Optimizing Space Time Adaptive Processing
Through Accelerating Memory-bounded Operations

Tze Meng Low
Department of Electrical and
Computer Engineering
Carnegie Mellon University
Email: lowt@cmu.edu

Abstract—Space-Time Adaptive Processing (STAP) is a tech-
nique for processing signals from multiple antenna elements over
multiple time periods for target detection. As STAP algorithms
are typical run on airborne platforms, they need to be both
high performance and energy-efficient. Due to the high rate of
processing required, many existing algorithms focus on reducing
the dimensionality of the data, or exploiting structure in the
underlying mathematical formulation in order to reduce the
total number of floating-point operations (FLOPs), and conse-
quently, the time for computation. While such algorithms target
the FLOPs-intensive operations within the STAP algorithm, a
significant portion of the compute time for most STAP algorithms
is actually spent in low-FLOPs, memory-bounded operations. In
this paper, we address the computation of these memory-bounded
operations within the STAP algorithm using a 3D stacked Logic-
in-Memory system. The imminent arrival of 3D stacked memory
makes avail high memory bandwidth, which opens up a new and
orthogonal dimension for optimizing STAP algorithms. We show
that more than 11x improvement in time, and 77x improvement
in energy efficiency can be expected when a 3D stack is used
together with memory-side accelerators to target the memory-
bounded operations within STAP.

I. INTRODUCTION

Space-time adaptive processing (STAP) is typically per-
formed on airborne platforms to detect targets from radar
signals that contain clutter due to natural or artificial sources
(jammers). The general principle of STAP is that we want to
test the hypothesis that there exists a target at a particular lo-
cation, traveling at a particular relative velocity. By adaptively
building a filter that enhances the signal in that particular range
and velocity, while attenuating the noise, a target is detected if
the resulting signal remains above a particular threshold [1]. As
multiple possible targets at multiple possible ranges need to be
identified in real-time, STAP is inherently a computationally
intensive operation. As such, many STAP algorithms have been
developed to reduce the computational cost of STAP to make it
practical for deployment. Typically, these algorithms improve
the performance of STAP by reducing the dimensionality of the
data. A summary of these commonly used low-computational
load STAP algorithms are described in [2].

In this paper, we focus on an orthogonal approach to
optimizing STAP algorithms. We optimize STAP algorithms
by reformulating memory-bounded operations into compute-
bounded operations. This reformulation of memory-bounded
vector operations into compute-bounded matrix operations can
be implemented completely in terms of parallel loops around

Qi Guo
Department of Electrical and
Computer Engineering
Carnegie Mellon University
Email:guoqi @cmu.edu

Franz Franchetti
Department of Electrical and
Computer Engineering
Carnegie Mellon University
Email: franzf@cmu.edu

subroutine calls to highly efficient libraries such as Fastest
Fourier Transform in the West (FFTW) [3] and Intel’s Math
Kernel Library (MKL) [4]. The use of subroutine calls to
standardized application programming interfaces (APIs) also
allows one to easily port the STAP algorithms onto different
platforms, including those that utilize new/future technol-
ogy such as our proposed accelerated 3D stacked memory.
For memory-bounded operations that cannot be reformulated,
we accelerate their execution on a proposed accelerated 3D
stacked memory. We designed a 3D stacked Logic-in-Memory
(LiM) system consisting of a multicore processor and 3D
stacked DRAM equipped with memory-side accelerators for
various memory-bounded operations. As such accelerators are
built upon 3D stacked DRAM with high internal bandwidth,
the resulting speedup achieves up to 6x compared against the
conventional hardware implementation [5].

A. Motivation

We motivate the need for this orthogonal approach to
optimizing STAP with the following example. In Figure 1, we
show the breakdown of the number of complex floating point
operations (FLOPs), and the compute time of the different
stages for the third-ordered Doppler-factored STAP algorithm
from the PNNL PERFECT Suite [6]. Three separate data
configurations (shown in Table I) were tested.

