
Large Bandwidth-Efficient FFTs on
Multicore and Multi-Socket Systems

Doru Thom Popovici, Tze Meng Low, Franz Franchetti
Department of Electrical and Computer Engineering

Carnegie Mellon University
Email: {dpopovic, lowt, franzf}@cmu.edu

Abstract—Current microprocessor trends show a steady in-
crease in the number of cores and/or threads present on the same
CPU die. While this increase improves performance for compute-
bound applications, the benefits for memory-bound applications
are limited. The discrete Fourier transform (DFT) is an example
of such a memory-bound application, where increasing the
number of cores does not yield a corresponding increase in
performance. In this paper, we present an alternate solution
for using the increased number of cores/threads available on
a typical multicore system. We propose to repurpose some of
the cores/threads as soft Direct Memory Access (DMA) engines
so that data is moved on and off chip while computation
is performed. Overlapping memory accesses with computation
permits us to preload and reshape data so that computation is
more efficient. We show that despite using fewer cores/threads
for computation, our approach improves performance relative to
MKL and FFTW by 1.2x to 3x for large multi-dimensional DFTs
of up to 20483 on one and two-socket Intel and AMD systems.

I. INTRODUCTION

The number of cores on modern shared-memory architec-
tures has been steadily increasing since the introduction of
multicore/multi-socket systems around the turn of the cen-
tury. While the increased number of computational units has
benefited compute-bound application such as matrix-matrix
multiplication, the performance gain of memory-bound appli-
cations such as the Fourier transform (FFT) is still limited.
Large Fourier transforms do not use the cache hierarchy and
bandwidth to main memory efficiently due to the non-unit-
stride access patterns inherent to the algorithm. This makes the
task of hiding the latency of strided memory access patterns
when accessing main memory difficult.

The inefficient use of the memory hierarchy can be seen
in Figure 1, where we compare the results of three parallel
implementations against the achievable performance on the
Intel Kaby Lake 7700K. We compute the achievable peak
performance in Gflop/s assuming data is streamed in and out
of the cache hierarchy at full bandwidth speed measured using
STREAM [1]. It can be seen that state-of-the-art 3D Fourier
transforms offered by MKL 2017.0 and FFTW 3.3.6 achieve
at most 47% of the achievable peak when using all eight
available threads. In comparison, using various techniques to
be discussed in this paper, our parallel implementation yields
80% to 90% of the achievable peak performance.

In this paper, we improve the overall performance of large
multidimensional FFTs that do not fit on on-chip cache. Our
approach is based on the observation that the FFT is more

Fig. 1: The plot shows the percentage from achievable
peak performance at full bandwidth speed obtained with the
STREAM benchmark on the Intel Kaby Lake 7700K. MKL
and FFTW achieve at most 47% of achievable peak, while our
approach achieves 80% to 90% of peak. The labels on each
of the bars represent the unnormalized performance in Gflop/s
for the three parallel implementations.

efficient when data is located in the upper levels of the memory
hierarchy. We separate data movement and computation to
be able to copy data from memory to cache at bandwidth
speed in parallel with the computation. In addition, we reshape
(pack) data into an appropriate layout to improve performance
of subsequent stages. The astute reader may recognize that
this approach is similar to the double-buffering approach used
in the Out-of-Core (OoC) algorithms such as [2], [3], [4].
The difference is that OoC algorithms read data from disk
into main memory, while we buffer the data in the cache
hierarchy. Since there are no explicit functions to copy data
in the cache similar to the functions used to move data from
disk to memory, implementing the double-buffering approach
requires less obvious means that are tackled in this paper.

Contributions. The main contributions of this paper are:
• Systematic way of applying software pipelining. We show

a systematic way of separating and overlapping data
movement from memory and computation on cached data
for the multi-dimensional Fourier transforms.

• Double-buffering on cache hierarchies. We implement a
double-buffering mechanism on multicore CPUs. Caches
are set-associative and have replacement policies. Full
control of data through the cache hierarchy is needed for
an efficient double-buffering.

• Improve performance of multidimensional FFTs. We
show that our approach improves bandwidth utilization
for large Fourier transforms (up to 128 GB of input
data) and achieves 1.2x to 3x performance improvements
relative to MKL and FFTW on a range of machines from
quad-core Haswell/AMD to dual-socket Xeon/Opteron.

II. BACKGROUND

A. Multicore Architectures
Modern systems ranging from off-the-shelf desktops to

high-end servers provide a multitude of features such as large
number of threads/cores, large shared cache levels, specialized
data movement instructions. All these features are meant
to improve performance. However, combining the features
to improve memory-bound applications such as the Discrete
Fourier transform becomes cumbersome.

Threads and cores. Most modern CPUs offer an increased
number of threads and cores to improve parallel execution.
Depending on the vendor, threads/cores share different com-
ponents such as the instruction pipelines and/or the cache
hierarchy. This suggests possible locations where threads may
contend for resources. Threads executing the same instruction
mix will issue instructions to the same execution pipeline. This
will cause threads to stall and not make forward progress.
Threads with different memory access patterns may conflict
within the cache hierarchy and evict each others data. Evicting
data to the lower levels of the memory will increase memory
access latency if the data is required for future computation.

Cache hierarchy. Caches are data storage that are smaller
and faster than main memory located on the same-die as the
compute units. Figure 2 shows two typical cache hierarchies
for Intel and AMD CPUs. Threads share the different levels of
the cache hiearchy. Each cache level is characterized by size
and set-associativity. The set-associativy is used to improve
cache utilization. Since caches have finite storage, replacement
policies are enforced to automatically evict data when other
data points are required for computation. This hides explicit
data movement from the developers at the cost of reduced
control of where data resides.

