
Dynamic Data Layouts for Cache-conscious Factorization of DFT�

Neungsoo Park, Dongsoo Kang, Kiran Bondalapati and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2562, USA.

fnspark,dskang,kiran,prasannag@ceng.usc.edu

Abstract

Effective utilization of cache memories is a key factor
in achieving high performance in computing the Discrete
Fourier Transform (DFT). Most optimization techniques for
computing the DFT rely on either modifying the computa-
tion and data access order or exploiting low level platform
specific details, while keeping the data layout in memory
static. In this paper, we propose a high level optimization
technique, dynamic data layout (DDL). In DDL, data re-
organization is performed between computations to effec-
tively utilize the cache. This cache-conscious factorization
of the DFT including the data reorganization steps is auto-
matically computed by using efficient techniques in our ap-
proach. An analytical model of the cache miss pattern is
utilized to predict the performance and explore the search
space of factorizations. Our technique results in up to a fac-
tor of 4 improvement over standard FFT implementations
and up to 33% improvement over other optimization tech-
niques such as copying on SUN UltraSPARC-II, DEC Alpha
and Intel Pentium III.

1. Introduction

Discrete Fourier Transform (DFT) is an integral com-
ponent of many signal processing applications on several
classes of platforms. It is one of the key stages in embed-
ded signal processing applications such as Automatic Target
Recognition, Synthetic Aperture Radar, Space-Time Adap-
tive Processing etc. [9, 11]. Algorithmic techniques for ef-
ficient computation of DFT have been explored on differ-
ent architectural platforms [5, 14]. Most of these algorithms
have been developed to efficiently compute the DFT by re-
ducing the number of floating point operations. In current
architectures, the effective bandwidth between the memory

�Supported by the DARPA/DSO OPAL Program through the Carnegie
Mellon University under subcontract number 1-541704-50296.

hierarchy and the processor is the bottleneck for achieving
high performance. The effective memory bandwidth is im-
proved by using cache memories which exploit the spatial
and temporal locality in application data.

The data access pattern of a computation severely im-
pacts the performance of the memory hierarchy [2]. DFT,
like many other scientific applications, exhibits data access
patterns which do not possess spatial locality. The number
of memory words between successive data accesses is called
the stride. Computation of DFT using factorization such
as Cooley-Tukey [4], results in non-unit stride in access-
ing the data in the computation of the Fast Fourier Trans-
form (FFT). This results in significantly more cache misses
than accessing data with unit stride, reducing the effective
memory bandwidth. There have been various approaches
to improve the cache memory performance for such access
patterns. Most of these techniques attempt to modify the
computation and the data access order to improve the spa-
tial and temporal locality. In such approaches, the data lay-
out in memory is static, i.e. it does not change during the
computation.

In this paper we develop the dynamic data layout (DDL)
technique to dynamically reorganize the data during the
computation. Cache-conscious algorithmic design tech-
niques are utilized to determine a factorization of the DFT
and the data layout to make effective use of the cache. The
data layout is modified between the computation stages of
FFT to improve the effective bandwidth. We show that mod-
ifying the data layout dynamically yields performance ben-
efits greater than the data reorganization overhead. Ana-
lytical modeling of the memory hierarchy behavior is uti-
lized to predict the performance of an FFT computation
stage. The analytical model is validated by performing ex-
periments using the cache simulator in SUN’s Shade soft-
ware package [13]. The factorization of the FFT including
the data reorganization steps is automatically computed by
using efficient techniques in our approach.

We achieve up to a factor of 4 improvement over straight-
forward implementations and up to 33% improvement over

0-7695-0574-0/2000 $10.00 � 2000 IEEE

FFT using other optimizations such copying on several plat-
forms including SUN UltraSPARC-II, DEC Alpha and In-
tel Pentium III. We also show that the static approach, with
a fixed data layout, yields factorizations which are not op-
timal and alternate factorizations with dynamic data layout
result in higher performance. Our cache-conscious design
approach yields a portable high performance FFT which is
competitive with other high performance implementations
without using any low level optimizations. DDL is a high
level optimization based on data reorganization and not on
platform specific algorithm or computation restructuring.

