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Sorting is a fundamental problem in computer science and has been studied extensively. Thus, a large variety of sorting
methods exist for both software and hardware implementations. For the latter, there is a trade-off between the throughput
achieved and the cost (i.e., the logic and storage invested to sort n elements). Two popular solutions are bitonic sorting
networks with O(n log2 n) logic and storage, which sort n elements per cycle, and linear sorters with O(n) logic and
storage, which sort n elements per n cycles. In this article, we present new hardware structures that we call streaming
sorting networks, which we derive through a mathematical formalism that we introduce, and an accompanying domain-
specific hardware generator that translates our formal mathematical description into synthesizable RTL Verilog. With the
new networks, we achieve novel and improved cost-performance trade-offs. For example, assuming that n is a two-power
and w is any divisor of n, one class of these networks can sort in n/w cycles with O(w log2 n) logic and O(n log2 n)
storage; the other class that we present sorts in n log2 n/w cycles with O(w) logic and O(n) storage. We carefully analyze
the performance of these networks and their cost at three levels of abstraction: (1) asymptotically, (2) exactly in terms of
the number of basic elements needed, and (3) in terms of the resources required by the actual circuit when mapped to a
field-programmable gate array. The accompanying hardware generator allows us to explore the entire design space, identify
the Pareto-optimal solutions, and show superior cost-performance trade-offs compared to prior work.
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1. INTRODUCTION
Sorting is one of the fundamental operations in computing and is a crucial component in many
applications. Because of its importance, there has been extensive research on fast algorithms for
sorting in software and hardware [Knuth 1968]. In software, numerous algorithms with different
characteristics exist that achieve the optimal asymptotic runtime of Θ(n log n). In hardware, the sit-
uation is different, as there is a trade-off between the cost (e.g., area) and the performance achieved.
For example, the two most common sorting methods in hardware are the bitonic sorting network
and the linear sorter. For a list of length n, the former requires Θ(n log2 n) logic and can sort n
elements per cycle; the latter requires Θ(n) logic and sorts n elements in n cycles.

In this article, we present a class of flexible hardware structures that we call streaming sorting net-
works and an accompanying domain-specific hardware generation tool that can automatically create
synthesizable register-transfer level (RTL) Verilog for any design in the class. We systematically de-
rive streaming sorting networks using a mathematical formalism, carefully analyze (asymptotically
and exactly) their cost and performance, and show that they can offer both novel trade-offs and im-
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Fig. 1. (a) Bitonic sorting network for an input set size n = 8. (b) The two-input sorter S2 is the building block in sorting
networks.

provements (again in asymptotic and exact terms) over prior solutions. We then describe how our
hardware synthesis tool compiles our mathematical representation into Verilog. Using this tool we
experimentally confirm our analysis and show the benefits of our new networks.

This work significantly extends our prior work [Zuluaga et al. 2012a], where we introduced the
concept of streaming sorting networks and an associated domain-specific hardware generation tool
that produces their design spaces.

1.1. Background and Related Work
In this section we review the most important solutions for sorting in hardware. We begin by defining
necessary key terms for describing properties of the various designs.

Definition 1.1 (Streaming). Consider a hardware design that must take in n data words as input
(and produces n data words as output). If the design receives (and emits) these elements at a rate of
w words per clock cycle over n/w consecutive cycles, this design is called streaming. We call w the
streaming width of the design.

By implementing designs with streaming width w less than n (the number of words to be sorted),
the costs and I/O bandwidth of the system are reduced.

Definition 1.2 (Fully Streaming). A design that can be constantly fed with an input stream with
no waiting time between two consecutive input sets is called a fully streaming design.

A fully streaming sorting network with streaming width w will have a throughput of w words per
cycle. If a design is not fully streaming, then its throughput will be less than w words per cycle.
Typically, we would expect a fully streaming design to require more resources than a design that is
not fully streaming, because it must process more data in the same amount of time.

Next, we will use these definitions to characterize prior work on sorting hardware. We classify
this work into three categories: sorting networks, linear sorters, and other approaches. The key
solutions within these categories are characterized in Table I, which shows the asymptotic logic and
storage cost in each case. Additionally, it indicates the supported streaming width and whether the
architecture is fully streaming. In all cases, the number of input values is a power of two: n = 2t.

Sorting networks. Sorting networks process in parallel a list of n input elements through several
reordering stages such that the input list is sorted at the final stage. Each stage performs parallel
pairwise comparisons followed by a data permutation. The number of stages required to obtain a
sorted list and the number of comparison operations per stage determine the cost of the network.

Figure 1 shows an example of an eight-element sorting network. The operator S2 sorts two inputs
into ascending order. Sorting networks can achieve very high throughput, as they are fully streaming
designs with streaming width n. They are typically pipelined to maintain a reasonable clock speed
and then require O(n log2 n) flip-flops for storage.

Many sorting networks have been proposed in the literature [Knuth 1968; Leighton 1992]. Fig-
ure 1 shows a bitonic sorting network [Batcher 1968]. These can be constructed recursively and
have a very regular structure. They sort n elements in log2 n(log2 n + 1)/2 stages of n/2 parallel
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Table I. Different Sorting Network Architectures and Their Key Features.

Architecture Streaming Logic Storage (for a Storage Fully
Width Pipelined Type Streaming

Architecture)

Bitonic and odd-even sorting network n O(n log2 n) O(n log2 n) Flip-flop Yes
[Batcher 1968]

Folded bitonic sorting network n O(n) O(n) Flip-flop No
[Stone 1971]

Odd-even transposition sorting network n O(n2) O(n2) Flip-flop Yes
[Knuth 1968]

Folded odd-even transposition sorting network n O(n) O(n) Flip-flop No
[Knuth 1968]

AKS sorting network n O(n logn) O(n logn) Flip-flop Yes
[Ajtai et al. 1983]

Linear sorter 1 O(n) O(n) Flip-flop Yes
[Perez-Andrade et al. 2009; Lee and Tsai 1995]

Interleaved linear sorter (ILS) 1 ≤ w ≤ n O(wn) O(wn) Flip-flop Yes
[Ortiz and Andrews 2010]

Shear-sort (2D mesh) n O(n) O(n) Flip-flop No
[Scherson and Sen 1989]

Streaming sorting network 2 ≤ w < n O(w log2 n) O(n log2 n) RAM Yes
[This article]

Folded streaming sorting network 2 ≤ w < n O(w) O(n) RAM No
[This article]

S2 operations, thus requiring O(n log2 n) comparison operations. Batcher also proposed odd-even
sorting networks that are less regular but require slightly fewer comparison operations; these have
been used, for example, in Mueller et al. [2012] on FPGAs.

Stone [1971] derived bitonic sorting networks with constant geometry. This means that two
consecutive comparison stages of n/2 parallel comparisons are always connected with the same
permutation—the so-called perfect shuffle. Thus the network can be folded to only instantiate one
comparison stage and shuffle, through which the data is cycled O(log2 n) times. The direction of
the comparison operations is switched during the phases, which requires a small area overhead for
control logic.

Similar efforts to fold or regularize bitonic sorting networks have been proposed later. Bilardi
and Preparata [1984] implement bitonic sorting using various configurations of the pleated cube
connection cycle interconnection network. Dowd et al. [1989] propose the periodic balanced sort-
ing network, which achieves a different granularity of reuse with a block of log n stages that can
be reused log n times. On the other hand, Layer et al. [2007] proposed a bitonic sorting network
composed of log2 n stages that recirculate the data several times within each stage.

A constraint of most parallel sorting architectures with a fixed computational flow, such as sorting
networks, is that they must always sort input sets of the same size. A work-around to this is to
appropriately pad the input set such that the elements to sort are at the top of the output list. Layer
and Pfleiderer [2004] proposed an architecture that can support several input sizes, up to a fixed
maximum. Reconfigurable logic is used to change the required shuffles depending on the input
width. Another approach, presented in Zhang and Zheng [2000], uses a pipelined sorting network
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of fixed input set size m and a set of m queues that each can store n/m elements. Control logic is
required to appropriately feed the sorting network.

Sorting networks with better asymptotic cost have been proposed. In particular, Ajtai et al. [1983]
present the AKS sorting network, which has the optimal asymptotic cost of O(n log n). Unfortu-
nately, this result is of purely theoretical value, as the large hidden constant makes these networks
unusable in practice.

Another sorting network that has been popular because of its high regularity and simplicity is the
odd-even transposition sorting network [Knuth 1968], which, however, requires O(n) stages and
O(n2) comparison operations. As in Stone [1971], it can be folded to reuse only one stage O(n)
times.

In summary, odd-even and bitonic sorting networks remain the most popular solutions because
of their simplicity and close-to-optimal cost and performance. In this article, we build on bitonic
sorters, showing that their inherent regularity can be exploited to create a large novel set of sorters
with reduced asymptotic and actual area-cost requirements and a rich set of relevant cost/time trade-
offs.

Linear sorters. Linear sorters are linear sequences of n nodes that sort n values, where n is not
limited to be a power of two. Each node is composed of a flip-flop and a comparison operator [Perez-
Andrade et al. 2009; Lee and Tsai 1995]. The asymptotic time and logic cost of linear sorters is
O(n), and they are fully streaming with streaming width 1.

