
COOLEY-TUKEY FFT LIKE ALGORITHMS FOR THE DCT

Markus Püschel

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, U.S.A.

ABSTRACT

The Cooley-Tukey FFT algorithm decomposes a discrete Fourier
transform (DFT) of size n = km into smaller DFTs of size k and
m. In this paper we present a theorem that decomposes a polyno-
mial transform into smaller polynomial transforms, and show that
the FFT is obtained as a special case. Then we use this theorem
to derive a new class of recursive algorithms for the discrete co-
sine transforms (DCTs) of type II and type III. In contrast to other
approaches, we manipulate polynomial algebras instead of trans-
form matrix entries, which makes the derivation transparent, con-
cise, and gives insight into the algorithms’ structure. The derived
algorithms have a regular structure and, for 2-power size, minimal
arithmetic cost (among known DCT algorithms).

1. INTRODUCTION

The celebrated Cooley-Tukey fast Fourier transform (FFT) algo-
rithm [1] decomposes a discrete Fourier transform (DFT) of size
n = km into smaller DFTs of size k and m. The algorithm’s in-
herent versatility—due to the degree of freedom in factoring n and
due to its structure—has proven very useful for its implementation
on a variety of diverse computing platforms. A recent example is
automatic platform adaptation of FFT software through algorith-
mic search [2, 3, 4].

In this paper we derive a new class of algorithms, analogous to
the FFT, for the discrete cosine transforms (DCTs) of type II and
III. The discovery of this class and its derivation is made possible
through an approach using polynomial algebras.

Algebraic Approach to the DCTs. There is a large number
of publications on fast DCT algorithms. With few exceptions (in-
cluding [5, 6, 7, 8]) these algorithms have been found by clever
manipulation of matrix entries, which provides little insight into
their structure or the reason for their existence. In [9, 10] we devel-
oped an algebraic approach to the 16 DCTs and DSTs to remedy
this situation. We associate to each DCT (or DST) a polynomial
algebra, and derive known algorithms by manipulating these al-
gebras instead of transform matrix entries. This approach makes
the derivation transparent and provides the mathematical under-
pinning for these algorithms.

A New Class of DCT Algorithms. In this paper we present
a general theorem for decomposing polynomial algebras and show
that the Cooley-Tukey FFT is obtained as a special case. Then we
use this theorem to derive the analogous class of algorithms for the
DCTs of type II and III. Thus, the term “analogous” is in a strict
mathematical sense.

This work was supported by NSF through award 9988296.

All algorithms in this class have a large degree of parallelism,
low arithmetic cost, and a regular, flexible, recursive structure,
which makes them suitable for efficient hardware implementation
or for automatic software generation and adaptation [2, 3]. Only
few special cases in this class are known from the literature. We
present the mathematical framework in Section 2; the algorithm
derivation and analysis is in Section 3.

2. POLYNOMIAL ALGEBRAS AND TRANSFORMS

A vector space A that permits multiplication of elements such that
the distributive law holds is called an algebra. Examples include
C and the set C[x] of polynomials with complex coefficients.

Polynomial Algebra. Let p(x) be a polynomial of degree
deg(p) = n. Then, A = C[x]/p(x) = {q(x) | deg(q) < n},
the set of residue classes modulo p, is an n-dimensional algebra
with respect to the addition of polynomials, and the polynomial
multiplication modulo p. We call A a polynomial algebra.

Polynomial Transform. For the remainder of this paper, we
assume that the polynomial p(x) in A = C[x]/p(x) has pair-
wise distinct zeros α = (α0, . . . , αn−1). Then, the Chinese Re-
mainder Theorem decomposes A into a Cartesian product of one-
dimensional algebras as

C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),

q(x) 7→ (q(α0), . . . , q(αn−1)). (1)

If we choose b = (p0, . . . , pn−1), deg(pi) < n, as a basis for
A, and bk = (x0) as the basis in each C[x]/(x − αk), then the
decomposition in (1) is given by the polynomial transform

Pb,α = [p`(αk)]0≤k,`<n. (2)

As an example, every Vandermonde matrix [α`
k]0≤k,`<n is known

to be a polynomial transform by choosing p` = x`.
Fast Algorithm. If p(x) decomposes into two polynomials,

p(x) = q(r(x)), then Pb,α can be factorized as briefly explained
next (see [9, 10] for details). We assume deg(q) = k, deg(r) =
m, i.e., n = km, and denote with β = (β0, . . . , βk−1) the zeros
of q and with α′

i = (αi,0, . . . , αi,m−1) the zeros of r(x)−βi, i.e.,
each αi,j is a zero α` of p.

