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Abstract

We present SLinGen, a program generation system for linear
algebra. The input to SLinGen is an application expressed
mathematically in a linear-algebra-inspired language (LA)
that we define. LA provides basic scalar/vector/matrix addi-
tions/multiplications and higher level operations including
linear systems solvers, Cholesky and LU factorizations. The
output of SLinGen is performance-optimized single-source
C code, optionally vectorized with intrinsics. The target of
SLinGen are small-scale computations on fixed-size ope-
rands, for which a straightforward implementation using
optimized libraries (e.g., BLAS or LAPACK) is known to yield
suboptimal performance (besides increasing code size and
introducing dependencies), but which are crucial in control,
signal processing, computer vision, and other domains. In-
ternally, SLinGen uses synthesis and DSL-based techniques
to optimize at a high level of abstraction. We benchmark
our program generator on three prototypical applications:
the Kalman filter, Gaussian process regression, and an L1-
analysis convex solver, as well as basic routines including
Cholesky factorization and solvers for the continuous-time
Lyapunov and Sylvester equations. The results show signi-
ficant speed-ups compared to straightforward C with Intel
icc and clang with a polyhedral optimizer, as well as library-
based and template-based implementations.
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1 Introduction

A significant part of processor time worldwide is spent on
mathematical algorithms that are used in simulations, ma-
chine learning, control, communication, signal processing,
computer vision, and other domains. The problem sizes and
computers used range from the very large (e.g., simulations
on a supercomputer or learning in the cloud) to the very
small (e.g., a Kalman filter or Viterbi on an embedded proces-
sor). Both scenarios have in common the need for fast code,
for example to save energy, to enable real-time, or to maxi-
mize processing resolution. The mathematics used in these
domains may differ widely, but the actual computations in
the end often fall into the domain of linear algebra, meaning
sequences of computations on matrices and vectors.

For large-scale linear algebra applications, the bottleneck
is usually in cubic-cost components such as matrix multipli-
cation, matrix decompositions, and solving linear systems.
High performance is thus attained by using existing highly
optimized libraries (typically built around the interfaces of
BLAS [8] and LAPACK [1]). For small-scale applications,
the same libraries are not as optimized, may incur overhead
due to fixed interfaces and large code size, and introduce
dependencies [41]. The small scale is the focus of this paper.
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Table 1. Kalman filter (one iteration at time step k). Matrices are
upper case, vectors lower case. During prediction (steps (1) and (2))
a new estimate of the system state x is computed (1) along with an
associated covariance matrix P . During update (steps (3) and (4)),
the predictions are combined with the current observation z.

xk |k−1 = Fxk−1|k−1 + Bu (1)

Pk |k−1 = F Pk−1|k−1F
T +Q (2)

xk |k = xk |k−1 + Pk |k−1H
T

× (HPk |k−1H
T + R)−1(zk − Hxk |k−1) (3)

Pk |k = Pk |k−1 − Pk |k−1H
T

× (HPk |k−1H
T + R)−1HPk |k−1 (4)

HLACs

Linear algebra 

applications

sBLACs

• Cholesky/LU factorization

• Triangular solver

• Solver for Sylvester/Lyapunov equation

• Kalman filter

• L1 analysis convex solver

• Gaussian process regression

• S = HPHT + αxxT

• V = Lx + Uy
• A = BC

Figure 1. Classes of linear algebra computations used in this paper
with examples.

Program generation for small-scale linear algebra. In
an ideal world, a programmer would express a linear algebra
computation as presented in a book from the application
domain, and the computer would produce code that is both
specialized to this computation and highly optimized for the
target processor. With this paper, we make progress towards
this goal and introduce SLinGen, a generator for small-scale
linear algebra applications on fixed-size operands. The input
to SLinGen is the application expressed in a linear algebra
language (LA) that we introduce. LA provides basic scalar/-
vector/matrix operations, higher level operations including
triangular solve, Cholesky and LU factorization, and loops.
The output is a single-threaded, single-source C code, optio-
nally vectorized with intrinsics.
As illustrating example, we consider the Kalman filter,

which is ubiquitously used to control dynamic systems such
as vehicles and robots [39], and a possible input to SLinGen.
Table 1 shows a basic Kalman filter, which performs compu-
tations on matrices (upper case) and vectors (lower case) to
iteratively update a (symmetric) covariance matrix P . The
filter performs basic multiplications and additions on matri-
ces and vectors, but also requires a Cholesky factorization
and a triangular solve to perform the matrix inversions. Note
that operand sizes are typically fixed (number of states and
measurements in the system) and in the 10s or even smaller.
We show benchmarks with SLinGen-generated code for the
Kalman filter later.