A linear sorter that scales better to larger input set sizes is presented by Lin and Liu [2002].
They propose an expandable architecture that creates a linear array that can store m elements and
is able to sort n elements in n/m passes. Another attempt to increase the performance of linear
sorters is the interleaved linear sorter (ILS) in Ortiz and Andrews [2010]. It is composed of w linear
sorters working in parallel to generate the output list at a rate of w words per cycle by appropriately
interleaving the output of the w individual sorters. Ortiz and Andrews show that in practice this
architecture does not scale well to larger w values due to the complexity of the interleaving logic.

Table I and Section 5 show how our designs greatly improve over linear sorters.
Other approaches. Other types of hardware sorters achieve better execution times by increasing

the amount of resources. Examples of this include 2D and 3D meshes. One of the most popular is
the shear-sort algorithm [Scherson and Sen 1989]. It can sort in O(n log n) time using O(n) nodes,
where each node requires a basic processor that performs comparison operations and manages the
communication with other nodes. Shear-sort is based on a

√
n × √n mesh that sorts and stores n

elements. The sorting is performed inO(log n) steps. In each step, columns and rows are alternately
sorted using the folded odd-even transposition sorting network. Additionally, more complex mesh
architectures have been shown to sort in constant time [Jang and Prasanna 1992; Chen and Chen
1994]. Lastly, Kutylowsky et al. [2000] describe periodic sorting networks, which apply a form of
folding to multidimensional meshes.

These techniques require more functionality to be added to the nodes and more complex commu-
nication links and are thus not competitive with linear sorters and sorting networks.

1.2. Our Contributions and Approach
We summarize our contributions and approach as follows.

A flexible class of streaming sorting networks. We present a class of hardware structures, called
streaming sorting networks, which yields novel, and in part better, asymptotic cost-performance
trade-offs. In particular, the new structures allow for any streaming width 2 ≤ w ≤ n, where w
divides n, and they can be fully streaming (for high throughput) or non-fully streaming (for low
area cost) designs. In the latter case, if w = 2, the area cost can be as low as O(1) logic and
O(n) storage. The flexibility provided by our design space gives a large benefit by allowing the
designer to choose the particular structure that best fits application-specific goals and requirements.
Table I compares the cost to prior work. The new streaming networks are derived from different
types of bitonic sorting networks by folding (reusing logic). The main challenge is in folding the
permutations between stages; for that, we use the recent method from [Püschel et al. 2009; 2012],
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Fig. 2. Area growth trends for some of the sorting networks generated with the techniques proposed in this article in
comparison with previous implementation techniques. The largest linear sorter for n = 213, which has been left out of the
plot, required 82,000 FPGA slices.

which yields optimal or close-to-optimal solutions using RAM blocks as storage. Our derivation of
the streaming networks uses a formal framework, or mathematical domain-specific language (DSL),
that we introduce. Using this framework, we give a detailed, and also nonasymptotic, analysis of
throughput, latency, and cost of the networks.

Hardware synthesis tool and real cost analysis. Our class of streaming networks offers a rich
and novel set of relevant area-performance trade-offs. However, the large size of the class and the
complexity of its design structures make manual implementation impractical. As the second main
contribution, we create a synthesis tool that generates hardware implementations in RTL Verilog
from a description in our mathematical DSL. The resulting code can be synthesized for field-
programmable gate-arrays (FPGAs) or ASICs and allows us to explore the entire design space and
perform a real area-cost comparison of our networks with prior work on actual hardware. An easy-
to-use interface to the synthesis tool is available at Zuluaga et al. [2012b].

As a preview, we show two experiments. Figure 2 shows the cost of implementing various sorters
with 16-bit fixed point input values that fit on a Xilinx Virtex-6 FPGA. The x-axis indicates the input
size n, the y-axis the number of FPGA configurable slices used, and the size of the marker quantifies
the number of BRAMs used (BRAMs are blocks of on-chip memory available in FPGAs). The
implementations using Batcher’s and Stone’s architectures can only sort up to 128 or 256 elements,
respectively, on this FPGA. Conversely, our streaming sorting networks with streaming widthw = 2
can sort up to 219 elements on this FPGA, and our smallest fully streaming design can sort up to 216

elements.
Figure 3 shows all the 256-element sorting networks that we generate with our framework (using

16-bits per element) that fit onto the Virtex-6 FPGA. The x-axis indicates the number of configurable
FPGA slices used, the y-axis the maximum achievable throughput in giga samples per second, and
the size of the marker indicates the number of BRAMs used. This plot shows that we can generate
a wide range of design trade-offs that outperform previous implementations, such as that of Stone
and the linear sorter (Batcher’s is omitted due to the high cost). For practical applications, only the
Pareto-optimal ones (those towards the top left), would be considered.

This article is a considerable extension of the work presented in Zuluaga et al. [2012a]. In par-
ticular, we include a quantitative analysis of the cost and performance of the generated designs, a
thorough description of the datapath reuse techniques applied to sorting networks, and a detailed
analysis on how the complexity of sorting networks can be modified to scale the original algorithms
to larger input set sizes. We note that recently, Chen et al. [2015] took an approach similar to Zulu-
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Fig. 3. Design space of generated implementations for n = 256 and the linear sorter implementation. The unfolded sorting
network originally proposed by Batcher does not fit on the chosen FPGA and thus is not shown in the plot.

aga et al. [2012a] but the designs were implemented by hand (in contrast to being generated), only
a portion of our design space was covered, and the method for permuting data (see Section 3.2) was
different, requiring fewer words of memory at the cost of higher control complexity.

1.3. Organization
In Section 2, we introduce the mathematical formalism (we will refer to it as DSL) that we use to
express sorting network datapaths. We use it to express different variants of bitonic sorting networks,
which are the starting point of our work. Section 3 introduces the concept of datapath reuse and
shows how it is captured and specified in our DSL using high-level parameters. Application to
bitonic sorting yields the large set of streaming networks that are the contribution of this article. We
develop cost and performance models for these networks as functions of the parameters that specify
the degree of reuse. Section 4 precisely analyzes the different cost-performance trade-offs that can
be obtained and shows their asymptotic behavior. In Section 5, to confirm this analysis with real
hardware, we present in a tool that generates RTL Verilog from our mathematical DSL. Using this
tool, we show a set of experiments and benchmarks against prior work on current FPGAs.

2. BITONIC SORTING NETWORKS
In this section, we provide background on bitonic sorting networks, which are the starting point
of our work. We represent these networks using a mathematical formalism that we introduce. This
formalism expresses the structure and the components from which sorting networks are built, and
it allows the formal manipulation of these networks. Further, as we will explain later, we have
implemented this formalism as DSL and compiler to enable the automatic generation of actual
hardware implementations of the entire class of sorting networks that we derive in this work to
enable careful evaluation. For this reason, we will refer to the formalism as DSL throughout the
article. The DSL borrows concepts from Van Loan [1992], Johnson et al. [1990], Franchetti et al.
[2009], and Milder et al. [2012].

2.1. A DSL for Sorting Networks
Our DSL is designed to capture the structured dataflow of sorting networks. We first explain the
basic principles underlying the language. Then we explain its components.

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 55, Pub. date: May 2016.



Streaming Sorting Networks 55:7

Basic principles. The elements of the language are operators that map an input array to an output
array of the same fixed length. Each operator is either a first-order operator or a composition using
higher-order operators. Arrays are written as x = (xi)0≤i<n = (x0, . . . , xn−1), and operators An

are functions that map an array of length n. For instance, the operator S2 introduced earlier maps
an array of two elements into an ordered array of the same elements. We write y = Anx to indicate
that An maps x to y.

First-order operators. We define the following first-order operators that are the basic compo-
nents needed to represent sorting networks:

In : x 7→ x

Jn : (xi)0≤i<n 7→ (xn−1−i)0≤i<n

Lm
n : (xik+j)0≤i<m

0≤j<k
7→ (xjm+i)0≤i<m

0≤j<k
; n = km

S2 : (x0, x1) 7→ (min(x0, x1),max(x0, x1))

Xc
2 :





I2, for c = 0

J2 ◦ S2, for c = 1

S2, for c = 2.

In is the identity operator, and Jn and Lm
n represent permutations. Jn reverses the input array, and

Lm
n performs a stride-by-m permutation on n elements. For instance, Ln/2

n is known as the perfect
shuffle permutation, and Ln

n2 is known as the corner turn or transposition of an n× n matrix stored
linearized in memory.
S2 and Xc

2 are the basic building blocks for sorting networks: S2 sorts two elements into ascend-
ing order, whereas Xc

2 (where c is a parameter) can be configured to perform ascending sorting,
descending sorting, or to preserve the original order of the input elements.

Higher-order operators. The purpose of higher-order operators is to recursively compose oper-
ators into more complex dataflow structures. We define the following high order operators:

— Composition (◦): Am ◦ Bm is the composition of operators, as shown in Figure 4(a). The input
array is first mapped by B and then by A. The symbol ◦ may be omitted to simplify expressions.
When a sequence of operators is used to map the input array, we can use the iterative composition,
which is written using the product sign:

t−1∏

i=0

A(i)
m = A(0)

m ◦ · · · ◦A(t−1)
m .

