmt
nodes are used for loops, if-else statements, and other special
statements such as return and attributes (used for pragmas).
Figure 2 shows a function foo where the node type is added
as a comment.

Declarations. When a Decl node is visited, IGen generates
code for the declaration promoting floating-point types to
intervals as specified in Table II. Note that SIMD types are also
transformed to an equivalent interval representation (explained
in Section V). Lines 3–4 of Fig. 2 (bottom) shows the promotion
of the function foo and the variable c to interval types.
Since double precision is commonly implemented efficiently
in modern computers, we convert single precision floats to
double precision intervals by default but double-double (DD)
is also supported. Other types, such as pointers and arrays, that

1Expr nodes are also statements in the Clang’s AST but we handle them
separately.



TABLE II
SUPPORTED TRANSFORMATIONS FROM FLOATING-POINT AND SIMD

TYPES TO INTERVAL TYPES AND ITS VECTOR IMPLEMENTATION.

FP type Interval Type
Double DD

float, double f64i ddi

m128d m256di 1 ddi 2

m128, m256d m256di 2 ddi 4

m256 m256di 4 ddi 8

Interval
Vector
implement.

f64i 1× m128d

ddi 1× m256d

ddi k k× m256d

m256di k k× m256d

are not floating-point types but refer to one of them are also
transformed accordingly to refer to interval representation.

Expressions. IGen transforms Expr nodes to equivalent
interval expressions. Internally, all Expr nodes are transformed
to an object igenExpr that stores its generated interval
representation and additional attributes, such as type, and
whether it represents a constant. Lines 5–7 of Fig. 2 show
the transformation of the expression c = a + b + 0.1. As
expected, two interval additions are generated. Further, the
constant term is lifted to an interval. In addition, IGen detects
elementary functions by checking the name and signature
of function calls which are also Expr nodes. When the
function matches one of the supported elementary functions,
the compiler replaces it with its equivalent interval function.
For example, sin(x) is converted to ia sin f64(x).

Interval constants. Constants are converted to intervals in
a conservative way to guarantee soundness. There are two
cases: 1) Integer constants are converted to exact intervals.
For example, 1.0 is converted to [1, 1]. 2) Non-integer
constants are enclosed by an interval whose endpoints are the
two neighbouring floating-point values of the constant. Thus,
a constant x that is not representable as a floating-point value,
e.g. 0.1, is converted to an interval of length ulp(x), where
ulp(x) is the unit in the last place defined as the gap between
the two adjacent floating-point numbers enclosing x. Further,
a constant x that has an exact floating-point representation,
e.g. 0.5, converts to an interval of length 2ulp(x) with center
in x. IGen also supports constant folding on intervals. Thus,
expressions such as 2.0 + 0.1 are directly transformed to a
single interval constant by the compiler.

Statements. Stmt nodes are mainly used to transform loops
and branches. In most cases, the structure of a statement is
not changed during transformation, only its child Expr nodes
are transformed, so loops are straightforward. if-statements
become interesting if the condition compares floats. For
example, the interval comparison [0, 2] < [1, 3] cannot be
evaluated to true or false and hence leads to an unknown state.
To handle this case, we implemented a special data type tbool

(see lines 9–10 in Fig. 2) that represents a boolean with three
possible states (true, false, or unknown), and that is evaluated
in the if condition. IGen provides two options to handle the
unknown state in a branch: 1) an exception is signaled when
detected (the default) or 2) an extra branch is generated to
handle this case as explained next.

Example input function:

double read_sensor(double :0.125 a) {
double c = 5.0 + 0.25t;
return a + c;

}

.IGen output function:

#include "igen_lib.h"
f64i read_sensor(double a) {

f64i _a = ia_set_tol_f64(a, 0.125); // _a = a +- 0.125
f64i c = ia_set_f64 (4.75 ,5.25); // c = [4.75 ,5.25]
f64i t1 = ia_add_f64(_a, c);
return t1;

}

.Fig. 3. Language extensions to support known tolerances.

Unknown-state in if-else statements. When the branch to
take in a if-else statement is unknown, IGen also supports the
alternative to generate code that computes both branches and
joins the resulting intervals at the end. We did not implement
this approach in the case that arrays of intervals or integer
variables are modified in the body, thus it is not enabled by
default. In our experiments, this case does not occur.

Limitations. Operations performing bit-level manipulation
on floating-point variables are not supported by our compiler.
Further, casts from floating-point to integer are not supported
since we do not implement intervals on integers. Dynamic
memory allocations can be dangerous when not done properly.
For example, double* a = malloc(8) could incorrectly be
transformed to f64i* a = malloc(8). IGen shows a warning
when malloc is used. Finally, since we target performance, a
natural choice is to start by targeting C code as input and
generate C code as output. However, further C++ support is
feasible and possible future work.

C. Language Extensions

There are cases where it is necessary to express the known
imprecision of variables and constants. For example, in cyber-
physical systems the input may come from a sensor with known
resolution, or a constant may be derived empirically up to a
known error bound. This situation cannot be inferred from the
code but has to be available when transforming to a sound
interval. To support this situation, we implemented two custom
C language extensions for use by the programmer. First, input
parameters of a function can be annotated with a colon symbol
followed by a constant literal expressing its tolerance error. For
example, double:0.25 is a double precision float whose value
is precise with an error margin of 0.25. Second, a floating-
point constant can be annotated with a postfix t to represent
an interval around zero. For example, the constant 5 + 0.25t

represents the interval [4, 75, 5.25]. Fig. 3 shows an example
and an associated output of IGen.

V. AUTOMATIC SUPPORT OF SIMD INTRINSICS

IGen provides support for SIMD SSE and AVX intrinsics
in the input function and, by default, the interval types in
the output use SIMD types. Also by default, single precision
intrinsics are transformed to equivalent double precision interval



Fig. 4. Generating interval version of SIMD intrinsics from vendor’s
specification.

intrinsics. Further, even scalar (non-SIMD) input can be
transformed to SIMD code by pairing the endpoints in a SSE
register, thus, implementing 2-way vectorization.

The first step towards supporting SIMD intrinsics in the
input programs is to implement equivalent sound operations
in C, which can then be processed further by IGen. There are
currently over 6,000 Intel SIMD intrinsics of which around 40%
perform floating-point computations. Thus, implementing these
by hand is out of question. Instead, we implemented a code
generator that produces these implementations automatically
from their XML specification provided by Intel [30], using
an approach inspired by [31]. The work in [31], however,
generated embedded domain-specific languages to express
intrinsics inside managed languages and did not generate
C code from the specification. Figure 4 shows a high level
overview of the generator, which is explained in detail next.

