
Applying the Roofline Model
Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spampinato, Markus Püschel

Department of Computer Science
ETH Zurich, Switzerland

{ofenbeck, caparrov, danieles, pueschel}@inf.ethz.ch

Abstract—The recently introduced roofline model plots the
performance of executed code against its operational intensity
(operations count divided by memory traffic). It also includes
two platform-specific performance ceilings: the processor’s peak
performance and a ceiling derived from the memory bandwidth,
which is relevant for code with low operational intensity. The
model thus makes more precise the notions of memory- and
compute-bound and, despite its simplicity, can provide an insight-
ful visualization of bottlenecks. As such it can be valuable to guide
manual code optimization as well as in education. Unfortunately,
to date the model has been used almost exclusively with back-
of-the-envelope calculations and not with measured data. In this
paper we show how to produce roofline plots with measured
data on recent generations of Intel platforms. We show how to
accurately measure the necessary quantities for a given program
using performance counters, including threaded and vectorized
code, and for warm and cold cache scenarios. We explain the
measurement approach, its validation, and discuss limitations.
Finally, we show, to this extent for the first time, a set of roofline
plots with measured data for common numerical functions on a
variety of platforms and discuss their possible uses.

I. INTRODUCTION

Software performance is determined by the complex inter-
action of source code, the compiler used, and the architecture
and microarchitecture on which the code is run. Because of
this, performance is hard to estimate, understand, and opti-
mize. This is particularly true for numerical or mathematical
functions that often are the bottleneck in applications from
scientific computing, machine learning, multimedia process-
ing, and other domains. Common practice in performance
optimization is to try various optimization techniques together
with repeated runtime measurements until a desired perfor-
mance is achieved. The result is then reported in a graph
that plots the achieved performance (say, in floating point
operations per second or flop/s) against a range of input sizes.
This plot reveals the efficiency achieved (percentage of peak
performance) and shows the trend as the size increases, but
nothing more. On the other hand, tools like Intel VTune [3]
provide large amounts of data for a given code extracted from
performance counters [13], [20], such as various types of cache
and TLB misses and others. Extracting meaning from this
data is daunting for most. As aid in the understanding and
optimization of performance it hence seems important to have
more ways of visualizing performance that have the simplicity
of a performance plot but that provide additional insights. The
recently introduced roofline model [37] tries to provide exactly
that. It plots performance against operational intensity, which
is the quotient of flop count and the memory traffic in bytes.

Such a plot reveals new information: the memory bandwidth
becomes an additional upper bound for computations with low
intensity, the plot clearly distinguishes memory and compute
bound computations (terms that are often used casually), and
it shows the behavior of intensity across sizes, just to name a
few. The downside is that the necessary data is considerably
harder to obtain in a reliable and meaningful way than in
an ordinary performance plot. Indeed, the original paper [37]
shows only four programs with a fixed input size, and the many
papers that have used the model to date have done so through
back-of-the-envelope calculations rather than measurements.

Contribution. The first contribution of this paper is a
strategy on how to produce roofline plots with measured data
on recent generations of Intel platforms. We show that by a
suitable measurement strategy and the use of the right set of
performance counters, meaningful and reliable results can be
achieved. This includes roofline plots for single- and multi-
threaded code and for cold and warm data cache scenarios.

The second contribution is a detailed performance analysis
of common numerical kernels such as BLAS functions and
the fast Fourier transform (FFT) with the roofline model. We
show for the first time roofline plots (which are quite different
from the usual performance plots) for these in various scenar-
ios including single/multithreaded and cold/warm data cache.
The plots clearly reveal the different operational intensities
between kernels, the effect of common optimizations, but also
some surprising behavior not visible in ordinary performance
plots. We show and discuss to which extent a roofline plot can
be used to study optimizations.

Organization. We first provide background on operational
intensity and the roofline model. Then we introduce our
measurement methodology and explain how we validated our
approach. Finally, we show a set of experiments on various
platforms. After a discussion of related work we conclude.

II. BACKGROUND

In this section we provide the necessary background on the
roofline model. First, we explain the concept of operational
intensity and then discuss the actual roofline model (see [37]
for the original paper). We also briefly discuss performance
counters, which are necessary to turn the model into roofline
plots. Throughout the paper, properties of executed programs
(runtime, performance, etc.) are written using upper case
letters, whereas platform properties (peak performance, cache
size, etc.) are written using lower case Greek letters.

1

BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y← αx+ y = 2n ≥ 16n ≥ 8n ≥ 24n ≤ 1
8

≤ 1
12

dgemv y← αAx+ βy = 2n2 + 2n ≥ 8n2 + 16n ≥ 8n ≥ 8n2 + 24n ≤ n+1
4n+8

≈ 1
4
≤ n+1

4n+12
≈ 1

4

dgemm C ← αAB + βC = 2n3 + 2n2 ≥ 24n2 ≥ 8n2 ≥ 32n2 ≤ n+1
12

≤ n+1
16

TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

A. Operational Intensity

Work. As commonly done, we denote with W the work,
i.e., the number of operations performed by a given program.
Although W may refer to any type of operation, such as
comparisons or integer arithmetic, the focus of this paper
is numerical code and thus W will count the number of
floating point additions and multiplications. This is meant in
a mathematical sense, i.e., for example one AVX addition of
vectors of four doubles will count as four. In our case studies,
the work will depend only on the sizes of the inputs, for
example when adding two vectors of length n. In this case
we write W = W (n). The work is a property of the chosen
algorithm and does not depend on the platform.

When run on a platform with some input, the program will
achieve a runtime of T and thus a performance of P = W/T .

