
HiLO: High Level Optimization of FFTs ⋆

Nick Rizzolo and David Padua

University of Illinois at Urbana-Champaign
201 N. Goodwin Ave., Urbana, IL 61801-2302

{rizzolo,padua}@cs.uiuc.edu,
WWW home page: http://polaris.cs.uiuc.edu

Abstract. As computing platforms become more and more complex,
the task of optimizing performance critical codes becomes more challeng-
ing. Recently, more attention has been focused on automating this opti-
mization process by making aggressive assumptions about the algorithm.
Motivated by these trends, this paper presents HiLO, the high-level op-
timizer for FFT codes. HiLO blends traditional optimization techniques
into an optimization strategy tailored to the needs of FFT codes and
outputs C code ready to be further optimized by the native compiler. It
has already been shown that such high-level transformations are impor-
tant to coax the native compiler into doing its job well. HiLO provides a
more appropriate platform for researching these phenomena, suggests an
optimization strategy that improves on previous approaches, and shows
that even software pipelining at the C level can improve the final binary’s
performance.

1 Introduction

As computing platforms become more and more complex, the task of optimiz-
ing performance critical codes becomes more challenging. It is seldom feasible
anymore to hire a software engineer who is an expert both in the algorithm that
needs to be optimized and the target architecture to write assembly code. Thus,
more concerted efforts are now being expended in the research community to
automate this process. Automatic tuning systems such as SPIRAL [1], FFTW
[2], and ATLAS [3] are devoted to the optimization of codes in a specific domain.
As such, they can make assumptions about their input from information that
general purpose compilers just don’t have available to them, reaping significant
performance benefits.

In particular, SPIRAL [1] automatically generates finely tuned DSP trans-
forms by searching through the space of formula decompositions to find an im-
plementation of the transform that can be tuned well on the host architecture.
Once a formula decomposition is selected, its optimization and translation to

⋆ This work was supported in part by the National Science Foundation under
grants CCR 01-21401 ITR and 03-25687 ITR/NGS; by DARPA under contract
NBCH30390004; and by gifts from INTEL and IBM. This work is not necessarily
representative of the positions or policies of the Army or Government.



C is carried out by the SPL compiler [4]. As shown by [4], classical optimiza-
tions (the most significant of which was array scalarization) performed at the
C source level enable native compilers on several platforms to produce more
efficient object code. This result is interesting because it shows that algorithm
specific performance improvements can be realized in a platform independent
manner. In addition, it shows that although native compiler designers are not
necessarily experts in the particular domain we are interested in, their expert
knowledge about their architecture is manifested in their compiler, and it can
be utilized fruitfully.

Motivated by these ideas, this paper presents HiLO, the high level optimizer
for FFT codes. HiLO can, in fact, be viewed as a framework for studying domain
specific optimization, although it has only been tested on FFT codes thus far. It
is written modularly, each optimization pass in its own source file, adhering to
the concept of separation of concerns. The order in which optimization passes
will be executed and any parameters those passes might take can be specified on
the command line. These characteristics facilitate research concerning the opti-
mizations’ interaction as well as lending themselves toward an automatic tuning
environment in which some search is being performed over the optimizations
themselves.

Furthermore, HiLO is a domain specific compiler that produces C code that
competes with and sometimes outperforms that produced by SPL. HiLO blends
traditional optimization techniques into an optimization strategy tailored to the
needs of FFT codes and outputs C code that is more conducive to further op-
timization by the native compiler. In addition to exposing new ways to make
optimizations work better with each other, HiLO adds software pipelining to the
list of optimizations that can yield performance benefits at the C source level.
The addition of software pipelining with the right parameters to a pre-existing
HiLO optimization strategy that had been applied to all FFT formulas of size
32 yielded an execution time for the best behaved formula that was 35% faster
than the time of the previous best formula. This is not to be misconstrued as a
35% improvement on the state of the art, but instead a very good indicator that
high level software pipelining is a promising direction for further study.