Then C[x]/p(x) decomposes in the following steps.

C[x]/p(x) →
⊕

0≤i<k

C[x]/(r(x) − βi) (3)

→
⊕

0≤i<k

⊕

0≤j<m

C[x]/(x − αi,j) (4)

→
⊕

0≤`<n

C[x]/(x − α`). (5)

Further, we choose a basis c = (q0, . . . , qk−1) for C[x]/q(x), and
a basis d = (r0, . . . , rm−1) for each C[x]/(r(x) − βi) in (3).
Then

b′ = (r0q0(r), . . . , rm−1q0(r),
. . .
r0qk−1(r), . . . , rm−1qk−1(r))

(6)

is a basis of C[x]/p(x). The final factorization of Pb,α is given by
the following theorem, in which we use the tensor (or Kronecker)
product and the direct sum of matrices A, B, respectively defined
by

A ⊗ B = [ak,` · B], for A = [ak,`], A ⊕ B = [A
B] .

Theorem 1 Using previous notation,

Pb,α = P
(

⊕

0≤i<k

Pd,α′

i

)

(Pc,β ⊗ Im)B, (7)

where B is the base change matrix mapping b to b′, and the re-
maining three factors in (7) correspond (from right to left) to steps
(3), (4), and (5), respectively. In particular, P is a permutation
matrix mapping the concatenation of the α′

i onto α in (5).

The usefulness of (7) as a fast algorithm for Pb,α depends on the
matrix B; the other factors are sparse. The following example
shows that the Cooley-Tukey FFT is obtained as a special case of
(7).

Example: Cooley-Tukey FFT. The discrete Fourier trans-
form (DFT) of size n is defined by the matrix

DFTn = [ωk`
n]0≤k,`<n, ωn = e−2π

√
−1/n,

and, as a special Vandermonde matrix, is a polynomial transform
DFTn = Pb,α for the algebra A = C[x]/(xn−1) w. r. t. the basis
b = (1, x, . . . , xn−1) and the list of zeros α = (ω0

n, . . . , ωn−1
n).

If n = km then xn −1 = (xm)k −1 decomposes and we can
apply (7). The zeros of the outer polynomial q(x) = xk − 1 are
given by β = (ω0

k, . . . , ωk−1
k), the zeros of r(x)−βi = xm −ωi

k

by α′
i = (ωi+0·k

n , . . . , ω
i+(m−1)k
n). Next we choose bases c =

(1, x, . . . , xk−1) of C[x]/(xk − 1) and d = (1, x, . . . , xm−1)
of C[x]/(xm − ωi

k), and observe that b′ = b in (6) and thus, in
(7), B = In is the identity matrix. In summary we obtain the
factorization

DFTn = Ln
m

(

⊕

0≤i<k

DFTm(ωi
k)

)

(DFTk ⊗ Im), (8)

where

Ln
m : jk + i 7→ im + j, 0 ≤ i < k, 0 ≤ j < m,

is the stride permutation, which orders the summands in step (5),
and DFTm(ωi

k) is the polynomial transform for C[x]/(xm−ωi
k).

Using the definition, we observe that

DFTm(ωi
k) = DFTm · diag0≤`<m(ωi`

n), (9)

which yields the Cooley-Tukey FFT in its familiar form

DFTn = Ln
m(Ik ⊗DFTm) Tn

m(DFTk ⊗ Im), (10)

where Tn
m is the diagonal twiddle matrix. By transposing (10) we

obtain a different recursion

DFTn = (DFTk ⊗ Im) Tn
m(Ik ⊗DFTm) Ln

k (11)

where we used (Ln
m)T = (Ln

m)−1 = Ln
k . Note that the degree

of freedom in factorizing n in (10) and (11) when applied recur-
sively, yields a large set of structurally different FFT algorithms.
Thus, it is more accurate to speak of the set of Cooley-Tukey FFT
algorithms. The degree of freedom in the recursion is used for
automatic software optimization [2, 3, 4].

3. RECURSIVE DCT II AND III ALGORITHMS

In [9, 10] we have shown that all 16 types of discrete cosine and
sine transforms are (possibly scaled) polynomial transforms, and
used this connection to derive and explain many of their known
algorithms by manipulating polynomial algebras rather than ma-
trices. In this section we extend this approach and use Theorem 1
to derive an entire class of recursive DCT type II and III algorithms
based on Theorem 1, which are thus mathematically equivalent to
the Cooley-Tukey FFT (10) and (11). Only few special cases in
this class are known from the literature. We start by identifying
the DCT type III as polynomial transform.