Notice that close to or more than 50% of the time (right
stacked columns) is spent in the Normalize and Apply Weights
stage of STAP for all three configurations. However, this stage
accounts for no more than 44% of the total number of FLOPs
in the STAP algorithms. This stage, though low in FLOPs,
is computed primarily with many inner-product operations
which are inherently memory-bounded. As current memory
bandwidth between main memory and the processor is limited,
the processor is mostly stalled, waiting for data to be brought
in from memory to be processed. Hence it is important to
optimize and accelerate memory-bounded operations to attain
better computational and power efficiency.

Contributions. In this paper, we make the following con-
tributions:

Orthogonal optimization domain: We optimize STAP
algorithms via an approach that is orthogonal to current ap-
proaches. By casting operations over vectors into operations on
matrices, we turn memory-bounded operations into compute-
bounded operations, which can be more efficiently imple-

Breakdown of Compute Time and complex FLOPS for
Percentage Third-order Doppler factored STAP
100%

90%

80% 4% 39% 33%
70% 59% 55% 49%
60%

50%
40%
30%
20% 33%

10%

0%

Small Medium Large

Normalize and Apply Weights(Time)
M Covariance Estimate(Time)

Normalize and Apply Weights(FLOPS)
M Covariance Estimate(FLOPS)

B Compute Weights(Time)

W Doppler Processing (Time)
Compute Weights(FLOPS)

M Doppler Processing (FLOPS)

Fig. 1. Breakdown of the compute time and number of complex FLOPs
for different configurations provided by the PNNL PERFECT Suite. The left
stacked bar shows breakdown of the complex FLOPs, while the right shows
breakdown of compute time.

Parameter Variable Small Medium Large
Spatial channels/ elements L 4 6 8
Pulses per CPI P 128 128 128
Doppler bins K 256 256 256
Range bins N 512 1024 4096
Range bins per training block Ngr 32 64 64
Temporal degrees of freedom Tpor 3 3 3
Steering vectors D 16 16 16

TABLE I DIFFERENT STAP CONFIGURATIONS FROM PNNL

PERFECT SUITE.

mented on current architecture with a hierarchical memory.
We utilize a 3D stacked memory with memory-side accel-
erators to compute memory-bounded operations that cannot
be converted into compute-bound operations. These optimiza-
tion/acceleration can result in more than a magnitude improve-
ment in performance. An additional benefit of this approach
is that it allows one to implement the entire STAP algorithm
as parallel loops around library calls, thereby increasing the
portability of the STAP implementation across a variety of
platforms.

Accelerated 3D stacked memory for resource-constraint
platforms: We show that 3D stacked memory with memory-
side accelerators can significantly improve the performance (in
terms of both time and energy) of algorithms on resource-
constraint platforms. Memory-side acceleration reduces both
the time and energy required (close to 3x and 8x improvement
over a highly optimized and parallelized implementation) to
transfer data from memory to the processor, making it even
more suitable for resource-limited platforms on which STAP
algorithms are run. In addition, the memory-side accelerators
we introduced to the 3D stacked memory are mapped to the
library APIs, and thus, can be reused as computational kernels
in other applications.

II. SPACE TIME ADAPTIVE PROCESSING ALGORITHM

In this section, we present a brief overview of the math-
ematical operations that are performed in the third-order
Doppler-factored STAP algorithm implemented in the PNNL
STAP benchmark. In this discussion, we assume that the steer-

!

Doppler Transform

1

Estimate Covariance Matrix

A
Compute Adaptive Weights

4
Normalize and Apply Adaptive Weights

!

Fig. 2. 4 stages of a post-Doppler STAP algorithm. The first stage transforms
the received signal to the Doppler frequency, while last three stages of the
algorithm is similar if not identical to many other STAP algorithms.

ing vectors, or vectors that model the expected return signal
from the target are given as inputs and thus not discussed.

A. Stages in STAP

A post-Doppler STAP algorithm typically comprises of the
four main stages, as shown in Figure 2. The received input is
first converted into Doppler frequency via a series of FFTs.
Then, STAP is performed in the following three stages: 1)
Compute an estimate of the interference covariance matrix Rg
for the particular range, 2) An adaptive weight, w is computed
with the covariance matrix R4, and the steering vector v
representing the target, and 3) w is normalized and applied
to the range data to compute the desired output. We discuss
the different stages in detail below:

Doppler Processing: The received signal is first pro-
cessed by the application of Lx N Discrete Fourier Transforms
(DFT), where L is the number of array elements and N is
the number of range cells. Typically, as the elements for each
DFT are often received in non-consecutive memory addresses,
the input data will require a data reshape to reorder them
into consecutive memory addresses. This is to improve the
performance of each individual DFT. Similarly, because the
outputs of the DFTs are not in the form required by subsequent
stages, another data reshape is performed after all DFTs have
completed. It is important to note that these reshape contains
no computation and are purely memory-bounded operations.

