
Learning to Generate Fast Signal Processing Implementations

Bryan Singer BSINGER+@CS.CMU.EDU

Manuela Veloso MMV+@CS.CMU.EDU

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

A single signal processing algorithm can be rep-
resented by many mathematically equivalent for-
mulas. However, when these formulas are imple-
mented in code and run on real machines, they
have very different running times. Unfortunately,
it is extremely difficult to model this broad per-
formance range. Further, the space of formulas
for real signal transforms is so large that it is im-
possible to search it exhaustively for fast imple-
mentations. We approach this search question as
a control learning problem. We present a new
method for learning to generate fast formulas, al-
lowing us to intelligently search through only the
most promising formulas. Our approach incorpo-
rates signal processing knowledge, hardware fea-
tures, and formula performance data to learn to
construct fast formulas. Our method learns from
performance data for a few formulas of one size
and then can construct formulas that will have the
fastest run times possible across many sizes.

1. Introduction

Signal processing algorithms take as an input a signal, as a
numerical dataset, and output a transformation of the sig-
nal that highlights specific aspects of the dataset. Many
signal processing algorithms can be represented by a trans-
formation matrix A which is multiplied by an input data
vector X to produce the desired output vector Y � AX
(Rao & Yip, 1990). Naı̈ve implementations of this matrix
multiplication are too slow for large datasets or real time
applications. However, the transformation matrices can be
factored, allowing for faster implementations.

These factorizations can be represented by mathematical
formulas and a single signal processing algorithm can be
represented by many different, but mathematically equiva-
lent, formulas (Auslander et al., 1996). Interestingly, when
these formulas are implemented in code and executed, they
have very different running times. The complexity of mod-
ern processors makes it difficult to analytically predict or

model by hand the performance of formulas. Further, the
differences between current processors lead to very dif-
ferent optimal formulas from machine to machine. Thus,
a crucial problem is finding the formula that implements
the signal processing algorithm as efficiently as possible
(Moura et al., 1998).

A few researchers have addressed similar goals. FFTW
(Frigo & Johnson, 1998) uses binary dynamic program-
ming to search for an optimal FFT implementation. We
have previously shown that we can effectively learn to pre-
dict running times of Walsh-Hadamard Transform (WHT)
formulas (Singer & Veloso, 2000), and we have also de-
veloped a stochastic evolutionary algorithm for finding fast
implementations (Singer & Veloso, 2001). Other learn-
ing researchers select the optimal algorithm from a few
algorithms. For example, Brewer (1995) uses linear re-
gression to predict running times for four different imple-
mentations, and Lagoudakis and Littman (2000) use rein-
forcement learning for selecting between two algorithms to
solve sorting or order statistic selection problems. We con-
sider thousands of different algorithms in this work.

Accurate prediction of running times (Singer & Veloso,
2000) still does not solve the problem of searching a very
large number of formulas for a fast, or the fastest, one. At
larger sizes, it is infeasible to just enumerate all possible
formulas, let alone obtain predicted running times for all of
them in order to choose the fastest. In this paper we present
a method that learns to generate formulas with fast running
times. Out of the very large space of possible formulas, our
method learns how to control the generation of formulas to
produce the formulas with the fastest running times. Re-
markably, our new method can be trained on data from a
particular sized transform and still construct fast formulas
across many sizes. Thus, our method can generate fast for-
mulas for many sizes, even when not a single formula of
those sizes has been timed yet.

Our work relies on a number of important signal process-
ing observations. We have successfully integrated this do-
main knowledge into our learning algorithms. With these
observations, we have designed a method for learning to
accurately predict the number of cache misses incurred by



a formula. Additionally, we can train this predictor using
only data for formulas of one size while still accurately pre-
dicting the number of cache misses incurred by formulas of
many different sizes. We then use this predictor along with
a number of concepts from reinforcement learning to gen-
erate formulas that will have the fastest run times possible.