Since composition is applied from right to left, we will draw dataflow graphs also from right to
left.

— Direct sum (⊕): Am ⊕ Bn signifies that Am maps the upper m elements and Bn the bottom n
elements of the input array, as shown in an example in Figure 4(b).

— Tensor product (⊗): The expression In ⊗ Am = Am ⊕ · · · ⊕ Am replicates the operator Am in
parallel n times to operate on the input array. An example is shown in Figure 4(c).

— Indexed tensor product (⊗k): The expression In ⊗k A
(k)
m = A

(0)
m ⊕ · · · ⊕ A(n−1)

m allows for a
change in the replicated operator through the parameter k and is represented as in Figure 4(d). All
A

(i)
m are assumed to have the same size.

2.2. Bitonic Merge
The foundation of bitonic sorting is the merging of bitonic sequences [Batcher 1968]. A regular
bitonic sequence is a concatenation of an ascending sequence and a descending sequence, each of
size n/2. We define Mn as the bitonic merge operator that transforms a regular bitonic sequence of
size n into a sorted sequence of the same size. In the case of n = 2, M2 = S2.
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Fig. 5. M8: Bitonic merger for n = 8. The arrows indicate ascending or descending sequences within the data array.

Figure 5 illustrates how to recursively construct bitonic mergers. Given a regular bitonic sequence
of size n, performing interleaved pairwise sorting between the two ordered subsequences and a
posterior interleaved split generates two regular bitonic sequences of size n/2 that can be merged
recursively.

The structure in Figure 5 is expressed in our DSL as

M8 = (I2 ⊗M4)L2
8(I4 ⊗ S2)L4

8. (1)

The merger for a generic input size n = 2t is analogous [Batcher 1968] and is expressed as

M2t = (I2 ⊗M2t−1)L2
2t(I2t−1 ⊗ S2)L2t−1

2t . (2)

Recursive expansion of (2) and proper parenthesizing yields a complete decomposition into basic
operators:

M2t =

t∏

j=1

[
(I2t−j ⊗ L2

2j )(I2t−1 ⊗ S2)(I2t−j ⊗ L2j−1

2j )
]
. (3)

This expression shows that the merging of bitonic sequences can be done in t = log2 n stages.
Each stage consists of n/2 parallel S2 blocks. The stages are connected by permutations that change
from stage to stage (since they depend on j). Similar to how the Pease FFT [Pease 1968] is obtained,
this expression can be manipulated using tensor product identities [Johnson et al. 1990] into the
“constant geometry” form:

M2t =

t∏

j=1

[
(I2t−1 ⊗ S2)L2t−1

2t

]
. (4)

The permutation is now the same in each iteration. This manipulation is also applied to sorting
networks in Layer and Pfleiderer [2004].

2.3. Bitonic Sort
Bitonic sorting networks iteratively merge regular bitonic sequences, as illustrated in Figure 6. The
classical bitonic sorting network consists of a sequence of log2 n merging stages following the
sorting by merging principle [Batcher 1968]. In the first stage, input pairs are merged to form sorted
lists of two elements; in the final stage, two lists of size n/2 are merged. After every merging
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stage, half of the sorted lists are inverted to create a bitonic sequence at the input of every merger.
The vertical arrows in Figure 6 again show sorted subsequences (ascending or descending) at each
stage.

M8

M2

M4

M4

M2

M2

M2

M8

I4 � J4

I2 ⌦ (I2 � J2)
I4 ⌦ M2

M8

I4 � J4

I2 ⌦ (I2 � J2)
I4 ⌦ M2

M8

I4 � J4

I2 ⌦ (I2 � J2)
I4 ⌦ M2M8

I4 � J4

I2 ⌦ (I2 � J2)
I4 ⌦ M2

M8

I4 � J4

I2 ⌦ M4

I2 ⌦ (I2 � J2)
I4 ⌦ M2

Output Input

Fig. 6. Bitonic sorter using bitonic mergers for n = 8.

We define the sorting operator Sn, which transforms an input array of size n into a sorted ascend-
ing sequence of the same size. From Figure 6 we can express S8 as

S8 = M8(I4 ⊕ J4)(I2 ⊗M4)(I2 ⊗ (I2 ⊕ J2))(I4 ⊗M2). (5)

The generic expression for S2t is analogous:

S2t =

1∏

i=t

[(I2t−i ⊗M2i)(I2t−i ⊗ (I2i−1 ⊗ J2i−1))]. (6)

This expression shows that bitonic sorting consists of a sequence of t = log2 n merging stages.

2.4. Sorting Networks as Breakdown Rules
Next, we use our DSL to represent several variants of bitonic sorting networks as breakdown rules.
A breakdown rule is an expression like (6) that decomposes the sorting operator Sn into basic
operators. Five variants of bitonic sorting networks have been derived from the literature. To express
them as rules, we first define the following permutations:

P 2j

2t = I2t−j ⊗ (I2 ⊗ L2j−2

2j−1)L2
2j (7)

R2i

2t = I2i−1 ⊗ L2t−i

2t−i+1 (8)

Q2i

2t = I2i−1 ⊗ (I2t−i ⊕ J2t−i) (9)

We denote the five sorting networks by SN1–5; each one can be derived by applying suitable trans-
formations to (6):

— SN1 is derived by inserting (3) into (6) [Batcher 1968].
— SN2 is derived by inserting (4) into (6) [Layer and Pfleiderer 2004]. By using (4), the regularity

of the design increases, but it also increases the complexity of the permutations occurring in the
merging stages.

— SN3 is obtained by rewriting SN1 to use the operator Xc
2 instead of S2 to eliminate the Jn per-

mutations [Batcher 1968]. Therefore, the flips are incorporated into the pairwise ordering process.
SN3 represents the trade-off of eliminating a nontrivial permutation at the cost of the additional
control logic for Xc

2 specified by the function g(i,m).
— SN4 is obtained similarly to SN3, namely by rewriting SN2 to use Xc

2 , thus eliminating the
permutations Jn [Layer and Pfleiderer 2004].

— As for SN5, it has been demonstrated by Stone [1971] that a bitonic sorting network can be imple-
mented in t2 identical stages consisting of parallel pairwise comparisons followed by the perfect
shuffle permutation. Each of the prior networks has t(t+ 1)/2 stages with different permutations

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 55, Pub. date: May 2016.



55:10 M. Zuluaga et al.

Table II. Bitonic Sorting Networks as Breakdown Rules for Sn

SN1:
t−1∏
i=1

(I2t−1 ⊗ S2)

t−i+1∏
j=2

[
P 2j

2t (I2t−1 ⊗ S2)
]
R2i

2tQ
2i

2t

 (I2t−1 ⊗ S2)

SN2:
t−1∏
i=1

t−i+1∏
j=1

[
(I2t−1 ⊗ S2)R

2i

2t

]
Q2i

2t

 (I2t−1 ⊗ S2)

SN3:
t−1∏
i=1

(I2t−1 ⊗m X
g(i,m)
2 )

t−i+1∏
j=2

[
P 2j

2t (I2t−1 ⊗m X
g(i,m)
2 )

]
R2i

2t

 (I2t−1 ⊗m X
g(i,m)
2 );

g(i,m) =

{
1, m[t− i] = 1 and i 6= 1

2, m[t− i] = 0 or i = 1

SN4:
t−1∏
i=1

t−i+1∏
j=1

[
(I2t−1 ⊗m X

g(i,m)
2 )R2i

2t

] (I2t−1 ⊗m X
g(t,m)
2 )

SN5:
t−1∏
i=0

t−1∏
j=0

[
(I2t−1 ⊗m X

f(i,j,m)
2 )L2t−1

2t

]
; f(i, j,m) =


0, t− 1 < j + i

1, m[t− 1− j − i] = 1 and i 6= 0

2, m[t− 1− j − i] = 0 or i = 0

SN1
d

SN2
d

SN3
d

SN4
d

SN5
d
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Fig. 7. Dataflow graph of S8 using each of our five breakdown rules. The configuration of X2 is shown by the shading:
white (c = 0), dark gray (c = 1), light gray (c=2).

in each stage. Thus, SN5 increases the number of stages of the computation in exchange for the
perfect regularity of the permutation stages. SN5 requires the configurable sorters Xc

2 .

Table II shows the DSL breakdown rules for each sorting network; Figure 7 shows the associated
dataflow of each for the example S8.

A high-level cost and performance analysis of the five sorting networks from Table II is straight-
forward. Each is fully streaming with width n = 2t (i.e., has a throughput of n words per cycle).
SN1 through 4 use t(t+1)/2 stages for a total cost of t(t+1)2t−2 2-input sorters. The more regular
SN1 uses t2 stages for a total cost of t22t−1 2-input sorters.
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Fig. 8. Examples of streaming reuse (a) and iterative reuse (b).