Non-temporal load and store operations. Loading and
storing data from and to main memory is done with temporal
and non-temporal load/store instructions. Prefetches may be
used, however they are only hints. Of interest to this work
are the non-temporal loads and stores. While their temporal
counterparts store data in all the cache levels, non-temporal
instructions move data “directly” to registers, with the goal
of reducing cache pollution. The downside of non-temporal
operations appears when data is frequently reused. Since data
is not stored in the upper levels of the cache hierarchy, it must
always be retrieved from memory, incurring higher latencies.

B. Discrete Fourier Transform
The discrete-time Fourier transform of n input samples

x0, x1, . . . , xn−1 is described as a matrix-vector multiplication
y = DFTnx, where

DFTn = [ωkln]0≤k,l<n, where ωn = e−j
2π
n .

Fig. 2: Two architectures targeted in this paper. Figure A
is typical for Intel architectures, where each core has two
hardware threads that share the L1 and L2 caches. All cores
share L3. Figure B is typical for AMD architectures, where
each core has one thread per core with its own L1 data cache.
Each two cores share an L2, while L3 is shared by all cores.

The dense matrix DFTn is the 1D linear transform of size n.
Similarly, the multidimensional DFT (MDFT) can be viewed
as a matrix-vector multiplication, i.e. y = DFTn0×n1×...×nkx,
where the matrix DFTn0×n1×...×nk represents the multi-
dimensional FFT.

Computing the DFT or MDFT as a matrix-vector multi-
plication incurs a O(n2) arithmetic complexity. Fast Fourier
transform algorithms, such as the Cooley-Tukey algorithm,
reduce complexity to O(n log(n)). This reduces computation
complexity, however the non-unit-stride access patterns in-
herent to the algorithm persist. Over the past years, there
have been numerous works on improving performance for
multidimensional FFTs through optimizing data movement.
These works can be classified into two main categories.

Reducing memory round-trips. Access to main memory is
costly due to the long latency. Reducing the number of round-
trips to main memory reduces the overall time incurred by
data movement. P3DFFT [5] reorganizes the computation of
the 3D FFT by fusing the first and second stages of the 3D FFT
when the number of processors is small. This decomposition
is known as the slab-pencil decomposition and reduces the
number of round trips to main memory from three to two.
Johnson et al. [6] proposed the dimensionless FFT where
the middle stages are decomposed using the Cooley-Tukey
algorithm and are fused with the neighboring compute stages.
Similarly, this method reduces the number of round-trips to
main memory from three to two. Takahashi et al. [7] proposed
a 1.5D decomposition of the parallel 3D FFT implementation.
These implementations are orthogonal to our approach since
they focus on merging stages, while we are focusing on the
row-column algorithm to achieve better streaming behaviour.

Improving data access through layout transforms. Another
class of optimizations for multidimensional FFTs focuses on
improving memory accesses and data movement through the
cache hierarchy by data layout reorganization. Recall that all
stages of the MDFT require non-unit-stride memory accesses.
Akin et al. [8] have proposed FFT implementations for FPGAs
that perform blocked data layout transformations to improve

Matrix formula Matlab pseudo code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1]);

y = (Im ⊗Bn)x
for (i=0; i<m; i++)

y[i*n:1:i*n+n-1] = B*x[i*n:1:i*n+n-1];

y = (Am ⊗ In)x
for (i=0; i<n; i++)

y[i:n:i+m*n-n] = A*x[i:n:i+m*n-n];

y = Dmn
n x

for (i=0; i<n; i++)
y[i] = Dn[i, i]*x[i];

y = Lmnm x
for (i=0; i<m; i++)

for (j=0; j<n; j++)
y[i+m*j] = x[n*i+j];

y = (Lmnm ⊗ Ik)x
for (i=0; i<m; i++)

for (j=0; j<n; j++)
y[k*(i+m*j):1:k*(i+m*j)+k-1] =

x[k*(n*i+j):1:k*(n*i+j)+k-1];

TABLE I: From matrix formulas to code, in Matlab notation.

memory accesses for multidimensional FFTs. Inda et al. [9]
have proposed a simple implementation of the FFT using the
BSP model where data is reshaped to improve communication
between threads. Yzelman et al. [10] proposed a C library
that separates data movement from computation, however it
does overlapping tasks. Frigo et al. [11] proposed buffering
data by copying it to the upper levels of the cache hierarchy
before the FFT computation. In all the above papers data is
copied before each compute stage. Tang et al. [12] proposed
utilizing multiple threads on the Xeon Phi to copy data into
the L1 cache and then apply smaller 1D FFTs on it. Each
thread executes data movement and computation, however all
four threads overlap operations. Song et al. [13] apply data
and computation overlapping in the context of large scale 3D
FFTs implemented with asynchronous MPI calls. Our work is
similar however we target multicore/multi-socket systems with
large amounts of main memory, so called fat memory nodes.

C. Kronecker Product Formalism

In this paper we use the matrix-vector representation of the
discrete Fourier transform (DFT). We briefly present the Signal
Processing Language (SPL) described in [14]. The language
is used to capture the implementation of fast algorithms for
DFTs as matrix factorizations.

Matrix formalism and SPL. The implementation of fast
algorithms for the DFT and MDFT is obtained by factorizing
the dense matrix into a product of structured sparse matrices.
The decomposition of the DFT and MDFT is captured by the
SPL language, which is a mathematical description based on
matrix factorization. The language captures the data-flow of
the algorithm at a higher level of abstraction. As the backbone
of this language, the Kronecker product or tensor product is
defined as follows:

A⊗B = [ak,lB], for A = [ak,l].

The decomposition of the DFT and MDFT revolves around
two constructs, namely Im ⊗ Bn and Am ⊗ In. The first
construct applies the matrix Bn on m contiguous blocks of
size n, while the latter applies the matrix Am on m data points
located at a stride distance of n elements.

In addition to the Kronecker product, SPL offers constructs
such as diagonal and permutation matrices. Diagonal matrices,
denoted by Dmn

n , are used to specify scaling operations.
Permutations and transpositions are used to reshape data. The
basic permutation is represented by the L matrix, defined

Lmnn : in+ j → jm+ i, 0 ≤ i < m, 0 ≤ j < n.