Memory traffic. We denote with Q the number of bytes
of memory traffic incurred by executing a given numerical
program. Again we write Q = Q(n) to express the dependency
on the input size n. In contrast to W , Q heavily depends
on the properties of the platform such as the details of the
cache hierarchy. Because of this, Q can be estimated only
asymptotically in most cases (e.g., [15]), and exact values
have to be determined by measurements. We will distinguish
reads and writes as Qr and Qw: Q = Qr + Qw. The read
data traffic Qr(n) for sizes for which the data fits within
the cache is equal to the number of compulsory misses, i.e.,
reading the input data. For example, for dgemm (third row
in Table I) the three matrices, each of size n2, have to be
read. Therefore, the compulsory read data traffic in bytes is
24n2. For larger sizes, there will also be reads associated to
data that has been evicted from the cache, but this number
cannot be determined analytically. Hence, Qr(n) ≥ 24n2. In
dgemm, only the output matrix C has to be written (plus all
the evicted data). Therefore, the write data traffic in bytes is
Qw(n) ≥ 8n2.

Typically, we assume a cold data cache unless stated other-
wise. The optimal Q is closely related to the I/O complexity
[15], but may include also traffic not incurred by data, such as
loads due to the page table or the cache coherency protocol.

Operational intensity. The operational intensity, I , relates
W and Q:

I =
W

Q
. (1)

That is, I determines the number of floating point operations
per byte of memory traffic. We also define Ir = W/Qr ≥ I ,
and Iw = W/Qw ≥ I .

operational
intensity I [flops/byte]

performance P
[flops/cycle]

4

π = 2

1

1/2

1/4

1/4 1/2 1 2 4 8

β:

bound based on π

bound based on β

x
some program
run on some input

π/β

Fig. 1. Roofline plot for π = 2 and β = 1.

Operational intensity: Examples. In simple cases, I can be
estimated by analysis. As example, consider the daxpy routine
in BLAS [1], which implements

y← αx + y

where x and y are vectors of doubles of length n and
α is a scalar. The work is W (n) = 2n. Since there is
no reuse in the computation, the data traffic is determined
by the compulsory misses and the write-back of the result,
i.e., Qr(n) ≥ 16n, Qw(n) ≥ 8n, and thus Q(n) ≥ 24n.
This analysis yields a lower bound since it excludes, for
example, memory traffic due to loading the code and the cache
coherency protocol in case of threading. A similar analysis can
be done for other mathematical kernels as shown in Table I
for representative BLAS 1–3 functions. Note that only dgemm
is not bound by O(1). However, the shown bound is too loose
once 3n2 exceeds the cache size. The achievable optimum
(using suitable blocking) is Θ(

√
γ), where γ is the cache size

[15]; [14] provides a non-asymptotic bound. Analysis of a
simple triple loop implementation yields I(n) = O(1) due to
bad locality.

B. The Roofline Model

The roofline model [37] visually relates performance P and
operational intensity I of a given program to the platform’s
peak performance and memory bandwidth. We call the visual-
ization a roofline plot; an example is shown in Fig. 1. On the
x-axis is the operational intensity, on the y-axis performance.
Both are in log scale. We use cycles instead of seconds to
abstract from the CPU frequency. A given numerical program
run on a given input has a specific operational intensity I and
a specific performance P and thus becomes one point in the
plot. P obeys two upper bounds: the peak performance π of
the processor (in Fig. 1: π = 2 flops/cycle) and the bound

2

obtained from the memory bandwidth β (in Fig. 1: β = 1
byte/cycle) for computations with low intensity:

P ≤ min(π, Iβ).

The intersection of the two bounds is at I = π/β. Compu-
tations with this intensity are exactly those that are balanced
in the sense of Kung [17].1 Computations with I ≤ π/β are
memory bound; those with I ≥ π/β are compute bound. The
work in [8] uses the term ”balanced” to denote compute-bound
computations.

The model can be extended to include more bounds [37].
For example, the peak performance changes if one allows the
use of vector instructions or the use of multiple cores. Simi-
larly, the effective memory bandwidth changes (is reduced) if a
program has no spatial locality. Depending on the bounds used,
the notion of memory- and compute-bound changes. Finally,
one can build an analogous model and plot by considering
only read traffic by using Ir and the peak read bandwidth βr.

C. Hardware Performance Counters

Most modern microachitectures include hardware support
to monitor microprocessor activity. Intel platforms, for ex-
ample, contain a Performance Monitoring Unit (PMU) that
consists of a set of a machine specific registers (MSRs), that
can be programmed to count microprocessor events, such
as instructions retired, elapsed core clock ticks, or L2/L3
cache hits and misses. The Intel Performance Counter Monitor
(PCM) [13] is a set of C++ routines that provide access to
these counters. The main advantage of PCM compared to
other such libraries is its support for both core events and
uncore events, i.e., those measured in the memory controller.
This enables the measurement of bytes read from and written
to memory controller, which, as discussed later, is helpful in
measuring the memory traffic Q.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
π and β are obtained.

A. Measuring strategy

At a high level of abstraction, our measuring strategy has
the form:
nr_of_runs = get_nr_of_runs(target_code, data)
for (nr_of_repeats){

start_measure()
for (nr_of_runs) {
target_code(data)

}
stop_measure()

}

1More precisely, Kung assumes also full utilization, i.e., that the peak
performance π is reached and thus the time for computation and the time
for memory traffic are the same.

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to obtain median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [18], [34]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 108 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.

Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this
paper, we use a different approach, similar to the one described
in [34], that takes the form:

for (nr_of_repeats){
start_measure()
for (nr_of_runs) {

target_code(replica_of_data[run])
}
stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (γ is the LLC size)

sizeof(data)× runs ≥ γ × associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as

...
target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data)× limit ≥ γ × associativity.

3

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W

Counters for floating point operations. Table II lists
the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions and
shuffles are ignored by the counters. For vector instructions,
the measured values have to be multiplied by the correspond-
ing vector length. Thus, the total number of double floating
point operations on a Sandy Bridge platform is

W = Scalar double + SSE double× 2 + AVX double× 4,

and for the Westmere platform

W = Scalar + SSE× 2.

Caveats. For the Sandy Bridge based microarchitectures, six
counters per core need to be programmed, if both single and
double precision floating point operations should be measured
simultaneously. Each physical core has eight programmable
performance counters, which are shared among the hyper-
threads that each core can host (two in the referred platform).
On the Sandy Bridge microarchitecture, hence, disabling hy-
perthreading allows the access of all eight counters from a
single hardware thread, and all floating point operations can be
measured at a time. For the Westmere platform, mixed single
and double precision measurements are not possible if packed
operations are used, since the same counter accumulates single
and double precision operations.

C. Measuring Runtime T

Counters for timing. While the regular time stamp counter
of the x86 platform is commonly known, Intel has introduced
more counters to measure cycles on the CPU. With the coun-
ters listed in Table II, it is possible to measure the cycle count
per CPU. The time stamp counter and the unhalted reference
cycles counter measure reference cycles of the socket, while
the unhalted core cycles counter measures CPU cycles. For
measuring performance, only the total run time is required,
thus the regular time stamp counter (rdtsc) is still the right
choice and it is the one used in our experiments. Nonetheless
one has to be aware of the effects of frequency scaling, and
why the three counters can differ.

Event Event Mask Mnemonic

Flops

Sandy / Ivy Bridge
Scalar single FP COMP OPS EXE.SSE FP SCALAR SINGLE
SSE single FP COMP OPS EXE.SSE PACKED SINGLE
AVX single SIMD FP 256.PACKED SINGLE
Scalar double FP COMP OPS EXE.SSE FP SCALAR DOUBLE
SSE double FP COMP OPS EXE.SSE PACKED DOUBLE
AVX double SIMD FP 256.PACKED DOUBLE
Westmere
Scalar FP COMP OPS EXE.SSE FP SCALAR
SSE FP COMP OPS EXE.SSE FP PACKED

Memory ops

Sandy / Ivy Bridge
Cache lines reads UNC CBO CACHE LOOKUP.I

UNC CBO CACHE LOOKUP.ANY REQUEST FILTER
Cache lines writes UNC ARB TRK REQUEST.EVICTIONS
Westmere-EP
Cache lines reads UNC QMC NORMAL READS.ANY
Cache lines writes UNC QMC WRITES.FULL.ANY
Sandy Bridge-EP
Cache lines reads UNC IMC NORMAL READS.ANY
Cache lines writes UNC IMC WRITES.FULL.ANY

Timers

Core Cycles UnHalted Core Cycles
Reference Cycles UnHalted Reference Cycles
Time stamp counter IA32 TIME STAMP COUNTER

TABLE II
COUNTERS. EVENT MASK MNEMONIC AS USED IN [11] AND [12].

Caveats. All three counters measure cycles, but the latter
two can differ from the time stamp counter for the following
reasons:

• The time stamp counter is a system-wide counter. There-
fore, it also measures any effects of the operating system.
The unhalted reference cycles counter and unhalted core
cycles counter, on the other hand, are only incremented
when the selected hardware thread is running.

• In the parallel scenario, the reference cycles will report
how many cycles are spent per CPU, but reconstructing
their sum back into wallclock time is not trivial due to
partially overlapping regions.

• The unhalted core cycles counter is incremented in each
core cycle. These cycles, however, might tick slower
than the reference cycles in case of speed stepping, or
tick faster in case of turbo boost. This would imply a
shift of the peak performance bound with respect to the
reference one, and hence some points might appear above
the roofline.

We want to emphasize that enabling turbo boost (by default
enabled on all modern Intel processors) will make any kind of
performance plot subject to non-deterministic fluctuations, as
the boost is controlled based on the temperature of the proces-
sor. Even between repeats of the same problem, the operational
frequency of the CPU might differ. All our measurements are

4

done with turbo boost and frequency scaling disabled in the
BIOS.

D. Measuring Memory Traffic Q

Counters for memory traffic. This measurement is the
most challenging for creating roofline plots, since the set of
counters differ between different microarchitectures. The Intel
PCM software has the highest coverage of memory traffic
counters for Intel microarchitectures, but we still had to extend
it to measure traffic on the desktop versions of the Sandy
Bridge and Ivy Bridge microarchitecture. We list all events
used across the different platforms in Table II.

Caveats. As a first attempt to measure memory traffic,
the counter for LLC misses seems appropriate. However, it
is not suitable for roofline plots for several reasons. First,
the considered caches are all write-allocate, meaning that an
LLC write miss may cause having twice the amount the
traffic. Further, other events may cause data transfers like
the prefetcher, page table loads, and streaming (non-temporal)
memory operations. Thus, the most appropriate approach is
to measure the raw traffic on the memory controller, which
accounts for all the aforementioned traffic. Unfortunately,
accessing the memory-related counters listed in Table II is
not supported in most libraries because it is different for each
microarchitecture of Intel. As mentioned in the background
section, this was one of the main reasons why we chose and
extended the Intel PCM software to access those counters. We
measure read and write traffic separately, and add the results
to obtain Q.