DCT as Polynomial Transform. The (unscaled) DCT of type
III is defined by the matrix

DCT(III)
n = [cos(k + 1/2)`π/n]0≤k,`<n,

and the DCT of type II is its transpose, DCT(II)
n = (DCT(III)

n)T .
The DCT(III)

n is a polynomial transform as has been recognized
already in [6]. To make this explicit we introduce the Chebyshev
polynomials defined by the recurrence

T0 = 1, T1 = x, Tn(x) = 2xTn−1(x) − Tn−2(x), n ≥ 2.

The polynomial Tn can be written in the closed form Tn(x) =
cos nθ, cos θ = x, which can be used to verify the following
known properties of Tn.

T−n = Tn (12)

TkTn = (Tn+k + Tn−k)/2 (13)

Tkm = Tk(Tm) (14)

zeros of Tn : αk = cos(k + 1/2)π/n, 0 ≤ k < n (15)

Tn − cos rπ = 2n−1
∏

0≤i<n

(x − cos(r + 2i)π/n) (16)

Now, we can readily verify that DCT(III)
n is a polynomial transform

for the algebra A = C[x]/Tn with basis b = (T0, . . . , Tn−1),
namely

DCT(III)
n = [T`(cos(k + 1/2)π/n)]0≤k,`<n.

Initial Algorithm Derivation. To apply Theorem 1, we as-
sume n = km and use Tn = Tk(Tm) from (14). We choose
the basis c = (T0, . . . , Tk−1) for C[x]/Tk; the zeros of Tk are
given by (15). Thus, in step (4) we need polynomial transforms
for C[x]/(Tm − cos(i + 1/2)π/k), which we define now.

Definition 1 Let p(x) = Tn(x) − cos rπ with list of zeros α =
(cos r1π, . . . , cos rn−1π), computed from (16), normalized to sat-
isfy 0 ≤ ri ≤ 1, and ordered as ri < rj for i < j. Further,
let d = (T0, . . . , Tn−1) be the basis of C[x]/p(x). Then we
call DCT(III)

n (rπ) = Pd,α a skew DCT of type III. In particular,
DCT(III)

n (π/2) = DCT(III)
n .

We start the derivation with the matrix B = Bn,k in (7). The basis
b′ in (6) is given by

b′ = (T0T0(Tm), . . . , Tm−1T0(Tm),

. . .

T0Tk−1(Tm), . . . , Tm−1Tk−1(Tm))

= (Tjm−i/2 + Tjm+i/2)0≤i<m, 0≤j<k,

Due to the structure of b′ we can easily read off the inverse of Bn,
i.e., the base change B−1

n from b′ to b.

B−1
n = Cn,k · Dn,k,

with

Cn,k =















Im Zm

Im Zm

. . .
. . .
Im Zm

Im















,

Zm =









0
0 1

. . .
. . .

0 1









, (17)

and the diagonal matrix

Dn,k = Im ⊕(Ik−1 ⊗ diag(1, 1/2, . . . , 1/2)).

The matrices for steps (3) and (4) are straightforward; the final
permutation P in (7) is given by (without proof)

Kn
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . .) Ln

m,

where Jk is Ik with the order of the columns (or rows) reversed.
In summary, we obtain

DCT(III)
n = Kn

m

(

⊕

0≤i<k

DCT(III)
n ((i + 1/2)π/k)

)

(DCT(III)
k ⊗ Im)D−1

n,kC−1
n,k. (18)

To obtain a complete recursive algorithm, we need an algorithm for
the occurring skew DCT(III)’s. In contrast to (9) we do not translate
them into ordinary DCT(III)’s. Instead, we again use Theorem 1 to
decompose their associated algebra C[x]/(Tm − cos(rπ)), pro-
vided m is composite, since Tm − cos(rπ) decomposes exactly as
Tm. The derivation is analogous to above and yields the exactly
analogous factorization

DCT(III)
n (rπ) = Kn

m

(

⊕

0≤i<k

DCT(III)
m (riπ)

)

(DCT(III)
k (rπ) ⊗ Im)D−1

n,kC−1
n,k, (19)

where r, ri are as in Definition 1.
To determine C−1

n,k, we observe that Cn,k is a direct sum of
matrices, conjugated by a suitable permutation Qn,k (conjugation:
AP = P−1AP), namely

Cn,k = (Ik ⊕Sk ⊕ . . . ⊕ Sk)Qn,k ,

= (Ik ⊕(Im−1 ⊗Sk))Qn,k ,

with the bidiagonal matrix

Sk =















1 1
1 1

. . .
. . .
1 1

1















. (20)

Thus, C−1
n,k = (Ik ⊕(Im−1 ⊗S−1

k))Qn,k . The inverse of Sk can
be computed with k − 1 recursive subtractions that have to be per-
formed in sequence, which increases the critical path of computa-
tion and thus runtime or latency (compare to Sk in (20) where all
k − 1 additions can be done in parallel). To overcome this prob-
lem, we can either consider only small values of k, or invert (19),
which we do next.