If the input data is viewed as a matrix of size m × n, then
applying the construct Lmnn on the input will produce the
transpose matrix of size n×m. Combining the L matrix with
the identity matrix I through the Kronecker product allows one
to specify block permutations/transpositions, where the block
size is given by the size of the identity matrix.

SPL introduces generalizations for the identity matrix In

Im×n =

[
In

Om−n×n

]
, m ≥ n,

Im×n =
[
Im Om×n−m

]
, m < n.

Om×n is the m×n all-zero matrix. In×n is the identity matrix
In. Moreover, there are various identities such as

Am ⊗Bn = Lmnm
(
Bn ⊗Am

)
Lmnn and Lmnm Lmnn = Imn.

that connect the various constructs. All of the constructs can be
translated into code following Table I. More on the identities
and implementation details can be found in [15], [16].

Fig. 3: The implementation of the 2D FFT algorithm. Data is
viewed as 2D matrix of size n × m, with the x-dimension
corresponding to size m laid out in the fast dimension in
memory. The first stage applies 1D FFTs in rows, while the
second stage applies the pencils in columns.

D. Fast Implementations for DFT and MDFT

1D DFT. Fast Fourier transform (FFT) algorithms for
both DFT and MDFT can be expressed using the SPL
language [17]. For example, the well-known Cooley-Tukey
algorithm that recursively decomposes a 1D DFT of size
N = mn into smaller sub-problems of size m and n can
be expressed as follows

DFTmn =
(
DFTm ⊗ In

)
Dmn
n

(
Im ⊗DFTn

)
Lmnm .

Decomposing the algorithm using the SPL language allows
one to visualize the algorithm’s data-flow. The algorithm first
transposes the data using the L matrix, applies the DFTn
on contiguous blocks of data, scales the result by the twiddle
factors and finally applies the DFTm on strided data points.

Since the focus of this paper is on fast implementations of
the 2D and 3D DFTs, we recommend the reader the following

Fig. 4: The implementation of the 3D FFT algorithm. Data is
viewed as a 3D cube of size k×n×m, with the x-dimension
corresponding to size m laid out in the fast dimension in
memory. The 1D FFTs are applied in all three dimensions.

papers [18], [19] for more details on efficient implementations
of the 1D FFT. The main take-away of this section is that
FFT algorithms are strided algorithms that suffer from low
bandwidth utilization and cache conflicts.

2D and 3D DFT. Similar to the 1D FFT, the multidimen-
sional FFTs are captured by the SPL notation. We start with the
2D FFT and expand to the 3D FFT. The 2D FFT is expressed
as a dense matrix DFTn×m that can be decomposed using
the Kronecker as

DFTn×m = DFTn ⊗DFTm.

Using the general property that multidimensional DFTs are
separable operations, the 2D DFT can be further decomposed

DFTn×m =
(
DFTn ⊗ Im

)︸ ︷︷ ︸
Stage 2

(
In ⊗DFTm

)︸ ︷︷ ︸
Stage 1

.

The overall operation described mathematically above is
depicted in Figure 3. The data is viewed as a n ×m matrix
stored in row-major order. The first stage of the 2D FFT
applies 1D FFTs of size m in the rows, whereas the second
stage applies 1D FFTs of size n in the columns direction. The
above decomposition of the 2D FFT is called the pencil-pencil
decomposition, where each pencil refers to a 1D FFT applied
in each dimension. Recall that the 1D FFTs require strided
access, therefore for large 2D FFTs each of the pencils will
require data to be accessed strided from memory.

The same approach can be applied to decompose the 3D
FFT, where DFTk×n×m represents the dense matrix.

DFTn×m =
(
DFTk ⊗ Imn

)︸ ︷︷ ︸
Stage 3

(
Ik ⊗DFTn ⊗ Im

)︸ ︷︷ ︸
Stage 2(

Ikn ⊗DFTm
)︸ ︷︷ ︸

Stage 1

.

Data is viewed as a 3D cube of size k × n × m, stored in
row major order with the x-dimension corresponding to the
size m laid out in the fastest memory dimension. The 3D FFT
applies 1D FFTs in each of the three dimensions. The problem
of accessing data at strides remains.

III. OVERLAPPING DATA MOVEMENT WITH
COMPUTATION

The goal of our approach is to overlap data movement
with computation so that data can be streamed from memory

while computation is performed on data previously stored
in cache. This requires a re-evaluation of the method the
multidimensional FFTs are computed and most importantly
how data access can be separated from computation.

A. 2D and 3D FFT Revisited

In this paper, we focus on optimizing data movement for
the 2D and 3D FFT. Recall that in each stage, 1D FFTs are
applied in each dimension. Some dimensions require the 1D
FFTs to be applied at large strides. To reduce those strides and
thus have better memory access patterns, data can be reshaped
after each compute stage. For the 2D FFT, this translates into a
transposition along the main diagonal using an L matrix after
each stage of computation expressed as

DFTn×m =Lmnn
(
Im ⊗DFTn

)︸ ︷︷ ︸
Stage 2

Lmnm
(
In ⊗DFTm

)︸ ︷︷ ︸
Stage 1

.

We change the transposition from an element-wise transpo-
sition to a blocked transposition as

DFTn×m =
(
Lmn/µn ⊗ Iµ

)(
Im/µ ⊗DFTn ⊗ Iµ

)
Stage 2(

L
mn/µ
m/µ ⊗ Iµ

)(
In ⊗DFTm

)
Stage 1.

The ⊗Iµ produces memory access in cacheline size µ pack-
ets [20]. This modification offers benefits when implementing
data movement with SIMD instructions. Moreover, it reduces
the false sharing when threads are applied for parallelism.