The rest of this paper is organized as follows: Section 2 discusses some of the
decisions we made while implementing HiLO. Section 3 mentions the analysis
techniques employed in our compiler. Section 4 talks about how we tailored our
optimization passes to the needs of FFT codes and our overall optimization
strategy. In section 5, we describe our experimental setup and results. Finally,
in section 6, we conclude and discuss future research directions.

2 Implementation Considerations

HiLO was designed with the goal of easing the development process and bolster-
ing the research process. Its design is organized by separation of concerns, and
its accepted language includes only what is necessary. Its internal representation
and optimization passes are implemented in Java. Java was chosen because it



is object oriented, it garbage collects, and its extensive data structure and al-
gorithm libraries seem more standardized and user friendly than C++’s STL. In
addition, stack traces including line number information make debugging easier.

2.1 Command Line Interface

HiLO’s command line options are used to control the selection, ordering, and
parameters of optimization algorithms, none of which are executed by default.
Thus, the entire machinery of the compiler is exposed both to the researcher
who can easily automate his experiments, and to the automatic tuning system
that incorporates HiLO as its back-end compiler and can then include those
parameters in its search space. In addition, there is an argument used to include
any number of optimization passes in a loop that continually applies them in
order until none make any changes to the internal representation of the program
in an entire pass through the loop. This utility proved quite useful in discovering
the symbiotic nature of certain optimizations, as described further in section 4.7.
HiLO’s output is C code sent to standard output.

2.2 Front End and Accepted Language

HiLO’s front end is implemented with the automatic scanner generator JLex1

and the automatic parser generator CUP2. The language that it accepts is a
small subset of C. Only assignment statements, return statements, for and while

loops, and function calls are supported. Function calls are assumed to be calls to
external functions that don’t have side effects. The int and double data types
and single dimensional arrays of those are supported. Pointers are allowed as
arguments to functions and are assumed to point to arrays in mutually exclusive
memory at run-time, freeing def-use and dependence analysis to compute more
precise information. Any compiler directives in the input are preserved in the
output, but are otherwise ignored.

This setup is specifically designed to accept as input the C code that the
SPL compiler produces as output. This code is iterative, and it operates on an
array of size 2n interpreted as n complex values. SPL and its companion FFT
formula generator program splse are used to provide HiLO with all of the codes
it optimizes. The appropriate command line parameters are given to SPL so that
its internal optimizations are turned off.

2.3 Internal Representation

HiLO represents a source program internally with a simple abstract syntax tree
(AST). The visitor pattern [5] enables the detachment of the algorithms that
traverse the AST and operate on it from the code that implements the AST.
Thus, debugging of an optimization pass is confined to a single source file.

1 JLex was written by C. Scott Ananian.
http://www.cs.princeton.edu/∼appel/modern/java/JLex

2 CUP was written by Scott E. Hudson.
http://www.cs.princeton.edu/∼appel/modern/java/CUP



3 Analysis

As shown in [4], the handling of arrays is one of the biggest shortcomings of gen-
eral purpose compilers. When arrays cannot be converted to scalars, care must
be taken in the analysis of FFT codes to glean as much information as possible
from subscripted array references. Fortunately, the subscripts in FFT codes are
always simple linear functions of the induction variables of enclosing loops. As
such, the heavy duty analysis in HiLO is based on induction variable recognition.
There is nothing unusual about HiLO’s induction variable recognition; see [6]
for a description of it. Building from that point, HiLO’s dependence and def-use
analyses can be as precise as needed. Below are descriptions of how these two
analyses have been engineered to suit FFT codes. For introductions to them,
again, see [6].

