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Abstract

This paper presents a self-adapting distributed
memory package for computing the Walsh-
Hadamard transform (WHT), a prototypical fast
signal transform, similar to the fast Fourier trans-
form. A family of distributed memory algorithms
are derived from different factorizations of the
WHT matrix. Different factorizations correspond
to different data distributions and communica-
tion patterns. Thus, searching over the space of
factorizations leads to the best data distribution
and communication pattern for a given platform.
The distributed memory WHT package provides
a framework for converting factorizations of the
WHT matrix into MPI programs and exploring
their performance by searching the space of fac-
torizations.

1 Introduction

In [6] a package for automatically implement-
ing and optimizing the Walsh-Hadamard trans-
form (WHT) was presented, and in [2] this pack-
age was extended to provide self-optimizing par-
allel implementations on symmetric multiproces-
sors. Further sequential improvements based on
the techniques of [10] and [5] have also been
incorporated. The parallel package was imple-

mented using OpenMP, a standard for shared-
memory parallel programming. In this paper the
package is extended further to provide parallel
implementations on distributed memory parallel
computers.

The package provides a flexible software ar-
chitecture that can be configured to implement
many different algorithms, with potentially differ-
ent performance, for computing the WHT. Algo-
rithmic choices are represented by a simple gram-
mar which provides mathematical formulas cor-
responding to different algorithms. Automatic
optimization is performed by searching through
the space of WHT formulas for the formula that
leads to the best performance. This package and
method of self-adaptation is similar to the ap-
proach used by FFTW [4], a well-known and ef-
ficient package for computing the FFT.

Distributed memory parallel algorithms are
also obtained from mathematical formulas corre-
sponding to different factorizations of the WHT
matrix. Using a natural interpretation of the for-
mulas based on a block cyclic distribution of the
input signal, alternate distributed memory algo-
rithms can be generated and explored. The result-
ing programs are implemented using MPI, and the
permutations arising in the factorizations that re-
quire global data exchange are implemented us-
ing different message passing primitives. Alter-
native strategies for implementing different per-
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mutations are explored, and a factor of three im-
provement is obtained over an approach based on
the MPI Alltoall primitive. There are many possi-
ble sequences of permutations that can be used to
implement the WHT, and since different permuta-
tions can lead to different communication patterns
and costs, several possibilities are explored to se-
lect the best communication pattern on a given
computing platform.

The WHT is a prototypical digital signal pro-
cessing (DSP) transform with applications to sig-
nal and image processing [1] and coding theory
[8]. Fast algorithms for computing the WHT are
similar to the fast Fourier transform (FFT) and its
variants [3, 7, 12]. The only difference is that
there are no twiddle factors and bit-reversal. The
lack of these extra complications allows us to fo-
cus on the role of different divide and conquer
strategies and data access patterns as they relate
to performance.

In Section 2 the WHT is defined and the se-
quential WHT package is reviewed. A family
of distributed memory algorithms for computing
the WHT are derived in Section 3, and the im-
plementation of the distributed memory permuta-
tions arising in these algorithms is discussed in
Section 4. Sections 5 and 6 provides empirical
performance data for distributed permutation and
WHT computation on a cluster of 32 processors.
Concluding remarks and future work are provided
in Section 7.

2 Walsh Hadamard Transform

The WHT applied to a signal x is the matrix-
vector product WHTN · x, where the signal x is
represented by a vector of size N = 2n and the
transform WHTN is represented by an N×N ma-
trix. The WHT is conveniently defined using the
tensor (Kronecker) product. The tensor product
of two matrices is the block matrix whose (i, j)
block is equal to the (i, j) element of the first ma-

trix multiplied by the second matrix.

WHTN =
n⊗

i=1

WHT2 =

n︷ ︸︸ ︷
WHT2 ⊗ · · · ⊗ WHT2,

where

WHT2 =

[
1
1

1
−1

]
.

For example,

WHT4 = WHT2 ⊗ WHT2

=




1
1
1
1

1
−1

1
−1

1
−1
−1
−1

1
−1
−1

1


 .