E. Other Issues

Dead code elimination. If the compiler can determine
that the target code within the measuring strategy does not
affect the program results, it will optimize it away. We mainly
observed this when target_code was compiled together with
the surrounding measurement code. To avoid it, we compile
the measurement code and the target code separately. If this
is not possible, we just make use of the processed data after
the measurement, e.g. by printing it out.

Initialization. If the input data is not initialized after
allocation, the compiler potentially optimizes for this case.
The resulting program will then have less reads compared to
the same program with initialized data.

Alignment. In general, one should be aware that alignment
has a significant impact on the measurements. We used 64
byte (cache line) alignment for this work to overcome this
shortcoming.

Asynchronous calls. Asynchronous calls might lead to a
callback during the actual measurement and potentially disturb
the results. As these effects are very hard to debug, we try to
avoid them whenever possible.

Hardware prefetcher. In our experiments, we could see
significant differences in the amount of memory transferred
depending on whether the prefetcher was deactivated (via
BIOS) or activated. All experiments are reported with active
prefetcher as this is the common use-case.

Mnemonic
name

XSB XW CSB

CPU Model Xeon E5-2660 Xeon X5680 Core i7-3930K

Microarch. Sandy Bridge
EP

Westmere EP Sandy Bridge E

ISA AVX SSE 4.2 AVX

Cores 8 6 6

Sockets 2 2 1

Frequency
[GHz]

2.2 3.3 3.2

π per core
[Flops/cycle]

8 4 8

β one/all cores
[Bytes/cycle]

6.7/14.1 6.7/13.9 6.2/10.4

Operating
System

RHEL Server 6 RHEL Server 6 Ubuntu 12.10
Windows 7

TABLE III
PROPERTIES OF THE PLATFORMS USED FOR THE EXPERIMENTS.

F. Validation

To validate our measurement of W and Q, we consider cold
cache measurements of the three BLAS functions in Table I,
choosing sizes for which the input data fits into the LLC. In
this case, the bounds on Q and I from the table should be
a close approximation of the expected result, and the value
of W is known precisely. For daxpy, we choose the size
ranges n = 107i, 1 ≤ i ≤ 6, and for dgemv and dgemm,
n = 100i, 1 ≤ i ≤ 6. To validate our experiments, we use
the single-threaded code from Intel’s MKL, which is highly
optimized (and certainly vectorized). For the validation we also
experimented with straightforward loop-based implementation,
but the effects of the compiler and the used flags impact the
results tremendously (to the point that it would warrant a study
by itself) and therefore this data is omitted.

We run the experiments on the three computers shown
in Table III. Table IV collects the results, reporting the
median and the maximum ratio between the measured and the
expected results. We can see that the floating point operation
count is very precise for all kernels. For dgemv on the CSB
platform, we measure a big relative error for Qw, which will
be explained in the experimental section.

G. Measuring π and β

The peak performance π can be estimated using a suitable
microbenchmarks, for example, a vector reduction with suf-
ficiently many accumulators. However, for our plots we use
the information obtained from the manual to ensure integer
results. We distinguish between single and multi-core peak
performance.

Measured memory bandwidth β highly depends on the
memory access pattern of the microbenchmark used to mea-
sure, and how the different prefetchers interact with the access

5

W Qr Qw Qr+w

Platform Kernel Med. Max. Med. Max. Med. Max. Med. Max.

XSB
daxpy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dgemv 1.15 1.19 1.00 1.00 1.34 1.49 1.01 1.01
dgemm 1.00 1.00 1.01 1.03 1.04 1.09 1.02 1.05

XW
daxpy 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.03
dgemv 1.05 1.00 1.01 1.04 1.06 1.00 1.01 1.00
dgemm 1.00 1.00 1.01 1.05 1.02 1.10 1.01 1.06

CSB
daxpy 1.00 1.00 1.04 1.06 1.02 1.03 1.03 1.05
dgemv 1.12 1.18 1.01 1.02 1.97 2.96 1.01 1.02
dgemm 1.01 1.01 1.23 1.39 1.16 1.40 1.21 1.40

TABLE IV
VALIDATION OF W AND Q BY COMPARING THE MEASURED VALUES

(MEDIAN AND MAXIMUM) WITH THE CORRESPONDING THEORETICAL
BOUNDS IN TABLE I. PLATFORM NAMES REFER TO TABLE III.

.

stream. We measure and report a best-case memory bandwidth
by executing the optimized Intel MKL copy routine to transfer
1 GB of contiguously allocated data. Additionally, we measure
the read-only and write-only bandwidth. Note that β is not
a simple composition of the two. To obtain them, we use
intrinsic instructions to only load or only store a 1 GB buffer.
Single core bandwidth is usually lower than the bandwidth
achieved when multiple cores are used. This can be measured
by using the parallel version of the MKL routine, and by
extending the read-only and write-only routines with OpenMP
annotations. We also did experiments with the STREAM
benchmark but in the end used the MKL routines since they
achieved a higher bandwidth. A bandwidth bound for random
access (meaning no spatial locality) can easily be added to the
roofline plot for applications with such access patterns.

IV. BENCHMARKS

In this section we show a number of experiments that
illustrate possible uses of roofline measurements. This includes
comparing the operational intensity of common numerical ker-
nels, assessing the optimality of memory-bound computations,
studying successively optimized versions of the same kernel,
and studying the effect of warm and cold data caches, as well
as of threading. We first specify the experimental setup; then
we discuss the various experiments.