In Section 2 we describe previous approaches to improv-
ing the performance of memory hierarchy in computing the
FFT and identify the shortcomings of these approaches in ef-
fectively utilizing available memory bandwidth. Section 3
provides the motivation for dynamic data layout based on
an analytical model of the cache behavior of FFT compu-
tation. We describe our dynamic data layout approach and
determination of the optimal factorization in detail in Sec-
tion 4. The performance improvements obtained using our
approach are illustrated in Section 5. Section 6 draws con-
clusions and gives an overview of the SPIRAL project [12]
framework which encapsulates our approach.

2. Related Work

Optimizing memory hierarchy performance has been
widely studied for computations in general [10], and FFTs
in particular [1, 6, 7, 16]. General techniques for improv-
ing memory hierarchy performance attempt to improve the
spatial and temporal locality. These techniques fall into two
classes: access reordering and static data layout modifica-
tion(i.e. before the computation begins). FFT performance
has been optimized on various platforms by exploiting low
level architectural and compiler features.

2.1. Memory Access Optimizations

Various manual and automated memory access optimiza-
tion techniques have been developed for uniprocessors and
parallel systems [8, 10, 15]. Access reordering involves
modification of the computation to change the order in
which data is accessed. Compiler techniques such as block-
ing (tiling), loop interchange and copying improve the spa-
tial and temporal locality properties of the data being ac-
cessed. Copying optimization [10] utilizes temporary arrays
into which the original array data is copied. This tempo-
rary array exhibits high spatial and temporal locality. But,
the improvement in temporal locality due to copying does
not alleviate the access overheads in constructing the tempo-
rary array. The proposed dynamic data layout is a global op-
timization which reduces the actual data access overheads.
The second class of techniques involve static modification

of data organization in memory such as nonlinear data lay-
outs [3]. In DFT computation using several stages, a single
data layout is not necessarily optimal for all the computa-
tion stages. For large size DFTs, the data is accessed with
different strides in different stages. Any static data layout
results in large number of cache misses for a high percent-
age of these strides.

2.2. FFT Performance Optimizations

Improving the performance of FFT by using various op-
timization techniques has also been considered by various
researchers [1, 6, 7, 16]. The MIT FFTW project utilizes
composition of code for FFTs of small sizes called codelets
to compute FFTs of larger sizes [6]. The codelets are spe-
cial pieces of code optimized based on various low level
techniques. We show that our approach can achieve perfor-
mance improvement without low level optimizations. The
codelets are executed on a specific target to measure the
performance of various optimizations. The larger size FFT
is then composed using the codelets and the optimizations
which perform best on the given target architecture. This ap-
proach assumes that all FFTs of the same size have the same
performance. As we show in Section 3, for the same data
size, FFT performance also depends on the data access pat-
tern. Our high level optimization approach can potentially
be integrated with the low level optimizations of FFTW to
yield higher performance.

Bailey [1] and Gannon et. al [7] have studied the perfor-
mance of FFTs in external memory to develop techniques
for computing the FFT on vector and parallel computers.
The six-step approach by Bailey attempts to reduce the num-
ber of accesses to the external memory or the Solid State
Disk (SSD) by restructuring the computation and perform-
ing efficient transpose of the matrix. Wadleigh [16] de-
veloped a seven-step approach enhancing the six-step ap-
proach by performing cache-based optimizations. The num-
ber of cache misses are reduced by blocking the computa-
tion and the transpose operations. Gannon et. al. study
the performance of a shared memory hierarchy in vector
multi-processors using an algebraic framework. They use
an approach similar to the copying compiler optimization.
These approaches are based on optimizing the memory per-
formance on vector and parallel computers. Though the
techniques we present are analogous to those developed by
Bailey, the problem we consider is at a different level in the
memory hierarchy. In this paper, we develop techniques to
optimize FFT performance on a uniprocessor rather than a
vector or parallel processor. We develop an approach to au-
tomatically compute the factorization of a DFT based on the
cache parameters to minimize the total execution time of the
DFT including the data reorganization overheads.