XML parser. The Intel Intrinsics Guide [30] provides an
XML file containing the specification of each available intrinsic.
Figure 5 (top) shows an example for mm256 add pd. We
extract relevant information for each intrinsic such as its name,
return type, parameter list, and the operation that it performs.
The operation is specified using a C-like pseudo-language. We
only consider intrinsics that perform floating-point operations.

Tokenizer and parser. Our generator produces the AST
for each intrinsic based on the information extracted from its
XML specification. To do this, we first defined the associated
grammar for the Intel pseudo-language, which we used to
implement the parser.

Code generator. After parsing, we traverse the AST and
generate C code. For each SIMD vector type we define a
custom union data type that encapsulates the vector with an
array of floats and integers. Lines 1–5 of the generated code in
Fig. 5 show an example of this data structure. Using it, we can
directly access the vector’s elements. During the generation of
a SIMD intrinsic, all vector input parameters are transformed to
this custom type as shown in line 8 of the example. Further, all
used intermediate variables are declared with its inferred type
(line 9). Most of the statements in the Intel pseudo-language
are similar to C and thus can be directly transformed.

XML specification:

<intrinsic rettype=’__m256d ’ name=’_mm256_add_pd ’>
<type>Floating Point </type>
<CPUID>AVX</CPUID >
<category >Arithmetic </category >
<parameter varname=’a’ type=’__m256d ’/>
<parameter varname=’b’ type=’__m256d ’/>
<description >

Add packed double -precision (64-bit)
floating -point elements in "a" and "b",
and store the results in "dst".</description >

<operation >
FOR j := 0 to 3

i := j*64
dst[i+63:i] := a[i+63:i] + b[i+63:i]

ENDFOR
dst[MAX :256] := 0

</operation >
<instruction name=’vaddpd ’ form=’ymm , ymm , ymm’/>
<header >immintrin.h</header >

</intrinsic >

.
Generated C code:

1: typedef union {
2: _m256d v;
3: uint64_t i[4];
4: double f[4];
5: } vec256d;
6:
7: _m256d _c_mm256_add_pd(_m256d _a , _m256d _b) {
8: vec256d dst , a = {.v = _a}, b = {.v = _b};
9: int i, j;

10: for (j = 0; j <= 3; ++j) {
11: i = j * 64;
12: dst.f[i/64] = a.f[i/64] + b.f[i/64];
13: }
14: return dst.v;
15: }

.Fig. 5. XML specification of the mm256 add pd intrinsic and its generated
C implementation. The notation v[a:b] in the XML specification means that
the bits a...b in a vector v are accessed.

In contrast to C, however, it is common in the Intel pseudo-
language to access parts of a vector using the correspond-
ing range of bits. For example, accessing the j-th element
of a m256d vector v is expressed as v[i+63:i] where
i = 64 * j (see the operation in Fig. 5). To support this,
we first derive symbolically the number of bits accessed in
a vector. If the number of bits is the same as the size of
one of its elements, we access the vector’s element using
either the floating-point array or integer array depending on the
operation to perform. This is shown in line 12 of the example,
where each bit-access expression is transformed to an access
of a floating-point array, e.g., a.f[i/64]. It is also possible
that more than one element of a vector is accessed (see for
example mm256 load pd in [30]). Note that the integer
array is useful when accessing a subset of bits of a vector’s
element, or when performing bit-wise operations.

We also took care of small differences in the semantics
between C and the Intel pseudo-language. For example, the
pseudo-language allows testing multiple variables for equality
using the expression a == b == c, which is not the proper
way to do it in C.

Generation of interval intrinsics. The final step in the
generation process is to use IGen to translate the C im-
plementation of the intrinsics to an interval implementation.
The only addition to the compiler is the support of bit-wise



logical operations on intervals. This is used for example in
the intrinsic mm256 and pd where a bit-wise logical AND is
applied to two m256d vectors. These operations are performed
endpoint-wise for each interval in the vector. In general, bit-
wise operations are only safe to use with intervals if one of
the intervals is a mask with either all bits sets to one or to
zero. Since, this is a common use case for these operations on
floating-point vectors, we decided to support them.

Limitations. Similar to scalar code, any operation per-
forming bit level manipulation or conversion from floating-
point to integer is not supported. In addition, the compiler
currently lacks support for intrinsics that modify internal
registers, e.g. mm256 testz pd. However, supporting this
type of intrinsics is feasible with some additional effort.
Finally, there are intrinsics using functions which operations
are not defined and, thus, had to be implemented manually,
e.g. Convert FP64 To FP32 in mm256 cvtps pd.

Optimized implementations. The automatic approach pre-
sented so far generates implementations that closely resemble
the XML pseudo code. Since this often leads to inefficient
code, we also implemented a small set of very common
intrinsics by hand, directly using intrinsics. IGen detects
these by checking name and signature and inserts the hand-
optimized implementation for the output. Otherwise, it uses
the automatically generated interval implementation.

VI. IMPROVING ACCURACY

Interval arithmetic can suffer from too loose overapproxima-
tion since only bounds are maintained and relationships between
variables are ignored (unlike, for example, in the considerably
more expensive affine arithmetic [32]). To mitigate this there
are two possible avenues: 1) increasing the precision of the
endpoints beyond the standard double precision, and 2) program
transformations that improve the accuracy of the computations.
IGen provides examples of both as explained next.

A. Increasing the Precision with Double-Double

Double-double arithmetic is an efficient software technique to
increase precision on processors with native support for double
precision [24]. A double-double number a is an unevaluated
sum of two double precision numbers, ah and a`,

a = ah + a`, such that ah = RN(a), (1)

where RN(x) is the round-to-nearest function as defined in
IEEE 754. This property guarantees that the significands
of ah and a` do not overlap [33]. Thus, double-double
provides a precision of at least 106 bits except for values
very close to zero. In comparison, quad precision provides
113 bits of precision. As an example, the double-double that
best approximates π is πh = 3.141592653589793116 and
π` = 1.10306377366009811247 × 2−53 [34]. However, the
range of double-double is the same as in double precision
since the exponent’s size does not change (11 bits).

Interval double-double arithmetic using AVX. IGen pro-
vides double-double intervals as compilation target for both
single and double precision input functions, possibly using

1: DD Add(xh, x`, yh, y`):
2: (sh,s`) ← TwoSum(xh, yh)
3: (th,t`) ← TwoSum(x`, y`)
4: c ← RU(s` + th)
5: (vh,v`) ← FastTwoSum(sh, c)
6: w ← RU(t` + vh)
7: (zh,z`) ← FastTwoSum(v`, w)
8: return (zh,z`)

TwoSum(a, b):
s← RU(a+ b)
a′ ← RU(s− b)
b′ ← RU(s− a)
δa ← RU(a− a′)
δb ← RU(b− b′)
e ← RU(δa + δb)
return (s,e)

Fig. 6. Double-double addition (left) and TwoSum (right).