Classification of linear algebra computations. Useful for
this paper, and for specifying our contribution, is an organi-
zation of the types of computations that our generator needs
to process to produce single-source code. We consider the
following three categories (Fig. 1):

• Basic linear algebra computations, possibly with struc-
tured matrices (sBLACs, following [41]): Computations
on matrices, vectors, and scalars using basic opera-
tors: multiplication, addition, and transposition. Mat-
hematically, sBLACs include (as a subset) most of the
computations supported by the BLAS interface.

• Higher-level linear algebra computations (HLACs): Cho-
lesky and LU factorization, triangular solve, and other
direct solvers. Mathematically, HLAC algorithms (in
particular when blocked for performance) are expres-
sed as loops over sBLACs.

• Linear algebra applications: Finally, to express and sup-
port entire applications like the Kalman filter, this class
includes loops and sequences of sBLACs, HLACs, and
auxiliary scalar computations.

SLinGen supports the latter class (and thus also HLACs),
and thus can generate code for a significant class of real-
world linear algebra applications. In this paper we consider
three case studies: the Kalman filter, Gaussian process re-
gression, and L1-analysis convex optimization.

Contributions. In this paper, we make the following main
contributions.

• The design and implementation of a domain-specific
system that generates performant, single-source C
code directly from a high-level linear algebra descrip-
tion of an application. This includes the definition of
the input language LA, the use of synthesis and DSL
(domain-specific language) techniques to optimize at a
high, mathematical level of abstraction, and the ability
to support vector ISAs. The generated code is single-
threaded since the focus is on small-scale computati-
ons.

• As a crucial component, we present the first generator
for a class of HLACs that produces single-source C
(with intrinsics), i.e., does not rely on a BLAS imple-
mentation.

• Benchmarks of our generated code for both single
HLACs and application-level linear algebra programs
comparing against hand-written code: straightforward
C optimized with Intel icc and clang with the polyhe-
dral Polly, the template-based Eigen library, and code
using libraries (Intel’s MKL, ReLAPACK, RECSY).

As we will explain, part of our work builds on, but conside-
rably expands, two prior tools: the sBLAC compiler LGen
and Cl1ck. LGen [41, 42] generates vectorized C code for
single sBLACs with fixed operand sizes; in this paper we
move considerably beyond in functionality to generate code
for an entire linear algebra language that we define and that
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L is 3x3, lower triangular

x is 3x1

...
t[0,0] = mm256MulPd(L[0,0], x[0,0])
...

Optimized C function

for ( int i = … ) { 
…  
t = _mm256_mul_pd(L, x);
… }

Figure 2. The architecture of LGen including a sketched small
example.

includes HLAC algorithms (which themselves involve loops
over sequences of sBLACs, somewith changing operand size)
and entire applications. Cl1ck [9, 10] synthesizes blocked
algorithms (but not C code) for HLACs, represented in a DSL
assuming an available BLAS library as API. Our goal is to
generate single-source, vectorized C code for HLACs and
entire linear algebra applications containing them.

2 Background

We provide background on the two prior tools that we use
in our work. LGen [25, 41, 42] compiles single sBLACs (see
Fig. 1) on fixed-size operands into (optionally vectorized) C
code. Cl1ck [9, 10] generates blocked algorithms for (a class
of) HLACs, expressed at a high level using the BLAS API.

In the following, we use uppercase, lowercase, and Greek
letters to denote matrices, vectors, and scalars, respectively.

2.1 LGen

An sBLAC is a computation on scalars, vectors, and (possibly
structured) matrices that involves addition, multiplication,
scalar multiplication, and transposition. Examples include
A = BC , y = Lx + Uy, S = HPHT + αxxT , where S is
symmetric and L/U are lower/upper triangular. The output
is on the left-hand side and may also appear as input.

Overview. LGen translates an input sBLAC on fixed-size
operands into C code using two intermediate compilation
phases as shown in Fig. 2. During the first phase, the input
sBLAC is optimized at the mathematical level, using a DSL
that takes possible matrix structures into account. These
optimizations include multi-level tiling, loop merging and
exchange, and matrix structure propagation. During the se-
cond phase, the mathematical expression obtained from the
first phase is translated into a C-intermediate representa-
tion. At this level, LGen performs additional optimizations
such as loop unrolling and scalar replacement. Finally, since
different tiling decisions lead to different code versions of
the same computation, LGen uses autotuning to select the
fastest version for the target computer.