3.1 Dependence Analysis

As mentioned above, the subscripts in FFT codes are always simple linear func-
tions of induction variables. Furthermore, the references to any given array
within the scope of a specific nested loop have subscripts that differ only by
the coefficient on the induction variable of the immediately enclosing loop and
the constant if they differ at all. In addition, it is frequently the case that most
indices of a given array are written to no more than once in the entire program.
When an index is written to more than once, it almost always happens that
each write is either in different loops or in the same loop with precisely the same
subscript expression. Finally, and most importantly, HiLO’s software pipelining
algorithm requires only same-iteration dependence information.

Thus, a very obvious dependence test is sufficient to prove the independence
of every pair of memory accesses that are in fact independent within a given
loop iteration. HiLO simply checks to see if there is any single integer value that
the induction variable of the immediately enclosing loop can take that will make
a given pair of subscripts equivalent.

3.2 Def-use Analysis

Links in the def-use and use-def chains of subscripted variables are established
whenever the GCD dependence test3 fails to prove independence. We have not
witnessed any SPL produced FFT codes in which this weak test doesn’t prove
sufficiently strong.

4 Optimization

We have implemented the following optimization passes in HiLO: array scalar-
ization, algebraic simplification, common subexpression elimination (CSE), con-
stant and copy propagation, dead code elimination, induction variable elimina-
tion, induction variable strength reduction, loop unrolling, register renaming,

3 Again, see [6] for a description of the GCD dependence test.



basic block scheduling, and software pipelining. Those that have a significant
impact on FFT or that have been tailored for FFT in some way are discussed
in turn below.

4.1 Array Scalarization

The more loops are unrolled, the bigger benefit array scalarization will have on
the generated code. Of course, when loops are fully unrolled, the subscripts in
FFT codes all turn to constants, and then entire arrays can be replaced. But
HiLO also checks for any definition of a subscripted variable for which all uses
are defined exclusively by that definition. In such cases, the defined subscripted
variable and all its uses can be replaced with the same scalar.4

4.2 Algebraic Simplification

Standard algebraic simplifications including constant folding and combining ad-
ditive operators (for example, −x + y → y − x) need to be performed, mainly
to support the efforts of the other optimization passes. For instance, constant
folding can create new constant and copy propagation opportunities.

Another important goal that this pass achieves is the canonicalization of con-
stants to non-negative values. This technique was shown to improve performance
in [7], and we have seen the same improvement. When a negative constant is
discovered, it is translated to a unary negation operator applied to a positive
constant. Unary operators can then combine with additive operators in the sur-
rounding context and be simplified away. Since the majority of constants in FFT
codes appear in both their positive and negative forms, this optimization nearly
cuts both the size of the compiled program’s constant table and the number of
constant loads performed by the compiled program in half.

Expressions can also be canonicalized in a similar fashion. Expressions of the
form −x − y can be translated to −(x + y). In a multiplicative context, unary
negation is expanded to contain the entire multiplicative operation rather than
just one of its factors (i.e., (−x) ∗ y → −(x ∗ y)). Along with constant canoni-
calization, these translations reduce the number of forms a given expression can
be represented in, thus creating previously unavailable opportunities for CSE to
further simplify the code. The translation (−x)∗y → −(x∗y) is also useful when
combined with the augmented behavior of copy propagation, discussed next.

4.3 Common Subexpression Elimination

When allowed free reign over the AST, CSE often has a detrimental affect on
codes with loops. That’s because, as mentioned in section 3, the majority of the
expressions in subscripts turn out to be common. Pulling these expressions out

4 If the array in question happens to be passed to the function as an argument, then
HiLO will choose not to make this replacement unless it can also be proven that the
given definition is not the last assignment to that index in the array.



into separate assignments to newly declared variables makes dependence analysis
more complicated, and tends to add to the native compiler’s confusion. With this
in mind, HiLO has been endowed with a command line parameter that instructs
CSE not to search for common subexpressions inside subscripts.

4.4 Copy Propagation

Copy propagation replaces occurrences of the variable on the left hand side of
a given “simple” assignment statement with the right hand side of that assign-
ment statement. In the context of FFT optimization, we consider an assignment
statement simple when its left hand side is comprised of either a scalar variable
or a subscripted array reference with either a constant or scalar subscript, and
its right hand side is either a constant, a scalar, or a unary negation expression.