Covariance Matrix Construction: For each range cell,
an interference covariance matrix is computed. In practice, the
actual interference covariance matrix is not known a priori
and an estimate (denoted R;) of it has to be computed in real-
time. Typically, N range cells around the desired range cell
are used to estimate 74 in the following manner:

Nr—1

R 1
Ry=— spsil, (D
4 NMZ:O s

where each sy s/ represents the interference covariance matrix
at the k*" range cell.

Computing Adaptive Weights: Having computed an
estimate of the interference covariance matrix for a particular
range, the weight that will be used to build a filter for
identifying a target represented by the steering vector v can
be obtained by computing

_ p-1
w= R, v.

In practice,]%d is not inverted. Instead, Rd is factorized
either by the QR decomposition or Cholesky factorization, and
forward and back-substitutions are performed. Mathematically,
this is represented as

w = U_lU_Hv7 2)
where Rd =UHU, and U is the Cholesky factor of Rd.

Applying adaptive weights: Often the adaptive weight
vector w is normalized before being used to compute the
comparison statistic 1) from which the presence of the target
is determined. This normalizing and applying of the adaptive
weight w to compute the @ can be described mathematically
by
U}HSk
—

Y= €
wHv

The output ¢ is then compared to a predetermined threshold
to determine if the target represented by v is present in that
particular range represented by the interference covariance
matrix constructed with sj.

III. OPTIMIZING MEMORY-BOUNDED OPERATIONS

Notice that in the description of the STAP algorithm,
Equations 1 to 3 are all operations on vectors. As vector
operations are memory-bounded operations, i.e. data cannot
be brought from memory at a high enough rate, this results
in stalls during computation. As such, they inherently cannot
be implemented efficiently on current architectures with the
conventional memory hierarchy. In this section, we discuss
the two methods we used to optimize these memory-bounded
operations.

A. From Memory-bounded to Compute-bounded operations

A key observation made by the linear algebra community is
that by casting operations into different forms of matrix mul-
tiplication, a compute-bounded operation, high performance
implementations can be realized on architecture with hierar-
chical memory. This insight underlies the shift from Level 1
and Level 2 Basic Linear Algebra Subprograms (BLAS) [7],
[8] to the Level 3 BLAS [9], and the use of blocked (tiled)
algorithms in higher level linear algebra operations (e.g. QR
and Cholesky factorizations) in LAPACK [10]. Using the same
approach, the first two stages of the STAP algorithm can be
converted into compute-bounded operations.

Recall that the first stage of the problem is the computation
of the interference covariance matrix given by Equation 1.
However, by defining a matrix S as a collection of vectors
Sk, ie.

S = [80 S1 ... SNRfl],

Equation 1 can be rewritten as a matrix multiplication of the
form:

. 1 H
Ry = N—RSS ,

which is known as the Symmetric Rank-k Update (SYRK)
operation in the Level 3 BLAS.

Similarly, the computation of the adaptive weights w
(Equation 2) can also be converted to using Level 3 BLAS.
We first use the function potrf in LAPACK, a highly
optimized Cholesky factorization implementation, to compute
the Cholesky factor, U, of Ry. The resulting matrix U is then
used to compute a weight w; for each steering vector v;. By
collecting the steering vectors v; into a matrix V', Equation 2
can be transformed into the following operation sequence:

w = UHv
W = U'W

where W is the collection of weights for the collection of
vectors, and can be implemented with two calls to the Trian-
gular Solve with Multiple Right-hand Sides (TRSM) operation
in Level 3 BLAS.

B. Remaining Bottleneck

By performing the above transformations, the computation
of the covariance matrix, and the computation of the adaptive
weights can be implemented as loops around either Level 3
BLAS or LAPACK subroutine calls, thereby eliminating all
memory-bounded operations in these stages. The remaining
four memory-bounded operations are the data reshape, DFTs,
inner-product and vector scaling operations in the first and
last stages. For these two stages, we rely on the use of
accelerators on our 3D stacked Logic-in-Memory system that
will be discussed in the subsequent section.