Explicit vectorization. LGen allows for multiple levels of
tiling and arbitrary tile sizes. If vectorization is enabled, the
innermost level of tiling decomposes an expression into so-
called ν-BLACs, where ν is the vector length (e.g., ν = 4
for double precision AVX). There are 18 ν-BLACs (all single
operations on ν × ν matrices and vectors of length ν ), which
are pre-implemented once for a given vector ISA together
with vectorized data access building blocks, called Loaders
and Storers, that handle leftovers and structured matrices.

2.2 Cl1ck

Cl1ck [9, 10] is an algorithm generator that implements the
FLAME methodology [4]. The input to the generator is an
HLAC expressed in terms of the standard matrix operators—
addition, product, transposition and inversion—and matrix
properties such as orthogonal, symmetric positive definite,
and triangular. The output is a family of loop-based algo-
rithms which make use of existing BLAS kernels; while all
the algorithms in a family are mathematically equivalent,
they provide a range of alternatives in terms of numerical
accuracy and performance.

Overview. As illustrated in Fig. 3, the generation takes place
in three stages: PME Generation, Loop Invariant Identifica-
tion, and Algorithm Construction. In the first stage, the input
equation (e.g.,UT ∗U = S , whereU is the output), is blocked
symbolically to obtain one or more recursive formulations,
called “Partitioned Matrix Expression(s)” (PMEs); this stage
makes use of a linear algebra knowledge-base, as well as pat-
tern matching and term rewriting. In our example, blocking
yields1 (

U T
T L 0

U T
TR U T

BR

) (
UT L UTR
0 UBR

)
=
(
ST L STR
SBL SBR

)
,

from which the three dependent equations shown are gene-
rated. In the second stage, Cl1ck identifies possible loop in-
variants for the yet-to-be-constructed loop-based algorithms.
One example here is the predicate UT

T LUT L = ST L that has
to be satisfied at the beginning and the end of each loop
iteration. Finally, each loop invariant is translated into an al-
gorithm that expresses the computation in terms of recursive
calls, and BLAS- and LAPACK-compatible operations. As the
process completes, the input equation becomes “known”: it
is assigned a name, is added to the knowledge base, and can
be used as a building block for more complex operations.

Formal correctness. The main idea behind Cl1ck and the
underlying FLAME methodology is the simultaneous con-
struction of a loop-based blocked algorithm and its proof
of correctness. This is accomplished by identifying the loop
invariant that the algorithm will have to satisfy, before the
algorithm exists. From the invariant, a template of a proof of
correctness is derived, and the algorithm is then constructed
to satisfy the proof.

1T , B , L, and R stand for Top, Bottom, Left, and Right, respectively.
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PME (Partitioned matrix 

expression) generation

Equation

Loop-invariant identification

Algorithm construction

Family of algorithms

PMEs

Loop invariants

Figure 3. Cl1ck: For a target input computation, a family of algo-
rithms is generated in three stages.

⟨la-program⟩ ::= {⟨declaration⟩} {⟨statement⟩}

⟨declaration⟩ ::= ‘Mat’ ⟨id⟩ ‘(’ ⟨size⟩ ‘,’ ⟨size⟩ ‘)’ ‘<’ ⟨iotype⟩ { ‘,’
⟨property⟩ } [ ‘,’ ⟨ow⟩] ‘>;’

| ‘Vec’ ⟨id⟩ ... | ‘Sca’ ⟨id⟩ ...

⟨iotype⟩ ::= ‘In’ | ‘Out’ | ‘InOut’

⟨property⟩ ::= ‘LoTri’ | ‘UpTri’ | ‘UpSym’ | ‘LoSym’
| ‘PD’ | ‘NS’ | ‘UnitDiag’

⟨ow⟩ ::= ‘ow(’ ⟨id⟩ ‘)’

⟨statement⟩ ::= ⟨for-loop⟩ | ⟨sBLAC⟩ | ⟨HLAC⟩ ‘;’

⟨for-loop⟩ ::= ‘for (i = ...) {’ {⟨statement⟩i } ‘}’

⟨sBLAC⟩ ::= ⟨id⟩ ‘=’ ⟨expression⟩

⟨HLAC⟩ ::= ⟨expression⟩ ‘=’ ⟨expression⟩
| ⟨id⟩ ‘=’ ‘(’ ⟨id⟩ ‘)−1’