The data reshape technique can be extended to the 3D FFT
implementation. However, the transposition in three dimen-
sions becomes a rotation along the data cube’s main diagonal.
Similar to the 2D FFT, the rotation is meant to assist memory
accesses in subsequent stages. The definition of the rotation
matrix Kk,n

m is

Kk,n
m =

(
Lmkm ⊗ In

)(
Ik ⊗ Lmnm

)
.

It can be seen that the K matrix has two parts. The first
part transposes the front xy-plane. The second part transposes
the side xz-plane. The rotation is depicted in Figure 5. This
implementation is an element-wise rotation. Therefore, for the
same reasons discussed for the 2D case, we block the rotation
to move entire cachelines. The adopted 3D FFT decomposition
is represented as

DFTk×n×m =
(
K
n,m/µ
kµ ⊗ Iµ

)(
Inm/µ ⊗DFTk ⊗ Iµ

)
Stage 3(

Km/µ,k
nµ ⊗ Iµ

)(
Imk/µ ⊗DFTn ⊗ Iµ

)
Stage 2(

Kk,n
m/µ ⊗ Iµ

)(
Ikn ⊗DFTm

)
Stage 1.

For the remainder of this section, we discuss overlapping
computation and communication for the first stage. Same steps
are applied to the other stages.

B. Data Movement From Memory vs. Cache

Recall that we want to overlap data movement from memory
with computation on cached data. This means that it is
necessary to separate main memory data movement from cache
data movement. Since all stages of a multidimensional FFT are

Fig. 5: 3D rotation applied on the data cube after each compute
stage. The original data of size k×n×m is rotated to a cube
of size m× k × n. The data in the xy-plane is moved to the
data points in the yx-plane in the rotated data cube.

similar, we will illustrate the separation of the two types of
data movements using the first stage of the 3D FFT.

Working on cached data. The first step towards applying
our approach is tiling the computation such that the data
required for computation fits in the cache. This means that
instead of applying all 1D FFTs, we apply a smaller batch(
Kk,n
m/µ ⊗ Iµ

) (
Ikn ⊗DFTm

)︸ ︷︷ ︸
block by b

=

(
Kk,n
m/µ ⊗ Iµ

)(
Iknm/b ⊗

(
Ib/m ⊗DFTm

)︸ ︷︷ ︸
Compute

)
.

The batch size is determined by the size of the shared buffer. If
b represents the size of the buffer, then b/m represents the total
number of 1D pencils that can be applied, where m represents
the size of the 1D FFT.

Each knm/b iteration applies a batch of 1D FFTs on the
buffer of size b. We denote the Ib/m ⊗ DFTm construct as
the compute kernel. We further decorate the compute kernel
with (·) to specify that the computation must be done inplace,
i.e. the input is overwritten with the computed result. The
computation kernel is parallelized across the threads assigned
for computation or compute-threads.

Identifying main memory access. Data needs to be read
from memory and stored into the local buffer before com-
putation can start. Once computation has completed data
needs to be stored to main memory from the local buffer.
The computation kernel determines the data movement. The
SPL notation helps us capture the read/write operations. By
reformulating the SPL formula, we obtain the following:

(
Kk,n
m/µ ⊗ Iµ

)(
Iknm/b ⊗

(
Ib/m ⊗DFTm

))
=

Iknm/b ⊗
(
Wb,i︸︷︷︸
Store

(
Ib/m ⊗DFTm

)︸ ︷︷ ︸
Compute

Rb,i︸︷︷︸
Load

)
.

Let Wb,i and Rb,i denote the data movement matrices that read
and write blocks of size b from and to main memory every i
iteration. The variable i takes values in 0, knm/b− 1.

We define two additional constructs Sn,b,i and Gn,b,i to
help with the construction of the read and write matrices.
The two constructs are rectangular matrices obtained by verti-

cally/horizontally stacking all-zero matrices Ou×v of various
sizes and the identity matrix I of size b.

Sn,b,i =

 Oib×b
Ib

O(n/b−i−1)b×b

 where Sn,b,i ∈ Rn×b

The Gn,b,i matrix is the transposed version of Sn,b,i. To better
understand the meaning behind the two constructs, they can
be viewed as sliding windows that read/write blocks of size
b elements from the input/output. If we consider the In as a
copy operation of n elements, then the two matrices are slices
through the columns and rows of the identity matrix,

In =
[
Sn,b,0 Sn,b,1 . . . Sn,b,n−1

]
=


Gn,b,0
Gn,b,1

...
Gn,b,n−1

 .
Combining the two constructs with the K matrix we can define
the data movement matrices Wb,i =

(
Kk,n
m/µ⊗Iµ

)
Sknm,b,i and

Rb,i = Gknm,b,iIknm.
We separate computation from data movement to/from off-

chip memory. This creates three dependent tasks as seen in
Figure 6. The Load task moves b contiguous elements from the
input to the cached buffer. The Compute task applies the b/m
1D FFTs of size m inplace. The Store task copies data back
to main memory from the cached buffer once computation
finished. The tasks are parallelized across the available threads.

C. Task Parallelization and Scheduling

The SPL notation also allows us to identify which compo-
nents need to be parallelized. Recall that computation must be
performed on data stored in the cached buffer. This implies
that the parallelism must be applied on the Ib/m ⊗ DFTm
construct which will modify the first child as follows

Iknm/b ⊗
(
Wb,i

(
Ib/m ⊗DFTm

)
Rb,i

)︸ ︷︷ ︸
parallel on pd, pc

=

Iknm/b ⊗
(
Wb,i︸︷︷︸
pd

(
Ipc ⊗

(
Ib/(mpc) ⊗DFTm

)︸ ︷︷ ︸
pc

)
Rb,i︸︷︷︸
pd

)
.

Given pc threads for computation, each thread will apply its
Ib/pcm ⊗DFTm on its own disjoint data points.