Algorithms for computing the WHT can be ob-
tained by factorizations of the transform matrix
WHTN . The following factorization encompasses
a wide range, O(7n), of possible algorithms. Let
n = n1 + · · · + nt be a partition of the exponent
n and let Im denote the m × m identity matrix.

WHTN =
t∏

i=1

(I2n1+···+ni−1⊗WHT2ni⊗I2ni+1+···+nt ).

(1)
Equation 1 can be interpreted as a triply nested

loop (see [6]). The smaller transforms, WHT2ni

are computed recursively using further applica-
tions of Equation 1. Each algorithm computed
this way has exactly the same arithmetic cost,
N lg(N) operations, but has different data access
patterns, and consequently can have vastly differ-
ent performance. The WHT package [6] provides
an environment for implementing and exploring
the performance of this family of algorithms. The
package uses search to find the “best” algorithm
on a given computing platform.

3 Distributed Memory Algorithms
for Computing the WHT

Equation 1 in Section 2 can be modified to ob-
tain a family of distributed memory parallel al-
gorithms for computing the WHT. Equation 1 is
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modified using properties of the tensor product.
Let Lmn

n be the permutation defined by Lmn
n (u ⊗

v) = v ⊗ u, where u and v are arbitrary vectors
of size m and n respectively. L is called a stride
permutation since it permutes a vector by gather-
ing elements at stride. In particular, Lmn

n maps
the element at index in + j to location jm + i. It
is easy to show that (Lmn

n )−1 = Lmn
m and (see

the Commutation Theorem in [7]) that if A is
an m × m matrix and B is and n × n matrix,
Lmn

m (B ⊗ A)Lmn
n = A ⊗ B.

Applying the Commutation theorem to each of
the factors in Equation 1 and observing that Im ⊗
In = Imn leads to the following equation.

WHTN =
t∏

i=1

LN
N(i)(IN/Ni

⊗ WHTNi
)LN

N/N(i),

(2)
where Ni = 2ni and N(i) = N1 · · ·Ni =
2n1+···+ni . Using the multiplicative property of
stride permutations, Lrst

s Lrst
t = Lrst

st , the permu-
tations in consecutive factors can be combined to
obtain

WHTN =
t∏

i=1

LN
Ni

(IN/Ni
⊗ WHTNi

). (3)

This equation is similar to the Pease variant of the
FFT [11].

Equations 2 and 3 can be interpreted as dis-
tributed memory parallel algorithms where the
permutations L exchange data amongst the pro-
cessors. Let N = 2n and assume that the number
of processors P = 2p and that the input vector x
is equally distributed amongst the P processors in
a block cyclic distribution. Let (in−1in−2 · · · i0)
be the binary representation of the index of the
i-th element of x, then the leading p bits (pid,
the processor id) indicate the processor contain-
ing x(i) and the trailing n − p bits indicate the
local offset where x(i) is stored. Using this dis-
tribution, the computation of IN/Ni

⊗WNi
, where

Ni ≤ N/P , is obtained by having each proces-
sor compute IN/NiP ⊗ WNi

. The stride permuta-
tions redistribute the data amongst the processors.

Moreover, the indexing required by the redistri-
bution is easily determined from the binary rep-
resentation of the indices. The index calculation,
scheduling, and communication patterns of these
permutations are explored in the next section.

Because of the two identity matrices, there are
many permutations Θi such that Θ−1

i (I2n−ni ⊗
W2ni )Θi = (I2n1+···+ni−1 ⊗ W2ni ⊗ I2ni+1+···nt ).
This degree of freedom can be used to design al-
ternative distributed memory WHT algorithms of
the form

WHTN =
t∏

i=1

Πi(IN/Ni
⊗ WHTNi

), (4)

where Πi, i = 1, . . . , t is a sequence of permuta-
tions. The sequence Πi should be chosen to min-
imize communication cost on a given distributed
memory computer.