TABLE III
NUMBER OF INTRINSICS IN DOUBLE-DOUBLE INTERVAL OPERATIONS.

Operation Flops
SIMD intrinsics

Arithmetic Shuffles Total

Addition 40 14 3 17
Multiplication 114 27 29 56
Division 158 48 37 85

intrinsics. The exact default promotion of floating-point types
is shown in Table II. IGen support for double-double requires
an extension of our interval library (Section IV-A).

An interval with double-double precision is represented using
four double precision numbers (two doubles for each endpoint)
and thus it is a natural fit for AVX vector registers, which
means m256d is the base type of our double-double interval
type ddi. For the vectorized implementation of addition,
subtraction, multiplication, and division, we used the most
accurate algorithms available in the literature [35]. Figure 6
shows as example the algorithm for the addition of two double-
double numbers. The functions TwoSum and FastTwoSum
compute both the result and the roundoff error of adding two
double precision numbers.

Table III shows the number of floating-point operations
(flops) for each double-double interval operation and the
number of intrinsics in its vectorized implementation. As can
be seen, the cost of double-double intervals is rather high; a
single interval addition already requires 40 flops. Thus, it is
important to provide optimized implementations. As of now, we
do not support elementary functions in double-double precision.
Further, double-double arithmetic is normally done using round-
to-nearest. Thus, the challenge is to implement sound double-
double intervals with upward-rounding.

Soundness guarantee. The definition of double-double
in (1) slightly changes when using upward-rounding. Using
a rounding mode other than to-nearest slightly degrades the
accuracy of double-double computations [36]. However, it
enables sound interval operations.

Lemma 1. Let x, y be two double-double numbers and z be
their sum computed using algorithm DD Add (Fig. 6). When
using upward-rounding, z is an upper bound of the exact sum
x+y, i.e., zh+z` ≥ xh+x`+yh+y`. Similarly, z is a lower
bound of the exact sum when using downward-rounding.

Proof. The work in [36] proved that computing TwoSum and
FastTwoSum using upward-rounding yields an upper bound of



the exact result. Thus, lines 2, 3, 5 and 7 yield the inequalities
sh + s` ≥ xh + yh, th + t` ≥ x` + y`, vh + v` ≥ sh + c,
zh + z` ≥ v` + w. Further, it is clear that c ≥ s` + th and
w ≥ t` + vh (lines 4 and 6). Reordering and simplifying these
inequalities yields zh+z` ≥ xh+x`+yh+y` which concludes
the proof for the upper bound. The proof for the lower bound
follows analogously.

From the lemma we conclude that the algorithm for double-
double addition is suitable for interval arithmetic. Analogously,
we can prove soundness for the multiplication and division of
two double-double numbers.

B. Accuracy Transformation: Reduction

Another avenue for improving accuracy are code transfor-
mations. As an example, we focus on the transformation of
reductions, and specifically summations, a common pattern
in linear algebra computations and beyond that is particularly
sensitive to error accumulation. A common example is the
ubiquitous scalar product of two vectors.

Our approach consists of two steps: 1) detecting reductions,
and 2) replacing the computation with a more accurate method.
We explain the details.

Reduction detection. We detect reductions in the source
code in two steps. We first use Polly [26] to detect reductions
at the LLVM-IR level and extract relevant information. Then,
we search for the node performing the reduction in the AST.

Polly is a loop optimizer and part of the LLVM compiler
framework that uses the polyhedral model to analyze and
optimize programs. Polly implements a reduction detection
mechanism [37] to exploit possible parallelism but that we
use to improve accuracy. Figure 7 shows example code and
relevant information of the analysis performed by Polly. As
can be seen, Polly specifies the reduction type + (summation)
and reduction dependence (i0, i1)→ (i0, i1+1) for the matrix-
vector multiplication function in the example. In the example,
the dependence indicates that there is a loop carried self-
dependence due to a reduction in the inner loop. Further, we
can also extract the location in the source file (line and column)
of the instruction where Polly detects the reduction by enabling
debug information when generating the LLVM-IR. When
enabling code transformations for accuracy in our compiler,
IGen calls Polly and extracts the location and dependence
information of all detected reductions.

We extended the clang compiler with OpenMP-like pragmas
to make it possible for programmers to specify the loops
where the reduction transformation should be enabled and to
specify the variable or array to reduce. When a loop is detected
with this pragma, IGen searches for the Expr node inside the
loop performing the reduction using the location information
extracted from Polly. In the mvm example of Fig. 7, the variable
to reduce is y (specified in line 2) and the detected reduction
expression is in line 5. Once the reduction is detected, IGen
proceeds to perform the necessary code transformations.

Code transformations. There are four components that are
generated to improve the accuracy of reductions. First, an

Matrix-vector multiplication:

1: void mvm(double* A, double* x, double* y) {
2: #pragma igen reduce y
3: for (int i = 0; i < 100; i++)
4: for (int j = 0; j < 500; j++)
5: y[i] = y[i] + A[i*500+j]*x[j]; // Reduction
6: }

.Polly Analysis:

function ’mvm’: (Max Loop Depth: 2)
...
Reduction dependences [Reduction Type: +]:

Stmt3[i0, i1] -> Stmt3[i0, 1 + i1] : 0 <= i0 <= 98
... and 0 <= i1 <= 499
Printing analysis:

for (int c0 = 0; c0 <= 99; c0 += 1)
for (int c1 = 0; c1 <= 499; c1 += 1)

Stmt3(c0, c1);

.IGen Transformation:

1:void mvm(f64i* A, f64i* x, f64i* y) {
2: acc_f64 acc1; // Declaration acc
3: for (int i = 0; i < 100; i++) {
4: isum_init_f64 (&acc1 , y[i]); // Initialization
5: for (int j = 0; j < 500; j++) {
6: f64i t1 = ia_mul_f64(A[i*500+j], x[j]);
7: isum_accumulate_f64 (&acc1 , t1);// Accumulate term
8: }
9: y[i] = isum_reduce_f64 (&acc1); // Final reduction
10: }
11:}

.Fig. 7. From top to bottom: 1) Example code implementing matrix-vector
multiplication. 2) Relevant information when executing opt on the LLVM-IR
of mvm function with flags -analyze -polly-dependences -polly-ast.
3) IGen code improving accuracy of reduction.

accumulator is declared (see line 2 in Fig. 7 bottom) where
the elements of the reduction will be accumulated with high
accuracy. Second, the accumulator is initialized and the first
element is added (see line 4). Third, IGen extracts the term
to accumulate, e.g. A[i*500+j]*x[j] in the example, and its
interval transformation is added to the accumulator (lines 7).
Finally, the elements in the accumulator are reduced and the
result is assigned to the reduction variable (line 9). IGen uses
the information on the reduction dependence provided by Polly
to detect in what level in a nested loop the accumulator should
be initialized and perform its final reduction. In the example,
the initialization and final reduction are done before and after
the innermost loop, respectively.