2. Signal Processing Background

This section presents some signal processing background
necessary for understanding the remainder of the paper. For
this work, we have focused on the WHT since it is one of
the simpler and yet still important transforms (Johnson &
Püschel, 2000). We plan to extend this approach to a wide
variety of transforms.

2.1 Walsh-Hadamard Transform

The Walsh-Hadamard Transform of a signal x of size �n is
the product WHT ��n� � x where

WHT ��n� �
nO
i��

�
� �
� ��

�
�

and � is the tensor or Kronecker product (Beauchamp,
1984). For example, WHT ���� �

�
� �
� ��

�
�
�

� �
� ��

�
�

�
���

� � � �
� �� � ��
� � �� ��
� �� �� �

�
��	 �

By calculating and combining smaller WHTs appropri-
ately, the structure in the WHT transformation matrix can
be leveraged to produce more efficient algorithms. Let
n � n� � � � � � nt with all of the nj being positive in-
tegers. Then, WHT ��n� can be rewritten as

tY
i��

�I
�
n������ni�� �WHT ��ni�� I

�
ni�������nt �

where Ik is the k�k identity matrix. This break down rule
can then be recursively applied to each of these new smaller
WHTs. Thus, WHT ��n� can be implemented as any of
a large number of different but mathematically equivalent
formulas.

2.2 Split Trees

Any of these formulas for WHT ��n� can be uniquely rep-
resented by a tree, which we call a “split tree.” For exam-
ple, suppose WHT ���� was factored as:

WHT ����

� �WHT ���� � I�� ��I�� �WHT �����

� �f�WHT ���� � I����I�� �WHT �����g � I�� �

�I�� � f�WHT ����� I����I�� �WHT �����g�

The split tree corresponding to this final formula is shown
in Figure 1(a). Each node in the split tree is labeled with
the base two logarithm of the size of the WHT at that level.
The children of a node indicate how the node’s WHT is
recursively computed.

5

3 2

21 1 1

5

2 1 2

(a) (b)

Figure 1. Two different split trees forWHT ����.

Implicit in the split tree is the stride at which nodes com-
pute their respective WHTs. A node’s stride determines
how it accesses data from the input and output vectors. The
exact nature of how nodes access data depending on their
stride is not important for this paper. However, it is impor-
tant that stride can greatly impact the performance of the
cache. Two nodes of the same size but that have different
strides can have very different cache performance. Further,
the stride of a node depends on its location in the split tree
and the size of the nodes to its right.

2.3 WHT Timing Package

For the results presented in this paper we used a WHT
package, (Johnson & Püschel, 2000), which can implement
in code and run WHT formulas passed to it. By using hard-
ware performance counters, the package can count a num-
ber of different performance measures, including the num-
ber of cycles needed to execute the given formula or the
number of cache misses incurred by the formula. The pack-
age can return performance measures for entire formulas or
for each node in the split tree. The WHT package allows
leaves of the split trees to be sizes �� to �� which are imple-
mented as unrolled straight-line code, while internal nodes
are implemented as recursive calls to their children.

We will be discussing the level 1 data cache which is the
smallest and fastest memory cache closest to the CPU that
contains data. Many processors also have a level 1 instruc-
tion cache to hold program instructions and a larger and
slower level 2 cache closer to memory. The WHT pack-
age can specifically count the number of level 1 data cache
misses. To simplify the discussion, we will just use the
term “cache” throughout rest of this paper while we really
mean “level 1 data cache.”

2.4 Search Space

There is a very large number of possible formulas for a
WHT of any given size. WHT ��n� has on the order of
���	 �

p

�n�n���� different possible formulas (Johnson



& Püschel, 2000). For example, WHT ���� has 16,768
different split trees. Thus, it is infeasible to exhaustively
search through all possible split trees of even modest sizes.

In this work, we learn to generate fast formulas, allow-
ing us to search through only the most promising formulas.
However, evaluating our approach is difficult since the total
space of formulas cannot be feasibly exhausted and thus the
fastest formula is not known. We evaluate our approach by
exhausting over a limited subset of the space of formulas
that we have observed to be the most promising.