2

0-7695-0574-0/2000 $10.00 � 2000 IEEE

3. Cache Behavior for Factorized DFT Compu-
tations

To study the performance characteristics of DFT factor-
izations we analyzed the cache behavior of DFT computa-
tions with factorization. We consider a processor with a two
level memory hierarchy consisting of cache memory and
main memory. The sizes of all parameters are measured in
terms of the number of data points. In our FFT implementa-
tion, the size of each data point is either 16 or 8 bytes(double
or single precision complex number). M denotes the size of
the main memory, C denotes the size of the cache memory
and B denotes the size of the cache block. The cache is as-
sumed to implement a write-back policy on a write miss. We
assume the cache is direct mapped but show that the analysis
is similar for any k-way set associative cache. The number
of cache blocks in a direct mapped cache is given by C=B.
AnN -point FFT with a data access stride ofS is represented
asFFT (N;S). In this paper, we assume that all parameters
are powers of 2. Figure 2 illustrates some of the parameters
involved in the computation of the FFT.

A data access can result in a cache hit or a miss. A cache
miss can occur due to various reasons. A compulsory miss
occurs if the data was never accessed before and needs to be
fetched for the first time. A conflict miss occurs when the
data item was previously fetched into the cache block but
was replaced because another data access was mapped to the
same cache block. In FFT execution, once the data elements
are read into the cache, the writes are into the same cache
blocks. Hence, the cost incurred in write back caches due to
write back to memory is very low compared to the cost of
read miss memory accesses.

3.1. Cache Behavior Analysis

Factorization of DFT reduces the number of floating
point operations to be performed. In addition, factorization
reduces the size of each FFT so that the data required for one
FFT fits in the cache. Consider the Cooley-Tukey factoriza-
tion of an N -point DFT as N1 � N2 where N1 < C and
N2 < C. First, N2 N1-point FFTs are performed and then
N1 N2-point FFTs are performed. If the size of each FFT
is less than the cache size, the required data can potentially
fit in the cache and each FFT can have good cache perfor-
mance. But, in the computation of the N1-point FFT, the
data is accessed at a stride greater than 1. The graph in Fig-
ure 1 shows the execution time on SUN UltraSPARC I for
a single 32-point FFT with various data access strides. For
strides larger than 210, the execution time is much higher
than for unit stride.

Consider the computation ofN1-point FFT with strideS,
FFT (N1; S). The cache behavior for performing two con-
secutive FFT computations is illustrated in Figure 2.

0 5 10 15

s (Stride = 2s)

0.0

20.0

40.0

60.0

E
xe

cu
tio

n
T

im
e

(u
se

c)

32 point FFT

Figure 1. Effect of stride data access on exe-
cution time of FFT on UltraSPARC-I

Case I: S = 1
There is a cache miss every time a new cache block is
fetched. The nextB�1 accesses are cache hits. Since all the
data maps to contiguous cache blocks and fits in the cache,
there are no conflict misses. Computing multiple N1-point
FFTs results in N1=B cache misses for each FFT.

Case I : S <= B , N1 * S <= C Case II : S > B , N1 * S <= C Case III : S > B , N1 * S > C

Cache Miss Cache Hit

Block Size(B)
Stride(S)

Cache
Blocks

First FFT Second FFT

S

S

(C/B)

Figure 2. Cache behavior for two consecutive
FFTs(N1=4,B=4,C=32) (I)S=2 (II)S=8 (III)S=16

Case II: S > 1 and N1 � S � C
When the stride is greater than 1, only a fraction of the data
elements fetched into each cache block are useful. The total
number of compulsory cache misses is given by min(N1 �

S=B;N1). As shown in Figure 2 there are no conflict misses
since all the elements map to distinct cache blocks in the
cache. When consecutive N1-point FFTs are performed, the
data elements accessed by successive FFTs are contiguous
in cache. For stride S > B, only every Bth FFT results in
cache misses. The next B � 1 FFTs can be computed with