Data movement is parallelized across pd threads. The matrix
Rb,i copies contiguous blocks of size b from main memory to
the cached buffer. Since data is contiguous, data is streamed in.
The matrix Wb,i writes blocks equal to the size of the cacheline
from the cached buffer back to main memory. Since data is
rotated and thus written at strides, bandwidth utilization may
drop. The write matrix is also parallelized across pd threads.

We finally apply software pipelining [21] to the outermost
construct represented by Iknm/b. Software pipelining allows
the skewing of the Load, Compute and Store tasks and permits
the tasks to be executed in parallel. We group the Load and
Store tasks into one task, with the observation that the store
operation must precede the load operation. Table II shows

Iteration Store and Load with pd threads Compute with pc threads

i = 0 t[i mod 2] = Rb,ix Prologue
i = 1 t[i mod 2] = Rb,ix t[(i+ 1) mod 2] =

(
Ib/m ⊗ DFTm

)
t[(i+ 1) mod 2]

i = 2 y = Wb,i−2t[i mod 2] t[i mod 2] = Rb,ix t[(i+ 1) mod 2] =
(
Ib/m ⊗ DFTm

)
t[(i+ 1) mod 2]

. Steady
i = knm/b−1 y = Wb,i−2t[i mod 2] t[i mod 2] = Rb,ix t[(i+ 1) mod 2] =

(
Ib/m ⊗ DFTm

)
t[(i+ 1) mod 2] State

i = knm/b y = Wb,i−2t[i mod 2] t[(i+ 1) mod 2] =
(
Ib/m ⊗ DFTm

)
t[(i+ 1) mod 2] Epilogue

i = knm/b+1 y = Wb,i−2t[i mod 2]

TABLE II: Applying software pipelining to the outer loop of the construct Iknm/b ⊗
(
Wb,i

(
Ib/m ⊗DFTm

)
Rb,i

)
.

Fig. 6: Separating data movement from computation for the
first stage of the 3D FFT. Data is streamed into the local
buffer. Computation applies batches of 1D FFTs inplace. Data
is rotated/transposed back to main memory.

the prologue, steady state and epilogue of the SPL construct.
The prologue loads data into the shared buffer and signals the
threads to start computation. The epilogue stores data back to
main memory once computation has been completed. In steady
state data movement and computation is executed in parallel.
While the compute threads apply computation on one half of
the shared buffer, the data threads store and load data to and
from main memory into the other half of the buffer. Given p
the total number of threads, this implies that p = pc + pd,
where pc and pd represent the compute and data threads.

D. Parallel Framework and Code Generation

The above mathematical descriptions are translated into
code. We first construct a general C code template for
doing the double-buffering mechanism. We parallelize the
framework using OpenMP [22], more precisely we use
#pragma omp parallel region, since it gives better
control over the threads. Based on the thread ID returned
by omp_get_thread_num, we determine which threads do
data movement and which do computation. Half the threads
are used for data movement and half the threads are used for
computation. We use kmp_affinity on the Intel architec-
tures and sched_setaffinity on the AMD architectures
to pin the threads to the specific cores and we explicitly use
them within the C code. In addition, we use #pragma omp
barrier to synchronize the threads.

The SPL notation described in this work used to capture the
computation and data movement is implemented within the
SPIRAL system [15], which is a framework for automatically
generating code for linear transforms. We use SPIRAL to auto-
matically generate the computation and data movement using
either AVX or SSE, depending on the underlying architecture
we target. We parameterize the generated code by the thread

ID and the socket ID, since each thread must do its own task.
We copy the generated code within the template framework in
order to get the full 2D and 3D FFT implementation.

IV. MITIGATING INTERFERENCE

Threads/cores share resources such as execution pipeline,
cache hierarchy, main memory and links between multiple
sockets. Threads/cores contend for these resources. Usually,
interference on the shared resources causes slower execution.
In this section, we focus on the main causes of interference
and provide solutions to reduce the effects of possible conflicts
and thus increase overall performance.

A. Single Socket Execution

Both Intel and AMD offer multiple threads that share the
same floating point functional units and have private and/or
shared caches. Pinning the threads to specific cores influences
the overall performance of the application. We discuss the
interference at the functional units and cache level and show
solutions to reduce contention.

Interference in the execution pipeline. Irrespective of
vendor, threads share the floating point functional units.
Therefore, in our approach we group one data-thread and
one compute-thread. The threads are pinned together to the
same core to share the functional units. Data-threads only
load and store data. Compute-threads execute some load and
store operations, however they predominantly execute com-
putation such additions/multiplications. On most architectures
load/store instructions and arithmetic instructions are issued to
different pipelines. Choosing threads with the same instruction
mix is not recommended since the threads will conflict for the
same execution pipeline. We use NOP instructions interleaved
within the data-threads task to allow the compute-threads to
issue their loads and make progress. Data-threads issue only
load/store operations, thus the threads may fully occupy the
load/store pipeline. Even though compute-threads have fewer
load/store operations, they still require some for computation.

Interference at the cache hierarchy. Pinning a data-thread
and a compute-thread so that they share the functional units,
makes the threads share some of the cache levels. For example,
on the Intel architecture, the two threads/hyperthreads on the
cores share both the L1 and L2 cache. In addition to the
different mixes of instructions, the two type of threads also
have different memory access patterns. Data-threads stream
through while reading and rotate the data on the write back.
However, the FFT accesses data at strides. The different access
patterns causes cache evictions.

Fig. 7: Two socket system with two NUMA domains. Each
NUMA domain consists of one CPU and local main memory.
The two processors are connected via QPI(Intel) or HT(AMD).

Non-temporal loads and stores. Recall that non-temporal
loads and stores bypass the cache hierarchy to reduce cache
pollution. However, not all loads and stores within the code
must be non-temporal. In our approach, only the Wb,i and
Rb,i matrices must utilize the non-temporal operations, since
those are the only operations that move data to and from
memory. The matrix Rb,i must read data non-temporally,
however it must store the data temporally in the shared buffer.
The compute-threads must apply the FFT on the data in the
subsequent iteration. However, the matrix Wb,i can read and
write non-temporally since the computed data is not required
until the next FFT stage. The write matrix non-temporally
stores cacheline blocks at large strides in main memory.