Summation method. When targeting double precision in-
tervals, IGen simply uses an accumulator with double-double
precision to improve accuracy. When targeting double-double
intervals, the cost for a higher precision accumulator would
be too high. Thus, as a different approach, we use an accurate
summation method similar to [38], [39]. More precisely, in this
case the accumulator consists of two double precision arrays
of size n = 4096; one for each endpoint. Given an interval to
accumulate, the following is done for each of its double-double
endpoints:

1) The double-double value is split into its higher and
lower double precision terms. For example, th = 2.0
and t` = 1.0× 2−53 for a double-double endpoint.



2) Each double precision term t is inserted into an empty
position in the array. The position p in the array is
determined by the exponent field e and least-significant
bit b of t using the formula p = 2 ·e+b. For example, the
term th = 2.0 (with eh = 1024 and bh = 0) is inserted
to position p = 2048.

3) If the array is not empty in the specified position, the
elements are added together in double precision and the
result is inserted to its corresponding new position in the
array. For our example, assuming that the array already
contains the value A[p] = 3.0 at position p = 2048,
the new term to accumulate is tnew = th + A[p] = 5.0.
Afterwards, the array field is cleared, A[p]← 0, and we
repeat the process for tnew as the new term to accumulate
in the array.

Since the result of adding two normal floating-point numbers
with the same exponent and same least-significant bit is exact
assuming no overflow occurs, this method eliminates roundoff
errors when adding elements to the accumulator. Once all
elements are added, a final reduction is done by summing up
its elements in double-double precision.

VII. EVALUATION

In this section, we evaluate the performance and accuracy
of IGen on four applications from the domains of signal
processing, linear algebra and machine learning. Further, we
evaluate the improvement in accuracy of the transformation
for reductions. Finally, we compare IGen with the (manual)
use of affine arithmetic.

Benchmarks. Table IV shows the computations used in
the evaluation. The initial non-interval code is automatically
generated by high-performance generators, except for the
ffnn benchmark which is a loop-based implementation of a
fully-connected feedforward neural network with nine hidden
layers and n neurons per layer. The network is already
trained to distinguish handwritten digits using the MNIST
dataset [40]. For each computation, there is a scalar and a
SIMD-optimized non-interval implementation available. We
use IGen to generate equivalent interval code for both using
scalar and SIMD-optimized output with double and double-
double precision. We compare against manually using three
common interval libraries: Boost v16.5 [18], Gaol v4.2 [20],
and Filib++ v3.0 [19]. Gaol is the only library with SIMD
optimizations for scalar interval operations using SSE registers
to store double precision intervals. Only the scalar code of
the benchmarks is manually implemented with the libraries
since they only support interval implementations of scalar
operations. All libraries are configured with their fastest sound
configuration (i.e., the rounding mode is not constantly changed
as explained in Section II).

Experimental setup. We perform the tests on an Intel Xeon
E-2176M CPU (Coffee Lake microarchitecture) running at
2.7 GHz, under Ubuntu 18.04 with Linux kernel v4.15. Turbo
Boost is disabled. All tests are compiled using gcc 7.5 with flags
-O3 -march=host. To evaluate performance, every measurement
was repeated 30 times on different inputs, and the median of

TABLE IV
BENCHMARKS.

Label Description Base implementation

fft Fast Fourier transform Spiral [41]
potrf Cholesky decomposition SLinGen [42]
gemm Matrix-matrix multiplication ATLAS [43]
ffnn Feedforward neural network Straightforward

the runtime is taken. All tests are run with warm cache. The
inputs for all benchmarks are random intervals except for ffnn
where the MNIST dataset [40] is used. Each input interval has
a length of 1 ulp. In particular, for double-double precision,
the length of an input interval is ulp(x`), where x` is the lower
term of a random double-double number x. We measure the
number of correct bits by subtracting the loss of accuracy from
the number of bits used by the given precision (i.e., 53 and
106 bits for double and double-double precision respectively).
The loss of accuracy is defined as the base-2 logarithm of
the number of double precision floating-point values contained
in an interval. Intuitively, the accuracy of an interval is the
number of most-significant bits shared by the mantissas of the
endpoints assuming same exponent2.

A. Performance and Accuracy

Plot navigation. Fig. 8 shows the performance results of
using IGen and the libraries. The problem size is on the x-
axis and the interval operations (iops) per cycle on the y-axis.
Here, an interval multiplication and an addition count as one
operation each. The inputs of the gemm and potrf benchmarks
are square n× n matrices and the input for the fft benchmark
is a vector with n complex values. The problem size in the
ffnn benchmark represents the number of neurons per layer.

For each benchmark, IGen generates interval code with the
following configurations:

• IGen-ss: scalar code generated from scalar input code.
• IGen-sv: vectorized code (SSE) from scalar input code.
• IGen-vv: vectorized code (AVX) from vectorized code.
• IGen-sv-dd: as IGen-sv but with double-double output.
• IGen-vv-dd: as IGen-vv but with double-double output.
Speedup. The results in Fig. 8 show that IGen-vv and IGen-

sv are the fastest configurations across all the benchmarks.
Further, already IGen-ss is around 2× faster than the libraries
in the ffnn and gemm benchmarks and has similar performance
in the other two cases. In particular, IGen-vv benefits from the
use of SIMD intrinsics in the input, which IGen converts to
efficient interval operations. IGen-vv and IGen-sv are up to
9.8× and 4.4× faster than using the best library.

Note that the implementation of interval multiplication in
libraries specialize to the sign of the operands. This seems
to make them particularly sensitive to branch misprediction,
leading to low performance in some benchmarks (e.g., in

2We consider the maximum accuracy of a double precision interval to be
53 bits and it is achieved when both endpoints are the same. In this case, the
loss is zero.



(a) fft (b) gemm

(c) potrf (d) ffnn

Fig. 8. Interval operations per cycle of IGen vs libraries.

Fig. 8d). On the other hand, their performance may improve
in certain cases, for example Filib outperforms IGen-ss in the
potrf benchmark. In addition, note that Gaol is a precompiled
library. Thus, the compiler may be unable to inline the interval
operations, preventing further optimizations. This may explain
its lower performance.