We have observed that the fastest binary split trees are just
as fast as the fastest non-binary ones. However, there are
still on the order of ���n�n���� binary split trees (Johnson
& Püschel, 2000), making it infeasible to search through
all binary split trees for transforms larger than size of the
cache. We have found that the fastest formulas never have
leaves of size �� since it is beneficial to use unrolled code
of larger sizes. Searching over all split trees with no leaves
of size �� greatly reduces the search space, being feasible
for formulas of sizes larger than the cache. Unfortunately,
it still becomes infeasible to exhaust over this limited space
for transforms much larger than ���. We have observed for
Pentium machines that the best split trees are always right-
most (trees where every left child is a leaf). This limited
space can be searched for larger sizes.

3. Key Signal Processing Observations

This section discusses several important observations that
we made about the WHT that directed our research. We
have incorporated this domain knowledge into our learning
algorithms.

All the data presented here are for a Pentium III running
Linux. The ideas and methods described here are general
and should work across different architectures where simi-
lar observations can be made.

Figure 2 shows a scatter plot of run times versus cache
misses for all binary WHT ����� split trees with no leaves
of size ��. For each WHT formula, a dot appears in the plot
corresponding to that formula’s run time and cache misses.
The plot shows that while there is a complete spread of run
times, there is a grouping of formulas with similar num-
bers of cache misses. Both run times and cache misses
vary considerably differing by about a factor of 6 and 10
respectively from the smallest to the largest. Further, as the
number of cache misses decreases so does the minimal and
maximal run times for formulas with the same number of
cache misses. The formula with the fastest run time also
has the minimal number of cache misses. So, if we can
generate all of the formulas with minimal cache misses, we
would have a much smaller set of formulas to time to de-
termine the one with the fastest run time.

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05

R
un

tim
e 

in
 C

P
U

 C
yc

le
s

 Level 1 Data Cache Misses

Figure 2. Run times vs. cache misses forWHT ����� formulas.

The second key observation is that all of the run time and
cache misses occur in computing the leaves. Further, the
total run time and number of cache misses of a formula is
simply the sum of the run time and cache misses at each
of the leaves. Thus, a prediction of the run time or cache
misses of leaves leads to a prediction of the run time or
cache misses of entire formulas.

Figure 3 shows a histogram of the number of cache misses
incurred by leaves of all binaryWHT ����� split trees with
no leaves of size ��. For all the WHT formulas, the number
of cache misses incurred by each leaf was measured, and a
histogram was generated over all these leaves. The spikes
in the histogram show that the number of cache misses in-
curred by leaves takes on only a few possible values. Thus,
it is not necessary to predict a real valued number of cache
misses, but just which of only a few groups of cache misses.

0 0.5 1 1.5 2

x 10
5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Level 1 Data Cache Misses

N
um

be
r 

of
 L

ea
ve

s

Figure 3. Histogram of the number of cache misses incurred by
leaves ofWHT ����� formulas.

Finally, we have observed both in Figure 3 and in a number
of other similar histograms for different sized WHTs that
the number of cache misses incurred by leaves occurs in
specific fractions of the size of the transform. In an overall
transform of size s, the number of cache misses a leaf will
incur is �� s�	� s� �s� or more. These particular fractions
correspond to particular features of the cache. For example,
it is possible to have s�	 cache misses since a cache line
holds exactly four data items on this particular Pentium.

Thus, the number of cache misses incurred by a leaf comes
in only a few specific fractions of the size of the trans-
form being computed. This suggests the possibility to learn



across different sized WHTs by predicting cache misses in
terms of fractions of the transform size.

In summary, we observed:

� For a given size, the WHT formula with the fastest
run time has the minimal number of cache misses. So
minimizing cache misses produces a group of formu-
las containing the fastest one.

� All of the computational time and cache misses occur
in the leaves of the split trees. So being able to predict
for leaves allows predicting for entire formulas.

� The number of cache misses incurred by a leaf is only
one of a few possible values. So we can learn cate-
gories instead of real-valued numbers of cache misses.