Figure 4.Grammar for the LA language. An LA program consists of
the declaration of a number of operands, and a sequence of compu-
tational statements. Operands may be scalars, vectors, or matrices,
which are declared as either input (‘In’) or output (‘Out’) and of
a certain size. The non-terminals ⟨id⟩ and ⟨size⟩ are any variable
name and fixed size integer respectively. Matrices can have one
or more properties. Structural properties beginning with ‘Up’ and
‘Lo’ specify respectively upper and lower storage format for both
triangular and symmetric matrices. ‘PD’ and ‘NS’ stand for positive
definiteness and non-singularity respectively. ⟨expression⟩ repre-
sents any well-defined combination of input and output scalars,
vectors and matrices with operators ‘+’, ‘-’, ‘*’, ‘(·)T’ (transposi-
tion). If an expression is defined exclusively over scalars then it can
include also the division (‘/’) and square root (‘√’) operators. When
an ⟨id⟩ appears alone on the left-hand side, it must be an output
element and it can also appear on the right-hand side (‘InOut’). The
notation ⟨statement⟩i indicates that data accesses in a statement
might depend on the induction variable of the surrounding loop.

1 Mat H (k, n) <In >;

2 Mat P (k, k ), R(k, k ) <In, UpSym , PD >;

3 Mat S (k, k ) <Out , UpSym , PD >;

4 Mat U (k, k ) <Out , UpTri , NS, ow(S )>;
5 Mat B(k, k ) <Out >;

6

7 S = H ∗ HT + R;
8UT ∗U = S ;
9UT ∗ B = P ;

Figure 5. Example LA program for given constants n and k . Note
the explicit specification of input and output matrices.

2.3 Challenges in connecting Cl1ck and LGen

In this paper we address two main research challenges. The
first is how to connect Cl1ck and LGen to generate code for
HLACs; the second is then how to generate code for entire
applications consisting of BLACs and HLACs. The first chal-
lenge already requires 1) an extension from single sBLACs
(the domain of LGen) to the entire DSL used by Cl1ck to
express its loop-based outputs with multiple statements (see
Fig. 3), and 2) a way to automatically synthesize HLACs
on small blocks (Sec. 3.1). If the generation and inlining
of C code is performed independently for each statement
in Cl1ck’s output, certain optimizations cannot be applied,
thus missing important opportunities for better vectorization
(Sec. 3.2) and locality (Sec. 3.3). In Sec. 4, we demonstrate
the efficacy of our solution compared to previous work on
selected benchmarks. For a set of HLAC benchmarks (as pre-
viously mentioned, Cl1ck only takes HLACs as an input), we
include the implementation of Cl1ck’s generated algorithms
using optimized BLAS and LAPACK functions among our
competitors.

3 SLinGen

We present SLinGen, a program generator for small-scale
linear algebra applications. The input to SLinGen is a linear
algebra program written in LA, a MATLAB-like domain-
specific language described by the grammar in Fig. 4. The
output is a single-source optimized C function that imple-
ments the input, optionally vectorized with intrinsics.
LA programs are composed of sBLACs and HLACs over

scalars, vectors, and matrices of a fixed size. As an example,
the program in Fig. 5 shows a slightly modified fragment
of the Kalman filter in Table 1. In this program, statement 7
corresponds to an sBLAC that computes a matrix multipli-
cation and an addition of symmetric matrices. Statements
8 and 9 are two HLACs: the Cholesky decomposition of S
and a triangular linear system with unknown B. Note that,
without an explicit input and output specification, it would
be impossible to tell the difference between 8 and 9.

Overview. The general workflow of SLinGen is depicted in
Fig. 6. Given an input LA program, the idea is to perform a
number of lowering steps, until the program is expressed in
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Linear algebra program

LA

Tiling decision

Tiling propagation

Loop-level optimizations

Code-level optimizations

C-IR

Performance

evaluation

and search

1

2

3

Optimized C function

for ( int i = … ) { 
…  
t = _mm256_mul_pd(L, x);
… }

…
Multiple 

basic linear algebra programs

due to algorithmic variants

1a

Figure 6. Architecture of SLinGen.

terms of pre-implemented vectorized codelets and auxiliary
scalar operations (divisions, square roots, ...). In the first
stage, the input program is transformed into one or more
alternative basic LA programs—implementations that rely
exclusively on sBLACs and scalar operations. To achieve this,
loop-based algorithms are synthesized for each occurring
HLAC. Each of these expands the HLAC into a computation
on sBLACs and scalars. Since more than one algorithm is
available for each HLAC, autotuning can be used to explore
different alternatives.