Experimental setup. We ran all experiments on the three
recent Intel-based platforms shown in Table III, running two
different operating systems. We omitted the results obtained on
an Ivy Bridge platform running OS X, as they are qualitatively
similar to the CBS platform and give no new insights. We
consider the following numerical kernels:

• BLAS functions from MKL v.11 [2], ATLAS v.3.10[35],
and the corresponding hand-coded implementations.

• FFT libraries from Numerical Recipes (NR) [24], MKL,
FFTW [9], and Spiral-generated code from the website
of [26], [25].

MKL is provided as binary code, the ATLAS and FFTW
libraries are compiled using gcc v.4.4 (the default), and hand-
coded kernels as well as Spiral code are compiled using
the Intel icc v.13 compiler with flags ”-O3 -xHost”. The
data reported in the plots is always the median of several
repetitions, and for each point, we also report the 25th and
75th percentile, represented as vertical or horizontal bars along
the corresponding axis. Note that due to the logarithmic scale
of the plot, only significant variations will be visible in the
plot.

Different kernels: Single versus multithreaded. In the
first experiment we run a set of kernels that are known to
have different operational intensities: the BLAS 1–3 functions
from Table I (on square matrices) and the FFT. Fig. 2(a)
shows the performance of the set of kernels when executed
sequentially on CSB using Windows. The set of input sizes
n is chosen to use different levels of the memory hierarchy.
For daxpy we use n = 10000 + 30000i2, (0 ≤ i < 10), for
dgemv and dgemm n = 100 + 300i (0 ≤ i < 10), and for
FFT, n = 2k (5 ≤ k < 23). Daxpy and dgemv are memory-
bound as expected, reaching about 95% and 90% of the peak
P = βI . Dgemm is compute-bound for all sizes reaching
also about 95% of the peak π. Note that daxpy hits very
precisely the I = 0.083 from Table I, and dgemv is close
to the expected I = 0.25. The operational intensity of FFT
is between dgemv and dgemm, which is expected since the
optimal I(n) is known to be Θ(log(γ)) [15] versus Θ(

√
γ)

for matrix multiplication (using 2n3 operations). Note that the
FFT is plotted with measured flops and not with pseudo-flops
(which assume an op count of 5n log2(n), an overestimation),
as commonly done.

Fig. 2(b) shows the same plot, but measured with the
multithreaded versions of the kernels. We measure an increase
in the memory bandwidth from 6.2 to 10.31 Bytes/cycle, which
allows for a 69% improvement in the performance of daxpy
and dgemv. Due to a shift of the ridge point from 1.3 to 4.6
flops/byte, the FFT kernel becomes clearly memory-bound.
The effect of multithreading can be seen for sizes starting
from n = 211. In both the parallel and the sequential case,
after n = 217, the operational intensity starts decreasing. Using
six cores, the dgemm kernel exhibits up to 5.4x speedup over
its sequential version and slightly lower I , likely due to a
parallelization overhead.

Different kernels: Read- and write-only roofline plots.
If a computation is memory-bound (e.g., daxpy and dgemv
in Figs. 2(a) and (b)), one question is whether the read or
the write bandwidth is the bottleneck. This can be answered
through modified roofline plots that use Ir and Iw instead
of I as shown in Figs. 2(c) and (d) for a cold cache.
For both daxpy and FFT, Qr(n), Qw(n) = Ω(n), while
for dgemm, Qr(n), Qw(n) = Ω(n2). For dgemv, however,
Qr(n) = Ω(n2) while Qw(n) = Ω(n). Given that W (n) =
Ω(n2), dgemv appears memory-bound in the read-only plot
and compute-bound in the write-only plot. The read-only
bottleneck also explains the gap between the performance of
dgemv and the roofline in Fig. 2(a), as βr becomes a limiting

6

0.1 1 10
Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000
2440000

32

4194304

100

2800

100

2800Peak � seq. (8.0 Flops/Cycle)

Peak � par. (48.0 Flops/Cycle)

Read
/w

rite
 ß

seq
. (6

.2
Byte

s/C
ycl

e)

Read
/w

rite
 ß

par
.(1

0.3
1 Byte

s/C
ycl

e)

daxpy

FFT

dgemv

dgemm

(a) Sequential code.

0.1 1 10
Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000

2440000
32

4194304

100

2800

100

2800

daxpy

FFT

dgemv

dgemm

Peak � par. (48.0 Flops/Cycle)

Peak � seq. (8.0 Flops/Cycle) Read
/w

rite
 ß

par
.(1

0.3
1 Byte

s/C
ycl

e)

Read
/w

rite
 ß

seq
. (6

.2
Byte

s/C
ycl

e)

(b) Parallel code.

0.1 1 10 100
Operational Intensity [Flops/Byte]

1

10
Performance [Flops/Cycle]

10000
2440000

32

4194304

100

2800

100

2800

daxpy

FFT

dgemv

dgemm

Re
ad

 ß
 (5

.0
By

te
s/C

yc
le

)

Peak � (8.0 Flops/Cycle)

(c) Read-only bandwidth.

0.1 1 10 100
Operational Intensity [Flops/Byte]

1

10
Performance [Flops/Cycle]

10000

2440000

32

4194304

100

2800

100

2800

W
rit

e
ß

(3
.8

By
te

s/C
yc

le
)

daxpy

FFT

dgemv

dgemm

Peak � (8.0 Flops/Cycle)

(d) Write-only bandwidth.

Fig. 2. Roofline plot for the Intel MKL BLAS 1–3 and FFT kernels on CSB, with cold cache.

factor: P = Pr = Irβr. Moreover, most of the time is spent
in computing W flops and transferring Qr bytes. This results
in a larger error in the measurement of Qw and, consequently,
in the computation of Iw.