� The number of cache misses incurred by leaves are
fractions of the transform size. So it may be possible
to learn across different sizes.

4. Predicting Leaf Cache Misses

We now present our method to learn to predict cache misses
for WHT leaves. We discuss the features used for the
leaves, then we present the learning algorithm, and finally
we evaluate our approach.

4.1 Features for WHT Leaves

To learn to predict cache misses for WHT leaves, we need
features that will distinguish leaves with different cache
misses. Our methods incorporate domain knowledge about
the WHT by using good features.

Clearly the size of the leaf is important, but so is its position
in the split tree. However, it is not as easy to capture the
position of a leaf in a split tree as its size. A leaf’s stride
provides some information about its position in the split
tree, as discussed in Section 2.2. The size and stride of the
parent of a leaf indicates how much data the leaf will share
with its siblings and how the data is laid out in memory.

Further, given a particular leaf l, the leaf p computed im-
mediately before l gives information about l’s position in
the tree. Specifically, this “previous” leaf p is the leaf just
to the right of l along the fringe of the tree. However, the
size and stride of the common parent between l and p (i.e.,
the first common node in the parent chains of both leaves)
provide information about how much data is currently in
the cache because of p and how it is laid out in memory.
Thus, we use the size and stride of the “common parent” in
our features and not that of the previous leaf.

In summary, we use the following features:

� Size and stride of the given leaf
� Size and stride of the parent of the given leaf
� Size and stride of the common parent.

4.2 Learning Algorithm

Given these features for leaves, we can now use standard
classification algorithms to learn to predict cache misses
for WHT leaves. Our algorithm is as follows:

1. Run several different WHT formulas, collecting the
number of cache misses for each of the leaves.

2. Divide the number of cache misses by the size of the
transform, and classify them as:

� near-zero if less than 1/8
� near-quarter if less than 1/2
� near-whole if less than 3/2
� large otherwise.

3. Describe each of the leaves with the features outlined
in the previous subsection.

4. Train a decision tree to predict one of the four classes
of cache misses given the leaf features.

While the decision tree predicts one of the four categories
for any leaf, this can be translated back into cache misses.
In a transform of size s, a leaf is predicted to have:

� � cache misses, if near-zero is predicted;
� s�	 cache misses, if near-quarter is predicted;
� s cache misses, if near-whole is predicted;
� �s cache misses, if large is predicted.

Further, the number of cache misses incurred by an entire
formula can be predicted by summing over all the leaves.

4.3 Evaluation

There are several measures of interest for evaluating our
learning algorithm. The simplest is to measure the accu-
racy at predicting the correct category of cache misses for
leaves. Since we want to predict cache misses for an entire
tree, another measure is to evaluate the accuracy of using
this predictor for entire WHT formulas. Further, we are
most interested in whether it accurately predicts the fastest
formulas to have the fewest number of cache misses.

Table 1 evaluates the accuracy of our method at predicting
the correct category of cache misses for leaves. In partic-
ular, we trained the decision tree on a random 10% of the
leaves of all binary WHT ����� split trees with no leaves
of size ��. We then tested this decision tree on leaves from
different sized formulas, using all of the formulas of the
different limited formula spaces discussed in Section 2.4.
The error rate shown is the percentage of the total num-
ber of leaves tested for which the decision tree predicted
the wrong category. Clearly, there are very few errors, less
than 2% in all cases shown. This is surprisingly good in that
while training only on a small fraction of the total leaves of
one size, the learned decision tree can accurately predict
across a wide range of sizes.



Table 1. Error rates for predicting cache miss category incurred
by leaves.

Binary No-��-Leaf Binary No-��-Leaf Rightmost
Size Errors
��� 0.5%
��� 1.7%
��� 0.9%
��� 0.9%
��� 0.7%

Size Errors
��	 1.7%
��� 1.7%
��
 1.7%
��� 1.6%
��� 1.6%

We used the same decision tree as in the previous experi-
ments to predict cache misses for entire formulas by sum-
ming its predictions for each leaf within a split tree. We
then calculated an average percentage error over a test set
of formulas of a particular size as:

�

jTestSetj
X

i�TestSet

jai � pij
ai

�

where ai and pi are the actual and predicted number of
cache misses for formula i.