Next, each basic LA program is processed in two additional
stages, as shown in Fig. 6. In Stage 2, each implementation is
translated into a C-like intermediate representation (C-IR); if
vectorization is enabled, rewriting rules are used to increase
vectorization opportunities. For example, a group of scalar
statements can be rewritten as a vectorizable sBLAC. C-IR
includes (1) special pointers for accessing portions of matri-
ces and vectors, (2) mathematical operations on the latter,
and (3) For and If constructs with affine conditions on in-
duction variables. In Stage 3 of Fig. 6, each C-IR program is
unparsed into C code and its performance is measured. Du-
ring the translation, code-level optimizations are applied. As
an example, if vectorization is desired, a domain-specific lo-
ad/store analysis is applied to replace explicit memory loads
and stores with more efficient data rearrangements between
vector variables. Finally, the code with best performance is
selected as the final output.

The three stages are now explained in greater detail.

3.1 Stage 1: Basic Linear Algebra Programs

Synthesis

In Stage 1, SLinGen identifies all HLACs in the input pro-
gram and synthesizes for each of them algorithms that con-
sist of basic building blocks, i.e., sBLACs and scalar operati-
ons.

1 for(i=0; i<m; i+=ν ) {

2 SBL = SBL − STT L ∗ ST L ;
3 UT

BL ∗U BL = SBL ;
4 SBR = SBR − STT LSTR ;
5 UBL ∗U BR = SBR ;
6 }

(a)

SBR

STRSTL

i

i + ⌫

i

i + ⌫

SBL

(b)

Figure 7. (a) One possible synthesized LA fragment for the HLAC
in (5). (b) shows partitions of S involved in the computation;U is
partitioned analogously. For better readability we underline output
matrices in the HLACs (lines 3 and 5).

Identifying HLACs. SLinGen traverses all statements in
the input LA program collecting all HLACs. As described by
the LA grammar in Fig. 4, HLACs are characterized by the
presence of an expression on their left-hand side, or by the
use of a non-basic operator on the right-hand side (in our
case we only consider the inverse). As an example, given the
LA input in Fig. 5, SLinGen would collect the two HLACs
on lines 8 and 9.

Translation into basic form. Next, SLinGen derives for
each HLAC a number of loop-based algorithms. This process
is implemented using an iterative extension of the Cl1ck met-
hodology (see Sec. 2.2), which we describe using as running
example line 8 of Fig. 5:

UTU = S . (5)

Both matrices are of general but fixed size m ×m. As we
explain next, the translation first decomposes the HLAC into
operations on sBLACs and small HLACs of vector-size ν , and
then constructs codelets that consist of small sBLACs and
scalar operations.

1) Refinement of HLACs. The refinement partitions the
HLAC along each of its dimensions until only sBLACs and
vector-size HLACs remain. Therefore, the first decision is
how to partition the dimensions. For the example in (5),
SLinGen decides to partition along rows and columns of
both matrices to carry on and exploit the symmetry of S
and the triangular structure of U . While any number of
levels of partitioning are possible, for the sake of brevity,
we assume that only two levels of partitioning are desired,
with blockings of size ν (the architecture vector width) and 1.
With the chosen partitioning, three algorithms are obtained
for (5) (associated with three possible loop invariants); we
continue with the one shown in Fig. 7. This algorithm relies
on two matrix multiplications (sBLACs on lines 2 and 4), one
HLAC of size ν ×m (i.e., the linear system on line 5), and
one HLAC of vector-size (i.e., the recursive instance of (5)
on line 3).
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1 for(j=i+ν ; j<m; j+=ν ) {

2 UT
BL ∗U BR (:, j : j + ν ) = SBR (:, j : j + ν );

3 }

Figure 8. LA code synthesized for the HLAC in line 5 of Fig. 7.

Same algorithm as in Fig. 7a but with ν = 1

Unrolling and removing zero-sized statements

Figure 9. Code synthesis for the vector-sized HLAC in line 3 of
Fig. 7. We denote with i : j the interval [i, j).

.

The HLAC corresponding to the linear system needs to
be further lowered. Since one dimension is already of size
ν , the HLAC is partitioned along the other dimension (the
columns of submatrices UBR and SBR ). SLinGen synthesizes
the algorithm in Fig. 8, which is inlined in the algorithm in
Fig. 7 replacing line 5. Now, the computation of the HLAC
in (5) is reduced to computations on sBLACs and HLACs of
sizeν×ν ; SLinGen proceeds by generating the corresponding
vector-size codelet for the latter.

2) Automatic synthesis of HLAC codelets. The remaining
task is to generate code for the vector-sized HLACs; we use
line 3 of Fig. 7 as example. Using the same process as before
but with block size 1, SLinGen obtains the algorithm in Fig. 9,
lines 2–11. This algorithm is then unrolled, as shown in lines
12–29, and then inlined.