Recall that unary negation expressions are often created during algebraic
simplification because of constant and expression canonicalization. They are then
propagated during copy propagation so that they can combine with additive
operators in the new context during further algebraic simplification.

4.5 Basic Block Scheduling

HiLO’s basic block scheduler applies one of two algorithms to every function and
loop body. First, it can use the list scheduling algorithm with a reservation table
as described in [6]. In order to use this algorithm, the input program must be
translated to three-address form and instruction latencies and other hardware
parameters must be assumed. Table 1 lists these simulated hardware parameters
and their default settings. All of them can be overridden on the command line.
So, in the absence of software capable of automatically detecting appropriate
values for these parameters, a search can easily be performed over them. The
latter is our chosen experimental method, as discussed in section 5.

Table 1. Simulated hardware parameters and their default settings

Parameter Default

integer addition latency 1

integer multiplication latency 2

floating point addition latency 2

floating point multiplication latency 4

load latency 6

store latency 7

integer ALUs 2

floating point units 2

load issue slots 8

store issue slots 8



The second algorithm simply tries to put uses as close to definitions as pos-
sible. This alternative was inspired by [7], which shows good performance with
a scheduler that provably minimizes register spills no matter how many regis-
ters the target architecture has, provided that the size of the FFT transform
is a power of 2. That algorithm is not implemented here; we investigated an-
other algorithm that still tries to take other simulated hardware parameters into
account, as described below.

First, the dependence DAG for the block is constructed, and the roots of
the DAG are added to a queue in decreasing order of their delay to the end of
the block (as would be calculated by the list scheduling algorithm, traversing
the DAG to the leaves and adding instruction latencies along the way). The
instructions in the queue are those instructions that need not wait for any other
instructions in the block to be scheduled before they can be correctly scheduled.
Next, the first instruction is taken from the queue and scheduled. In keeping
with the reservation table, this instruction now occupies a particular hardware
component for a particular latency, as determined by the type of operation being
performed. Counters associated with every DAG child of every instruction that
has already been scheduled are then incremented. If the most recently scheduled
instruction has any children that can now be correctly scheduled (because all
of their parents in the dependence DAG have already been scheduled), those
children are then added to the queue such that the queue remains sorted by
decreasing counter value from now on.

From this point further, the next instruction to be scheduled will always be
the instruction in the queue with highest counter value that can also be scheduled
legally given the simulated hardware’s availability. The process of selecting an
instruction for scheduling, incrementing counters, and adding newly schedulable
children from the dependence DAG to the queue is repeated until all instructions
are scheduled.

4.6 Software Pipelining

The software pipelining algorithm implemented in HiLO is called circular schedul-
ing [8], and it is applied only to the bodies of the innermost loops. In circular
scheduling, we reason that the instructions in a given loop can be viewed as
a circular list, and that instructions from the top of the list (the roots of the
dependence DAG, more precisely) can be circled to the bottom of the list, where
they represent themselves one iteration later. Instructions moved in this way are
also added to the prolog of the software pipeline, and all those that were not
moved are added to the epilog. Now, the loop can be re-analyzed to determine
if the basic block scheduler can produce a better schedule. If more improvement
is desired the process can then be repeated.

In our implementation, we execute this circular code motion only once, rea-
soning that after loop unrolling, the basic block scheduler should already have
enough instructions available to produce a good schedule. However, the number
of dependence DAG roots that are circled can be specified as a percentage of
the total DAG roots available on the command line. Thus, we give the user the



option to circle fewer instructions instead of more. The typical FFT code loop
can have many dependence DAG roots already, and at some point, it’s possible
to circle too many instructions. As pointed out in [8], if we circle more and more
instructions, we will eventually end up back at the same schedule we started
with.