Inversion. To invert (19), we define a skew DCT(II), moti-
vated by (DCT(III)

n)−1 = 2/n · diag(1/2, 1, . . . , 1) · DCT(II)
n .

Definition 2 We define the skew DCT of type II by

DCT(II)
n (rπ) = n/2 · diag(2, 1, . . . , 1) · (DCT(III)

n (rπ))−1.

In particular, DCT(II)
n = DCT(II)

n (π/2).

It turns out that with this definition, by inverting (19) the mul-
tiplications cancel each other, and we get the beautifully simple
form

DCT(II)
n (rπ) = Cn,k(DCT(II)

k (rπ) ⊗ Im)
(

⊕

0≤i<k

DCT(II)
m (riπ)

)

Mn
k , (21)

where Mn
k = (Kn

m)−1 = Ln
k (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . .).

Four Classes of Recursive Algorithms. By transposing (19)
and (21), we get a total of four different recursions, two for the
DCT of type III and two for type II. We list these recursions in the
following using previous notation. The numbers r, ri are related
as explained in Definition 1.

For the DCT(III), we have

DCT(III)
n = DCT(III)

n (π/2),

DCT(III)
n (rπ) = Kn

m

(

⊕

0≤i<k

DCT(III)
m (riπ)

)

(DCT(III)
k (rπ) ⊗ Im)D−1

n,kC−1
n,k, (22)

and the inverse-transpose of (22)

DCT(III)
n = DCT(II)

n (π/2)T ,

DCT(II)
n (rπ)T = Kn

m

(

⊕

0≤i<k

DCT(II)
m (riπ)T

)

(DCT(II)
k (rπ)T ⊗ Im)CT

n,k. (23)

For the DCT(II), we have the transpose of (22)

DCT(II)
n = DCT(III)

n (π/2)T ,

DCT(III)
n (rπ)T = C−T

n,k D−1
n,k(DCT(III)

k (rπ)T ⊗ Im)
(

⊕

0≤i<k

DCT(III)
m (riπ)T

)

Mn
k , (24)

and the inverse of (22)

DCT(II)
n = DCT(II)

n (π/2),

DCT(II)
n (rπ) = Cn,k(DCT(II)

k (rπ) ⊗ Im)
(

⊕

0≤i<k

DCT(II)
m (riπ)

)

Mn
k . (25)

The remaining problem is to find fast algorithms for the base cases,
i.e., for skew DCTs of prime size. We focus on the most important
case of a DCT of 2-power size n, which is eventually reduced
to skew DCTs of size 2 as base cases. These are given by (c =
cos(riπ/2))

DCT(III)
2 (riπ) = F2 · diag(1, c),

DCT(II)
2 (riπ) = diag(1, 1/(2c)) · F2

(26)

and their transposes, where F2 =
[

1 1
1 −1

]

.
Analysis. We briefly investigate the four proposed algorithms

(22)–(25).
The algorithms (23) for the DCT(III) and its transpose (25)

for the DCT(II) have a large degree of parallelism, and a simple,
very regular structure. For a 2-power n, the arithmetic cost of the
algorithms is independent of the chosen recursion and given by

A(n) =
3n

2
log2(n) − n + 1, M(n) =

n

2
log2(n) (27)

additions and multiplications, respectively, and is thus among the
best ones known. The only possible drawback (for fixed point im-
plementations) is the large dynamic range of the occurring inverse
cosines from the base cases (26). We found only the special case
m = 2 (in which only skew DCTs of size 2 occur) in [11] in a
slightly different form. Namely, using (A ⊗ Im)L

n
k = (Im ⊗A)

for any k × k matrix A, we can write (23) also as

DCT(II)
n (rπ)T = Rn

m

(

⊕

0≤i<k

DCT(II)
m (riπ)T

)Ln
k

(Im ⊗DCT(II)
k (rπ)T) Ln

m CT
n,k, (28)

where Rn
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . .). Similarly, (25) can be

written as

DCT(II)
n (rπ) = Cn,k Ln

k (Im ⊗DCT(II)
k (rπ))

(

⊕

0≤i<k

DCT(II)
m (riπ)