Cache aware FFT. Computation is cacheline aware, since
the FFT is computed at cacheline granularity. Recall that a 1D
FFT accesses data at non-unit strides. Accessing data at large
strides may cause data to be placed in the same set and thus
evict other cachelines before the remaining data within the
cacheline is fully consumed. We use SIMD instruction such
as SSE and AVX to implement the computation. We follow
the details from [18], where the FFT performs a data-format
change of the complex data storage between compute stages.
The format change swaps from complex interleaved, where the
real and imaginary components are interleaved in memory, to a
block interleaved format, where blocks of the real components
and blocks of the imaginary components are consecutive in
memory. This format change is meant to make computation
more efficient. Separating the real and imaginary components
and using AVX instructions allows computation to be done at
cacheline granularity. Since the 2D and 3D FFTs have multiple
stages, the format change is applied once in the first stage, the
rest of the computation is done in block interleaved and in the
last stage data is changed to complex interleaved. This change
of format is different from the one presented in [9] which is
meant to improve communication between threads.

Cache aware buffer allocation. The cached buffer t shared
by the data-threads and the compute-threads must reside within
the cache hierarchy. More precisely, the buffer must be located
in the last level cache (LLC) since it is shared between all the
threads. We set the size of the buffer to be equal with half
of the LLC, b = sizeLLC/2. The buffer cannot fully occupy
the LLC since computation also requires extra temporaries for
storing partial results and constants such as the twiddle factors.

B. Dual Socket Execution

We extend our approach to two socket systems, where each
socket belongs to a Non-Uniform Memory Access (NUMA)
domain. Each NUMA domain has private main memory. The
sockets can access their memory through fast bandwidth buses
and they can access neighbor’s main memory through data-
links, such as Intel’s QuickPath Interconnect (QPI) or AMD’s
HyperTransport (HT). Figure 7 shows the topology of a typical
two socket system. It is worthwhile noticing that bandwidth to
main memory within a NUMA domain is higher compared to
the bandwidth over the data links. The difference in bandwidth
suggests computation to be done on data stored locally and
transfers over the interconnects to be kept to a minimum.

We only extend the 3D FFT to two sockets. The expression

Iknm/b ⊗
(
Wb,i

(
Ib/m ⊗DFTm

)
Rb,i

)︸ ︷︷ ︸
parallel on sk, pc, pd

=

Isk ⊗
(
Iknm/bsk ⊗

(
Wb,i,sk

(
Ib/m ⊗DFTm

)
Rb,i,sk

)︸ ︷︷ ︸
parallel on pc, pd

)
specifies the order in which we parallelize the first stage of
the 3D FFT, the same steps are taken for the other two stages.
We parallelize the construct first over the number of sockets
sk and then over the number of data-threads pd and compute-
threads pc. The parallelism over the sockets modifies the read
and write matrices, since all data points are required for the
computation of the 3D FFT. Thus, data needs to be exchanged
across the data links.

Since communication over the QPI/HT links is costly, we
apply a slab-pencil decomposition to the 3D FFT, where the
first two stages communicate only within the NUMA domain.
We split the data-set in the z-dimension, where each socket
receives a contiguous block of size

(
k/sockets

)
×n×m. Each

node can compute a 2D FFT locally and transpose locally,
without crossing the interconnect. In order to compute the 1D
FFT in the z-dimension data needs to be exchanged across
the data-links. Another communication over the interconnect
is needed once the 1D pencil is fully computed so that data is
put in the correct order. Figure 8 depicts the data movement in
the three compute stages of the 3D FFT. Table III presents the
generalized versions of write Wb,i matrices. All three matrices
are parameterized by the number of sockets k. By setting
the number of sockets equal to sk = 1, the implementation
defaults to the single-socket implementation. Reading data is
done by each socket from the local memory and has the same
representation as the single-socket implementation.

V. EXPERIMENTAL RESULTS

Experimental setup. We now evaluate the performance
of our approach. We run experiments on Intel and AMD
systems with one or two sockets. All systems provide multiple
cores/threads that share a large last level cache. All Intel
architectures have hyperthreads enabled. AMD does not offer
hyperthread support. For the dual-socket systems we configure
the QPI/HT protocol to use Home Snoop. The Home Snoop

Fig. 8: The three different data cube shapes after each 3D FFT stage. Data is distributed across the k-dimension to each socket.
The first stage reads and writes the data locally, while the other two stages read data locally but write data across the sockets.

Matrix SPL Representation

W 1
i,b,sk =

(
Isk ⊗K

n,k/sk
m/µ

⊗ Iµ
)
Sknm,b,i

W 2
i,b,sk =

(
L
sknm/µ
nm/µ

⊗ Ikµ/sk
)(
Isk ⊗K

k/sk,m/µ
n ⊗ Iµ

)
Sknm,b,i

W 3
i,b,sk =

(
Lskkk ⊗ Imn/sk

)(
Isk ⊗K

m/µ,n/sk
k ⊗ Iµ

)
Sknm,b,i

TABLE III: The SPL representations for the three write
matrices (rotation matrices) applied after each compute stage.

protocol improves bandwidth over the interconnect since it
reduces cache traffic used for cache coherence.