4 Bit Permutations

In this section the distributed memory imple-
mentation of permutations arising in Equation 4
is discussed. In order to simplify the implementa-
tion, the permutations Πi are restricted to a class
of permutations called bit (or tensor) permuta-
tions, which include stride permutations and other
well known permutations such as bit-reversal. A
bit permutation is a permutation of N = 2n ele-
ments obtained by permuting the bits in the binary
representation of the indices i = 0, . . . , N−1. Ta-
ble 1 shows three examples of size 24 = 16. Let
σ be a permutation of the integers {0, 1, . . . , n −
1}. The bit permutation Bσ is the permutation
of {0, 1, . . . , 2n − 1} obtained by permuting the
bits in the binary representation of the numbers
i = 0, 1, . . . , 2n − 1. Using cycle notation for σ,
the permutations in Table 1 are B(2,3), B(0,2) and
B(1,3)(0,2). The stride permutation LN

2k is the bit
permutation B(0,k−1,k−2,...,1) obtained by rotating
the bits k positions to the right.

Not all bit permutations can be used for the
permutations occurring in Equation 4. In the
derivation of Equation 4, the permutation Θi must
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Table 1. Example Bit Permutations
b2b3b1b0 b3b0b1b2 b1b0b3b2

0000 = 0 0000 = 0 0000 = 0
0001 = 1 0100 = 4 0100 = 4
0010 = 2 0010 = 2 1000 = 8
0011 = 3 0110 = 6 1100 = 12
1000 = 8 0001 = 1 0001 = 1
1001 = 9 0101 = 5 0101 = 5
1010 = 10 0011 = 3 1001 = 9
1011 = 11 0111 = 7 1101 = 13
0100 = 4 1000 = 8 0010 = 2
0101 = 5 1100 = 12 0110 = 6
0110 = 6 1010 = 10 1010 = 10
0111 = 7 1110 = 14 1110 = 14
1100 = 12 1001 = 9 0011 = 3
1101 = 13 1101 = 13 0111 = 7
1110 = 14 1011 = 11 1011 = 11
1111 = 15 1111 = 15 1111 = 15

have the property that Θ−1
i (I2n−ni ⊗ W2ni )Θi =

(I2n1+···+ni−1 ⊗ W2ni ⊗ I2ni+1+···nt ). Let n(i) =
n1 + · · ·+ni. Then, if Θi is a bit permutation, the
bits in positions n−n(i) through n−n(i+1) must
be permuted to the leading ni bits. The remaining
bits can be permuted in an arbitrary fashion. This
leaves (n − ni)! possible choices for Θi.

The redistribution of data of size N = 2n stored
in a block cyclic distribution on P = 2p proces-
sors caused by a bit permutation can be deter-
mined by the permutation of the bits in the pid
(leading p bits) and offset (trailing n − p bits)
fields. For example, assume that 16 elements are
stored on 4 processors. Initially processor 0 stores
x0, x1, x2, x3, processor 1 stores x4, x5, x6, x7,
processor 2 stores x8, x9, x10, x11, and processor
3 stores x12, x13, x14, x15. After the bit permu-
tation that swaps bits 2 and 3 (the first permuta-
tion in Table 1) processor 0 contains x0, x1, x2, x3,
processor 1 contains x8, x9, x10, x11, processor 2
contains x4, x5, x6, x7, and processor 3 contains
x12, x13, x14, x15. This permutation permutes the
entire blocks of elements at each processor. In

x[00]
x[01]
x[10]
x[11]

0P

x[00]
x[01]
x[10]
x[11]

P1

x[00]
x[01]
x[10]
x[11]

P2

x[00]
x[01]
x[10]
x[11]

P3

b3 b1b2 b0

x[00]...
.x[11]

x[11]...
.x[00]

Figure 1. Dataflow on global bit permutation

this case only processors 1 and 2 exchange blocks.
Figure 1 shows this communication pattern.