Different kernels: Cold versus warm cache. Warm cache
conditions remove the operational intensity limits obtained
from counting compulsory misses. For problem sizes that
completely fit into cache, I =∞. In reality, Fig. 3 shows that
for small sizes, I becomes very large and a high measurement
error for I is introduced (horizontal lines). This is due to
the presence of memory traffic measured by the uncore (per
socket) memory counters. As the sizes increase, the code starts
to behave as in the cold cache scenario above.

Study of code optimizations: Dgemm. Fig. 4 shows the
roofline plot for the dgemm kernel at different levels of
optimizations. In addition to ATLAS and MKL we consider a
hand-coded standard triple loop and a six-fold loop obtained
through blocking with block size 50.

We first discuss the triple loop. For matrix sizes that fit into
cache, I(n) ≈ n/16, and indeed we measure I(100) = 6.1

0.1 1 10 100
Operational Intensity [Flops/Byte]

1

10
Performance [Flops/Cycle]

10000

2440000

32

4194304

100

2800

100
2800

daxpy

FFT

dgemv

dgemm

Re
ad

/w
rit

e
ß

(6
.2

By
te

s/
C

yc
le

)

Peak � (8.0 Flops/Cycle)

Fig. 3. Roofline plot for the Intel MKL BLAS 1–3 and FFT kernels on CSB:
sequential code, warm data cache.

flops/byte. When the data do not fit in cache anymore (in our
experiment for n ≥ 1000), the value of I starts decreasing due

7

0.1 1 10 100
Operational Intensity [Flops/Byte]

1

10

100

Performance [Flops/Cycle]

2800

100
2800

100

2800

100

2800

2800

100

2800

Triple loop

Six fold loop

MKL seq.

MKL par.

ATLAS seq.

ATLAS par.

Peak � par. (128.0 Flops/Cycle)

Peak � seq. (8.0 Flops/Cycle)

Read
/write

 ß par.
(14 Byte

s/C
ycle

)

Read
/write

 ß seq
. (6

.7 Byte
s/C

ycle
)

Fig. 4. Roofline plot for matrix-matrix multiply kernels on CSB with cold
data cache, sequential and parallel versions.

to larger values of Q, which slowly becomes cubic in n, as
we need to reload repeatedly all elements of the second matrix
[38]. For large matrices, the operational intensity can then be
estimated as I(n) = 2n3

8n3 = 0.25 flops/byte as confirmed in
the experiment.

The six-fold loop implements an L1-blocked version of the
kernel using squared blocks of size N2

B = 502 doubles. By
improving locality, the operational intensity of large problems
becomes I = O(NB), as Q(n) ≥ 8n3

NB
. The MKL and ATLAS

kernels provide in addition improved ILP, SIMD vectorization,
and multithread parallelism. ATLAS improves locality by
autotuning the block size when installing the library. For the
multithreaded ATLAS, the first performance point lays below
π = 8 flops/cycle (peak performance for sequential code with
AVX instructions). This is most likely due to the library’s
choice of using one thread for smaller problem sizes.

This example demonstrates to what extent roofline plots can
help with performance optimization. Fig. 4 shows that the nave
triple loop implementation for large sizes becomes memory
bound; thus, a first optimization should aim at increasing the
operational intensity of the kernel. Blocking the computation
(six-fold loop) achieves this. Further optimizations (as done in
MKL) are not explained by the roofline plot.

Study of code optimizations: FFT. We compare various
FFT kernels in Fig. 5. As in the previous plots, we use sizes
n = 2k (5 ≤ k < 23), except for the available Spiral-generated
kernels, which only support sizes up to 212. Additionally to
the regular warm and cold cache roofline plots, we show plots
that use the pseudo-flop count of 5n log2(n) [32] instead of
the measured ones. We note that both types of plots have
inherent problems: in the plot based on measured flops, the
performance is not proportional to runtime since W differs
between codes. This is most explicit in the NR code as
explained below. Using pseudo-flops resolves that problem but
overestimates the actual W and thus distorts the relation to the
bounds in the plot.

Fig. 5(a) shows the measured results using cold cache. The
order of the kernels, in terms of performance, is roughly as
expected, with MKL and one version of Spiral using the
SSE instruction set, and the rest of the implementations being
unvectorized. The only surprise is the performance of the
straightforward NR code. To explain this, we use Fig. 5(c),
which uses pseudo flops. We see that the NR curve moves
to the bottom left, while the rest of the curves move slightly
to the top right. The reason is that the NR code calculates
the twiddle constants at runtime for all sizes, resulting in
an increased flop count and thus increased performance and
operational intensity. The rest of the kernels move in the
opposite direction, as the used pseudo-flops are overestimated.
When looking at warm cache measurements in Fig. 5(b),
the performance gap becomes bigger as the kernels are now
mainly compute-bound. The NR kernel is clearly separated
from the rest due to poor locality, and when looking at the
pseudo-flop results in Fig. 5(d), we can see that the additional
computation has a more dominant effect under this bound.

V. RELATED WORK

The paper introducing the roofline model [37] shows
roofline plots for four platforms and four numerical functions,
each with a fixed input size. Besides that we are not aware of
any prior work that shows roofline plots using measured data.
However, there are some lines of work that are closely related
to this paper as discussed next.