1) One socket systems: Intel Haswell 4770K, Intel Kaby
Lake 7700K and AMD FX-8350 - 8 threads, 8 MB L3
cache, 32/64/64 GB DRAM, bandwidth 20/40/12 GB/s

2) Two socket systems: Intel Haswell 2667v3, AMD 6276
Interlagos (Bluewaters): 16 threads, 20/16 MB L3 cache,
256/64 GB DRAM, bandwidth 85/20 GB/s

We compare our implementation to MKL 2017.0 and
FFTW 3.3.6 on the Intel architectures. On the AMD systems
we compare our implementation only against FFTW 3.3.6.
All libraries are compiled with OpenMP, AVX and SSE
enabled. On the Intel architectures, we use MKL_DYNAMIC,
MKL_NUM_THREADS and KMP_AFFINITY to control the
number of threads and the placement of the threads within
the MKL library. On the AMD architectures, we use
OMP_NUM_THREADS and GOMP_AFFINITY to control the
threads within the FFTW library. We compile all code with
the ICC compiler version 2017.0 and the GCC compiler 4.8.5-
20150623. All code is compiled with the -O3 flag. We do
not compare the current implementation against the SPIRAL
generated parallel code presented in [20]. The previous parallel
implementation targeted medium size 1D FFTs and did not
offer support for compute/communication overlap.

Performance metric. We report performance for our ap-
proach, MKL and FFTW as billion floating point operations
divided by runtime in seconds. We use 5N log(N) as estimate
for the flop count which over-estimates the number of opera-
tions. The resulting Pseudo-Gflop/s is proportional to inverse
runtime and is an accepted performance metric for the FFT.
We use the rdtsc time-stamp counter and the CPU frequency
to compute the overall execution time.

We also compare performance of all three parallel im-
plementations against the performance when streaming data
in and out of cache at bandwidth speed. For the upper

bound we consider infinite compute resources and do not
take computation time into account. We use the STREAM
benchmark [1] to determine the achievable bandwidth (GB/s)
for each targeted architecture. We determine the performance
when streaming the total amount of data as

Pio =
5 ·N · log(N) · bandwidthSTREAM

2 ·N · nrstages · sizeof(double)
,

where nrstages represents the number of compute stages in the
FFT, N represents the size of the FFT and sizeof(double)
represents the size of a double precision floating point in
GB. The current implementation offers support for complex
numbers therefore the total size is multiplied by two.

2D FFT. We first present results for the 2D FFT implemen-
tation. Figure 9 shows the results of the three implementations
compared to the achievable peak when streaming data at 40
GB/s. Our double-buffering approach achieves on average
74% of the achievable peak. However, MKL and FFTW
implementation achieve on average 50% of peak. Two aspects
are worth noticing. First, for small sizes bandwidth utilization
is less than 80% since the number of iterations iter = mn/b
in each compute stage is small. For example, iter = 4 when
b = 131, 072, m = 512 and n = 1, 024. Second, as the size of
the 2D FFT increases bandwidth utilization drops. Recall that
after each compute stage data needs to be transposed similarly
to the rotation described in Figure 6. The transposition is
applied on a panel of size b/m×m, where m is the size of the
1D FFT and b is the size of the shared buffer. As m increases,
b/m decreases, therefore TLB misses cannot be amortized.
We leave as future work other methods of separating data
movement from computation for cases where the size of the
1D FFT is equal or greater than the size of the shared buffer.

3D FFT. We show results for the 3D FFT on multiple
architectures and compare them against the achievable peak.
We evaluate large 3D FFTs that do not fit on the cache.
Figure 1 shows the results on the Intel Kaby Lake 7700K.
Our implementation achieves 80% to 90% of practical peak,
whereas MKL and FFTW achieve at most 47%. Our approach
uses the bandwidth and the cache hierarchy more efficiently
and therefore outperforms MKL and FFTW by almost 3x. It
is important to state that the 3D FFT does not experience
the problems displayed by the 2D FFT. First, the number
of iterations in each compute stage is higher. For example,

Fig. 9: The plot shows performance of the 2D FFT on the
Intel Kaby Lake 7700K. We compare against the achievable
performance when data is streamed at bandwidth speed. Our
approach achieves on average 75% ofl peak. The labels on the
bars show unnormalized performance.

iter = 1, 024, when b = 131, 072, m = 512, n = 512,
k = 512. Given the problem sizes tackled in this paper, the
size of the 1D FFTs will not influence the data movement.
Opening new memory pages can be easily be amortized. The
3D FFT will most likely run out of main memory.

Similar results are obtained on the Intel Haswell 4770K (top
left plot in Figure 11), where our implementation achieves on
average 30 Gflop/s and almost 2x faster execution compared to
MKL and FFTW. Our approach improves bandwidth utiliza-
tion and the implementation runs at 92% of peak. Due to space
constraints we do not present these bandwidth results. The top
right plot in Figure 11 shows the results on the AMD FX-8350,
where our double-buffering approach improves bandwidth
utilization and performance. It is important to notice that the
speedup over FFTW on AMD is only 1.6. The reason is that
FFTW uses the slab-pencil decomposition for the 3D FFT and
this decomposition is suitable for AMD’s larger caches.

Extending to two sockets. We finally present results on
platforms with two sockets. For all implementation, we use
the NUMA library to allocate and partition data on each
NUMA node. Figure 10 shows the performance results on
the two-socket Intel Haswell 2667. It can be seen that our im-
plementation outperforms those offered by MKL and FFTW.
However, the 3D FFT implementation only achives 1.2x to
1.6x performance improvements. The performance drop is
caused by the communication over the QPI link. Recall that
the double-buffering 3D FFT requires two write operations
over the QPI link as described in Figure 8. Writing data
over the interconnect is expensive compared to reading data,
therefore our implementation is penalized. Assuming that
data is streamed at bandwidth speed and that the QPI link
does not influence the transfer rate, than our implementation
is within 20% to 30% of achievable peak. However, given
the data movement presented in Figure 8, where two data
movements over the QPI are required, our double buffering
3D FFT implementation performs within 7% to 15% from the
performance given the cummulative bandwidth speed of the
main memory and QPI links.