After permuting the data with the second
permutation in Table 1, processor 0 contains
x0, x4, x2, x6, processor 1 contains x1, x5, x3, x7,
processor 2 contains x8, x12, x10, x14, and pro-
cessor 3 contains x9, x13, x11, x15. Observe that
half of processor 0’s data is exchanged with half
of processor 1’s data, and half of processor 2’s
data is exchanged with processor 3’s data. Fig-
ure 2 shows the communication pattern required
by this permutation. Similarly after permut-
ing the data with the third permutation in Ta-
ble 1, processor 0 contains x0, x4, x8, x12, pro-
cessor 1 contains x1, x5, x9, x13, processor 2 con-
tains x2, x6, x10, x14, and processor 3 contains
x3, x7, x11, x15. In this case the communication
pattern is “all-to-all” where each processor sends
one fourth of its data to every processor including
itself. Figure 3 shows the communication pattern
required by this permutation.

These examples can be generalized. Let k be
the number of bits that are exchanged between
the pid and offset fields. Then each process
sends N/2k data elements each to 2k different
processes. If no bits cross the pid/offset boundary
then the corresponding bit permutation induces a
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x[00]
x[01]
x[10]
x[11]
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x[00]
x[01]
x[10]
x[11]

P1

x[00]
x[01]
x[10]
x[11]

P2

x[00]
x[01]
x[10]
x[11]

P3

b3 b1b2 b0

x[01],x[11]

x[01],x[11]

x[10],x[00]

x[10],x[00]

Figure 2. Dataflow on mixed global/local bit
permutation

b1b2 b0
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x[11]

x[00]
x[01]
x[10]
x[11]

x[01]

x[00]

x[11] x[00]

x[10]

x[11]

x[11]

x[01]

x[10]

x[00]

x[01]

x[10]

x[00]
x[01]
x[10]
x[11]

P2

b3

Figure 3. Dataflow on all-to-all bit permutation

permutation on the P processes since all of the
data from each process is permuted as a block.
Such a permutation is called a global permutation.
If in fact the pid bits remain fixed then there is no
communication between processes, and the per-
mutation is purely local.

A global bit permutation, Bσ can be imple-
mented using MPI SendRecv. Each process com-
putes the addresses it will send data to and re-
ceive data from. The destination address is equal
to σ(pid) and the source address is equal to
σ−1(pid). A general bit permutation with k bits
crossing the pid boundary can be implemented
as a sequence of k global permutations each ex-
changing N/(P2k) data elements. In this case,
the communication schedule, i.e. sequence of
permutations, must be calculated using σ and the
number processes involved in the communication.
Once the schedule is determined each process
loops through a sequence of global permutations
using the schedule. For each permutation appro-
priate data, determined by σ, must be gathered
from the input vector into a buffer before sending
and scattered from the receiving buffer to the out-
put vector. The gather and scatter operations may
require local permutations. In some cases MPI
types can be constructed to describe the patterns.

Two examples will be given to illustrate how a
schedule can be calculated from the action of σ on
the binary representations of the indices. Let N =
27 and assume P = 23. The first example is the
stride permutation L128

4 and the second example
is the permutation B(0,6)(1,5). In both examples,
the local data size is 16 and each process send 4
elements to four different processes.

The stride permutation rotates the bits two
places to the right.

b6b5b4|b3b2b1b0 → b1b0b6|b5b4b3b2 (5)

For a fixed process, the low order 4 bits vary over
the indices of the 16 local data elements. Thus the
process with pid b6b5b4 sends data to the four pro-
cesses with pid equal to ∗ ∗ b6 where ∗ ∈ {0, 1}.
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Table 2. Communication schedules
Schedule for L128

4

0 1 2 3 4 5 6 7
0 2 4 6 1 3 5 7
2 0 6 4 3 1 7 5
4 2 0 6 5 7 1 3
6 4 2 0 7 5 3 1

Schedule for B(0,6)(1,5)

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
2 3 0 1 6 7 4 5
4 5 6 7 0 1 2 3
6 7 4 5 2 3 0 1

This lead to the following process map.

pid → processor set

000 = 0 → {0, 2, 4, 6}
001 = 1 → {0, 2, 4, 6}
010 = 2 → {0, 2, 4, 6}
011 = 3 → {0, 2, 4, 6}
100 = 4 → {1, 3, 5, 7}
101 = 5 → {1, 3, 5, 7}
110 = 6 → {1, 3, 5, 7}
111 = 7 → {1, 3, 5, 7}

A schedule can be obtained by cyclically rotat-
ing the receiving processors. This is shown in Ta-
ble 2.