3

0-7695-0574-0/2000 $10.00 � 2000 IEEE

cache hits for all required data points.
Case III: S > 1 and N1 � S > C
Even if N1 < C, when the stride is large enough so that
N1�S > C, there will be conflict misses in addition to com-
pulsory misses. These conflict misses have two significant
effects on the performance. As shown in Figure 2, there can
be conflict misses even in the computation of a single N1-
point FFT. There can be potentiallyN1 logN1 cache misses
in the logN1 computation stages of a single N1-point FFT.
The spatial reuse by subsequent FFTs as explained in Case
II above is also lost due to the conflict misses. This results
in each FFT having up to N1 logN1 cache misses which is
the total number of data accesses for this FFT stage.

A k-way set associative cache will have similar behav-
ior. The number of cache blocks in a k-way set associative
cache is 1=k times the number of blocks in a direct mapped
cache. The effective block size is larger for the k-way set
associative cache. Since the access pattern of FFT is regu-
lar and periodic, the number of conflict misses is the same
for smaller number of cache blocks with a larger effective
block size.

3.2. Effect of Stride on Performance

The behavior observed in Figure 1 can be explained
based on the above analysis. The execution time increases
significantly for stride greater than 210(e.g. 25 � 211(N �

S) > 215(C)). Since a small part of cache is occupied by
instructions and other cached data, the effective cache size
is slightly smaller than 215 data points. We see this effect re-
sulting in increase in execution time even for stride of 210.
Non-unit stride memory access can potentially increase the
cache misses by a factor of up to logN1 � B. Such large
strided access is very common in factorized FFT computa-
tion. In the above case of N1 � N2 factorization, the stride
in computing the N1-point FFTs is N2. Other optimization
approaches such as FFTW develop high performance ker-
nels for FFTs of various sizes. The performance of such rou-
tines is significantly higher than standard implementations.
But, these optimization techniques can not avoid the perfor-
mance degradation caused by non-unit stride accesses. High
level cache conscious optimizations are required to improve
the performance.

The large performance degradation caused by such non-
unit stride accesses suggests that data reorganization to re-
duce the length of the stride can provide significant perfor-
mance speed-ups. The analytical model of cache behav-
ior analysis provides a framework for predicting the perfor-
mance of a given FFT computation based on the factoriza-
tion. The data access stride is based on the factorization and
independent of implementation. It is possible to predict the
memory access performance of an FFT with a given size and
factorization. The above analysis also indicates the condi-

tions when dynamic data reorganization is beneficial. This
can be utilized for pruning the search space in determining
the optimal factorization for an FFT of given size.

4. Dynamic Data Layouts

Factorization such as Cooley-Tukey can be applied re-
cursively to perform a given DFT. The resulting factoriza-
tion can be represented by a factorization tree. Previous ap-
proaches assume that the cost of executing any node in the
tree is dependent on the size of the node and is independent
of any data access pattern(i.e. state of the memory). As il-
lustrated in Section 3, data access pattern affects the perfor-
mance. To improve performance, data reorganization can be
performed at any node in the factorization tree. In this sec-
tion we focus on optimal factorization of a DFT of a given
size N . An optimal factorization has minimal total execu-
tion time including data access cost. Throughout this paper,
we assume that N is a power of 2.

In dynamic data layout data reorganization is performed
between computation stages to reduce the number of cache
misses incurred during the computation. Data reorganiza-
tion itself involves memory accesses which is an overhead.
For dynamic data reorganization to be beneficial, this over-
head should be lower than the performance gains that can be
obtained.