3. REUSE IN BITONIC SORTING NETWORKS
Given the obvious regularity of bitonic sorting networks, there are opportunities to reuse datapath
elements. In other words, sorting networks can be “folded” in various ways to reuse hardware blocks
such as S2 or Xc

2 by time multiplexing them. This way, the cost can be decreased at the price of
an increased time to perform sorting. Different degrees of folding yield different cost/performance
trade-offs. The challenge in folding lies in handling the permutations between stages, which is likely
the reason that folding was done previously only in very limited ways.

In this section, we first introduce the principles of datapath reuse and describe how we represent
them in our DSL. We discuss the reuse opportunities in each of the breakdown rules for sorting
networks introduced in the previous section, and then we execute the folding by streaming the oc-
curring permutations. This folding will incur the need for additional logic and memory. We provide
a detailed cost and performance analysis of the folded networks as a function of the degree of reuse.

3.1. DSL Implementation Directives to Express Reuse
The formal language that we use to represent dataflow graphs clearly identifies two types of reuse
opportunities. For each type, we define an implementation directive that specifies the desired degree
of reuse in the DSL.

Streaming reuse. The expression I2 ⊗A2 represents a dataflow graph in which two modules A2

are applied in parallel to the input array, as shown in the left-hand side of Figure 8(a). The same
computation can be performed by instantiating only one operator A2 and time multiplexing it. First,
it operates on the top two elements of the input array, and then (in the next clock cycle) on the
remaining two, as shown in the right-hand side of Figure 8(a). We refer to this type of reuse as
streaming reuse, as it leads to streaming designs (Definition 1.1).

In a general form, streaming reuse can be naturally applied to expressions of the form Ip⊗Am, as
illustrated in Figure 9(a). The degree of freedom in this type of reuse, and thus our implementation
directive, is the streaming width w = sm, where p must be evenly divisible by s. This means that s
parallel blocks ofAm are instantiated and reused p/s times. Accordingly, the input has to be divided
into parts of length w that are fed in p/s consecutive cycles. The minimum valid streaming width of
Ip ⊗ Am is m, which leads to the smallest design where only a single Am module is implemented.
Greater values of w result in better performance but incur higher implementation costs.

Streaming reuse can also be applied to indexed tensor products of the form Ip ⊗k A
(k)
m , provided

that the operator A(k)
m can be configured through a suitable control to perform the functionality

required for any value of k. Xc
2 is an example of such a configurable operator.

Iterative reuse. Next, consider the expression A2 ◦A2 that represents a dataflow graph in which
two modules A2 are applied sequentially to the input array. This is shown in the left-hand side of
Figure 8(b). In this case, time multiplexing is performed by building a single instance of operator
A2 and allowing data to feed back from its output to its input, as shown in the right-hand side of
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Fig. 9. (a) Streaming reuse. (b) Iterative reuse. (c) Iterative and streaming reuse.

Figure 8(b). As a consequence, a second input array can only be fed to the system after a delay. We
refer to this type of reuse as iterative reuse.

Definition 3.1 (Iterative Designs). When iterative reuse is applied, we refer to the resulting de-
sign as iterative. Iterative designs must halt the input stream until the input set recirculates around
the reused block the designated number of times. Designs that are iterative are not fully streaming
(Definition 1.2).

In a general form, iterative reuse can be naturally applied to the iterative composition operator∏t
j=1An, as shown in Figure 9(b). The degree of freedom of this type of reuse, and thus our

implementation directive, is the depth d. We say that the expression
∏t

j=1An is implemented with
depth d | t, if d operatorsAn are built and reused t/d times. If d < t, the resulting design is iterative.
If d = t the design is fully streaming. The implementation with minimum area and minimum
throughput is achieved when d = 1.

Iterative reuse and streaming reuse can be combined in more complex DSL expressions, as shown
in Figure 9(c).
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Fig. 10. (a) An example permutation on eight points and streamed with w = 4. (b) Hardware architecture to stream the
permutation in (a) as proposed in Püschel et al. [2009].

3.2. Applying Streaming Reuse to Permutations
It is easy to see how streaming reuse and iterative reuse can be applied to many of the components
of our DSL. However, one remaining difficulty is to apply streaming reuse to the ubiquitous permu-
tations P 2j

2t , R2i

2t , and Q2i

2t . To illustrate the difficulty, Figure 10(a) shows an example of the desired
behavior of a streaming permutation P8 with streaming width w = 4. On the left-hand side, we
see the direct version, which reorders eight data elements in space. However, if we apply streaming
reuse with w = 4, then our inputs are received four at a time, and they are reordered across two
clock cycles (i.e., not only in space but also in time, thus requiring memory).

Püschel et al. [2009; 2012] proposed a method to build a hardware structure that performs a
fixed permutation on streaming data. This method is applicable to a (clearly defined) subset of all
permutations that includes the ones needed here. For a permutation on n points with streaming width
w, the resulting architecture uses w independent double ported memories, each with a capacity of
2n/w words, and two interconnection networks, as illustrated in Figure 10(b). In each cycle, one
word is written to each memory and one word is read from each memory. Püschel et al. [2009]
provide algorithms to efficiently find the two interconnection networks and the associated control
logic required to prevent any bank conflict in accessing the RAMs. The resulting design is fully
streaming. Appendix A derives these solutions for the permutations needed in SN1–5.

3.3. Reuse in Breakdown Rules
Each breakdown rule SN1 through 5 offers different opportunities for reuse. The DSL representa-
tion reveals these options (i.e., whether iterative or streaming reuse or both are applicable). Table 3.3
shows the result, including the possible choices of depth and streaming width in each case. This table
is discussed next.

Streaming reuse. Streaming reuse with streaming width w can be applied to an expression when
all of its components can be streamed with w. Components in bitonic sorting networks are either
permutations or expressions of the form (I2t−1 ⊗S2) or (I2t−1 ⊗cX

c
2), which can be streamed with

any streaming width w | 2t, w ≥ 2.
Further, Appendix A shows that the permutations P 2j

2t , R2i

2t , and Q2i

2t in (7), (8) and (9) can be
streamed using the techniques in Püschel et al. [2009]. In summary, all five sorting networks can be
streamed with any streaming width w | 2t, w ≥ 2.

Iterative reuse. Iterative reuse is applicable to iterative composition operators
∏

i with a con-
stant computational body. Constant means that the body does not change with i or that its only
dependence on i is in a control function such as g(i,m) in Table II. For this reason, iterative reuse
cannot be applied to SN1 and SN3, because the body of outer compositions depends on i and the
body of the inner composition on j. However, iterative reuse can be partially applied to SN2 and
SN4, namely to the inner iterative composition whose body does not depend on the iteration index
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Table III. Implementation Characteristics of the Different Breakdown Rules When Applying
Streaming and Iterative Reuse

Breakdown rule Implementation Directives

Degree of Reuse Ranges Constraints

SN1, SN3 w 2 ≤ w ≤ n w | n

SN2, SN4 w, di 1 ≤ i ≤ t− 1, 1 ≤ di ≤ t− i+ 1 di | t− i+ 1
2 ≤ w ≤ n w | n

SN5 w, d, d′ 1 ≤ d, d′ ≤ t d | t, d′ | t
2 ≤ w ≤ n w | n

Note: The constraint a | b means that a must divide b evenly.

j. In SN5, iterative reuse can be applied to both iterative compositions, as the computational body
does not depend on any of the iteration indices. Thus, the smallest such implementation of SN5 is
a single physical stage that is reused t2 times, as was proposed by Stone [1971].

Example. We consider the possible implementations of S8 (n = 8, t = log2 n = 3) using the
different breakdown rules and degrees of reuse.

For all breakdown rules, valid streaming widthsw are 2, 4, and 8. This is the only choice available
for SN1 and SN3. For SN2 and SN4, in addition the depths di, i = 1, 2, need to be specified.
Using Table 3.3, possible values for d1 are 1 and 3, and possible values for d2 are 1 and 2. Maximum
iterative reuse is obtained with d1 = 1 and d2 = 1. For SN5, the depths d and d′ need to be specified.
Using Table 3.3, possible values for d and d′ are 1 and 3. Maximum iterative reuse is obtained with
d = 1 and d′ = 1. The entire set of choices (consisting of five breakdown rules combined with their
implementation directives) yields a design space of 39 different implementations for S8. The size
of the design space becomes larger as n grows. For instance, S16 has 93 different implementations,
S32 has 159, and S64 has 603.

3.4. Cost Analysis
In this section, we provide a detailed cost analysis of the considered streaming sorting networks with
different streaming and iterative reuse. Using this analysis, we can reason about the design space
and understand the relative strengths and weaknesses of the different options. Later, in Section 5 we
will also experimentally measure the cost of many designs on FPGAs.

The implementation cost of a sorting network with reuse is determined by the choice of network
(SN1 through 5) and the implementation directives (streaming width w and depth values d, as
shown in Table 3.3). All implementations require comparison operations, whose overall cost is
proportional to the number of S2 and X2 operators used. Additional cost is incurred when the
sorting network is streamed (i.e. when w < n). In this case, every permutation is implemented
using w memory banks and two switching networks. Thus, we measure the cost of the streaming
permutations by the number of 2-input switches required to build the two switching networks and
the number of memory words required to build the w banks. We assume that the cost of control
logic required to configure the switching networks and to read and write from the memory banks is
negligible. This assumption is confirmed by our experiments.