)Ln
k

Rn
m . (29)

Algorithms (22) and (24) suffer, as mentioned before, from the
k − 1 recursive subtractions to compute S−1

k , and from the addi-
tional multiplications arising from D−1

n,k, and are thus inferior to
their alternatives (23) and (25), unless we choose a small value of
k. As an advantage, these algorithms use only cosines as constants
(since only skew DCT(III)’s or their transposes occur). Further, for
small k, the multiplications in D−1

n,k can be fused with the adjacent
skew DCTs. The case n = qr , k = q was derived in [12] using
Chebyshev polynomials, and again in [13] by complicated manip-
ulations of matrix entries. As an example, we consider the case
k = 2, derived in [5] and in [6], in both cases using Chebyshev
polynomials, but given only in iterative form. For k = 2, (22)
takes after minor manipulation the form

DCT(III)
n (rπ) = Kn

m(DCT(III)
m (rπ/2)

⊕ DCT(III)
m ((1 − r)π/2))(F2 ⊗ Im)An, (30)

with

An =

[

Im −Zm

cr I′m

]

,

where cr = cos rπ/2, I ′
m = diag(1, 2, . . . , 2), and Zm is defined

in (17). The arithmetic cost of (30) is equal to (27).
Summary. We derived a new class of fast algorithms for the

DCT type II and III, by a stepwise decomposition of their associ-
ated polynomial algebras. The algorithms have minimal (known)
arithmetic cost and a simple, regular structure. The similarity in
structure to the Cooley-Tukey FFT provides the algorithms with
the same versatility that was the success of the FFT, with its many
variants optimized for, e.g., parallel and vector platforms [1]. Fur-
ther, the algorithms are amenable to automatic software generation
and adaptation as done in [2, 3, 4].

4. REFERENCES

[1] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete
Fourier Transforms and Convolution, Springer, 1997.

[2] M. Frigo and S. G. Johnson, “FFTW: An adaptive software
architecture for the FFT,” in Proc. ICASSP, 1998, vol. 3, pp.
1381–1384, http://www.fftw.org.

[3] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua,
V. Prasanna, M. Püschel, and M. M. Veloso, “SPIRAL:
Automatic Library Generation and Platform-Adaptation for
DSP Algorithms,” 1998, http://www.ece.cmu.edu/∼spiral.

[4] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. John-
son, D. Padua, M. Veloso, and R. W. Johnson, “SPIRAL: A
Generator for Platform-Adapted Libraries of Signal Process-
ing Algorithms,” 2003, to appear in Journal of High Perfor-
mance Computing and Applications.

[5] Y. Morikawa, H. Hamada, and N. Yamane, “A Fast Algo-
rithm for the Cosine Transform Based on Successive Or-
der Reduction of the Chebyshev Polynomial,” Elec. and
Comm. in Japan, Part 1, vol. 69, no. 3, pp. 173–180, 1986.

[6] G. Steidl and M. Tasche, “A Polynomial Approach to
Fast Algorithms for Discrete Fourier-Cosine and Fourier-
Sine Transforms,” Mathematics in Computation, vol. 56, no.
193, pp. 281–296, 1991.

[7] E. Feig and S. Winograd, “Fast Algorithms for the Discrete
Cosine Transform,” IEEE Trans. on Signal Processing, vol.
40, no. 9, pp. 2174–2193, 1992.

[8] S. Egner and M. Püschel, “Automatic Generation of Fast Dis-
crete Signal Transforms,” IEEE Trans. on Signal Processing,
vol. 49, no. 9, pp. 1992–2002, 2001.

[9] M. Püschel and J. M. F. Moura, “The Discrete Trigonometric
Transforms and Their Fast Algorithms: An Algebraic Sym-
metry Approach,” in Proc. 10th IEEE DSP Workshop, 2002.

[10] M. Püschel and J. M. F. Moura, “The Algebraic Approach to
the Discrete Cosine and Sine Transforms and their Fast Al-
gorithms,” 2003, submitted to SIAM Journal of Computing.

[11] K. R. Rao and P. Yip, Discrete Cosine Transform: Algo-
rithms, Advantages, Applications, Academic Press, 1990.

[12] G. Steidl, “Fast Radix-p Discrete Cosine Transform,” Appl.
Algebra Engrg. Comm. Comp., vol. 3, pp. 39–46, 1992.

[13] G. Bi and L. W. Yu, “DCT Algorithms for Composite Se-
quence Lengths,” IEEE Trans. on Signal Processing, vol. 46,
no. 3, pp. 554–562, 1998.

