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Abstract—Applications in theorem proving and cryptography
heavily rely on the multiplication of large integer values. Utilizing
properties of the Fourier Transform, one can multiply two
values in O(n logn) time as compared to the traditional O(n2)
grade school algorithm. In this work, we propose a FFT-based
multiplication algorithm that can be computed O(n logn) time,
utilizing interval arithmetic to circumvent the real number
uncertainty. This work will also present hardware for FFT
based large integer multiplication, LIMA, which is a test chip
implementing of a portion of this algorithm fabricated on the
TSMC 28 nm process. We aim to demonstrate LIMA as a high
throughput implementation of this portion of the algorithm, with
the intent of being able to run at a 1 GHz with a area of 1.9 mm2.
LIMA utilizes custom double precision floating point and FIFO
architectures optimized for area and high clock speed operation.

I. INTRODUCTION

The traditional “grade school multiplication,” with a O(n2)
asymptotic complexity for the multiplication of two n-bit
numbers, is far too slow for large integer values. Although
there exist alternative algorithms that are faster than the
grade school algorithm, such as the Karatsuba or the Conba
algorithm, these algorithms are nonetheless still in the realm
of polynomial time [1] [2] [3].

We propose a FFT based multiplication algorithm that can
be computed in O(n log n) time, utilizing interval arithmetic
to circumvent the real number uncertainty of traditional FFT
algorithms, which inputs and outputs real values. If the range
of uncertainty is small enough and includes a single integer
value, then we can be confident that our result is that integer
value.

We present LIMA, a hardware implementation of a portion
of this algorithm fabricated on the TSMC 28 nm process. Our
design implements the Radix-4 FFT and the twiddle factor
multiplication portion of the algorithm. We aim to demonstrate
LIMA as a high throughput implementation of this portion of
the algorithm, utilizing FIFOs to deliver test vectors to the
design. Utilizing custom floating point, we are able to achieve
a area of 1.9 mm2 with a simulated clock frequency of 1 GHz.

II. LARGE INTEGER MULTIPLICATION ALGORITHM

A. Fast Fourier Transform
The FFT is an algorithm that computes the DFT with

a time complexity of O(n log n). FFT based multiplication

Fig. 1. LIMA Die Shot

algorithms utilize the convolution theorem, which states that
convolution in one domain is multiplication in the other. Thus
a convolution of two integer values in the frequency domain
is equivalent to multiplication of those two values in the time
domain. To perform the FFT on these integer values, we can
represent them as a sequence, with each element being a digit
of the integer. Then utilizing the FFT, these integer sequences
are converted from time domain to frequency domain, where
they are convolved, which can be done by doing a point-wise
multiplication and carry addition. Then a inverse FFT (IFFT)
is taken over the result to get the final multiplied value back
in the time domain. Thus the multiplication algorithm is as
follows:

y = IFFT (FFT (x1) ∗ FFT (x2)) (1)

The overall algorithm’s time complexity is dictated by the
time complexity of the FFT, thus the multiplication algorithm
is O(n log n). LIMA implements the FFT portion of the
algorithm, specifically the Radix-4 variation of the FFT. The
radix indicates the size of the butterfly matrix that is used to
compute the FFT. The butterfly matrix can be generalized as
two stages of complex adds and subtracts, with the exception
of a single multiply with j. However, this calculation can be
done without doing a multiply by negating the complex output
and swapping the real and complex portions of the output (so
the complex part becomes the real part and vice versa). The
outputs of the butterfly matrix are then multiplied with the



corresponding twiddle factor, which are constant values that
are used to compute the FFT.

B. Interval Arithmetic

The main issue of simply using FFTs to do integer mul-
tiplication is that FFTs output real values instead of integer
values. Real numbers present some amount of uncertainty to
the true integer value of the multiplication. However, we can
circumvent this by using interval arithmetic, which provides
an upper and lower bound, or in other words, a interval,
to the real value result of the FFT. If the upper and lower
bounds of the interval vary by one machine epsilon to the true
value and ranges over a integer value, then we can be certain
that the true value of the interval is that integer value. The
interval arthmetic operations for addition (2), subtraction (3)
and multiplication (4) are shown as:

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) (2)

(x1, x2)− (y1, y2) = (x1 − y2, x2 − y1) (3)

(x1, x2) ∗ (y1, y2) = (min(x1 ∗ y1, x1 ∗ y2, x2 ∗ y1, x2 ∗ y2),
max(x1 ∗ y1, x1 ∗ y2, x2 ∗ y1, x2 ∗ y2))

(4)
Where (x1, x2) represents the lower and upper bound of the

interval x and (y1, y2) represents the lower and upper bound
of the interval y. Since LIMA operates on complex real values,
intervals are computed for both the real and complex portions
of the FFT output.

III. ACCELERATOR DESIGN

A. Floating Point Units

The floating point units employ two key area and timing
saving optimizations. There are only two rounding modes
implemented by the floating point units, round to positive
infinity and round to negative infinity. These rounding modes
ensure that the interval operations result in worst case intervals.
Hence, for any operation to generate the lower interval, the
floating point unit will round to negative infinity and vice
versa. The floating point units also do not deal with denor-
malized numbers, assuming them to be infinity.

IV. LIMA IMPLEMENTATION

A. Computation Kernels

The Radix-4 FFT, shown in Fig. 2 is split into two blocks,
the Radix-4 Interval Kernel and the Complex Diagonal Mul-
tiply Block. The entire computation kernel has a pipeline
depth of 13 stages. The Radix-4 Interval Kernel is two stages
of complex interval additions and subtractions, which are
interval addition and subtraction on both the real and the
complex parts of the complex interval inputs. Each interval
addition/subtraction subblock uses four floating point adders.
The Complex Diagonal Multiply Block multiplies the output
of the Radix-4 Interval Kernel with the corresponding twiddle
factors fed from the twiddle FIFO. The complex multiply op-
eration employs the two floating point multiplier optimization,
and uses four floating point multipliers and two floating point

Fig. 2. LIMA Block Diagram

adders. Overall, the computation kernels consists of 48 floating
point adders and 32 floating point multipliers. The total area
of the computation kernel is 0.75 mm2.

B. Top Level Design

The top level block diagram is shown in Fig. 2. Virtuoso
floorplan diagrams is shown in Fig. 1. LIMA was synthesized
to a 1 GHz clock speed, with a area of 1.9 mm2. The
dimensions for the chip are 1.9 mm by 1.0 mm. Power
simulations of the chip predict that it operates on a average
power draw of 922 mW during continuous operation. The
latency for a single computation is 13 cycles.

Due to size constraints, LIMA instead utilizes FIFOs to send
test vectors through the computation kernels. Because of this,
LIMA is not able to properly compute a FFT of a meaningful
size fully on chip, however, we are able to demonstrate that
we are able to run the FFT computation at 1 GHz. Future work
on LIMA would involve adding memory to properly compute
multiplication of two integers.

V. CONCLUSION

This work presents a traditional FFT based large integer
multiplication accelerator design fabricated on the TSMC
28nm process. Future work will involve implementing memory
instead of FIFOs to be able to hold the intermediate values of
the FFT to properly compute FFT on chip. The partial sums
addition and inverse FFT will also be implemented, with the
whole end to end algorithm being implemented to run the full
integer multiplication algorithm.
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