IV. 3D STACKED LOGIC-IN-MEMORY SYSTEM

In this section, we introduce our overall architecture of the
accelerated 3D stacked Logic-in-Memory (LiM) system, and
the details of how memory-side accelerators are integrated onto
the LiM die. We also present an overview of our proposed
software/hardware interface for utilizing the accelerators for
the memory-bounded operations.

A. Overall Architecture

Figure 3 shows the overall 3D stacked Logic-in-Memory
(LiM) system. The LiM system consists of two major com-
ponents, i.e., the host multi-core processor for compute-
bounded operations and the 3D DRAM stack equipped with
accelerators to target the memory-bounded operations. The
multi-core processor and the 3D DRAM stack are connected
with multiple high-speed serial links, allowing the external
bandwidth between them to achieve up to 480 GB/s [11].

In the 3D DRAM stack of LiM system, there exists
multiple DRAM dies, one DRAM logic die and one LiM die.
The DRAM dies store the data for processing, and the DRAM
logic die mainly contains memory controllers for accessing
data from the DRAM dies. The DRAM dies and the logic die
are connected with high-performance, low-energy, and high
bandwidth TSVs (Through Silicon Vias) [12], allowing the
internal bandwidth to reach as high as 860 GB/s [13]. We
further introduce a LiM die, where multiple accelerators can
be integrated to speedup memory-bounded operations, under
the DRAM logic die. Both the accelerators on the LiM die and
the host processor can leverage the memory controllers on the
DRAM logic die to communicate with the DRAM dies.

High-speed /’/ DRAM
Links) ¢ == = = dies
y * Y |1 - T 1 \
VI 3D-stacked U e TSV bus
CIE—| DRAM e S
. R DRAM logic die
LiM System LiM die

Fig. 3. The overall architecture of 3D stacked Logic-in-Memory system,
where high-speed serial links of up to 480 GB/s connects the memory to the
host processor, and high bandwidth (860 GB/s) Through Silicon Vias (TSVs)
connect different DRAM die stacked on top of each other.

B. LiM Die

On the LiM die, we integrate various accelerators for
the aforementioned memory-bounded operations in the STAP
algorithm. Accelerators required are FFT [5] for the Doppler
Processing stage, Reshape [14] for data reshape before and
after the Doppler Processing stage, and DOT [15] and SCAL
for the normalization and application of the adaptive weights.
The basic principle is that each accelerator is mapped to one
or more library APIs, such that each library call is equivalent
to an accelerator invocation. In addition to the accelerators,
a configuration infrastructure is also designed to control and
configure the accelerators. The configuration infrastructure
consists of the switch interconnect, which connects all the
hardware accelerators and the Configuration Unit (CU). The
CU parses an Accelerator Descriptor that describes the control
and configuration of the accelerators, performs the necessary
configurations, and invokes the accelerators accordingly.

C. Software/Hardware Interface

We termed the interface between the software and hardware
accelerators the Accelerator Descriptor (AD). The AD is es-
sentially a physically contiguous memory region, that contains
three major parts, i.e., Command Region (CR), Instruction
Region (IR) and Parameter Region (PR). The CR is composed
of the control command such as START and STOP, the
number of instructions and the starting address of the IR.
The IR contains multiple instructions, and each instruction
can be either a traditional instruction or a control instruction.
The traditional instruction corresponds to one invocation of
an accelerator, while the control instruction is related to the
control flow operation such as the LOOP and NOP instruction.
For a traditional instruction, in addition to specifying the
accelerator to invoke, it also specifies the starting address and
the size of accelerator parameters in the PR. Details of the
input and output buffers such as buffer size, starting address,

to Logic Die {
v LiM Layer

Interconnect

H

Configuration Unit

Fig. 4. The architecture of the Logic-in-Memory (LiM) die.