Accessing hardware performance counters. There are var-
ious interfaces for accessing performance counters. PAPI [20]
is one of the most popular because it is available across dif-
ferent microarchitectures, supports various operating systems,
and provides both routines for low-level access to hardware
performance counters and high-level routines that facilitate
its usage. Other well-known tools for performance counters
monitoring are perf events [28] (the standard interface used in
Linux), OProfile [22], and the libraries libpfm and libperfctr,
which are both based on the perfmon2 [5] and PerfCtr [23]
extensions of the Linux kernel, respectively. All of these
provide a low-level interface for accessing the performance
counters but are not available in Windows or OS X. We use
PCM as it is available across OSes and, as of now the only
one, that provides access to uncore events. The limitation is
the restriction to recent Intel platforms.

Performance analysis tools. There are a number of tools
that combine measurement and analysis of program perfor-
mance. VTune [3], for example, is an integrated tool that
automatically profiles the execution of an application on an
Intel platform using performance counters, and reports a
detailed breakdown of execution cycles. Similarly, the HPC
TOOLkit [6] performance tools, use statistical sampling of
timers and hardware performance counters to collect accu-
rate measurements of a program’s behavior. GOoDA [10] is
another recent tool that combines a hardware performance
counter access infrastructure with a performance data analyzer
and a web based visualizer. Our work falls into this category
and could possibly be integrated into any of these tools.

8

0.1 1 10 100
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

32

4194304 32

4194304

32
4194304

32

32

8192

FFTW

NR

MKL

Spiral-vect

Spiral

Peak � (4.0 Flops/Cycle)

Re
ad

/w
rit

e
ß

(6
.7

By
te

s/C
yc

le)
Spiral

(a) Cold cache.

0.1 1 10 100
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

32
4194304

32

4194304

32

4194304

32

32

Peak � (4.0 Flops/Cycle)

Re
ad

/w
rit

e
ß

(6
.7

By
te

s/C
yc

le)

NR

FFTW

Spiral
MKL

Spiral-vect

(b) Warm cache.

0.1 1 10 100
Operational Intensity [Pseudo-flops/Byte]

0.1

1

Performance [Pseudo-flops/Cycle]

32
4194304

32

4194304

32

4194304

32
32

8192

Peak � (4.0 Flops/Cycle)

NR

MKL

Re
ad

/w
rit

e
ß

(6
.7

By
te

s/C
yc

le)

FFTW

Spiral

Spiral-vect

(c) Cold cache with pseudo-flops.

0.1 1 10 100
Operational Intensity [Pseudo-flops/Byte]

0.1

1

Performance [Pseudo-flops/Cycle]

4194304

32

4194304

32

4194304

32

32
Spiral

Spiral-vect

MKL FFTW

NR

Peak � (4.0 Flops/Cycle)

Re
ad

/w
rit

e
ß

(6
.7

By
te

s/C
yc

le)

32

(d) Warm cache with pseudo-flops.
Fig. 5. Roofline plots for several implementations of the FFT.

Measuring computing systems performance. Performance
measurements range from simple routines that use clock
wall time to measure execution time, to more sophisticated
mechanisms that implement different timing methodologies to
achieve accurate and reliable results [34]. The most common
sources of errors in the measurement process are the additional
software instructions executed to access the counters (also
known as the observer effect) and perturbations due to mea-
surement context bias [21]. Inaccuracies in the measurements
also depend on other factors such as the duration of the
execution, the enabling or disabling of certain features such
as frequency scaling. In turn, these factors vary depending on
the library used for accessing the counters and the underlying
microarchitecture [39]. A number of papers describe tech-
niques to achieve accurate results using hardware performance
counters [19].

Measuring performance also requires an understanding of
the properties of the underlying hardware architecture. This
is commonly done by carefully designing microbenchmarks
that stress the target hardware features to be tested. The
STREAM Benchmark [30] is widely used for measuring

memory bandwidth. [29] proposes different experiments for
measuring relevant parameters of the underlying memory
subsystem, such as cache size and cache block size.

Users of the roofline model. The roofline model is used
in a number of scientific papers that apply it to understand
performance and guide software optimizations of applications
including gridparticle interpolation [27], software correlators
used in radio astronomy [33], and stencil computations [31].
In most of the cases, the operational intensity and the upper
and lower bounds of the memory traffic are manually derived.

The roofline model has also been used to compare the per-
formance of applications in three of the largest supercomput-
ers, an IBM Blue Gene/P, a Sun-Infiniband cluster, and a Cray
XT4, each of them with different theoretical peak performance
and memory bandwidth [7]. Finally, it has also been applied
to other platforms such as GPUs [16], and recently it has been
extended to include bounds on performance due to energy
limitations [36]. In contrast to our work, all these uses of the
roofline model are based on paper calculations rather than on
measurements.

9

VI. SUMMARY AND CONCLUSION

The roofline model considered in the paper can help with
identifying effects and bottlenecks due to memory traffic.
For example in the paper we describe the case of dgemv.
Using read- and write-only roofline plots, the reason of the
performance bottleneck appears visually, and can be intuitively
explained by the (read) bandwidth limitation. Furthermore
back-of-the-envelope calculations become next to impossible
for more complex algorithms, such as a FFT or dgemm, since
not only compulsory cache misses occur. In these cases, a
roofline plot can only be created with measurements.

The first goal of the paper was to show that the roofline
model can be used with measurements rather than back-of-
the-envelope calculations. What at first glance seemed like a
straightforward task, was surprisingly difficult due to several
pitfalls arising from low level system details. Examples of such
pitfalls include interactions with the operating system, default
enabled features, like turbo boost and the hardware prefetcher,
and different compiler optimizations.