We further present scaling results keeping the problem
size fixed and increasing the number of sockets from one
to two. The bottom two plots in Figure 11 show the results
on the two-socket Intel and AMD architecture. For the Intel
architecture, given the data movement in Figure 8 our approach
improves performance on average by 1.7x when increasing
the number of sockets. Communication over the QPI link and
conflicts between the two types of threads limit the overall
improvement. On the AMD system the HT link runs at a
similar bandwidth speed as the bus to main memory, therefore
the slowdown caused by the interconnect is smaller. We do
not report comparison results against FFTW for the AMD
two-socket system since the FFTW library misbehaves on the
Bluewaters system and provides buggy results.

Fig. 10: The plot shows performance for the 3D FFT on the
two-socket Intel Haswell 2667. We report Gflop/s and show
that our implementation outperforms MKL and FFTW on two
socket systems given the data movement in Figure 8.

VI. CONCLUSION

In this paper, we make the observation that large FFTs
that do not fit in cache under-utilize the cache hierarchy
and the bandwidth to main memory. By repurposing some
of the compute-threads as soft DMA engines to load and
reshape data in parallel to computation our approach streams
data from memory at near peak bandwidth speed. We show
that despite using less threads for computation our approach
improves overall bandwidth utilization to within 10% of peak
bandwidth on single socket systems and within 30% on dual-
socket systems. Our implementation improves performance
relative to MKL and FFTW by 1.2x to 3x on single and dual-
socket systems for problem sizes that have a memory footprint
of up to 128 GB and do not fit on modern GPUs.

ACKNOWLEDGMENT

This work was sponsored partly by the DARPA PERFECT
and BRASS programs under agreements HR0011-13-2-0007
and FA8750-16-2-003, and NSF through award ACI 1550486.
The content, views and conclusions presented in this document
are those of the author(s) and do not necessarily reflect the
position or the policy of the sponsoring agencies.

Fig. 11: The top plots present the performance in Gflop/s for the 3D FFT implementation on the Haswell and AMD architecture.
The bottom plots show speedup for large 3D FFTs when increasing the number of sockets for fixed problem sizes.

REFERENCES

[1] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, 1995.

[2] D. H. Bailey, “FFTs in external of hierarchical memory,” in Proceedings
of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing
’89, pp. 234–242, ACM, 1989.

[3] W. M. Gentleman and G. Sande, “Fast Fourier Transforms: For fun and
Profit,” in Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, AFIPS ’66 (Fall), pp. 563–578, ACM, 1966.

[4] T. H. Cormen, J. Wegmann, and D. M. Nicol, “Multiprocessor out-
of-core FFTs with distributed memory and parallel disks (extended
abstract),” IOPADS ’97, (New York, NY, USA), pp. 68–78, ACM, 1997.

[5] D. Pekurovsky, “P3DFFT: A Framework for Parallel Computations of
Fourier Transforms in Three Dimensions,” SIAM Journal on Scientific
Computing, vol. 34, no. 4, pp. C192–C209, 2012.

[6] J. Johnson and X. Xu, “A recursive implementation of the dimensionless
FFT,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2003.

[7] D. Takahashi, A. Yee, T. Hoefler, C. Coti, J. Kim, and F. Cappello,
“An implementation of parallel 3-D FFT with 1.5-d decomposition,” in
The seventh workshop of the INRIA-Illinois-ANL Joint Laboratory on
Petascale Computing, 2012.

[8] B. Akin, F. Franchetti, and J. C. Hoe, “FFTs with near-optimal memory
access through block data layouts: Algorithm, architecture and design
automation,” Journal of Signal Processing Systems, 2015.

[9] M. A. Inda and R. H. Bisseling, “A simple and efficient parallel FFT
algorithm using the BSP model,” Parallel Computing, vol. 27, no. 14,
pp. 1847–1878, 2001.

[10] A. Yzelman, R. H. Bisseling, D. Roose, and K. Meerbergen, “Multi-
corebsp for c: a high-performance library for shared-memory parallel
programming,” International Journal of Parallel Programming, vol. 42,
no. 4, pp. 619–642, 2014.

[11] S. G. Johnson and M. Frigo, “Implementing FFTs in practice,” in Fast
Fourier Transforms (C. S. Burrus, ed.), ch. 11, Rice University, Houston
TX: Connexions, September 2008.

[12] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and
D. Kim, “Tera-scale 1D FFT with low-communication algorithm and
the Intel Xeon Phi coprocessors,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, pp. 34:1–34:12, ACM, 2013.

[13] S. Song and J. K. Hollingsworth, “Designing and auto-tuning parallel 3-
D FFT for computation-communication overlap,” in Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pp. 181–192, ACM, 2014.

[14] J. Xiong, J. Johnson, R. W. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Programming Languages Design
and Implementation (PLDI), pp. 298–308, 2001.

[15] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP trans-
forms,” Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, pp. 232– 275, 2005.

[16] F. Franchetti, Y. Voronenko, and M. Püschel, “Formal loop merging for
signal transforms,” in Programming Languages Design and Implemen-
tation (PLDI), pp. 315–326, 2005.

[17] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form. Philadelphia, PA, USA: SIAM, 1992.

[18] D. T. Popovici, F. Franchetti, and T. M. Low, “Mixed data layout kernels
for vectorized complex arithmetic,” in 2017 IEEE High Performance
Extreme Computing Conference (HPEC), 2017.

[19] M. Frigo, “A fast Fourier transform compiler,” in Proc. 1999 ACM
SIGPLAN Conf. on Programming Language Design and Implementation,
vol. 34, pp. 169–180, ACM, May 1999.

[20] F. Franchetti, Y. Voronenko, and M. Püschel, “FFT program generation
for shared memory: SMP and multicore,” in Supercomputing (SC), 2006.

[21] M. Lam, “Software pipelining: An effective scheduling technique for
VLIW machines,” pp. 318–328, 1988.

[22] OpenMP Architecture Review Board, “OpenMP application program
interface version 4.5,” May 2015.