CR IR PR

2]
m % | 8
o x| 2|88 |8 &
gl s g|la g8 |a|<|a|&
g5 |« e | 52 |l <|o|le|le|le|a
z |] o| = Elelel2l2|2]=
2 e |2 eS| 3 S|o|o|E|E|E|E
Blo | < 2| % | E|le|&E|5|51]5 &
)} g | & & Al A Z | & & Q| O | O | &
TABLE II. THE DETAILED FORMATION OF THE ACCELERATOR
DESCRIPTOR (AD).
AD Name Function # Accelerators Calls
ADO Corner turn 1
Batch FFT 32,768
Snapshot extraction 1
ADI1 Batch inner product 262,144
AD2 Batch inner product 16,777,216
Batch vector scaling 262,144
TABLE IIT. MULTIPLE ACCELERATOR INVOCATIONS ARE GROUPED

INTO THREE ACCELERATOR DESCRIPTORS (ADS) FOR THE STAP
ALGORITHM. NUMBERS INDICATE THE NUMBER OF ACCELERATOR
INVOCATION FOR THE LARGE DATA SET.

and stride for each accelerator invocation are also specified in
the PR. The detailed format of the AD is shown in Table II.

Offloading of the task from the host to accelerators is per-
formed by transferring the completed AD to the memory space
monitored by the Configuration Unit (CU). As there exists non-
negligible overheads during task offloading, it is necessary to
specify multiple accelerator invocations within one AD so as
to reduce the total times of tasks are being offloaded. In the
STAP algorithm, where multiple accelerated library calls are
within loops, e.g., DOT in a series of nested for loops, we
use the LOOP instruction to generate a compact descriptor. For
two sequential library calls where the output data of the first
library call is exactly the input data of the second library call,
these two library calls/accelerator invocations can be placed
into the same AD. For the Large data set in PNNL's STAP
implementation, a total of 17,334,274 accelerator invocations
can be compactly described into only three ADs as shown in
Table III.

To generate ADs from the software library calls, we de-
velop a source-to-source compiler to parse the programs instru-
mented with directives. In more detail, the memory-bounded
libraries are first instrumented with OpenACC-compatible di-
rectives such as #pragma acc. Then, our compiler can
automatically identify such libraries and translate them to low-
level accelerator-related libraries in [16]. At runtime, such low-
level libraries can generate corresponding ADs to invoke the
accelerators.

V. PERFORMANCE

In this section, we show performance attained by four
different implementations, using three different configurations
for the third-order Doppler-factored STAP algorithm.

A. Experimental Setup

All experiments were conducted on an Intel Haswell i-
4770K multicore processor. To evaluate the performance and
energy efficiency of the entire LiM system, we employ the

Performance Gains over Baseline (BLAS-2)
Speedup (Times)

18
16 --Small -#-Medium Large
14
12
10
8
6
2 M
2 —
0 L —
BLAS-2 BLAS-3 BLAS-3 + LiM System Upper
OpenMP Bound
Fig. 5. The performance improvements obtained by using different imple-

mentations. The results are normalized to that of the BLAS-2 baseline.

same methodology in [16]. In this methodology, the perfor-
mance and energy of the host processor are measured by
using PAPI (Performance Application Programming Interface)
RAPL (Running Average Power Limit) [17] interface, while
the performance and energy of the memory-side acceler-
ators are modeled using various simulation and modeling
tools, including Synopsis Design Compiler [18], DesignWare,
MCcPAT [19], CACTI-3DD [20], and customized accelerator
models. More details of the evaluation methodology can be
found in [16].

We ran the three configurations (i.e., Small, Medium, and
Large in Table I) using four distinct implementations for all
experiments. The baseline is a library-based implementation
of PNNL’s third-order Doppler-factored STAP algorithm using
primarily BLAS 1 and BLAS 2 operations (BLAS-2). The
second implementation (BLAS-3) reduces the number of
memory-bounded operations as described in Section III. We
show the flexibility of implementing STAP using library and
improvement gained by using OpenMP pragmas around the
outer-most loops (BLAS-3 + OpenMP). This is so that all
threads have the largest amount of independent tasks [21].
Finally, the implementation for the LiM system is obtained
by compiling the BLAS-3 + OpenMP implementation with
our experimental compiler (LiM System). We also show
the theoretical upper bound if the remaining memory-bounded
operations require no compute time, and no energy.