Table 2 shows the error on predicting cache misses for en-
tire formulas. Tables 1 and 2 cannot be directly compared,
since Table 1 shows the number of leaves for which an er-
ror is made, while Table 2 shows the average amount of er-
ror between the real and predicted number of cache misses.
Further, we would expect a larger error when predicting the
actual number of cache misses for an entire formula instead
of just one of four categories for a single leaf.

Except for the extreme sizes shown in Table 2, the learned
decision tree is able to on average predict within 10% of the
real number of cache misses. This is surprisingly good es-
pecially considering that Figure 2 shows that there is about
a factor of 10 difference in the number of cache misses in-
curred by different formulas of the same size. Further, this
result is very good considering that this is predicting for en-
tire formulas and not just leaves and that the decision tree
was only trained on data from formulas of size ���.

Table 2. Average percentage error for predicting cache misses for
entire formulas.

Binary No-��-Leaf Binary No-��-Leaf Rightmost
Size Errors
��� 12.7%
��� 8.6%
��� 6.7%
��� 5.2%
��� 4.6%

Size Errors
��	 8.2%
��� 8.2%
��
 7.9%
��� 8.1%
��� 10.4%

Ultimately we are only concerned with whether the fastest
formulas are predicted to have the least number of cache
misses. To test this, we have plotted the actual running
times of formulas against the predicted number of cache

misses. Figure 4 shows these plots for all the formulas
within a restricted space for two different sized WHTs. The
plots clearly show that the fastest formulas in both cases
also have the fewest number of predicted cache misses.
In addition, as the predicted number of cache misses in-
creases, so do the running times of those formulas.

Binary No-��-Leaf Binary No-��-Leaf
WHT ����� RightmostWHT �����

1e+06

2e+06

3e+06

4e+06

5e+06

2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05A
ct

ua
l R

un
ni

ng
 T

im
e 

in
 C

P
U

 C
yc

le
s

Predicted Number of Cache Misses

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

2.0e+06 4.0e+06 6.0e+06A
ct

ua
l R

un
ni

ng
 T

im
e 

in
 C

P
U

 C
yc

le
s

Predicted Number of Cache Misses

Figure 4. Runtime vs. predicted cache misses for entire formulas.

In summary, we have presented a method for predicting a
formula’s number of cache misses by training a decision
tree to predict a leaf’s number of cache misses to be one of
only a few categories. We have also shown that this method
produces very good results across sizes even when only
trained on one particular size. This learned decision tree
serves as a model of the cache performance of formulas.

5. Generating Fast Formulas

Now that we have a method for predicting cache misses for
WHT formulas, we still have the problem that the space of
all formulas is too large to exhaust over. We now use the
prediction algorithm to learn to generate fast formulas. We
describe and evaluate our control learning approach.

5.1 Approach

We approach the question of generating fast formulas as
a control learning problem. We first try to formulate the
problem in terms of a Markov decision process (MDP) and
reinforcement learning. In the end, our formulation is not
an MDP but does borrow many concepts from reinforce-
ment learning.

5.1.1 BASIC FORMULATION

An MDP is a tuple �S�A� T� C�, where S is a set of states,
A is a set of actions, T 
S �A � S is a transition function
that maps the current state and action to the next state, and
C
S � A � � is a cost function that maps the current
state and action onto its real valued cost. Reinforcement
learning provides methods for finding a policy �
S � A
that selects the best action at each state that minimizes the
(possibly discounted) sum of costs incurred.

Given a size, we want our algorithm to grow a WHT split
tree for that size that runs as fast as possible. Let the states



in the reinforcement learning problem be nodes in a split
tree that have no children. Then the start state is just a
root node of the given size with no children. The available
actions in each state are the different ways to grow children
for that node or to leave the node as a leaf (if the node’s size
is small enough). Ideally, the cost function should be:

� zero when giving children to a node, and
� the leaf’s run time when making a node a leaf.