4.7 Engineering FFT Optimization

The preceding subsections described the classical optimizations we implemented
along with some tweaks. Those tweaks were designed with an overall optimization
strategy in mind. That strategy is based on the mutually beneficial relationships
that different optimization passes can have. For instance, we have already seen
the ways that algebraic simplification can bolster copy propagation and the
ways that copy propagation can then create new opportunities for algebraic
simplification in return.

Alternating between these two optimization passes, the code will eventually
reach a form where no further changes can be made. This can be seen easily by
noting that each new opportunity created by one pass for another makes the
code smaller in some way. Algebraic simplification creates newly propagatable
constants by folding them and scalar variables by stripping away a multiplication
by one or an addition of zero. The propagation of constants and scalars may not
make the code smaller, but algebraic simplification will not reverse the effect
either, and it will use the effect to further reduce the size of the code. Lastly, the
propagation of unary expressions leads to the elimination of extraneous additive
operators. Since the code can only get smaller, the process of alternating between
the two passes must eventually terminate.

Common subexpression elimination and copy propagation enjoy the same
mutually beneficial relationship. For example, let’s say two additions b + c and
y + z are calculated, and then both the addition expressions as well as the
variables their results were stored in appear later in the code, as in the upper
left hand box in Figure 1. A single CSE pass will extract the addition expressions,
resulting in the upper right hand box of Figure 1. Note that the variables a and
x now have copies that are ready to be propagated. After a copy propagation
pass, it is clear that the code in the lower left hand box can benefit from another
CSE pass, which can make more variables ready for copy propagation.

In both optimization iteration scenarios described above, the code will even-
tually reach a form where no further progress can be made. Furthermore, there
is no finite number of iterations of such “optimization loops” for which all codes
will reach their fully reduced form. An arbitrary code can require an arbitrary
(but finite) number of iterations of each loop, but that number can be bounded
with regard to the optimization loops described here.

In the case of algebraic simplification and copy propagation, we can only say
that the number of iterations applied to a given basic block in three address form
is bounded by the number of instructions in that block. Now consider CSE and
copy propagation applied in a loop to a basic block in three address form. What
is the requirement for a piece of code to necessitate more than one iteration



Fig. 1. The mutually beneficial relationship of CSE and copy propagation

of the optimization loop? At a minimum, one expression must be extracted by
CSE so that two new copies are ready for propagation. Those copies can then
combine alternately in two later instructions that involve a common second
argument, and another CSE pass will be necessitated for those two instructions.
In fact, every successive pair of instructions can involve one common argument
and one argument that represents a copy of a common expression discovered by
the previous iteration. Therefore, the number of iterations of this optimization
loop applied to a basic block in three address form is no greater than ⌊ i

2
⌋, where

i is the number of instructions in that block.

5 Experiments

FFT codes are at their fastest when all their loops are fully unrolled. However,
for larger formulas, the size of the resulting code can become prohibitive, so
loops are preserved. Hence, the following experiments pit HiLO against SPL in
both the straight-line and loop code settings. The results will then be indicative
of HiLO’s ability to simplify when only simplification makes a difference, as well
has HiLO’s scalability to large formulas when loop based optimizations are also
important.

Table 2 describes the platforms used in our experiments. These platforms will
hereafter be referred to by their ISA names. A collection of 45 FFT algorithms
were selected to test HiLO’s performance against SPL’s. For each formula in
each experiment, the C codes produced by HiLO and SPL were each sent the
same back-end compiler with the same command line arguments, whatever was
appropriate for the target platform as listed in table 2. The execution time of
the resulting program was then plotted as a function of the algorithm number.
All execution times were averaged over 10,000 trials.