The data to be sent from a given process to a
specified process can be determined from the per-
muted bit sequence. In this case, process b6b5b4

sends data with indices b3b2b1b0 to process b1b0b4.
The data is stored in location b3b2b6b5. For ex-
ample process 0 sends x3, x7, x11, x15 to process
6, which stores the four elements in locations
0, 4, 8, 12.

A similar analysis can be done for the second

example.

b6b5b4|b3b2b1b0 → b1b0b4|b3b2b6b5, (6)

which leads to the following process map.

pid → processor set

000 = 0 → {0, 2, 4, 6}
001 = 1 → {1, 3, 5, 7}
010 = 2 → {0, 2, 4, 6}
011 = 3 → {1, 3, 5, 7}
100 = 4 → {0, 2, 4, 6}
101 = 5 → {1, 3, 5, 7}
110 = 6 → {0, 2, 4, 6}
111 = 7 → {1, 3, 5, 7}

In this example, the communication pattern de-
composes into two subsets each requiring an “all-
to-all” communication. This allows a schedule
to be created which requires only point-to-point
communication (i.e. each permutation in the se-
quence is of order 2). The schedule is shown in
Table 2.

5 Performance of Distributed Mem-
ory Permutations

Several families of bit permutations were im-
plemented for use in the distributed memory
WHT package. Preliminary experiments were
performed on a cluster of 32 Pentium III pro-
cessors (450 MHz), each equipped 512 MB of
8ns PCI-100 memory and 2 SMC 100mbps fast-
Ethernet cards. The slow interconnect speed leads
to certain choices and conclusions that we do not
expect to hold with faster communication.

The two bit-permutations implemented were
stride permutations and a multi-bit swap. As in-
dicated in Section 3 stride permutations provide
sufficient flexibility to implement an arbitrary dis-
tributed WHT split. However, stride permutations
always involve some global communication, do
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not generally allow a point to point communica-
tion scheme (see Section 4), and have very few
fixed points, and data access patterns with po-
tentially poor strides, which may lead to greater
network traffic and higher cost for local permu-
tations. As an alternative multi-bit swap permu-
tations were implemented. A multi-bit swap per-
mutation swaps two contiguous regions of k bits.
Compared to a stride permutation with stride 2k,
a multi-swap permutation with swap region of k
bits has many more fixed points and potentially
less network traffic. Moreover, since it is of order
two, it always allows point to point communica-
tion to be used for global communication (see the
last example in Section 4). In the extreme case
when only two bits are swapped, half of the data
is fixed, and either the communication is purely
local or each process exchanges half of its data
with exactly one other process.

When implementing the swap permutation
there are three cases two consider depending on
whether both swap regions are in the local index
bits, one region is in the local index bits and one
region is in the pid bits, or one swap region over-
laps the pid/offset boundary. Similarly the imple-
mentation of a stride permutation requires three
cases: 1) when the stride 2k is less than or equal
to the number of processors 2p, 2) when N/2k is
less than the number of processors, and 3) when
2p < 2k < N/2p.

For both permutations, when the number of
bits crossing from the local index region to the
pid region is equal to p, then the communica-
tion is all-to-all. When this is the case the all-
to-all communication pattern can be implemented
with a sequence of order two permutations requir-
ing only point-to-point communication (see Sec-
tion 4). More generally, point to point communi-
cation can be used whenever the communication
pattern can be decomposed into disjoint sets of
all-to-all communication. This is always the case
for multi-swap permutations, but as was shown in
Section 4 this can not be done for for cases 1) and
3) for the stride permutation.