Penalty of interval code. Table V shows the slowdown of
different configurations of IGen as the ratio between the runtime
of the non-interval input in double precision and interval
output programs in double and double-double precision. All
configurations generate vectorized interval code. The interval
code with double precision is between 2.3×–13× slower. When
using double-double, the code is 19×–280× slower. Note that
the slowdown for double-double is significantly higher when
using vectorized code as input (vv) compared to scalar code
(sv). The runtime is actually similar for both, but the input
program of the former is highly optimized. The reason is
that we rely on the slower but automatic approach discussed
in Section V to support SIMD intrinsics with double-double.
Manually optimizing the double-double intrinsics to take the
SIMD structure in the input into account will likely improve
runtime and it is a subject of future work.

Efficiency. Fig 9a shows the real performance of IGen-vv
and its non-interval input program. Since we do not use FMAs
in the implementation, the theoretical peak performance of the
interval code in the CPU is 8 flops per cycle (non-interval
code can achieve higher performance). Thus, Fig 9a shows that
double precision intervals achieve an efficiency of 53%–85%

Fig. 9. (a) Real performance in flops per cycle of IGen-vv and its non-interval
input program (baseline). (b) Accuracy of IGen in double and double-double
precision.

TABLE V
SLOWDOWN OF DIFFERENT CONFIGURATIONS OF IGEN.

Name IGen Dbl IGen DD
sv vv sv vv

fft-64 2.3 3.4 29 106
potrf-124 2.4 4.5 19 83
ffnn-200 6.1 4.8 99 147
gemm-616 5.6 13 62 279

of CPU utilization. This efficiency is in most cases higher than
the non-interval baseline due to the increase in floating-point
operations and thus higher operational intensity. The double-
double implementation is less efficient since it is not fully
optimized for SIMD intrinsics in the input. In addition, the
implementation requires many shuffle operations (see Table III).

Certified accuracy. Fig. 9b shows the accuracy of IGen
when using double and double-double precision. As can be
seen, IGen certifies more than 17 bits in all the benchmarks
when using double precision and more than 68 bits when
using double-double. Further, using double-double improves
the accuracy of all benchmarks by roughly 51 bits. Note that
there is no noticeable difference in accuracy between IGen and
the libraries when using double precision.

Certified double precision result. In case the inputs are
exact double precision values or double-double values with
small errors, using double-double can keep error accumulation
small enough to compute certified double precision results,
i.e., results with at most one bit of error in double precision.
For example, the accuracy of all benchmarks in Fig. 9b with
double-double precision is at least 68 bits, which is more than
enough to round the resulting intervals to the nearest certified
double precision value.

B. Accuracy of Reductions

We evaluate the improvement in accuracy of our reduction
transformation approach using a double-loop matrix-vector
multiplication (mvm) computation y = Ax + y, where x, y
are of length n and m, respectively, and A is m × n. IGen
generates interval versions of the program in double and double-
double precision with and without reduction transformations.
We fixed m = 10 and vary n in the experiments. The matrix
and vectors are initialized with values whose magnitudes are



Fig. 10. Each arrow shows an improvement in accuracy of the mvm program.
Test (s, p) means an input vector of size n = 10s, where p% of the inputs
are negative numbers. Arrows start from the accuracy of the interval program
without reduction improvement and point to the generated accuracy with
reduction improvement.

drawn randomly from the set of double precision numbers. We
show two set of experiments: one where 10% of the input
values are negative and another where 45% are negative3.

Accuracy improvement. Fig. 10 shows the gain in accuracy
when using reduction transformations in the mvm benchmark.
The results show an improvement between 3 and 13 bits
depending on the size of the reduction. Using the reduction
transformation keeps the accuracy high and roughly constant
for different sizes when testing with 10% of negative numbers
in the input. On the other hand, the code without reduction
transformation degrades when increasing the input size.

Balancing the amount of negative and positive numbers in
the reduction increases the relative error in the final result. This
explains the lower accuracy for the last four cases in Fig. 10.
However, we still get an improvement of 8 bits for the largest
test when transforming reductions.

Runtime. Without reduction transformation, the interval
code runs 1.6× and 14.2× slower than the non-interval input
when using double and double-double precision, respectively.
With reduction transformations, the code runs 8.2× and 77.6×
slower, respectively. The slowdown is independent of the size n.

ATLAS gemm. The previous gemm benchmark also contains
reductions in the innermost loop of its matrix multiplication
kernel. Unfortunately, Polly does not detect these reductions
since ATLAS unrolls the loop. By manually converting to a
loop, IGen is able to apply the reduction transformation and
improves the accuracy by 3.5 bits on average at the price of a
3× slowdown for n = 616.

C. Comparison with Affine Arithmetic

Dependency problem. The dependency problem [22] is
well known in interval arithmetic. It arises when variables
become correlated during computation. Since interval arithmetic
does not maintain relationships between variables, overap-
proximation may occur. This can be mitigated using affine
arithmetic [32] which preserves the linear correlation between
variables.

Benchmark. We compare IGen against the use of affine
arithmetic on the Henon map, which is known to produce

3We did not choose 50% to avoid that the result of the reduction is
approximately zero in expectation.

double henon_map(double x, double y, int iterations) {
double a = 1.05;
double b = 0.3;
for (int i = 0; i < iterations; i++) {

double xi = x;
double yi = y;
x = 1 - a*xi*xi + yi;
y = b*xi;

}
return x;

}

.Fig. 11. Input code for the Henon map.

significant losses in the accuracy of intervals due to depen-
dency [44]. For affine arithmetic we use the YalAA v0.92
library [45] . The Henon map is an iterative algorithm defined
as xi+1 = 1 − ax2i + yi and yi+1 = bxi. We use a = 1.05
and b = 0.3 in our experiments, and the initial condition
x0 = y0 = 0. Figure 11 shows the input scalar code for the
Henon map. In addition, we evaluate the use of affine arithmetic
in our fft benchmark from Table IV4. In both benchmarks, we
use the IGen-sv configuration to generate SIMD-optimized
interval code from the scalar input.

Table VI shows the certified accuracy in bits and the
slowdown for different number of iterations in the Henon
map and different input sizes for the fft benchmark. The
slowdown is the ratio between the runtime of the interval
or affine configuration and the non-interval input in double
precision. The accuracy is determined as the average of the
minimum number of certified bits across 100 runs of the same
configuration.

Accuracy. In the Henon map, the accuracy of IGen-
generated code using double and double-double precision
decreases in every iteration whereas the accuracy in affine
arithmetic stays roughly constant. In contrast to double preci-
sion, double-double still preserves correct bits even after 170
iterations. For the fft benchmark, the accuracy achieved by
double precision intervals and affine arithmetic is roughly the
same and double-double outperforms both. We conclude that
affine arithmetic is considerable more accurate than intervals in
computations with strong dependencies but it achieves similar
accuracy than double precision when dependencies are not an
issue.