The second goal was to show that with measurements,
roofline plots can be a valuable tool in performance analysis
alongside ordinary performance plots. The main reason is
that the two key resource constraints, peak performance and
memory bandwidth, are both available as upper bounds, and
the notions of memory and compute bound are made precise.
We focused on floating point computations but the model
and the entire paper can easily be instantiated for integer
computations. The roofline plots can help with performance
optimization and are certainly of educational value. One of the
authors has been using (measured) roofline plots regularly in
his class. The source code accompanying this paper is available
at [4].

ACKNOWLEDGMENTS

The authors would like to thank Zoltán Majó for many
helpful discussions.

REFERENCES

[1] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/.
[2] Intel R©Math Kernel Library (Intel R©MKL) 11.0. http://software.intel.

com/en-us/intel-mkl.
[3] Intel R©VTuneTMAmplifier XE 2013.
[4] Roofline code. http://www.spiral.net/software/roofline.html.
[5] S. Eranian. The perfmon2 project. http://perfmon2.sourceforge.net/.
[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. HPCTOOLkit: tools for performance
analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience, 22:685–701, 2010.

[7] A. Bhatel, L. Wesolowski, E. Bohm, E. Solomonik, and L. V. Kal. Un-
derstanding Application Performance via Micro-benchmarks on Three
Large Supercomputers: Intrepid, Ranger and Jaguar. International
Journal of High Performance Computing Applications, 24(4):411–427,
2010.

[8] K. Czechowski, C. Battaglino, C. McClanahan, A. Chandramowlish-
waran, and R. Vuduc. Balance principles for algorithm-architecture co-
design. In USENIX Conference on Hot Topic in Parallelism, HotPar’11,
pages 9–9, 2011.

[9] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, 93(2), 2005. www.fftw.org.

[10] GOoDA - PMU Event Analysis Package. http://code.google.com/p/
gooda/.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual. 2013.

[12] Intel Corporation. Performance Analysis Guide for Intel Core i7
Processor and Intel Xeon processor 5500 series. 2013.

[13] Intel R©Performance Counter Monitor. http://software.intel.com/en-us/
articles/intel-performance-counter-monitor/.

[14] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. J. Parallel Distrib. Comput.,
64:1017–1026, 2004.

[15] H. Jia-Wei and H. T. Kung. I/O Complexity: The red-blue pebble game.
In Symposium on Theory of Computing (STOC), pages 326–333, 1981.

[16] K.-H. Kim, K. Kim, and Q.-H. Park. Performance analysis and
optimization of three-dimensional FDTD on GPU using roofline model.
Computer Physics Communications, 182(6):1201 – 1207, 2011.

[17] H. T. Kung. Memory requirements for balanced computer architectures.
In International Symposium on Computer Architecture (ISCA), pages
49–54, 1986.

[18] D. J. Lilja. Measuring Computer Performance: A Practitioner’s Guide.
2005.

[19] W. Mathur and J. Cook. Toward accurate performance evaluation using
hardware counters. In ITEA Modeling and Simulation Workshop, 2003.

[20] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A Portable Interface
to Hardware Performance Counters. In Proceedings of the Department
of Defense HPCMP Users Group Conference, pages 7–10, 1999.

[21] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. We have
it easy, but do we have it right? In NSF Next Generation Systems
Workshop, pages 1–5, 2008.

[22] OProfile - A system Profiler for Linux. http://oprofile.sourceforge.net.
[23] PerfCtr. http://aspectr.sourceforge.net/perfctr/.
[24] W. H. Press, B. P. Flannery, T. S. A., and V. W. T. Numerical Recipes in

C: The Art of Scientific Computing. Cambridge University Press, 1992.
[25] M. Püschel, F. Franchetti, and Y. Voronenko. Encyclopedia of Parallel

Computing, chapter Spiral. Springer, 2011.
[26] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proceed-
ings of the IEEE, special issue on “Program Generation, Optimization,
and Adaptation”, 93(2):232– 275, 2005. www.spiral.net.

[27] D. Rossinelli, C. Conti, and P. Koumoutsakos. Mesh-particle interpo-
lations on graphics processing units and multicore central processing
units. Philos Transact A Math Phys Eng Sci, 369:2164–75, 2011.

[28] S. Eranian, Overview of the perf event API. http://cscads.rice.edu/
workshops/summer09/slides/performance-tools/cscads09-eranian.pdf.

[29] A. J. Smith and R. H. Saavedra. Measuring Cache and TLB Performance
and Their Effect on Benchmark Runtimes. IEEE Trans. Comput.,
44(10):1223–1235, 1995.

[30] STREAM Benchmark. http://www.cs.virginia.edu/stream/.
[31] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A

scalable auto-tuning framework for compiler optimization. In IEEE
International Symposium on Parallel&Distributed Processing (IPDPS),
pages 1–12, 2009.

[32] C. Van Loan. Computational Frameworks for the Fast Fourier Trans-
form. 1992.

[33] R. V. van Nieuwpoort and J. W. Romein. Using many-core hardware
to correlate radio astronomy signals. In International Conference on
Supercomputing, pages 440–449, 2009.

[34] R. C. Whaley and A. M. Castaldo. Achieving accurate and
context-sensitive timing for code optimization. Softw. Pract. Exper.,
38(15):1621–1642, Dec. 2008.

[35] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing,
27:3–35, 2001.

[36] J. Whan Choi and R. Vuduc. A roofline model of energy. Technical re-
port, Georgia Institute of Technology, School of Computational Science
and Engineering, 2012.

[37] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Commun. ACM,
52:65–76, 2009.

[38] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
P. Stodghill. Is search really necessary to generate high-performance
blas? Proceedings of the IEEE, 93(2):358–386, Feb. 2005.

[39] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance
counter measurements. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 23 –32, 2009.

10