4.1. Cache-conscious factorization of DFT

Performing dynamic data reorganization involves two
data reorganization steps for each factorization step. Con-
sider the factorization of anN -point FFT into 2k� N

2k
. The

reorganization steps are performed before the 2k-point FFTs
and before the N=2k-point FFTs. The computation can be
factorized recursively to yield a factorization tree. The data
access strides resulting from the factorization at a node of
size N , with a data access of strideS are shown in Figure 3.
The cost of performing an optimalN -point FFT can be com-
puted by the recursive equation:

FFT (N;S) = min
k;s1

[D(S �
N

2k
; s1) + FFT (2k; s1)�

N

2k
+

D(2k � s1; 1) + FFT (
N

2k
; 1)]

1 � k � logN and 1 � s1 �
N

2k

D(si; sj) denotes the cost of performing the data reorga-
nization to convert a stride si access to stride sj access.
When si = sj, no data reorganization is performed. When
si > 1 and sj = 1, a non-unit stride access is converted
to a unit-stride access. We perform data reorganization us-
ing blocked data movement. The reorganization overhead is
O(N

B
) memory accesses for DFT data of sizeN , whereB is

the cache block size.

4

0-7695-0574-0/2000 $10.00 � 2000 IEEE

N

2k N/2k

Stride = SStride = S*N/2k

Stride = S

Figure 3. Strides resulting from Cooley-Tukey
factorization

The solutionspace for finding the optimal factorization of
an DFT computation is large. The search space includes all
possible factorization trees and all possible strided accesses.
Even with the assumption of all factorizations and strides
being powers of two, the solution space is still large. The
search space for optimal factorization including dynamic
data reorganization can be reduced based on the follow-
ing observations: (1) The factorization tree contains many
nodes which are duplicated at several parts of the tree. These
costs need not be computed every time but can be stored and
utilized. (2) As shown in Figure 3, the stride of a node in
the tree is dependent on the stride of its parent node and the
size of the factor. This constraints the strides at various parts
of the tree and reduces the search space. (3) The analysis
in Section 3 illustrates that data reorganization is beneficial
only when the product of the size of the FFT and the stride
is greater than the cache size(N � S > C).

These properties help us search the space by using dy-
namic programming. The number of different solution
points for sub-problems to be computed is given by the prod-
uct of the number of possible sizes for the factors and the
number of strides. The initial values to be computed are
the costs for performing radix-2 FFTs of different sizes with
different strides and the costs for performing data reorgani-
zations between various strides. The iterative equation for
computing the optimal factorization can be defined as:

F [i; j] = min
p;q

fD(2j �
2i

2p
; 2q) + F [p; q] +D(2p+q

; 1)

+F [i� p; 1]g

1 � p � logN and 0 � q < logN

F [i; j] represents the optimal cost to compute an FFT of
size 2i with an input data stride of 2j . The initial values of
F [i; j] represent computation of these FFTs by directly us-
ing radix-2 computation. It has to be noted however that the
initial values can represent any optimized implementation of
FFT(such as that in FFTW). This facilitates integration of
low level optimized FFT libraries into our high level opti-
mization technique.

In the ith iteration, the cost of computing FFT of size
2i with various factorizations and dynamic data reorgani-
zation options are considered. If we assume that optimal
costs for all FFTs of sizes smaller than 2i have been deter-
mined in iterations 1 : : : i� 1, then the ith iteration will de-
termine the optimal cost of FFT of size 2i for all strides 2j,
0 � j � logN . When N is a power of 2, the various possi-
ble factorizations and strides are also powers of 2. The opti-
mal cost includes the various possible Cooley-Tukey factor-
izations of different sizes for each step and the possible data
reorganization options for each factorization step. The time
complexity of the algorithmisO(log3N). The factorization
computed using our technique provides a factorization with
optimal execution time which includes the data reorganiza-
tion cost.

4.2. Alternate Factorizations with Dynamic Data
Layouts

Factorization can also be explored using only static data
layout where the data layout does not vary during the com-
putation. We can search the solution space with a fixed data
layout without no dynamic data reorganization. After de-
termining an optimal factorization with static data layout,
we can perform data reorganization between the computa-
tion to see if any speed-up can be obtained. But, this solu-
tion might be sub-optimal since a different factorization in-
tegrating data reorganization in the search phase might have
a lower execution cost. As shown in Table 1 we found ex-
perimentally that an alternate factorization for dynamic data
layout can have a better performance than the best factor-
ization for the static approach. The experiments were per-
formed on an UltraSPARC-I with a clock speed of 143 MHz
and cache size of 1MB(27 data points). The factorization for
the 219 size DFT illustrates that the order of factors for the
same factorization also affects the execution time since it af-
fects the data access stride during the computation.