Slowdown. Table VI also shows that affine arithmetic is
considerable more expensive than both, double and double-
double interval. In particular, affine arithmetic is 2–3 orders
of magnitude slower than double-double intervals on the two
benchmarks.

VIII. RELATED WORK

In this section, we review the existing related work.
Interval libraries. Most of the available interval arithmetic

libraries [18]–[20] are implemented in C++ overloading basic
operations with equivalent interval operations. Thus, making

4We were unable to evaluate the accuracy of affine arithmetic on the other
benchmarks in Table IV since it did not pass the time limit of 1 hour that we
imposed for the completion of each benchmark.



TABLE VI
CERTIFIED ACCURACY AND SLOWDOWN OF HENON MAP AND FFT

BENCHMARKS.

Henon Map

Accuracy [bits] Slowdown

Iterations f64i ddi Aff. f64i ddi Aff.

10 44 96 44 2.8 14.1 795
50 24 76 45 2.9 14.8 4.4K
90 4 57 45 2.9 14.7 7.6K
130 0 37 44 2.8 14.8 10.6K
170 0 17 44 2.8 14.8 13.7K

FFT

Accuracy [bits] Slowdown

Size f64i ddi Aff. f64i ddi Aff.

16 43 96 44 2.3 32.6 3.4K
32 41 94 42 2.3 28.1 3.8K
64 39 92 40 2.3 28.9 4.5K
128 38 91 38 2.4 29.8 12.1K
256 36 89 36 2.4 29.7 28.4K

them easy to use. They are also relatively efficient since
the endpoints of intervals are implemented using single or
double precision floating-point. In addition, other libraries [21],
[46] implement intervals with arbitrary large precision but
are computationally very expensive. Finally, there are efficient
libraries [33], [47] implementing double-double arithmetic;
however, they do not provide interval operations. Only the
work in [48] supports intervals in double-double precision but
the implementation is not vectorized.

Although very useful, there are some disadvantage of using
libraries to guarantee soundness instead of the compiler that
we propose. First, it requires manual adaption by the user.
Second, constants may be unsound. Third, they do not support
SIMD intrinsics. Finally, interval libraries cannot automatically
improve accuracy. It is up to the user of the library to handle
these cases manually.

Automatic roundoff error analysis. There are many tools
that statically analyze programs to derive worst-case roundoff
errors. These tools normally use abstract interpretation using
intervals or affine arithmetic to compute the ranges of variables
as well as its error bounds [12]–[15]. Other tools are [16],
[17] which formulate finding bounds of roundoff errors as
an optimization problem. The former uses semi-definite pro-
gramming whereas the latter uses symbolic Taylor expansions
to approximate floating-point expressions and obtains error
bounds using global optimization.

Since these tools have to consider all possible inputs, they
sometimes provide bounds that are too conservative to be
useful, especially when dealing with conditional branches and
loops [13], [49]. We believe that some of the techniques in
these tools can be applied to our interval compiler. For example,
we may support affine arithmetic or a more expressive abstract
domain to reduce interval overestimation in programs where
the dependency problem occurs.

Program transformations for accuracy. One of the first
approaches to improve or guarantee accuracy is mixed-precision
tuning, which selectively changes the precision of floating-point
variables to meet a certain error specification. Tools implement-
ing this approach [9], [50]–[55] normally use roundoff error
analysis to lead the search for a suitable precision.

In the field of code rewriting for accuracy, Salsa [56] and
Herbie [57] have emerged. After identifying an expression in
a program, Salsa improves its accuracy by building a set of
equivalent expressions and choosing the one with the lowest
error. Herbie, on the other hand, uses a guided search to select
suitable transformations from a predefined database. IGen can
benefit directly from these tools to improve the accuracy of
the intervals. However, we focused on the transformation of
reductions, which is a common pattern in linear algebra.

IX. CONCLUSIONS

In this paper, we presented an automatic approach to provide
sound guarantees on the result of floating-point computations.
We showed the design and implementation of IGen, a source-
to-source compiler that automatically transforms a C program
with floating-point computations to an equivalent and sound
program using interval arithmetic. Our compiler supports Intel
SIMD intrinsics in the input which are generated automatically
from the vendor XML specification and enables fast updates
in the future. When using double precision, our benchmarks
demonstrate that IGen generates sound and efficient code
which is 2.3×−12× slower compared to the original unsound
program, and it is in general faster than using interval libraries.
Further, we showed that increasing the precision of intervals
to double-double can keep error accumulation small enough
to compute certified results with at most one bit of error in
double precision in our set of benchmarks. The use of double-
double, however, leads to a slowdown of one to two orders of
magnitude compared to the original program, especially when
transforming high-performance code. Finally, we showed that
we can recover up to 13 bits lost due to rounding errors using
a transformation technique to improve the accuracy of the
common reduction pattern in linear-algebra-like computations.

ARTIFACT APPENDIX

A. Abstract

Our artifact provides the source code of IGen interval
compiler, benchmarks to evaluate its performance and accuracy,
and scripts for reproducing main experiments. The artifact is
in the form of a virtual machine running Ubuntu 18.04 which
provides all required dependencies.

More specifically, our artifact consists of:
1) Full source code of IGen interval compiler and library.
2) Source code for all of our benchmarks.
3) Scripts to setup and automate running the benchmarks

saving the results in CSV files.
4) Scripts to generate graphs from the CSV files.

In addition, the artifact also contains the source code of the
LLVM Project 11.0 with custom modifications to enable both,
language extensions and specific pragmas used by IGen.



B. Artifact Check-List (Meta-Information)
• Program: IGen compiler with benchmarks (full source code).
• Compilation: We have included a script that builds IGen and

associated benchmarks using GCC 7.5.
• Binary: A modified version of Clang 11.0 is precompiled to allow

language extensions used by our interval compiler.
• Run-time environment: An Ubuntu-based virtual machine with

all necessary software dependencies.
• Hardware: x86 machine supporting AVX2.
• Execution: We provide scripts to set up, run and plot the

benchmarks in this paper. A more detailed description of how
to use them is included in README.

• Output: Running the scripts yields CSV files containing perfor-
mance numbers and accuracy of the benchmarks. Optionally, the
performance plots in Fig. 8 can also be generated.

• How much disk space required (approximately)?: 20 GB to
support the virtual machine.

• How much time is needed to prepare workflow?: Immediately
available after importing the virtual machine in VirtualBox.

• How much time is needed to complete experiments?: Approx-
imately 1 hour to setup, compile and run all benchmarks.

• Publicly available?: Yes.
• Code license: BSD 3-Clause License

C. Description

How delivered. This artifact is provided as a virtual machine
and available at
https://doi.org/10.5281/zenodo.4283110.