No further HLACs remain and SLinGen is ready to pro-
ceed with optimizations and code generation.

Algorithm reuse. We have discussed how the iterative pro-
cess of building basic linear algebra programs out of an initial
LA program can require multiple algorithmic synthesis steps
per HLAC in input. If two HLACs only differ in the sizes
of their inputs and outputs but share the same functiona-
lity (e.g., both solve a system LTX = B for X , where L is
lower triangular) their LA formulations would be based on
the same algorithms. Such reuse can occur even within the
same HLAC, as we have shown for the case of (5) where the
building block in Fig. 9 was created based on the same algo-
rithm initially derived for the whole computation shown in
Fig. 7. For this reason SLinGen stores information about the
algorithms required for building basic linear algebra forms
of HLACs in a database that is queried before starting a new
algorithmic synthesis step (Stage 1a in Fig. 6).

3.2 Stage 2: sBLAC tiling and vectorization

The aim is to lower the basic linear algebra programs produ-
ced in the previous stage to C-IR form. To do this, SLinGen
decomposes sBLACs into vectorizable codelets (ν-BLACs),
and performs optimizations to increase vectorization effi-
ciency when possible.

In a basic linear algebra program, every statement is either
an auxiliary scalar computation or an sBLAC. SLinGen pro-
ceeds first by tiling all sBLACs and decomposing them into
vector-size sBLACs that can be directly mapped onto ν-
BLACs, using the LGen approach described in Sec. 2.1. Next
it improves the vectorization efficiency of the resulting im-
plementation. For instance, the codelet in Fig. 9 is composed
of sBLACs that can be mapped to vectorized ν-BLACs, but
also of several scalar computations that could result in a low
vectorization efficiency. Thus, SLinGen searches for oppor-
tunities to combine multiple scalar operations of the same
type into one single sBLAC with a technique similar to the
one used to identify superword-level parallelism [26].
For instance consider the pair of rules R0 and R1 in Ta-

ble 2. R0 combines two scalar divisions into an element-wise
division of a vector by a scalar, while R1 transforms such
an element-wise division into a scalar division followed by
the scaling of a vector. The application of rules R0 and R1 to
lines 13–15 and 20–21 in Fig. 9 yields two additional sBLACs
for the multiplication of a scalar times a vector as shown in
Fig. 10. Similar rules for other basic operators create new
sBLACs to improve code vectorization.
The basic linear algebra programs are now mapped onto

ν-BLACs and translated into C-IR code.

3.3 Stage 3: Code-level optimization and autotuning

In the final stage, SLinGen performs optimizations on the C-
IR code generated by the previous stage. These are similar to,
or extended version of those done in LGen [42]. We focus on
one extension: an improved scalarization of vector accesses
enabled by a domain-specific load/store analysis. The goal
of the analysis is to replace explicit memory loads and stores
by shuffles in registers in the final vectorized C code. The
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Table 2. Example of rewriting rules to expose more ν -BLACs. x ,b ∈

Rk ; βi , χi , λ,τ ∈ R . Statement S0 appears in the computation before
S1 and no operation writes to χ1, β1, or λ in between.

R0 :
S0 : χ0 = β0/λ, S1 : χ1 = β1/λ

x = [χ0 | χ1], b = [β0 | β1], x = b/λ
(6)

R1 :
op(x) = op(b)/λ, op( · ) = ( · ) or ·T

τ = 1/λ, op(x) = τ * op(b)
(7)

τ0 = 1/U (i, i);
U (i, i + 1 : i + ν ) =
τ0S (i, i + 1 : i + ν )T ;

(a)

τ1 = 1/U (i + 1, i + 1);
U (i + 1, i + 2 : i + ν ) =
τ1S (i + 1, i + 2 : i + ν )T ;

(b)

Figure 10. Application of rules in Table 2 to (a) lines 13–15 and (b)
lines 20–21 in the code in Fig. 9, which yields additional ν-BLACs
(second line of both (a) and (b)).

// Store sca. mul. in Fig. 9a. U overwrites S.

Vecstore(S+1, smul9a , [0, 1, 2], hor);

...

// Store sca. mul. in Fig. 9b. U overwrites S.

Vecstore(S+6, smul9b , [0, 1], hor);

...