Comparison operations. Table IV (second column) shows the number of 2-input sorters (S2

or X2) required for the implementation of each breakdown rule as a function of the streaming
width w and the depths d, when applicable. One can determine the number of 2-input sorters in a
straightforward manner by using the DSL expressions and specified directives.

Switches and RAM words. Streaming permutations are constructed using switches and RAMs.
Counting them is more complex, because as explained by Püschel et al. [2009], the exact cost
depends on the the exact permutation and streaming width w, as detailed in Appendix B. The result
is shown in the last two columns of Table IV.
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Table IV. Number of Basic Components Required for S2t , Built with Streaming Reuse (w = 2k) and Iterative
Reuse (d Parameters)

Breakdown rule 2-input sorters Switches RAM words

SN1 2k−2t(t+ 1) if (k = 1): (t− 1)(t+ 1) 4(2k(k − t− 3) + 2t3)
else: 2k−1(t− k)(t− k + 3)

SN2 2k−1
(
1 +

∑t−1
i=1 di

)
if ((di = t− i+ 1)1≤i≤t−1): if ((di = t− i+ 1)1≤i≤t−1) :

if (k = 1): 2k−1t2 4(2k − 2kk + 2t(t− 1))
else: 2k−1(t2 − k2 + t− k) else:

else: 2k
((∑t−k

i=1 di

)
+ t− k

) ∑t−k
i=1 (di + 1)2t−i+2

SN3 2k−2t(t+ 1) 2k−1(t− k)(t− k + 3) 4(2k(k − t− 3) + 2t3)

SN4 2k−1
(
1 +

∑t−1
i=1 di

)
2k
∑t−k

i=1 di
∑t−k

i=1 di2
t−i+2

SN5 2k−1dd′ if (k = t): 0 if (k = t): 0
else: 2kdd′ else: 2t+1dd′

Note: The cost of SN2 may be less in practice when some but not all di are maximal.

Table V. Performance Estimate for a Sorting Network That Processes n = 2t Elements When Applying Streaming
Reuse (w = 2k) and Iterative Reuse (di, d, d′)

Breakdown Rule Throughput (Words per Cycle)

SN1, SN3 w

SN2, SN4 if (di = t− i+ 1)1≤i≤t−1: w

else:
(

nw

n+ wc

)
min

(
di

t− i+ 1

)
1≤i≤t−1

SN5 if (dd′ = t2): w

else:
(

nw

n+ wc

)
dd′

t2

3.5. Performance Analysis
In this section, we analyze the expressions of the five breakdown rules for sorting networks to derive
an approximation of the throughput that they can achieve as a function of the input set size (n = 2t)
and the implementation directives for streaming and iterative reuse. The results are summarized in
Table V.

In the analysis we use the gap of a datapath, which is the number of cycles between starts of
consecutive input sets. Smaller values of the gap indicate faster processing. The minimal gap is one,
which implies that the system begins processing a new input set on every clock cycle. Streaming
reuse with width w implies a minimal possible gap of n/w, because it takes n/w cycles to stream
one input set of size n into the system.

Fully streaming designs. SN1 and SN3 always generate fully streaming designs because no
iterative reuse can be applied to their structures. SN2, SN4, and SN5 produce fully streaming
designs only when no iterative reuse is applied (i.e., when the d parameters have their maximum
value). These designs will have a gap of n/w and a throughput of w.

Iterative designs. The gap for iterative designs is equal to the latency of the reused block multi-
plied by the number of times that the block is reused. When iterative reuse is applied on sub-blocks
of a larger system, the latency of the reused block has to be at least n/w cycles to allow the entire
input set to be received before the data begins recirculating back to the input to begin the second
iteration (see Figure 9(b)).

The latency in cycles depends on how it is implemented in RTL (e.g., the granularity of pipelin-
ing). To reason about latency we will use an approximation in the following.
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The reused block in SN5 is generated from the expression (I2t−1 ⊗m X
f(i,j,m)
2 )L2t−1

2t . Be-
cause the latency of the permutation L2t−1

2t will be much higher than the latency of the operation
(I2t−1 ⊗mX

f(i,j,m)
2 ) (which is typically just one cycle), the overall block’s latency is dominated by

the permutation. Because the cost of a streaming permutation varies with both the permutation and
its streaming width, its exact latency is difficult to predict with a simple formula. We can calculate
the latency exactly using the method in Püschel et al. [2009]. For simplicity, here we approximate
this latency using a simple lower bound and obtain the estimate for SN5 shown in Table V.

The sorting networks SN2 and SN4 each contain t − 1 separate iterative compositions (the
innermost

∏
in each expression). One may choose to apply iterative reuse to each of these separate

compositions independently by assigning depth values di, 1 ≤ i < t− i+ 1. In these networks, the
reused block is of the form (I2t−1 ⊗ A2)R2i

2t , where A2 = S2 and A2 = X2, respectively. Again,
we approximate the latency of these blocks based on the lower bound of the latency of R2i

2t , which
is n/(2iw). Since n/(2iw) is always smaller than n/w (the minimum latency for iterative reuse),
the latency of each block is n/w plus a small implementation-dependent constant c. The gap of the
system corresponds to the largest gap found amongst the i blocks, given by

( n
w

+ c
)

max

(
t− i+ 1

di

)

1≤i≤t−1
.

Given this, we obtain the approximation of the achievable throughput for SN2 and SN4 in Table V.

4. IMPLEMENTATION TRADE-OFFS
As explained in the previous sections, a large set of cost-performance trade-offs can be obtained by
considering different breakdown rules with different levels of streaming and iterative reuse. In this
section, we use the models developed in Sections 3.4 and 3.5 to draw conclusions about the role of
each breakdown rule in the generated design space.

4.1. Optimal and Suboptimal Trade-offs
Given the complexity of the design space, it is not possible to know exactly which choice is best
for a particular area budget or performance requirement. However, using the formulas in Tables IV
and V, we can draw some preliminary conclusions.

Fully streaming designs. Fully streaming designs can be generated with any of the five break-
down rules and for any given w words per cycle. Therefore, by inspecting the resource requirements
from Table IV (with all depths set maximally), we can derive that SN1 generates those with the
lowest resource requirements.

Iterative designs. As said before, SN2, SN4, and SN5 are the only candidates for iterative reuse.
Table V shows that SN2 and SN4 offer the same throughput, in which case we can compare their
resource requirements from Table IV to conclude which one is the best alternative. Because it does
not require a permutation between its merging stages, SN4 has lower cost and thus dominates SN2.
The number of designs generated by SN2 and SN4 quickly grows with n due to the large number
of possible depths di, 1 ≤ i ≤ t−1. However, closer inspection shows the suboptimality of many of
these choices—namely, if it is possible to decrease the value of any di while maintaining the same
throughput, then the design is suboptimal. In other words, increasing a di that does not represent the
bottleneck of the system leads to suboptimal designs. Finally, the most regular algorithm SN5 offers
additional cost savings through higher iterative reuse at the cost of further decreasing throughput.
Thus, SN5 also yields the smallest (but slowest) implementation of a bitonic sorting network.

In summary, when a fully streaming design is required, SN1 is used. On the other hand, when
an iterative design is required, SN4 offers an intermediate trade-off between cost and performance,
and SN5 provides the absolute lowest cost implementation. In Section 5, we verify this theoretical
discussion of trade-offs using synthesized results of these networks.
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4.2. Asymptotic Cost and Performance
We analyze the asymptotic cost of our implementations in terms of the required number of logic
components and memory words using Table IV and by unifying the number of required switches
and 2-input sorters (S2 orX2), as these two components are implemented with similar combinatorial
logic.

Figure 11 shows a graphical representation of the available implementation trade-offs and indi-
cates their corresponding asymptotic cost and throughput. Figure 11(a) shows the fully unfolded
sorting network in which no reuse is applied. This is the fastest implementation with a logic cost of
O(n log2 n), and no memory required. The throughput of this implementation is n words per cycle,
which is the maximum throughput that can be obtained.

Streaming reuse applied to SN1 (Figure 11(b)) reduces throughput to w words per cycle, and at
the same time reduces logic cost toO(w log2 n), wherew is a variable that can take values from 2 to
n/2. For example, if w = 2, the logic cost is reduced to O(log2 n). However, memory components
are needed for this type of implementation, where the number of words required grows with n at a
rate of O(n log2 n) independently of w. Therefore, streaming reuse transfers the O(n) component
of the cost from logic to memory.

On the other hand, iterative reuse can be applied to SN4 and SN5, as shown in Figure 11(c).
By applying iterative reuse to SN4, the implementation cost of O(n log2 n) logic components can
be reduced to O(n log n) by choosing the appropriate values for di. Similarly, by applying iterative
reuse to SN5, the implementation cost of O(n log2 n) can be reduced to O(n). This is because
SN4 implements a minimum of log n comparison stages and SN5 implements a minimum of one
comparison stage. However, the O(n) component still dominates the logic cost. This type of reuse
decreases the throughput by a factor of t for SN4, and by a factor of t2 for SN5.