Hardware dependencies. x86 machine with AVX2 support.
We recommend testing on an Intel Skylake or similar microar-
chitecture to get comparable results with the ones presented in
this paper.

Software dependencies. All software dependencies have
been pre-installed in the provided virtual machine. We tested
the artifact in VirtualBox 6.1.0. Details on the dependencies
pre-installed in the virtual machine can be found in the README
distributed with the artifact.

D. Installation

Import and access the virtual machine in VirtualBox5. The
login credentials are the following:

username: cgo2021
password: igen@cgo21

Since all dependencies have been pre-installed, the system
should be ready once accessing the virtual machine.

E. Experiment Workflow

Once in the virtual machine, open the terminal and navigate
to the benchmarks directory:

$ cd artifact/benchmarks

.There is a script named run benchmarks.py which sets up,
builds and runs all benchmarks. You can run it as follows:

$ python3 run_benchmarks.py -all

.To run individual benchmarks consult the --help option.

5More information on importing virtual machine in VirtualBox can be
found at https://docs.oracle.com/cd/E26217_01/E26796/html/qs-
import-vm.html

F. Evaluation and Expected Result

After the experiments finish running, the generated CSV files
with the results are saved in artifact/benchmarks/results

directory. There is one folder for each benchmark (e.g. gemm,
ffnn, potrf etc.). For comparison, the numbers presented in
the paper are also included in results/paper.

The results used to generate Figures 8, 9a, 9b and Table V
are saved in the following files respectively:
- <benchmark>/interval perf.csv

- <benchmark>/real perf <size>.csv

- <benchmark>/accuracy <size>.csv

- <benchmark>/overhead <size>.csv

To generate the performance graphs in Fig. 8 use the
following command:

$ python3 run_benchmarks.py -plot

.The graphs will be saved as PDF files in the results folder.

G. Notes

We recommend disabling Intel Turbo Boost and Hyper
Threading technologies in the host machine to avoid the effects
of frequency scaling and resource sharing on the measurements.
These technologies can be disabled in the BIOS settings of the
machines that have BIOS firmware.

H. Methodology

Information regarding submission, reviewing and badging
methodology can be found at the following sites:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-

badging

REFERENCES

[1] ARM. (2019) Arm technologies: Helium. https://www.arm.com/why-
arm/technologies/helium. [Online; accessed 4-August-2020].

[2] D. N. Arnold. (2000) The patriot missile failure. http://www-users.math.
umn.edu/∼arnold//disasters/patriot.html.

[3] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of FLUCTUAT on safety-critical avionics
software,” in Formal Methods for Industrial Critical Systems (FMICS),
2009, pp. 53–69.

[4] F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phao-
sawasdi, D. Padua, S. Kar, J. M. F. Moura, M. Franusich, J. Johnson,
A. Platzer, and M. M. Veloso, “High-Assurance SPIRAL: End-to-end
guarantees for robot and car control,” IEEE Control Systems Magazine,
vol. 37, no. 2, pp. 82–103, 2017.

[5] D. Cattaruzza, A. Abate, P. Schrammel, and D. Kroening, “Sound
numerical computations in abstract acceleration,” in Numerical Software
Verification (NSV), 2017, pp. 38–60.

[6] L. Chen, A. Miné, and P. Cousot, “A sound floating-point polyhedra
abstract domain,” in Asian Symposium on Programming Languages and
Systems (APLAS), 2008, pp. 3–18.

[7] K. Jia and M. Rinard, “Exploiting verified neural networks via floating
point numerical error,” CoRR, vol. abs/2003.03021, 2020.

[8] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain for
certifying neural networks,” Proceedings of the ACM on Programming
Languages (PACMPL), vol. 3, 2019.

[9] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
assistant for floating-point precision,” in International Conference on
High Performance Computing, Networking, Storage and Analysis (SC),
2013.

https://doi.org/10.5281/zenodo.4283110
https://docs.oracle.com/cd/E26217_01/E26796/html/qs-import-vm.html
https://docs.oracle.com/cd/E26217_01/E26796/html/qs-import-vm.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.arm.com/why-arm/technologies/helium
https://www.arm.com/why-arm/technologies/helium
http://www-users.math.umn.edu/~arnold//disasters/patriot.html
http://www-users.math.umn.edu/~arnold//disasters/patriot.html


[10] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and R. Bastian,
“Daisy - framework for analysis and optimization of numerical programs
(tool paper),” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2018, pp. 270–287.

[11] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Symposium on Principles of Program-
ming Languages (POPL), 1978, pp. 84–96.

[12] E. Goubault and S. Putot, “Static analysis of finite precision computations,”
in Verification, Model Checking, and Abstract Interpretation (VMCAI),
2011, pp. 232–247.

[13] E. Darulova and V. Kuncak, “Towards a compiler for reals,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 39,
no. 2, 2017.

[14] M. Daumas and G. Melquiond, “Certification of bounds on expressions
involving rounded operators,” ACM Transactions on Mathematical
Software (TOMS), vol. 37, no. 1, 2010.

[15] T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin, “A unified
coq framework for verifying c programs with floating-point computations,”
in Certified Programs and Proofs (CPP), 2016, pp. 15–26.

[16] V. Magron, G. Constantinides, and A. Donaldson, “Certified roundoff
error bounds using semidefinite programming,” ACM Transactions on
Mathematical Software (TOMS), vol. 43, no. 4, 2017.

[17] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić,
and G. Gopalakrishnan, “Rigorous estimation of floating-point round-
off errors with symbolic taylor expansions,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 41, no. 1, 2018.

[18] H. Brönnimann, G. Melquiond, and S. Pion, “The design of the Boost
interval arithmetic library,” Theoretical Computer Science, vol. 351, no. 1,
pp. 111–118, 2006.

[19] M. Lerch, G. Tischler, J. W. V. Gudenberg, W. Hofschuster, and
W. Krämer, “FILIB++, a Fast Interval Library Supporting Containment
Computations,” ACM Transactions on Mathematical Software (TOMS),
vol. 32, no. 2, pp. 299–324, 2006.

[20] F. Goualard, “Gaol 4.2.0: Not just another interval arithmetic library,”
https://sourceforge.net/projects/gaol, 2015.

[21] N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval
arithmetic and the mpfi library,” Reliable Computing, vol. 11, no. 4, pp.
275–290, 2005.

[22] R. E. Moore, “Interval analysis,” Prentice-Hall, 1966.
[23] F. Goualard, “Towards Good C++ Interval Libraries: Tricks AND Traits,”

2000. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00430568
[24] T. J. Dekker, “A floating-point technique for extending the available

precision,” Numerische Mathematik, vol. 18, no. 3, pp. 224–242, 1971.
[25] Clang. (2020) Clang libtooling. Available at https://clang.llvm.org/docs/

LibTooling.html, version 11.0.0.
[26] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly – performing

polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, vol. 22, no. 04, 2012.