// Load from Fig. 12, l.23

__m256d vS02_vert = Vecload(S+2, [0, 1], vert);

Figure 11. C-IR code snippet for the access S(i : i + 2, i + 2) with
i = 0 on line 23 of Fig. 9. Vecstore(addr, var, [p0,p1,...],
hor/vert) (and analogous Vecload) is a C-IR vector instruction
with the following meaning: Store vector variable var placing the
element at position pi at the ith memory location starting from
address addr in horizontal (vertical) direction.

technique is domain-specific as memory pointers are associ-
ated with the mathematical layout. We explain the approach
with an example. Consider the access S(i : i + 2, i + 2) in
Fig. 9, line 23. The elements gathered from S were computed
in lines 13–15 and 20-21, which were rewritten to the code
in Fig. 10 as explained before. Note that in this computa-
tion U overwrites S (see specification in Fig. 5, line 4). The
associated C-IR store/load sequence for i = 0 is shown in
Fig. 11, and would yield the AVX code in Fig. 12a. However,
by analyzing their overlap, we can deduce that element 1 of
the first vector (smul19a) goes into element 0 of the result one,
while element 0 of the second vector (smul19b) into element
1. This means the stores/loads can be replaced by a blend
instruction in registers as shown in Fig. 12b.

Autotuning. Finally, SLinGen unparses the optimized C-
IR code into C code and its performance is measured. If
several algorithms are available for the occurring HLACs,
autotuning is used to select the fastest.

0,10,0 0,2 0,3 1,0 1,1 1,2 1,3

Matrix S

(Mem)

a b c d e

b 0 0 0 d 0 0 0

b d 0 0

_mm256_maskstore_pd(S+1, mask3, smul9a);

_mm256_maskstore_pd(S+6, mask2, smul9b);

V0 = _mm256_maskload_pd(S+2, mask1);

V1 = _mm256_maskload_pd(S+6, mask1);

vS02_vert = _mm256_shuffle_ps(v0, v1, 0);

Resulting AVX code

(a)

v0 = _mm256_blend_pd(smul9a, zero, 12);

v1 = _mm256_blend_pd(smul9b, zero, 12);

vS02_vert = _mm256_shuffle_ps(v0, v1, 1);

a b c d e

0 b 0 0 d 0 0 0

b d 0 0

0 0 0 00 0

Resulting AVX code

(b)

Figure 12. Resulting AVX code for the C-IR snippet in Fig. 11
without (a) and with (b) load/store analysis. In (a) vS02_vert is
obtained by explicitly storing to and loading from memory while
in (b) by shuffling vector variables.

Table 3. Selected HLAC benchmarks. All matrices ∈ Rn×n . A is
symmetric positive definite, S is symmetric, and L andU are lower
and upper triangular, respectively. X is the output in all cases.

Name Label Computation

Cholesky dec. potrf XTX = A, X upper triangular

Sylvester eq. trsyl LX + XU = C , X general matrix

Lyapunov eq. trlya LX + XLT = S , X symmetric

Triangular inv. trtri X = L−1, X lower triangular

4 Experimental Results

Weevaluate SLinGen for two classes of computations: HLACs
and linear algebra applications (see Fig. 1).

HLACs. We selected four HLACs common in applications:
the Cholesky decomposition (potrf), the solution of trian-
gular, continuous-time Sylvester and Lyapunov equations
(trsyl and trlya, respectively), and the inverse of a triangular
matrix (trtri). We provide their definitions in Table 3.

Applications. We selected three applications from different
domains: (a) The Kalman filter (kf) for control systems which
was introduced in Sec. 1, (b) a version of the Gaussian process
regression [38] (gpr) used in machine learning to compute
the predictive mean and variance for noise free test data, and
(c) an L1-analysis convex solver [2] (l1a) used, for example,
in image denoising and text analysis. We list the associated
LA programs in Fig. 13.

4.1 Experimental setup

All tests are single-threaded and executed on an Intel Core
i7-2600 CPU (Sandy Bridge) running at 3.3 GHz, with 32 kB
L1 D-cache, 256 kB L2 cache, and support for AVX, under
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Input: F , B, Q, H, R, P, u, x, z
Output: P, x

y = F ∗ x + B ∗ u;
Y = F ∗ P ∗ FT +Q ;

v0 = z − H ∗ y;
M1 = H ∗ Y ;

M2 = Y ∗ HT ;

M3 = M1 ∗ HT + R;
UT ∗U = M3;

UT ∗ v1 = v0;
U ∗ v2 = v1;
UT ∗M4 = M1;

U ∗M5 = M4;

x = y +M2 ∗ v2;
P = Y −M2 ∗M5;

(a) Program kf

Input: K, X , x, y
Output: ϕ, ψ , λ

L ∗ LT = K ;

L ∗ t0 = y;
LT ∗ t1 = t0;
k = X ∗ x ;
ϕ = kT ∗ t1;
L ∗ v = k;
ψ = xT ∗ x − vT ∗ v;
λ = yT ∗ t1;