Then, the goal is to minimize the sum of the undiscounted
costs over building an entire split tree. We want to use
undiscounted costs since constructing a split tree only re-
quires a finite number of steps.

5.1.2 DETAILS AND DIFFICULTIES

We need a state representation for the nodes within a split
tree. We use a modified form of the leaf features described
in Section 4.1 that expands the feature set to describe any
node in a split tree. Specifically, we use the features:

� Size and stride of the given node
� Size and stride of the parent of the given node
� Size and stride of the common parent to this node.

The first two pairs of features are the same as for leaves
except now they pertain to any node within the split tree.
The concept of a node’s common parent is more difficult
to understand in this setting. The previous leaf of a node
(that is the leaf computed immediately before computing
the given node) is not always known in this setting. For
example, if we expand the root node into two children, then
the previous leaf of the left child is not known since the
right child of the root may still be expanded.

However, it is still possible, without expanding the entire
tree, to know what the common parent would be between
any given node and its previous leaf that will be later con-
structed. In particular, the common parent of a node is its
parent if the node is not the rightmost child, and otherwise
the common parent of a node is its parent’s common par-
ent. The root node has no common parent, as there is no
previous leaf computed before reaching the root node. A
node’s common parent will also be the common parent of
the rightmost leaf in the given node’s subtree.

Ideally, we would use the run time of leaves to determine
the cost function. However, the previous sections discussed
how we can easily learn to predict cache misses for leaves.
We can approximate our desired cost function by using the
learned classifier to predict cache misses for leaves. This
change causes our method to construct formulas with mini-
mal cache misses, instead of explicitly the fastest formulas.
However, we have shown that the fastest formulas have the
minimal number of cache misses.

Defining a transition function for this formulation is diffi-
cult. If two children of the root node are grown, then sev-
eral questions arise, such as: which node is the next state,
when will we transition back to the sibling node, and what
should the transition function be from a leaf node? It is pos-
sible to answer these questions in specific ways, but then
the Markov property may no longer hold. Lagoudakis and
Littman (2000) discuss one approach for coping with this
difficulty. They determine the Monte Carlo return for all
but one of the next states, fixing the current policy. Then
they continue learning on the one remaining next state.
However, we can take a different approach, departing from
the MDP framework, since we can formulate our problem
to be deterministic and off-line.

Clearly actions are deterministic in that a node will always
be given the children, if any, specified by the action. Fur-
ther, the cost function is deterministic and known if we use
the learned classifier to predict cache misses of leaves. We
will define a value function over our states and show how
it can be computed off-line.

5.1.3 VALUE FUNCTION

If a state must be a leaf, then its value is the predicted num-
ber of cache misses of this leaf. However, the optimal value
of a node that could be an internal node or a leaf must con-
sider both possibilities. If a state can have children, then
we wish to find the subtree (possibly the subtree that sim-
ply makes the node a leaf) that has the minimal number of
cache misses summed over all the leaves. That is,

V ��state� � min
subtrees

X
leaf�subtree

CacheMisses�leaf��

We can rewrite this value function recursively in terms of
the values of the children of the state. The optimal value
of a state is the sum of the values of all the children in the
optimal subtree rooted at this state, or the number of cache
misses incurred if the optimal subtree is for the state to be
a leaf. Mathematically, let the cache misses of a state be:

LeafCM �state�

�



CacheMisses�state�� if state can be a leaf

�� if state cannot be a leaf

and the splitting value of a node be:

SplitV �state� � min
splittings

X
child�splitting

V �child��

where the minimum over splittings minimizes over all pos-
sible sets of children of a state and has a value of infinity if
the state cannot have children. Then,