An all-to-all communication pattern can be im-
plemented with a sequence of permutations given
by the rows of a latin square. A latin square is an
n × n array containing n different numbers with
each number occuring exactly once in each row
and column. The (i, j) element of the array indi-
cates the process that process j will send its data
to in the i-stage. Since the elements in each row
are distinct, the i-th communication stage is a per-
mutation, and since the elements in each column
are distinct the sequence of stages provide and all-
to-all communication. If the latin square has the
additional property that the (i, j) element is k if
and only if (i, k) element is j, then each permuta-
tion is of order two and the communication stages
are made up of pairwise exchanges. Such a latin
square is called a latin square of order two.

A latin square of size n can be constructed us-
ing the multiplication table of a group of size n.
The cyclic communication pattern is based on the
group table of the cyclic group of order n. A latin
square of size N = 2n of order two can be con-
structed from the group table of the group equal
to the n-fold direct product of cyclic groups of or-
der two. The following example shows an order
two latin square of size eight constructed this way.
The recursive pattern makes it clear how to con-
struct an arbitrary latin square of size 2n with this
property. 



0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0




Table 3 compares three methods for imple-
menting all-to-all communication on the cluster
using MPI. The first method uses the point-to-
point scheme implemented with MPI Sendrecv,
the second, called “three-way talking” uses a
cyclic scheduling algorithm implemented with
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Table 3. Performance comparison of three all-
to-all communication schemes

Point-to-point Three-way talking MPI Alltoall
log(localN) Time(sec) Time(sec) Time(sec)

25 45.39 63.17 140.50
24 22.67 29.99 78.70
23 11.33 15.02 44.23
22 5.76 7.72 20.89
21 2.93 3.85 8.44
20 1.62 2.12 5.15
19 0.68 1.12 2.64
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Figure 4. Performance of multi-swap permu-
tations

MPI Sendrecv, where at each stage a process re-
ceives data from one process and sends data to an-
other process, and the third uses the MPI Alltoall
function. In our experimental environment both
methods based on MPI Sendrecv were substan-
tially faster than using MPI Alltoall, and the
point-to-point scheme was 20% to 30% faster
than using three way communication.

Figures 4 and 5 show the performance of multi-
swap and stride permutations as a function of the
number of bits in the swap region and the log of
the stride. In both cases, the size of the local data
region was 225 and the number of processors was
32. The multi-swap permutations always swap
the leftmost region with the rightmost region.

Figure 4 shows the performance of the multi-
swap initially decreasing, peaking and then reach-
ing a local minimum as the size of the swap re-
gion increases. As the number of bits increases to
5 the amount of data communicated over the net-
work doubles each time. After reaching swap size
5, local shuffling of the data is required (in this
case a matrix transpose). Moreover, the number
of fixed points decreases with the size of the swap
region. This suggests a continued drop off in per-
formance; however, the performance increase af-
ter the swap region reaches 5 bits is due to in-
creased block size on the transpose which is op-
timized with blocks of size 16. Increased cache
misses due to large strides causes the decrease in
performance after block size 16 is reached. De-
spite the local variation performance on this clus-
ter is dominated by the cost of network communi-
cation.

The absolute performance of the stride per-
mutation, shown in Figure 5, is similar to that
of the multi-swap permutation. This is the case
since network communication is the dominant
cost. However, for small stride, the cost is sig-
nificantly worse than for similar multi-swap per-
mutations. This is the case since point-to-point
communication can not be used until the stride
becomes equal to the number of processors. A
minimum in runtime is reached at stride 24 and
225−4 (the symmetry in the plot is due to the du-
ality of the stride permutation - loading a vector
of size 2n at stride 2k is similar to storing at stride
2k which corresponds to loading a vector at stride
2n−k). The minimum is due to local cache per-
formance. Finally, we remark that the best per-
formance between stride 25 and 220, i.e. the re-
gion where all-to-all communication with the 32
processors is required, is slightly better than the
corresponding multi-swap permutation.
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Figure 5. Performance of stride permutations