[27] “IEEE Standard for Interval Arithmetic,” IEEE Std 1788-2015, pp. 1–97,
2015.

[28] F. Goualard, “Fast and Correct SIMD Algorithms for Interval Arithmetic,”
in International Workshop on State-of-the-Art in Scientific and Parallel
Computing (PARA), 2008.

[29] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast,
C. Lauter, and J.-M. Muller, “CR-LIBM A library of correctly
rounded elementary functions in double-precision,” Research Report,
2006. [Online]. Available: https://hal-ens-lyon.archives-ouvertes.fr/ensl-
01529804

[30] Intel, “Intel Intrinsics Guide,” https://software.intel.com/sites/landingpage/
IntrinsicsGuide/, 2012, [Online; accessed 4-August-2020].

[31] A. Stojanov, I. Toskov, T. Rompf, and M. Püschel, “SIMD Intrinsics
on Managed Language Runtimes,” in International Symposium on Code
Generation and Optimization (CGO), 2018, pp. 2–15.

[32] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and
applications,” Numerical Algorithms, vol. 37, no. 1, pp. 147–158, 2004.

[33] Y. Hida, S. Li, and D. Bailey, “Algorithms for quad-double precision
floating point arithmetic,” in IEEE Symposium on Computer Arithmetic
(ARITH16), 2001, pp. 155–162.

[35] M. Joldes, J.-M. Muller, and V. Popescu, “Tight and rigorous error bounds
for basic building blocks of double-word arithmetic,” ACM Transactions
on Mathematical Software (TOMS), vol. 44, no. 2, 2017.

[34] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefvre, G. Melquiond, N. Revol, and S. Torres, Handbook of Floating-
Point Arithmetic, 2nd ed. Birkhäuser Basel, 2018.

[36] S. Graillat and F. Jézéquel, “Tight interval inclusions with compensated
algorithms,” IEEE Transactions on Computers, vol. 69, no. 12, pp. 1774–
1783, 2019.

[37] J. Doerfert, K. Streit, S. Hack, and Z. Benaissa, “Polly’s polyhedral
scheduling in the presence of reductions,” in International Workshop on
Polyhedral Compilation Techniques (IMPACT), 2015.

[38] M. A. Malcolm, “On accurate floating-point summation,” Communica-
tions of the ACM, vol. 14, no. 11, pp. 731–736, 1971.

[39] J. Demmel and Y. Hida, “Fast and accurate floating point summation
with application to computational geometry,” in Numerical Algorithms,
2002, pp. 101–112.

[40] Y. LeCun, C. Cortes, and C. Burges. (2010) Mnist handwritten digit
database. Available: http://yann.lecun.com/exdb/mnist, 2010.

[41] M. Püschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso,
B. W. Singer, Jianxin Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for
dsp transforms,” Proceedings of the IEEE, vol. 93, no. 2, pp. 232–275,
2005.

[42] D. G. Spampinato, D. Fabregat-Traver, P. Bientinesi, and M. Püschel,
“Program generation for small-scale linear algebra applications,” in
International Symposium on Code Generation and Optimization (CGO,
2018, pp. 327–339.

[43] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra
software,” in ACM/IEEE Conference on Supercomputing (SC), 1998, pp.
38–38.

[44] M. Kashiwagi, “An algorithm to reduce the number of dummy variables
in affine arithmetic.” in In SCAN conference, 2012.

[45] S. Kiel, “Yalaa: Yet another library for affine arithmetic,” Reliable
Computing, vol. 16, pp. 114–129, 2012.

[46] F. Johansson, “Arb: efficient arbitrary-precision midpoint-radius interval
arithmetic,” IEEE Transactions on Computers, vol. 66, pp. 1281–1292,
2017.

[47] K. Briggs. (1998) The doubledouble library. Available at http://www.
boutell.com/fracster-src/doubledouble/doubledouble.html.

[48] M. Kashiwagi. kv - a c++ library for verified numerical computation.
Available at http://verifiedby.me/kv/index-e.html.

[49] E. Goubault and S. Putot, “Robustness analysis of finite precision
implementations,” in Asian Symposium on Programming Languages
and Systems (APLAS), 2013, pp. 50–57.

[50] E. Darulova, E. Horn, and S. Sharma, “Sound mixed-precision opti-
mization with rewriting,” in International Conference on Cyber-Physical
Systems (ICCPS), 2018, p. 208–219.

[51] S. Graillat, F. Jézéquel, R. Picot, F. cois Févotte, and B. Lathuiliére, “Auto-
tuning for floating-point precision with discrete stochastic arithmetic,”
Journal of Computational Science, vol. 36, p. 101017, 2019.

[52] J. Vignes, “Discrete stochastic arithmetic for validating results of
numerical software,” Numerical Algorithms, vol. 37, no. 1, pp. 377–
390, 2004.

[53] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan,
and Z. Rakamariundefined, “Rigorous floating-point mixed-precision
tuning,” in Symposium on Principles of Programming Languages (POPL),
2017, pp. 300–315.

[54] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legendre,
“Automatically adapting programs for mixed-precision floating-point
computation,” in International Conference on Supercomputing (ICS),
2013, pp. 369–378.

[55] N. Damouche and M. Martel, “Mixed precision tuning with Salsa,” in
International Joint Conference on Pervasive and Embedded Computing
and Communication Systems (PECCS), 2018, p. 185–194.

[56] N. Damouche, M. Martel, and A. Chapoutot, “Improving the numerical
accuracy of programs by automatic transformation,” International Journal
on Software Tools for Technology Transfer, vol. 19, no. 4, pp. 427–448,
2017.

[57] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Automat-
ically improving accuracy for floating point expressions,” in Conference
on Programming Language Design and Implementation (PLDI), 2015,
pp. 1–11.

https://sourceforge.net/projects/gaol
https://hal.archives-ouvertes.fr/hal-00430568
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://yann.lecun.com/exdb/mnist
http://www.boutell.com/fracster-src/doubledouble/doubledouble.html
http://www.boutell.com/fracster-src/doubledouble/doubledouble.html
http://verifiedby.me/kv/index-e.html

	Introduction
	Background: Interval Arithmetic
	IGen Overview
	Source-to-Source Interval Compiler
	Interval Library
	Interval Compiler
	Language Extensions

	Automatic Support of SIMD Intrinsics
	Improving Accuracy
	Increasing the Precision with Double-Double
	Accuracy Transformation: Reduction

	Evaluation
	Performance and Accuracy
	Accuracy of Reductions
	Comparison with Affine Arithmetic

	Related Work
	Conclusions
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Notes
	Methodology

	References