Table 1. Alternate factorizations using dy-
namic data layouts

DFT Factorization Static Layout Dynamic Layout
Size Exec. Time Exec. Time

(ms) (ms)
217 29 � 28 472.543 397.167

27 � 210 498.440 381.202
219 210 � 29 2068.122 1703.501

29 � 210 2078.551 1692.592

5. Performance Results

In this section, we present simulation results as well as
experimental results of the cache performance on various

5

0-7695-0574-0/2000 $10.00 � 2000 IEEE

platforms. The memory hierarchy in typical state-of-the-art
processors consists of split L1 caches (instruction and data
cache), a unified L2 cache and a main memory. In our sim-
ulations and experiments, we focus on the L2 cache behav-
ior. Three different approaches were evaluated on various
platforms - dynamic data layout (DDL), static data layout
with copying optimization (SDL) and the naive radix-2 FFT
(Naive).

12 13 14 15 16 17 18 19 20 21

n (FFT size =2n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
is

s
R

at
e

(%
)

Cache size = 512 KB, Block size = 64 Bytes, Direct-mapped

SDL
DDL

Figure 4. Miss rates for a fixed cache size with
various FFT sizes

5.1. Cache Simulation Results

To validate our analysis of the cache performance in DDL
and SDL approaches, we performed simulations using the
cache simulator in the SUN Shade simulator [13]. We fo-
cus on the data cache misses since the number of instruc-
tion cache misses in L2 cache is very low(0.008%). The L2
cache is assumed to be direct mapped in our simulations.
As shown in Section 3, the FFT performance with a direct-
mapped cache is similar to the performance with a k-way set
associative cache of the same total cache size(C). We stud-
ied two different aspects of the performance of the cache.
First, we studied the cache miss rate for FFTs of different
sizes with a fixed cache block size. Second, we performed
simulations by varying the cache block size(B) for a fixed
size FFT(N).

For FFT size larger than the cache size we observed that
the proposed DDL approach has significantly better cache
performance than SDL approach. The graphs in Figure 4
show the cache miss rate as the size of the FFT is varied.
For small size FFTs, DDL has no significant benefit com-
pared with SDL. When the size of the FFT is larger than the
cache size, the miss rate of DDL is much lower than that of
SDL. For a 512 KB cache, 215 points can fit in the cache.
As the number of FFT points increases from 214 to 216, the

32 64 128 256 512 1024

Block size (Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

M
is

s
R

at
e

(%
)

FFT size = 256 K points, Direct-mapped cache size = 512 KB

SDL
DDL

Figure 5. Miss rates for a single precision
256K-point FFT with various cache block
sizes

miss rate increases significantly from 0.695% to 4.081% in
SDL. However, the miss rate in DDL increases from 0.560%
to 3.228% only. This corroborates our analysis in Section 3
that for FFTs of size larger than the cache size, DDL has sig-
nificantly lower number of cache misses compared to SDL.

Figure 5 and Figure 6 show the cache miss rate as the
cache block size is varied. When the cache block size is 64
bytes(same as the cache block size in SUN UltraSPARC-II),
the cache miss rate is 3.98% in SDL and 2.96% in DDL.
DDL has a 25% lower miss rate compared to SDL. As we
expect from our analysis in Section 3, DDL approach uti-
lizes larger block sizes more efficiently than SDL approach.

5.2. Experimental Results

We studied the benefits of the proposed DDL approach
on three different platforms. Table 2 summarizes the rele-
vant architectural parameters of various platforms used in
our implementations. The graphs in Figures 7 to 12 show
the performance achieved on different platforms in MFlops
for FFTs of various sizes. The dotted vertical line in each
figure indicates the point where the size of the FFT is same
as the cache size.