Combining these two reuse techniques we obtain designs such as those shown in Fig 11(d). The
smallest implementations have a logic cost ofO(log n) andO(1), with a memory cost ofO(n log n)
andO(n), respectively. In summary, iterative reuse reduces theO(log2 n) logic toO(log n) orO(1)
by reducing throughput by a factor of t or t2. Streaming reuse can reduce theO(n) logic by reducing
the throughput to w words per cycle and by adding memory requirements that grow linearly with n.

This transfer in cost from logic to memory is an important result, as it enables the scaling of
sorting networks to larger input sets. To show how this has an impact on the overall cost of the
implementation in practice, we can estimate the relative area of n 2-input sorters with registers
versus the cost of implementing SRAMs with a capacity of n words. (We include registers with the
2-input sorters because typically pipelining registers are used on the output of the switches.)

First, we estimated the area of these components (assuming 16-bits per word) in the
uk65lscllmvbbr a02 standard cell library for the UMC 65nm technology using Synopsys Design
Compiler D-2010.03-SP1-1. Figure 12 (left) shows the estimated area of each of these components.
There is an additional overhead included for a memory array due to the logic required to perform
read and write operations; however, although this overhead is not negligible for small values of n,
for n > 16 it is cheaper to use SRAMs than building n individual flip-flops.

The area of n such components was then extrapolated in Figure 12 (right) to create an estimation
of the growth in area of n 2-input sorters with registers versus SRAM memories with a capacity of
n words. These trends clearly show that the cost of implementing n words in SRAM is much lower
than the cost of implementing either n 2-input sorters or n flip-flops. Although the cost of these
components might change when using a different technology or data type, these trends are highly
likely to show the same behavior.

These area estimates allow us to combine memory and logic area requirements to obtain the cost
trends for some of our implementations. Figure 13(a) shows the estimated cost growth for the fully
expanded sorting network SN1, considered in Batcher [1968], where no reuse is applied. In contrast,
this figure also shows the cost growth when maximum streaming reuse is applied (i.e., whenw = 2).
Figure 13(b) shows the estimated cost growth for the sorting network SN5 with maximal iterative
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Fig. 11. Implementation trade-offs obtained with the breakdown rules and the reuse variables (streaming width and depths).

reuse; this is the smallest sorting network proposed in previous work [Stone 1971]. In contrast, this
figure shows the area growth when maximum streaming reuse additionally is applied.

These trends show that streaming reuse dramatically reduces the cost of sorting network imple-
mentations, thus enabling larger input sets to be processed within a given area budget.

4.3. Modeling the Design Space
Using the models developed in Sections 3.4 and 3.5 and the area estimates in Figure 12 (left), we can
estimate the performance and cost differences between the possible implementations. In doing so,
we can also validate the conclusions drawn in Section 4.1 about the competitiveness of the different
breakdown rules across the space of reuse parameters.
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Table VI. Estimated area requirements of the basic elements for sorting network implementations with 16-bit fixed
point input values.

Component Area (µm2)

2-input sorter 196
1-word in flip-flops 192
1 word in SRAM 32
SRAM overhead 4200

rate of O(n log2 n) independently of w. Therefore, streaming reuse transfers the O(n) component
of the cost from logic to memory.

On the other hand, iterative reuse can be applied to SN4 and SN5, as shown in Fig. 12(c). By
applying iterative reuse to SN4, the implementation cost of O(n log2 n) logic components can be
reduced to O(n log n) by choosing the appropriate values for di. Similarly, by applying iterative
reuse to SN5, the implementation cost of O(n log2 n) can be reduced to O(n). This is because
SN4 implements a minimum of log n comparison stages and SN5 implements a minimum of one
comparison stage. However, the O(n) component still dominates the logic cost. This type of reuse
decreases the throughput by a factor of t for SN4, and by a factor of t2 for SN5.

Combining these two reuse techniques we obtain designs such as those shown in Fig 12(d). The
smallest implementations have a logic cost of O(log n) and O(1), with a memory cost of O(n log n)
and O(n), respectively. In summary, iterative reuse reduces the O(log2 n) logic to O(log n) or O(1)
by reducing throughput by a factor of t or t2. Streaming reuse can reduce the O(n) logic by reducing
the throughput to w words per cycle and by adding memory requirements that grow linearly with n.

This transfer in cost from logic to memory is an important result, since it enables the scaling of
sorting networks to larger input sets. To show how in practice this has an impact on the overall cost
of the implementation, we can estimate the relative area of n 2-input sorters with registers versus
the cost of implementing SRAMs with a capacity of n words. (We include registers with the 2-input
sorters because typically pipelining registers are used on the output of the switches.)

First, we estimated the area of these components in the uk65lscllmvbbr a02 standard cell library
for the UMC 65nm technology, using Synopsys Design Compiler D-2010.03-SP1-1. Table VI shows
the estimated area of each of these components. There is an additional overhead included for a
memory array due to the logic required to perform read and write operations, however although
this overhead is not negligible for small values of n, for n > 16 it is cheaper to use SRAMs than
building n individual flip-flops.

The area of n such components was then extrapolated in Fig. 13 to create an estimation of the
growth in area of n 2-input sorters with registers versus SRAM memories with a capacity of n
words. These trends clearly show that the cost of implementing n words in SRAM is much lower
than the cost of implementing either n 2-input sorters or n flip-flops. Although the cost of these
components might change when using a different technology or data type, these trends are highly
likely to show the same behavior.

These area estimates allow us to combine memory and logic area requirements to obtain the cost
trends for some of our implementations. Fig. 14(a) shows the estimated cost growth for the fully
expanded sorting network SN1, considered in [Batcher 1968], where no reuse is applied. In contrast,
this figure also shows the cost growth when maximum streaming reuse is applied, i.e., when w = 2.
Fig. 14(b) shows the estimated cost growth for the sorting network SN5 with maximal iterative
reuse; this is the smallest sorting network proposed in previous work [Stone 1971]. In contrast, this
figure shows the area growth when in addition maximum streaming reuse is applied.

These trends show that streaming reuse dramatically reduces the cost of sorting network imple-
mentations, thus enabling larger input sets to be processed within a given area budget.
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Fig. 13. Estimated area requirement of four different implementation trade-offs.

Figure 14 shows the predicted area and throughput for the designs obtained with n = 256 and
with n = 2048 (assuming 16-bit data words). We constrained the streaming width to a maximum
of 32, as designs with larger values become difficult to feed with input data at the requisite high
rate. Additionally, the suboptimal di combinations mentioned in Section 4.1 were also left out. As
the nature of the generated design space is exponential in area and throughput, we use a logarithmic
scale to display the obtained range of trade-offs. Circular markers indicate the three breakdown rules
that, according to our analysis in Section 4.1, are the candidates for generating the best designs.

As expected, there is no competitive design generated with SN3, while SN1 offers all the Pareto-
optimal fully streaming designs with streaming width 2, 4, 8, 16 and 32. Similarly, SN2 does not
offer any optimal design, as SN4 generates similar trade-offs at lower cost. On the other hand,
SN5 offers the smallest optimal designs but quickly becomes suboptimal when increasing its area
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Fig. 14. Estimated area and throughput of the designs generated for S256 and S2048.

requirements with larger values of w, d and d′. In other words, the throughput of SN5 does not
scale well as resources are increased. These observations hold for both sizes considered. Note that
SN5 generates more designs for n = 256 than for n = 2048. This is because t = log2 n has more
divisors in this case, which allows for more possible combinations of d and d′.

These models could be also used to quickly predict the Pareto-optimal designs, which are marked
in Figure 14. In the following section, we show the actual values of area and throughput that are
obtained when generating and synthesizing the designs to target a specific FPGA platform.

5. EXPERIMENTAL EVALUATION
Based on our DSL (Section 2), we have built a tool that can generate for a given n the entire design
space of sorting networks derived in this article. Up to now, we have analyzed and modeled their
cost and performance. However, as there are several factors that our models do not consider (e.g.,
routing), the only way to identify the true optimal trade-offs is by running synthesis and place-and-
route for each of the designs, taking into account the target platform. This is typically quite time
consuming, and an exhaustive evaluation might not always be feasible in practice.

In this section, we first briefly describe the process to generate RTL from a DSL expression. Then,
we evaluate the different sorting networks produced by our generator for input sizes 256 and 2048
on an FPGA.

5.1. RTL Generation from DSL Expressions
A sorting network expressed in our DSL together with input set size (n) and implementation direc-
tives (w and d) completely specify a set of sorting network and hardware implementation choices.
We have created an automated hardware generator (an extension of Spiral [Milder et al. 2012;
Püschel et al. 2005]) that produces annotated DSL expressions and compiles them to synthesizable
RTL Verilog (which is suitable for synthesis using standard FPGA or ASIC design tools). Figure 15
illustrates our system’s flow.