B. Performance

In Figure 5, we show the performance comparison of
BLAS-2 baseline, BLAS-3, BLAS-3+OpenMP and LiM
System, where the results are normalized to that of the base-
line. Compared with the baseline, BLAS—3, where memory-
bounded operations are converted to compute-bounded opera-
tions, improves the performance by 75%, 65%, and 71% for
Small, Medium, and Large data set, respectively. By exploiting
multithreading, we can achieve 1.53x, 3.08x, and 2.9x perfor-
mance improvements over the baseline implementation for the
Small, Medium, and Large data set, respectively. The perfor-
mance attained through our LiM system yields the greatest
benefit, where more than 11x improvement in performance is
attained over the baseline implementation for the large data
set.

To demonstrate the benefit of using memory-side acceler-
ators with the 3D stack, we compare the performance of each
accelerator and its corresponding software implementation

Performance Gains of Accelerators over BLAS3+OpenMP
Speedup (Times)
45

40 Small Medium ® Large

35
30
25
20
15
10

i |]
0

Reshape FFT DOT SCAL

Fig. 6. The performance improvements of different accelerators in the
proposed LiM system over the BLAS-3+OpenMP implementation.

Energy Reductions over Baseline (BLAS-2)
Reduction Times

BLAS-2

8 BLAS-3

BLAS-3 + OpenMP
6 M LiM System

B Upper Bound

ey |

Small Medium Large

Fig. 7. The energy reduction of different implementations over the BLAS-2
baseline.

with BLAS—-3+0penMP. As shown in Figure 6, accelerators
in LiM can significantly and greatly improve the performance.
We consistently obtained between five and 40 times speed up in
performance for memory-bounded operations over the software
implementations.

C. Energy Efficiency

In Figure 7, we compare energy consumption of different
implementations, where the results are normalized to that
of the baseline (BLAS-2) implementation. Converting the
memory-bounded operations to compute-bounded operations,
we reduce the energy by 42.6%, 39.2%, and 38.7% for the
Small, Medium and Large data set, respectively. Exploiting
multithreading on the multicore processor (BLAS-3+0penMP
implementation), the energy is reduced by 49.6% for the Large
data set. An interesting observation is that the energy reduction
even decreases for the Small data set, although the execution
time is significantly reduced compared with the BLAS-3
implementation (see Figure 5). The reason is that there is
insufficient computation in the small data set to amortize the
power consumption resulting from multithreading. Finally, the
proposed LiM system can greatly reduce the energy consump-
tion. Compared against the baseline, the LiM implementation
reduces energy consumption by a factor of 2.32x, 5.82x, and
5.39x for the Small, Medium and Large data set, respectively,
which are 91%, 85%, and 89% of the theoretical upper bound
of energy reduction.

In Figure 8, we further compare the energy efficiency in
terms of Energy Delay Product (EDP) [22] of different imple-
mentations normalized to the EDP of the BLAS-2 baseline.

Energy Efficiency Gains over Baseline (BLAS-2)
1E2DSP Reduction (Times)

64 --Small -#-Medium Large
32
16

8

4

2 /

1 V—

BLAS-2 BLAS-3 BLAS-3 + LiM System Upper

OpenMP Bound

Fig. 8. The energy-delay product (EDP) improvement of different imple-
mentations over the BLAS—-2 baseline.

Using the large data set as an example, the BLAS—-3 imple-
mentation improves energy efficiency by a factor of 1.79x.
Multithreading implementation improves the energy efficiency
by a factor of 6.74x. The largest improvement comes from
the acceleration with the LiM system, resulting in a total of
77.6x EDP improvement over the baseline. The above results
demonstrates the energy efficiency of our proposed software-
hardware co-optimized solution.

VI. CONCLUSION

In this paper, we show that memory-bounded operations
take up a significant portion of the compute time for STAP
algorithms. As such, we introduced an approach, orthogonal
to existing approaches, for optimizing STAP. We reduce and
accelerate memory-bounded operations through a reformula-
tion of the STAP algorithm. Acceleration of memory-bounded
operations is performed on an accelerated 3D stacked system.
These optimization and acceleration results in more than 77.6x
and 11.3x improvement in energy efficiency and performance
over an basic implementation that uses subroutine calls to
optimized libraries (e.g. FFTW and MKL).