The graphs in Figure 7 and Figure 8 demonstrate the per-
formance on SUN UltraSPARC-II using double and single
precision, respectively. When FFT size is larger than the
cache size, DDL has significantly higher performance than
SDL and Naive approach. For large FFTs, DDL is up to
33% faster than SDL when using single precision and up to
25% faster using double precision. Figure 9 and Figure 10
show the performance achieved on DEC Alpha using dou-
ble and single precision, respectively. When the number of
FFT points is 220, DDL is 38.9% faster than SDL using sin-

6

0-7695-0574-0/2000 $10.00 � 2000 IEEE

Table 2. Parameters of the platforms
Processor SUN Ultra-II DEC Alpha 21164 Intel Pentium III

Clock (MHz) 400 300 500
L2 Cache size (KB) 2048 96 512

L2 Cache block size (Bytes) 64 64 32
OS Solaris 2.7.x UNICOS/mk 2.0.4.48 Linux 2.2.5

Compiler gcc 2.8.1 Cray Standard C Ver. 6.1.0.1 gcc egcs-2.91.66
Optimize option -O3 -Wall -O3 speed, pentium pro

32 64 128 256 512 1023

Block size (Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
is

s
R

at
e

(%
)

FFT size = 256 K points, Direct-mapped cache size = 512 KB

SDL
DDL

Figure 6. Miss rates for a double precision
256K-point FFT with various cache block
sizes

gle precision and is 28.9% faster than SDL using double pre-
cision.

On the Pentium III, the performance improvement of
DDL with single precision is up to 23% compared with SDL
as shown in Figure 11. Using double precision, the perfor-
mance of DDL is up to 10% higher than SDL(Figure 12).
The performance improvement on the Pentium III is lower
than other platforms. This lower performance benefit is as
expected from our cache performance analysis, since Pen-
tium III has a smaller cache block size(32 bytes) compared
to the cache block size of UltraSPARC-II and Alpha(64
bytes).

In summary, the proposed DDL approach provides sig-
nificant performance benefits compared to SDL and the
Naive approaches on several different classes of architec-
tures. DFT computation with dynamic data layout inte-
grated into the computation runs around 25% faster on var-
ious platforms. Significantly, all the experiments were per-
formed with the same source code in C with no platform spe-
cific optimizations. The only modification performed was in

9 14 19

n (FFT size = 2n)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

M
flo

ps

SDL
DDL
Naive

Figure 7. Sustained performance of SUN
UltraSPARC-II(double precision)

the time measurement function on different platforms. The
SDL approach includes the copying software optimization
technique. This substantiates our claim that DDL is a high
level optimization which can benefit DFT computation on
various platforms. We believe it is also possible to obtain
performance benefits by using the proposed dynamic data
layout approach even for DFT computation which has been
highly optimized for a specific platform.

6. Conclusions

We proposed a new high level optimization technique,
dynamic data layout, which performs dynamic data reorga-
nization to improve cache performance. We developed effi-
cient techniques to compute the data reorganization and FFT
factorization based on cache-conscious algorithmic tech-
niques. Our simulation and implementation results illus-
trate that our cache-conscious algorithmic techniques can
achieve significant performance improvements. We showed
a factor of 4 improvement over standard implementations of
FFT and up to 33% improvement over other optimizations
such as copying. On all the experimental platforms, DDL

7

0-7695-0574-0/2000 $10.00 � 2000 IEEE

9 14 19 24

n (FFT size = 2n)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

M
flo

ps

SDL
DDL
Naive

Figure 8. Sustained performance of SUN
UltraSPARC-II(single precision)

9 14 19

n (FFT size =2n)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

M
flo

ps

SDL
DDL
Naive

Figure 9. Sustained performance of Alpha
21164(double precision)

consistently achieves higher performance than SDL when
the size of the FFT is larger than the cache size.