First, one of the five breakdown rules (SN1, SN2, SN3, SN4, or SN5) is selected and adapted
to reflect the user’s choices for input set size n and implementation directives d and w. An interme-
diate code representation is generated at this point. Next, a set of optimization and rewriting rules
are applied with the goal of simplifying the expressions and improving the quality of the gener-
ated design. Then, the result is translated into synthesizable RTL Verilog. During translation the
design is automatically pipelined to maximize its achievable clock frequency, and timing analysis
is performed to ensure that all signals route through the system and any feedback paths with correct
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Fig. 15. Flow diagram of the generator.

timing. Other implementation options, such the data type to be sorted, are additionally fed to the
RTL generation stage.

Streaming permutations (whenw < n) are implemented following the algorithms in Püschel et al.
[2009]. Permutations that operate on nonstreaming data (whenw = n) are simply implemented with
wires.

The generator additionally calculates the system’s memory requirements and the latency and
throughput of each block, relative to the clock frequency. It outputs the final design alongside Ver-
ilog testbenches for the verification of the created modules. An online version of the generator is
available at Zuluaga et al. [2012b].

5.2. Experimental Setup
For our experiments, we generated sorting networks that process 16-bit fixed-point data. Our gen-
erator has been optimized to target the Xilinx FPGA platforms. For the experiments presented in
this section, we specifically target the Xilinx Virtex-6 XC6VLX760 FPGA and use the Xilinx ISE
tools (Version 13.1). This device contains 118,000 configurable slices and 720 hard on-chip memory
units called Block RAM (BRAM). We characterize each design by its cost: BRAM and slice usage,
and by its performance in terms of latency or throughput. Latency is measured in microseconds,
and throughput is measured in giga samples per second; both are calculated based on the design’s
maximum execution frequency, given by Xilinx ISE after place-and-route. BRAM and FPGA slice
usage are also taken from post-place-and-route reports. The synthesis and place-and-route processes
were configured to maximize execution frequency.

5.3. Exploring the Design Space
Using our sorting network generator, we obtained all possible Verilog designs for n = 256 and n =
2048 by exploring the different breakdown rules and implementation directives in Table 3.3. Designs
with streaming width greater than 256, and clearly suboptimal di configurations for SN2 and SN4
were not considered. A total of 199 designs were generated for n = 256, and 215 designs were
generated for n = 2048; the generation process took a total of only a few seconds. Synthesis and
place-and-route were attempted for all of the generated designs. From these, 181 designs for n =
256 and 156 for n = 2048 fit onto the FPGA. This process took from minutes to hours, depending
on the complexity of the implementation. For comparison purposes, we manually implemented and
evaluated a linear sorter for both n = 256 and n = 2048.

Area-throughput trade-off. The plots in Figure 16 show throughput and area, in a logarithmic
scale, for the designs that fit onto the target FPGA. In each plot, the x-axis is the number of FPGA
slices used, the y-axis is the throughput, and the size of the marker is proportional to the number
of BRAMs used. For our analysis, the Pareto-optimal designs are selected based on throughput and
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Fig. 16. Area and throughput of the designs generated for S256 and S2048.

27 28 29 210 211 212 213 214 215 216 217

Area (mm2)

21

22

23

24

25

26

27

28

29

T
hr

ou
gh

pu
t

(w
or

ds
pe

r
cy

cl
e)

Design Space n = 2048

SN1
SN2
SN3
SN4
SN5
Linear Sorter
Pareto Front
BRAMs = 0
BRAMs = 720

27 28 29 210 211 212 213 214 215 216 217

Area (mm2)

2�1

20

21

22

23

24

25

T
hr

ou
gh

pu
t

(w
or

ds
pe

r
cy

cl
e)

Design Space n = 256

SN1
SN2
SN3
SN4
SN5
Linear Sorter
Pareto Front
BRAMs = 0
BRAMs = 720

Pareto front
g Pareto front

g

(b) Design Space n = 2048(a) Design Space n = 256

Area (FPGA slices) Area (FPGA slices)

Latency (µs)Latency (µs)

2�3 2�2 2�1 20 21 22 23 24 25 26 27

Area (mm2)

2�7

2�6

2�5

2�4

2�3

2�2

2�1

20

21

22

23

24

25

T
hr

ou
gh

pu
t

(w
or

ds
pe

r
cy

cl
e)

Design Space n = 256

SN1
SN2
SN3
SN4
SN5
Pareto Front
BRAMs = 0
BRAMs = 720

27 28 29 210 211 212 213 214 215 216 217

Area (mm2)

2�7

2�6

2�5

2�4

2�3

2�2

2�1

20

21

22

23

T
hr

ou
gh

pu
t

(w
or

ds
pe

r
cy

cl
e)

Design Space n = 2048

SN1
SN2
SN3
SN4
SN5
Linear Sorter
Pareto Front
BRAMs = 0
BRAMs = 720

Linear sorter!

Linear sorter!

Fig. 17. Area and latency of the designs generated for S256 and S2048.

FPGA slices used, and they are connected with a line. Only the Pareto-optimal designs need to be
considered for an application if throughput and FPGA slices are the main design objectives. How-
ever, BRAM usage could be considered as a third design objective, in which case some additional
points could become Pareto-optimal. These experiments confirm that SN1 produces mostly optimal
fully streaming designs, SN5 produces the smallest optimal designs, and SN4 generates a few opti-
mal designs between these two trade-offs. Breakdown rules SN2 and SN3 that were categorized as
suboptimal in the quantitative analysis presented in Section 4 generate only a few optimal designs
and could be omitted without losing important trade-offs.

Fully streaming designs were obtained with streaming width of up to 128 for n = 256 and 64
for n = 2048. For n = 2048, designs with w = 64 and w = 32 achieve approximately the same
throughput, because as the complexity of the designs grow, maximum working frequencies may
decrease depending on the target platform.

The linear sorter only yields one alternative and is far suboptimal for both n = 256 and n = 2048.
Area-latency trade-off. Depending on the application, the latency of the implementation may

be more important than its throughput. In this case, the latency-area trade-off becomes relevant.
Figure 17 shows latency and area, in a logarithmic scale, for the designs that fit onto the target
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Fig. 18. Comparison of the Pareto-optimal designs obtained with our exploration and the ones obtained with the ILS
proposed in Ortiz and Andrews [2010], for n = 64.

FPGA. In each plot, the x-axis is the number of slices used, the y-axis is the latency, and the size of
the marker is proportional to the number of BRAMs used. Again a line connects the Pareto-optimal
designs. In both cases, n = 256 and n = 2048, the smallest optimal designs, generated with SN5,
have the highest latency. On the other hand, the optimal designs with lowest latencies are obtained
with SN1 and SN3, which generate fully streaming designs that require more resources. No optimal
designs were found with either SN2 or SN4. The plots in Figure 17 also include the linear sorter,
which again is far suboptimal.

These experiments show that our designs offer a wide range of optimal trade-offs that are evenly
spread over a wide range of cost and performance, from small low-throughput designs to large high-
throughput designs. This gives designers the flexibility to choose the implementation that best suits
the goals and constraints of the entire system.

5.4. Comparison to Other Work
Next, we compare our designs with the interleaved linear sorters (ILS) presented in Ortiz and An-
drews [2010]. For n = 64, Figure 18 shows throughput and area of our Pareto-optimal designs
connected by a line and the ILS designs with streaming widths w = 1, 2, 4, 8 using the results
shown in Ortiz and Andrews [2010]. To allow for a fair comparison, we synthesized our designs
targeting the same FPGA platform that was used in their experiments. This experiment shows that
increasing streaming width in the ILS (as an attempt to trade area for throughput) only causes a very
slight increase in throughput. Overall, our designs provide higher throughput with lower cost and
are highly scalable, allowing a wide range of Pareto-optimal trade-offs.

6. CONCLUSIONS
We presented bitonic streaming sorting networks, a new class of hardware structures for sorting
with novel and improved cost-performance trade-offs compared to prior work. Our goal of this
work was completeness—that is, we wanted to present an analysis that satisfies the theoretician
and the application engineer. At the theoretical level, we provided the formalism to describe our
networks and performed an asymptotic and exact analysis of their cost and performance. At the
application level, we confirmed and refined the analysis with real hardware implementations of our
networks on FPGAs. The link between theory and application was established with our domain-
specific hardware generator, which allowed us to obtain and analyze thousands of implementations
with little effort.
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The first practical key contribution is in the wide range of cost-performance trade-offs that our
networks offer. These improve over prior work and allow the engineer to choose the design that
best matches the application constraints. The second and possibly most salient contribution of our
work is the ability to shrink the area cost of the logic to sort to any O(w) including O(1), moving
the costly O(n) component completely to RAM cells, which scale significantly better in real-world
terms. We achieved this while still keeping efficient throughput and latency. This means that with
our work hardware sorting becomes feasible for much larger data sets as we demonstrated with our
experiments.

APPENDIX
A. STREAMING PERMUTATIONS
This section provides brief background on the streaming permutation techniques developed
by Püschel et al. [2009] and then applies them to the permutations needed in our streaming sorting
networks.