5.1 Straight-Line Code

To test HiLO’s performance on straight line code, SPL was set to generate
both optimized and unoptimized versions of the 45 FFT algorithms of size 32



Table 2. Experimental platforms, compilers, and compiler arguments

ISA SPARC MIPS x86

CPU UltraSparcIII MIPS R12000 Pentium IV

Clock speed 750 Mhz 300 Mhz 3 Ghz

OS Solaris 7 IRIX64 6.5 Linux kernel
2.4.21-15EL

Compiler Forte MIPSpro gcc 3.2.3
Developer 7 7.3.1.1m

Compiler arguments -fast -xO5 -O3 -O3

after fully unrolling them. Then, HiLO performed its optimizations on the un-
optimized versions, and we then compare the resulting performance against the
performance of the optimized versions. This experiment was repeated on the
three target architectures. In each experiment, HiLO was invoked with the fol-
lowing optimization schedule: (1) array scalarization, (2) register renaming, (3)
“optimization loop” over algebraic simplification and copy propagation, (4) “op-
timization loop” over common subexpression elimination and copy propagation,
(5) dead code elimination, (6) algebraic simplification.

0 5 10 15 20 25 30 35 40 45
0.5

1

1.5

2

2.5

3

3.5

4
x 10

−6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

SPARC
SPL
HiLO

Fig. 2. Straight-line FFT performance on SPARC

In figures 2, 3, and 4, the execution times for each of the 45 selected formulas
are depicted as compiled by the native compiler alone, SPL and then the native



0 5 10 15 20 25 30 35 40 45
1.5

2

2.5

3

3.5

4
x 10

−6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

MIPSpro
SPL
HiLO

Fig. 3. Straight-line FFT performance on MIPS

0 5 10 15 20 25 30 35 40 45
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

gcc
SPL
HiLO

Fig. 4. Straight-line FFT performance on x86



compiler, and finally HiLO and then the native compiler. The best execution
times achieved by HiLO on SPARC, MIPS, and x86 were 6.61 × 10−7, 1.83 ×
10−6, and 4.33 × 10−7 seconds respectively. SPL’s best times were 6.76 × 10−7,
1.79 × 10−6, and 4.51 × 10−7 seconds respectively. We also experimented with
FFTW 3.0.1 using its exhaustive search option. FFTW’s times were 8.66×10−7,
1.91 × 10−6, and 4.28 × 10−7 seconds respectively. All three systems achieve
significant performance increases and HiLO is competitive with or better than
both SPL and FFTW on all three platforms.

5.2 Loop Code

To test HiLO’s performance on codes with loops, SPL was set to generate both
optimized and unoptimized versions of the 45 FFT algorithms without first fully
unrolling their loops. Of course, doing some unrolling is the only way to get good
results out of software pipelining. So, when generating the optimized versions,
SPL was allowed to unroll the innermost loops in each algorithm to the same
degree that HiLO did before doing its software pipelining.

HiLO then compiled the algorithms with the following optimization schedule:
(1) array scalarization, (2) register renaming, (3) “optimization loop” over alge-
braic simplification and copy propagation, (4) dead code elimination, (5) induc-
tion variable elimination, (6) “optimization loop” over CSE and copy propaga-
tion, (7) dead code elimination, (8) loop unrolling with factor 4, (9) “optimization
loop” over algebraic simplification and copy propagation, (10) array scalariza-
tion, (11) register renaming, (12) copy propagation, (13) dead code elimination,
(14) software pipelining, (15) copy propagation.

Table 3. Simulated hardware parameter settings used in HiLO’s search

Parameter Settings included in search

integer ALUs 1 2

floating point units 1 2

CSE preserves subscripts no yes

scheduling algorithm list HiLO’s own

pipelining 0.25 0.5 0.75 1.0 just scheduling

Then, for each of the 45 algorithms, HiLO searched over several of the sim-
ulated hardware parameters, the CSE subscript preservation option (see section
4.3), and the software pipelining parameter (see section 4.6) by repeating the
above optimization schedule with different settings and re-measuring the result-
ing performance. Table 3 lists some of the parameters that are searched over
and the values those parameters are allowed to take. For every possible com-
bination of parameter settings from table 3, we tried setting the latencies to
their default values and setting them all equal to 1. In addition, we included in



the search an optimization schedule identical to the one given above but with
software pipelining removed entirely.