The work reported here is a component of the Signal Pro-
cessing algorithms Implementation Research for Adaptable
Libraries(SPIRAL) project [12]. An overview of the SPI-
RAL framework is given in Figure 13. The SPIRAL frame-
work is being developed collaboratively by Carnegie Mel-
lon University, Drexel, MathStar Inc., University of Illinois
at Urbana Champaign and University of Southern Califor-
nia. The SPIRAL project is developing a unified framework
for realization of portable high performance implementa-
tions of signal processing algorithms from a uniform repre-
sentation of the algorithms. The cache performance mod-
els form a component of the high level models in the frame-
work. Multi-level performance models and benchmarking
data will be utilized to explore the algorithm and implemen-

9 14 19

n (FFT size =2n)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

M
flo

ps

SDL
DDL
Naive

Figure 10. Sustained performance of Alpha
21164(single precision)

10 15 20

n (FFT size = 2n)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

M
flo

ps

SDL
DDL
Naive

Figure 11. Sustained performance of Pentium
III(double precision)

tation search space using machine learning techniques.

References

[1] D. H. Bailey. FFTs in External or Hierarchical Mem-
ory. Journal of Supercomputing, 4, March 1990.

[2] D. H. Bailey. Unfavorable Strides in Cache Memory
Systems. Scientific Programming, 4, 1995.

[3] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra,
and M. Thottethodi. Nonlinear Array Layouts for Hi-
erarchical Memory Systems. ACM International Con-
ference on Supercomputing, 1999.

8

0-7695-0574-0/2000 $10.00 � 2000 IEEE

11 16 21

n (FFT Size =2n)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

M
flo

ps

SDL
DDL
Naive

Figure 12. Sustained performance of Pentium
III(single precision)

[4] J. W. Cooley and J. W. Tukey. An Algorithm for
the Machine Calculation of Complex Fourier Series.
Math. Comp., 19, 1965.

[5] A. Dandalis and V. K. Prasanna. Fast parallel imple-
mentation of DFT using configurable devices. Inter-
national Workshop on Field Programmable Logic and
Applications, September 1997.

[6] M. Frigo and S. G. Johnson. FFTW: An Adaptive Soft-
ware Architecture for the FFT. ICASSP, 3, 1998.

[7] D. Gannon and W. Jalby. The Influence of Memory
Hierarchy on Algorithm Organization: Programming
FFTs on a Vector Multiprocessor. The Characteristics
of Parallel Algorithms, The MIT Press, 1987.

[8] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Max-
imizing Multiprocessor Performance with the SUIF
Compiler. IEEE Computer, December 1996.

[9] Embeddable Systems Homepage.
www.ito.arpa.mil/ResearchAreas/Embeddable.html.

[10] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The
Cache Performance and Optimizations of Blocked Al-
gorithms. ASPLOS IV, April 1991.

[11] W. Liu and V. K. Prasanna. Utilizing the power of
high-performance computing. IEEE Signal Process-
ing, September 1998.

[12] SPIRAL Project. www.ece.cmu.edu/~spiral/.

[13] SHADE Simulator. http://sw.sun.com/shade/.

Formula

Generator

Formula

Translation

Performance

Evaluation

Models

Models

Model

Refinement

Signal Processing
Algorithms and

Uniform
Algebraic

Formulation

Domain
Specific

Compiler
Technology

High-level

Micro

Applications

Figure 13. SPIRAL project overview

[14] J. Suh and V. K. Prasanna. Parallel Implementations of
Synthetic Aperture Radar on High Performance Com-
puting PLatforms. International Conference on Algo-
rithms and Architectures for Parallel Processing, De-
cember 1997.

[15] E. Torrie, M. Martonosi, C.-W. Tseng, and M. W. Hall.
Characterizing the Memory Behavior of Compiler-
Parallelized Applications. IEEE Transactions on Par-
allel and Distributed Systems, December 1996.

[16] K. R. Wadleigh. High Performance FFT Algorithms
for Cache Coherent Multiprocessors.

9

0-7695-0574-0/2000 $10.00 � 2000 IEEE