We write a permutation on n = 2t data elements as a 2t× 2t matrix, e.g., U2t , in which each row
and column contains exactly one value of one and all the remaining entries are zero. The permuted
vector y is obtained by multiplying this matrix with a given input vector x (i.e. y = U2tx).

One simple example from our DSL (Section 2) is the stride-by-two permutation on four elements:

L2
4 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

which maps elements 0 and 3 to themselves and exchanges 1 and 2.
A different point of view does not consider the indices 0, 1, 2, 3 but their binary representation.

To do so, we represent each index by a column vector of t elements in the field F2 = {0, 1}. The
first element of the vector is the most significant bit; for example 2 is written as [ 10 ].

We denote with xi the binary representation of i, 0 ≤ i < 2t, and with yi the binary repre-
sentation of the corresponding output index. To continue our simple example, for L2

4, we have the
following input indices,

x0 = [ 00 ], x1 = [ 01 ], x2 = [ 10 ], x3 = [ 11 ],

and output indices,

y0 = [ 00 ], y1 = [ 10 ], y2 = [ 01 ], y3 = [ 11 ].

We say that a permutation U2t is linear in the binary representation of the data locations (or simply
linear) if there is a matrix Ut such that yi = Utxi, for all 0 ≤ i < 2t. Necessarily, Ut is invertible.
Addition and multiplication in F2 are the “xor” and “and” operation, respectively. Note that the
linearity property implies that 0 is mapped to itself; thus, most permutations are not linear.1

We use the function π to represent the mapping from an invertible bit matrix Ut to the corre-
sponding permutation matrix U2t . To distinguish a permutation matrix from its corresponding bit
transformation matrix, we boldface the latter. Thus, π : Ut 7→ U2t or Ut = π−1(U2t).

To continue our previous example of the stride permutation, we can see that

π−1(L2
4) =

[
0 1
1 0

]
.

We can easily verify this equation by multiplying π−1(L2
4) with each xi and see that it produces the

correct value for yi.
The following lemma from Püschel et al. [2009] states some of the known properties of π.

1To be more precise, there are as many linear permutations on n = 2t points as there are invertible t× t matrices over F2,
namely

∏
0≤i<t(2

t − 2i).
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Fig. 19. (a) Permutation matrix I2t−1 ⊕ J2t−1 . (b) Associated bit transformation matrix Tt = π−1(I2t−1 ⊕ J2t−1 ).

LEMMA A.1. Let S, N be permutation matrices that are linear. Then, the following holds.

(1) π−1(SN) = π−1(S)π−1(N)
(2) π−1(S ⊗N) = π−1(S)⊕ π−1(N)
(3) π−1(I2t) = It
(4) π−1(L2k

2t ) = Ct−k
t

where Ct−k
t is a cyclic shift by t− k on t points or the (t− k)th power of the cyclic shift by 1 Ct.

Ct is a permutation that maps position i to position i+ 1 mod t.
An important permutation occurring in sorting networks is I2t−1 ⊕ J2t−1 (illustrated in Fig-

ure 19(a); we omit zero entries). This permutation is linear; the corresponding bit transformation
matrix Tt is shown in Figure 19(b):

LEMMA A.2. π−1(I2t−1 ⊕ J2t−1) = Tt.

PROOF. The permutation I2t−1⊕J2t−1 maps the top half of the input vector to the same location,
and inverts the location of the second half. The first half, i < n/2, are those indices whose bit
representation has first bit zero. For those to stay unchanged, the last t− 1 columns of Tt have to be
an identity as shown in Figure 19(b).

The second half, i ≥ n/2, are those indices whose bit representation has first bit one. This bit
has to stay unchanged, and the rest of the bits have to be inverted. From this we derive that the first
column of Tt should be all ones.

The permutations that are used in SN1–5 are: P 2j

2t , R2i

2tQ
2i

2t , R2i

2t , and L2t−1

2t . Using Lemmas A.2
and Lemmas A.1 we obtain that all these permutations are linear. Therefore, all five sorting networks
considered in this article can be streamed with any streaming width w | 2t, w ≥ 2, using the
techniques in Püschel et al. [2009]. Table VI shows the bit transformation matrices corresponding
to each of the permutation used in SN1–5. Additionally, the table specifies the sorting networks that
use them and whether the bit transformation matrix is itself a permutation matrix. This information
is relevant in the following.

B. COST OF STREAMING PERMUTATIONS
In Table IV in Section 3, we provided the number of switches and RAM words required in the
streaming permutation stages of SN1 through 5, which are used in our analysis. In this section, we
explain how these values are derived for the occurring permutations.

First, it is necessary to understand permutations of the form Un = Im⊗Us. This expression indi-
cates that Us (a permutation on s elements) is performed m times in parallel over the ms = n data
elements. Examples of these permutations include P 2j

2t , R2i

2tQ
2i

2t , R2i

2t . When streaming reuse is ap-
plied on a permutation Un of this form, the cost of its implementation may be decreased depending
on how w and Us split the input set. This is formalized in the following lemmas.
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Table VI. Permutations That Occur in SN1 Through SN5 and Their Associated Bit Transformation
Matrices

Permutation Used in SN Associated Bit Matrix

Structured Expression Visualized Is Permutation on Bits

P 2j

2t
1,3 It−j ⊕ ((1⊕ C1

j−1)C
j−1
j ) (a) yes

R2i

2t
Q2i

2t
1,2 Ii−1 ⊕ (C1

t−i+1Tt−i+1) (b) no

R2i

2t
2,3,4 Ii−1 ⊕ (C1

t−i+1) (c) yes

L2t−1

2t
5 C1

t (d) yes

1"

1"

1" 1"

1" 1"

1" 1"

1"

…
"

i � 1

t � i + 1

1"

1"

1"

1"

1"

1"

i � 1

t � i + 1

1"

1"

1"

1"

1"

1"

1"

t � i + 1

as (a) as (b) as (c) as (d)

1"

1"

1"

1"

1"

1"

j

t � j

LEMMA B.1. Let Un = Im ⊗ Us be a permutation to be streamed with streaming width w,
where s evenly divides w. Then the number of switches and the number of memory words required
to implement Un is zero.

PROOF. This is the standard case of streaming reuse represented in Fig 9. Since w ≥ s, the
permutation Us does not have to be streamed because all s elements are available at the same time.
Thus Us is implemented simply with wires w/s times in parallel to support a total of w words per
clock cycle.

LEMMA B.2. Let Un = Im⊗Us be a permutation to be streamed with streaming width w < s,
where w evenly divides s. Then, the cost of implementing Un with streaming width w is equal to the
cost of implementing Us with the same streaming width w.

Lemma B.2 is demonstrated in Püschel et al. [2009] (see Section 6, Example 3, Case 2).
Next, we sketch how to derive the number of memory words and the number of switches required

for the implementation of a streaming permutationU on n = 2t words with streaming widthw = 2k

in the architecture shown in Figure 10(b).
Number of RAM words. Every memory bank must store 2n/w words, and thus a total storage

of 2n words is required.
Number of switches. The connection networks that are placed before and after the blocks of

RAM (see Figure 10(b)) consist of basic switches. The networks determine how the data is stored
in the RAMs and how the data is read from the RAMs. To explain how the networks are obtained
for a given permutation U , we first partition the associated bit matrix U according to the desired
streaming width w = 2k as

U =

[
U4 U3

U2 U1

]

where U1 is a k × k matrix.
To obtain the two networks (for the write and read stage), U has to be factored as U = N−1M ,

such that both sub-blocks (defined as for U above) M1 and N1 are invertible. The cost of the
two networks is then determined by rank(M2) and rank(N2). Specifically, the write stage requires
2k−1rank(M2) switches and the read stage requires 2k−1rank(N2) switches. Püschel et al. [2009]
present an algorithm to find N and M while minimizing the rank of N2 and M2.

For permutations where U is itself a permutation matrix (such asP 2j

2t ,R2i

2t andL2t−1

2t ), the number
of switches obtained with the algorithm is optimal. In this case, the number of switches required in
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the read stage is 2k−1(k − rank(U1)) and the number of switches required in the write stage is
2k−1(k − rank(U ′1)), where U ′1 is the lower-right block of U−1. As the matrices are partitioned
according to k, the ranks of their submatrices, and thus the cost of streaming the permutation, vary
with the streaming width. In summary, we use the following steps to find the number of switches to
stream a permutation U .

(1) If U = I ⊗ Us, find U = π−1(Us). Otherwise find U = π−1(U).
(2) If U is a permutation matrix, calculate the rank of U1 and the rank of U ′1. The number of

switches is then 2k−1(k − rank(U1)) for the write stage and 2k−1(k − rank(U ′1)) for the read
stage.

(3) Otherwise, find a suitable factorization U = N−1M , as explained in Püschel et al. [2009], and
calculate the rank of M2 and N2. The number of switches is then 2k−1rank(M2) for the write
stage and 2k−1rank(N2) for the read stage.

Using the preceding steps, we obtain the number of switches and the number of memory words
required for each permutation occurring in our sorting networks. Through summation over the iter-
ation variables i and j we then obtain the total numbers shown in the last two columns in Table IV
for each sorting network.
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