6 Performance of Distributed WHT
Algorithms

The WHT package (available at [9]) of [6]
has been extended to support the distributed
memory parallel algorithms discussed in this pa-
per. In the sequential package an algorithm
based on the split in Equation 1 is denoted by
split[W(n1),...,W(nt)], where W(ni)
is further expanded depending further applica-
tions of Equation 1. Ultimately, at the base case,
small transforms, WHT2m , are implemented
with straight-line code which is denoted by
small[m]. The optimal recursive applications
of Equation 1 are determined using dynamic pro-
gramming (note this only finds an approximation
of the optimal algorithm since the optimal subal-
gorithm can depend on the context - e.g. state of
the cache - in which the algorithm is called). The
distributed memory package introduces the nota-
tion dsplit[W(n1),...,W(nt)] for the al-
gorithm in Equation 3. An alternative dsplit
based on multi-swap permutations is also pro-
vided. However, this currently is only applicable
for binary splits and has the further restriction that
the left node size must be greater than or equal to
the right node size.

In the distributed memory package, dyanamic

programming is used to find the best combination
of distributed permutations and sequential WHT
algorithms. Due to the high network costs in
the experimental platform used (communication
costs dominate computation costs), only binary
splits were considered. In this case, the algo-
rithms searched were

WHT2n = L2n

2n1 (I2n−n1 ⊗ W2n1 ) (7)

L2n

2n−n1 (I2n1 ⊗ W2n−n1 )

= M2n

2n1 (I2n−n1 ⊗ W2n1 ) (8)

M2n

2n1 (I2n1 ⊗ W2n−n1 ),

where M2n

2n1 is the multi-swap permutation that
exchanges the low order and high order n1 bits.

The optimal values for stride or swap region
found in Section 5 may not lead to the optimal
algorithm since better sequential code may be
found for different sizes. Figure 6 shows the dif-
ferent splits using dsplit with multi-swap and
stride permutations. The total data size was 230.
The permutation runtime dominates the overall
performance in this distributed system. However,
the runtime of the two sequential transforms still
must be taken into account. For example, the lo-
cal minimum for multi-swap permutations is at
swap size 29, but the overall runtime minimum
is at size 28. The sequential runtime data of the
WHT transform indicate that the combination of
size (28, 222) has half the runtime of the combina-
tion of size (29, 221). The same effect can be seen
when comparing the runtime of dsplit using
stride permutations in Figure 6 with the runtime
of just the stride permutation in Figure 5. The
optimal algorithm of data size 230 that was found
uses a stride permutation with a split of (27, 223).
The resulting algorithms show nearly linear scal-
ability. A size 228 transform on 16 processors was
1.87 times faster than with 8 processors and 3.69
times faster with 32 processors. The amount of
memory required was to much to run the trans-
form on fewer processors. Scaling the sequen-
tial transform time would not show speedup due
to the large communication cost required by the
slow network speed.
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Figure 6. The runtimes of WHT d split at dif-
ferent binary split

7 Conclusion

This paper describes a distributed memory
package for implementing and optimizing algo-
rithms for computing the Walsh Hadamard trans-
form (WHT). The package uses dynamic pro-
gramming to find the best combination of sequen-
tial algorithms and communication patterns. Ex-
perimental results were shown for a cluster of 32
Pentium III’s connected with 100mbps fast Eth-
ernet. The particular algorithms chosen for this
platform are likely very different from those that
would be chosen on a platform with a faster inter-
connection network. Additional experimental re-
sults need to be obtained. In particular algorithms
with more than two passes (binary split) may lead
to faster implementations. However, the ability of
the package to automatically consider alternative
algorithms would enable these to be found. For
these scenerios, a multi-pass algorithm based on
swap permutations has been discovered and will
be incorporated into the package. Furthermore,
notation should be incorporated to make it easy to
include alternative permutations so that the search
may include more than a fixed set of permutation
choices. These issues will be explored as the re-
sults of this paper are incorporated into the SPI-
RAL [9] system for automatically implementing

fast signal transforms.
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