This entire search process was then repeated on all three target architec-
tures. The results are depicted in figures 5, 6, and 7, and they show HiLO gains
a clear performance advantage when performing software pipelining on both the
SPARC and MIPS architectures. On the x86 architecture, HiLO remains com-
petitive. When viewing these results, it should be kept in mind that the initial
loop unrollings performed by SPL are very similar, but not identical to those
performed by HiLO. In some instances, it may be the case that an extra unrolled
loop in HiLO accounts for extra performance benefits when compared with SPL.

0 5 10 15 20 25 30 35 40 45
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

SPL
HiLO_no_pipeline
HiLO_search

Fig. 5. Pipelined FFT performance after parameter search on SPARC

Solid conclusions about software pipelining can be reached by comparing
the two HiLO generated data sets on these graphs. The data labeled “HiLO no
pipeline” depict HiLO’s performance when using the afore mentioned optimiza-
tion schedule with the pipelining pass removed. Therefore, it is pipelining with
some simulated hardware parameter settings that accounts for the significant
improvements seen in almost every formula on both SPARC and MIPS when
compared against the non-pipelining HiLO optimization strategy. And the ac-
tual values used by different formulas for the parameters in table 3 to achieve
the improved performance are quite varied from formula to formula, except for
CSE’s subscript preserving parameter, which stayed on consistently.

It is also interesting to note that x86 did not respond well to software pipelin-
ing. The search process almost always settled on a configuration that involved



0 5 10 15 20 25 30 35 40 45
1.5

2

2.5

3

3.5

4

4.5

5
x 10

−6

Formula # (size = 32 for all of them)

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

SPL
HiLO_no_pipeline
HiLO_search

Fig. 6. Pipelined FFT performance after parameter search on MIPS

0 5 10 15 20 25 30 35 40 45
5

6

7

8

9

10

11
x 10

−7

Formula # (size = 32 for all of them)

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

SPL
HiLO_no_pipeline
HiLO_search

Fig. 7. Pipelined FFT performance after parameter search on x86



no pipelining or scheduling on this architecture. Together, all of these results
lead us to believe that imprecision of dependence analysis and the difficulty of
finding good instruction schedules lie at the heart of native compilers’ struggles
with FFT codes.

6 Conclusion

We have presented the HiLO high level optimizer and shown that it is a good
framework for researching and applying the effects of high level optimizations
on domain specific codes. Following in the tradition of domain specific compilers
such as SPL and FFTW, we have shown originally that native compilers can be
coaxed to produce even more efficient code through software pipelining. Finally,
we believe the trends discovered in our experience with searching for a good
software pipelining are further evidence that arrays, dependence analysis, and
instruction scheduling are the keys high performance in FFT.

In the near future, we plan to expand the domain on which HiLO is applicable
to other DSP transformation algorithms. If our techniques prove effective on
these related codes, they can be integrated into the SPIRAL automatic tuning
system where they will be of greater value.

References

1. Püschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J.,
Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code Generation for DSP Transforms. In: to appear in Proceedings of
the IEEE special issue on “Program Generation, Optimization, and Adaptation”.
(2005)

2. Frigo, M., Johnson, S.G.: FFTW: An Adaptive Software Architecture for the FFT.
In: Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing. Volume 3. (1998) 1381–1384

3. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimizations of
Software and the ATLAS Project. Parallel Computing 27 (2001) 3–35

4. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A Language and Compiler for
DSP Algorithms. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ACM Press (2001) 298–308

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.
(1995)

6. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, Inc (1997)

7. Frigo, M.: A Fast Fourier Transform Compiler. In: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, ACM
Press (1999) 169–180

8. Jain, S.: Circular Scheduling: A New Technique to Perform Software Pipelining. In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, ACM Press (1991) 219–228