V ��state� � minfLeafCM �state�� SplitV �state�g�



5.1.4 ALGORITHM

This later formulation of the value function suggests dy-
namic programming for computing it. For any state that
could be a leaf, we can determine its value as a leaf by
querying the classifier to get a predicted number of cache
misses. For any state that could have children, the dy-
namic programming routine can then recursively call itself
with each of the possible children, memoizing computed
values for efficiency. By computing and memoizing val-
ues of states, dynamic programming performs significantly
less computation than exhaustively constructing all possi-
ble split trees. The algorithm is as follows:

ComputeValues(State)
if V(State) already memoized

return V(State)
Min = �
if State can be a leaf

Min = CacheMisses(State)
for SetOfChildren in PossibleSetsOfChildren(State)

Sum = 0
for Child in SetOfChildren

Sum += ComputeValues(Child)
if Sum � Min

Min = Sum
V(State) = Min
return Min

With the value function determined for all relevant states,
the next step is to produce fast formulas. For a given size,
the algorithm looks up the value of a root node of that
size. It then considers all possible sets of children of the
root node and determines their values. Any set of children
whose sum of values equals the root node’s value is then
predicted to be one of the fastest way to split the root node.
This procedure is then repeated for each child, buildingup a
set of fast split trees. For simplicity, the algorithm is shown
below only for binary trees:

FastTrees(State)
Trees = fg
if State can be a leaf

if V(State) == CacheMisses(State)
Trees = f Leaf(State) g

for RightChild in PossibleRightChildren(State)
LeftChild = MatchingChild(State,RightChild)
if V(LeftChild) + V(RightChild) == V(State)

for RightSubtree in FastTrees(RightChild)
for LeftSubtree in FastTrees(LeftChild)

Trees = Trees 	
f Node(LeftSubtree,RightSubtree) g

return Trees

Leaf() creates a leaf node from the given state, Node() cre-
ates a split tree node with the corresponding subtrees as

children, and MatchingChild() creates the state for the left
child of the specified state when given the right child. Note
that ComputeValues cannot easily keep track of the best
split tree as there may be several formulas with the mini-
mal number of cache misses. Due to the fact that we have
made a number of approximations in our learning algo-
rithms, it is possible that some error has been introduced.
Thus, the above algorithm can be extended to allow for a
tolerance, producing split trees that have up to the tolerance
more cache misses than what is predicted to be optimal.

5.2 Evaluation

Evaluating our method is difficult in that it is not known
what the optimal formula is for larger sizes. However, we
can compare our algorithm against the best formulas found
by searches over limited portions of the space as we did to
evaluate the cache miss predictor. That is, for sizes ��� and
smaller we exhaust over all binary formulas with no leaves
of size ��, and for sizes ��	 and larger we exhaust over all
rightmost binary formulas with no leaves of size ��.

We have used our method to successfully generate fast for-
mulas. In particular, we used the same decision tree learned
in Section 4. Since that decision tree was trained on leaves
from binary trees with no leaves of size ��, our algorithm
only constructs binary trees with no leaves of size ��. This
can be easily extended by training a decision tree on a
broader class of formulas. Since many trees can have the
same number of cache misses, it is not surprising that many
states have the same value, and thus our algorithm produces
several trees that it predicts to be fast.

Table 3 displays three different results for different sizes.

Table 3. Results from fast formula generation.

Number of Generated Top N Fastest
Formulas Included the Known Formulas

Size Generated Fastest Known in Generated
��� 101 yes 77
��� 86 yes 4
��� 101 yes 70
��� 86 yes 11
��� 101 yes 68
��	 86 yes 15
��� 101 yes 25
��
 86 yes 16
��� 101 yes 16

The first column shows how many formulas our method
generated that it predicted to have the minimal number of
cache misses. All of the formulas constructed have a very
similar structure, allowing for the same number of formulas
to be generated across many sizes. Note that this is a very



small number compared to the thousands of formulas of the
complete search space (see Section 2.4).

The second column checks whether the fastest formula
found by a limited exhaustive search was among those con-
structed by our algorithm. We can see that, remarkably, the
learning algorithm generates the fastest known formulas for
all sizes, including sizes larger than the training size.