While we have used the third-order Doppler-factored STAP
algorithm to illustrate our approach, the optimizations we
introduced are applicable to many other STAP algorithms as
the stages that compute, normalize and apply the adaptive
weights using an estimated interference covariance matrix are
similar across different algorithms. More importantly, prac-
tical applications of STAP typically work with larger array
elements, and more potential targets. This larger data set
implies that greater energy efficiency gain can be expected
since there are more memory-bounded operations that need to
be computed.

ACKNOWLEDGMENT

This work was sponsored by the DARPA PERFECT pro-
gram under agreement HR0011-13-2-0007. The content, views
and conclusions presented in this document do not necessarily
reflect the position or the policy of DARPA or the U.S.
Government. No official endorsement should be inferred.

REFERENCES

[1] J. Ward, “Space-time adaptive processing for airborne radar,” in Space-
Time Adaptive Processing (Ref. No. 1998/241), IEE Colloquium on, Apr
1998, pp. 2/1-2/6.

(2]

(31

(4]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. Wicks, M. Rangaswamy, R. Adve, and T. Hale, “Space-time adaptive
processing: a knowledge-based perspective for airborne radar,” IEEE
Signal Processing Magazine, vol. 23, pp. 51-65, 2006.

M. Frigo and S. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.

Intel, “Math Kernel Library,” https://software.intel.com/en-us/intel-mkl,
2015.

B. Akin, F. Franchetti, and J. C. Hoe, “Understanding the design space
of dram-optimized hardware FFT accelerators,” in Proceedings of the
International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), 2014, pp. 248-255.

K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,
D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and
A. Tumeo, PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual, Pacific Northwest
National Laboratory and Georgia Tech Research Institute, December
2013, http://hpc.pnnl.gov/projects/PERFECTY/.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for Fortran usage,” ACM Trans. Math. Sofft.,
vol. 5, no. 3, pp. 308-323, Sept. 1979.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
extended set of FORTRAN basic linear algebra subprograms,” ACM
Trans. Math. Soft., vol. 14, no. 1, pp. 1-17, March 1988.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A set of level
3 basic linear algebra subprograms,” ACM Trans. Math. Soft., vol. 16,
no. 1, pp. 1-17, March 1990.

E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. E. McKenney, S. Ostrouchov, and
D. Sorensen, LAPACK Users’ Guide. Philadelphia: SIAM, 1992.

“Hybrid memory cube specification 2.0,” 2015. [Online]. Available:
http://www.hybridmemorycube.org/specification-v2-download-form/

G. H. Loh, “3d-stacked memory architectures for multi-core pro-
cessors,” in Proceedings of International Symposium on Computer
Architecture (ISCA), 2008, pp. 453-464.

B. Akin, J. C. Hoe, and F. Franchetti, “Data reorganization in memory
using 3d-stacked dram,” in Proceedings of International Symposium on
Computer Architecture (ISCA), 2015.

——, “Hamlet: Hardware accelerated memory layout transform within
3d-stacked dram,” in Proceedings of IEEE High Performance Extreme
Computing Conference (HPEC), 2014.

A. Roldao Lopes and G. A. Constantinides, “A fused hybrid floating-
point and fixed-point dot-product for fpgas,” in Proceedings of Interna-
tional Conference on Reconfigurable Computing: Architectures, Tools
and Applications (ARC), 2010, pp. 157-168.

Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi,
J. C. Hoe, and F. Franchetti, “3d-stacked memory-side acceleration:
Accelerator and system design,” in 2nd Workshop on Near Data
Processing (WoNDP), 2014.

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in International Symposium
on Low-Power Electronics and Design (ISLPED), 2010, pp. 189-194.

“Synopsis design compiler.” [Online]. Available: http://www.synopsys.
com/Tools/Implementation/RTLSynthesis/DesignCompiler

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), 2009,
pp. 469-480.

K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and
N. P. Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), 2012, pp. 33-38.

J. R. Allen and K. Kennedy, “Automatic loop interchange,” SIGPLAN
Not., vol. 19, no. 6, pp. 233-246, June 1984. [Online]. Available:
http://doi.acm.org/10.1145/502949.502897

R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose
microprocessors,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 9,
pp. 1277-1284, 1996.