The third and last column shows the largest n where all n
of the fastest formulas found by a limited exhaustive search
were also generated by our method. For example, for size
���, our method constructed all of the first fastest 16 formu-
las found by a limited exhaustive search, but did not gen-
erate the 17th fastest formula. For all sizes, our method
generates the fastest formula as well as many of the formu-
las that are very close to the fastest.

Figure 5 compares the histograms of running times for
WHT ����� formulas generated by our method and for
all rightmost binary WHT ����� formulas with no leaves
of size ��. Notice the different scales along both axes.
Clearly our method is constructing formulas with run times
amongst the fastest found by the more exhaustive method.

1.5 2 2.5 3 3.5 4

x 10
8

0

20

40

60

80

100

120

140

160

180

Running Time in CPU Cycles

N
um

be
r 

of
 F

or
m

ul
as

1.6 1.8 2 2.2 2.4

x 10
8

0

1

2

3

4

5

6

Running Time in CPU Cycles

N
um

be
r 

of
 F

or
m

ul
as

(a) (b)

Figure 5. Histograms of run times for (a) all rightmost binary
WHT ����� formulas with no leaves of size �� and (b) the for-
mulas generated by our method forWHT �����.

6. Conclusions

We have introduced a method for learning to generate fast
implementations of signal processing algorithms. We have
shown that this method can effectively learn to construct
fast WHT formulas. Further, this method can generate fast
WHT formulas across many sizes while only being trained
on data from one particular size.

To support our control learning approach, we have also
developed an accurate predictor of the number of cache
misses that WHT formulas incur. This predictor is trained
on data from one size and predicts well across many sizes.

We contributed an approach that, for the first time, al-
lows the automatic generation of fast implementations of a
particular signal processing transform (WHT ) on a given
computer (Pentium). We are extending this approach to
work for other transforms and for other machines.

Acknowledgements

We would especially like to thank Jeremy Johnson, José
Moura, and Markus Püschel for their many helpful discus-
sions. This research was sponsored by the DARPA Grant
No. DABT63-98-1-0004. The content of the information
in this publication does not necessarily reflect the position
or the policy of the Defense Advanced Research Projects
Agency or the US Government, and no official endorse-
ment should be inferred. The first author, Bryan Singer,
was partly supported by a National Science Foundation
Graduate Fellowship.

References

Auslander, L., Johnson, J., & Johnson, R. (1996). Auto-
matic implementation of FFT algorithms (Technical Re-
port 96-01). Department of Mathematics and Computer
Science, Drexel University.

Beauchamp, K. (1984). Applications of walsh and related
functions. Academic Press.

Brewer, E. (1995). High-level optimization via automated
statistical modeling. Proceedings of the Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming (pp. 80–91).

Frigo, M., & Johnson, S. (1998). FFTW: An adaptive soft-
ware architecture for the FFT. Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal
Processing (pp. 1381–1384).

Johnson, J., & Püschel, M. (2000). In search of the optimal
Walsh-Hadamard transform. Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal
Processing (pp. 3347–3350).

Lagoudakis, M., & Littman, M. (2000). Algorithm se-
lection using reinforcement learning. Proceedings of
the Seventeenth International Conference on Machine
Learning (pp. 511–518).

Moura, J., Johnson, J., Johnson, R., Padua, D., Prasanna,
V., & Veloso, M. (1998). SPIRAL: Portable Li-
brary of Optimized Signal Processing Algorithms.
http://www.ece.cmu.edu/
spiral/.

Rao, K., & Yip, P. (1990). Discrete cosine transform.
Boston: Academic Press.

Singer, B., & Veloso, M. (2000). Learning to predict per-
formance from formula modeling and training data. Pro-
ceedings of the Seventeenth International Conference on
Machine Learning (pp. 887–894).

Singer, B., & Veloso, M. (2001). Stochastic search for sig-
nal processing algorithm optimization. Uncertainty in
Artificial Intelligence. Submitted.