(b) Program gpr

Input:W , A, x0, y, v1, z1, v2, z2, α, β, τ
Output: v1, z1, v2, z2

y1 = α ∗ v1 + τ ∗ z1;
y2 = α ∗ v2 + τ ∗ z2;
x1 =W T ∗ y1 − AT ∗ y2;
x = x0 + β ∗ x1;
z1 = y1 −W ∗ x ;
z2 = y2 − (y − A ∗ x );
v1 = α ∗ v1 + τ ∗ z1;
v2 = α ∗ v2 + τ ∗ z2;

(c) Program l1a

Figure 13. Selected application benchmarks. The declaration of input and output elements is omitted but we underline output matrices and
vectors in all HLACs. All matrices and vectors are of size n × n and n, respectively. Both kf and l1a are iterative algorithms and we limit our
LA implementation to a single iteration. The original algorithms of both gpr and l1a contain additionally a small number of min, max, and
log operations, which have very minor impact on the overall cost.

Ubuntu 14.04 with Linux kernel v3.13. Turbo Boost is disa-
bled. In the case of potrf, trsyl, trlya, and trtri we compare
with: (a) the Intel MKL library v11.3.2, (b) ReLAPACK [33],
(c) Eigen v3.3.4 [18], straightforward code (d) compiled with
Intel icc v16, and (e) clang v4 with the polyhedral Polly
optimizer [16], and (f) the implementation of algorithms ge-
nerated by Cl1ck implemented with MKL. For trsyl we also
compare with RECSY [23], a library specifically designed
for these solvers. In the case of kf, gpr, and l1a we compare
against library-based implementations using MKL and Eigen.
Note that starting with v11.2, Intel MKL added specific sup-
port for small-scale, double precision matrix multiplication
(dgemm).

The straightforward code is scalar, handwritten, loop-
based codewith hardcoded sizes of thematrices. It is included
to show optimizations performed by the compiler. For icc
we use the flags -O3 -xHost -fargument-noalias -fno-alias
-no-ipo -no-ip. Tests with clang/Polly were compiled with
flags -O3 -mllvm -polly -mllvm -polly-vectorizer=stripmine.
Finally, tests with MKL are linked to the sequential version
of the library using flags from the Intel MKL Link Line Ad-
visor.2 In Eigen we used fixed-size Map interfaces to existing
arrays, no-alias assignments, in-place computations of sol-
vers, and enabled AVX code generation. All code is in double
precision and the working set fits in the first two levels of
cache.

Plot navigation. The plots present performance in flops
per cycles (f /c) on the y-axis and the problem size on the

2software.intel.com/en-us/articles/intel-mkl-link-line-advisor

x-axis. All matrices and vectors are of size n × n and n, re-
spectively. The peak performance of the CPU is 8 f /c . A bold
black line represents the fastest SLinGen-generated code.
For HLACs, generated alternative based on different Cl1ck-
generated algorithms are shown using colored, dashed lines
without markers. The selection of the fastest is thus a form
of algorithmic autotuning.
Every measurement was repeated 30 times on different

random inputs. The median is shown and quartile informa-
tion is reported with whiskers (often too small to be visible).
All tests were run with warm cache.

4.2 Results and analysis

HLACs. Figure 14 shows the performance for the HLAC
benchmarks. In the left column of Fig. 14, we compare per-
formance results for all competitors except Cl1ck, for which
we provide a more detailed comparison reported on the plots
on the right column. Cl1ck generates blocked algorithms
with a variable block size nb and uses a library for the occu-
ring BLAS functions (here: MKL BLAS). For each HLAC
benchmark we measure performance for nb ∈ {ν ,n/2,n},
where ν = 4 is the ISA vector length.

For potrf (Fig. 14a) SLinGen generates code that is on
average 2×, 1.8×, and 3.8× faster than MKL, ReLAPACK,
and Eigen, respectively. Compared to icc and clang/Polly
we obtained a larger speedup of 4.2× and 5.6× showing the
limitations of compilers. SLinGen is also about 40% faster
than Cl1ck code. As expected, the performance of Cl1ck’s
implementation is very close to that of the MKL library. For
trsyl (Fig. 14b) our system reaches up to 2 f /c and is ty-
pically 2.8×, 2.6×, 12×, 4×, 1.5×, and 2× faster than MKL,
ReLAPACK, RECSY, Eigen, icc, and clang/Polly, respectively.

software.intel.com/en-us/articles/intel-mkl-link-line-advisor
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When compared with Cl1ck’s implementation, SLinGen re-
sults 5.3× faster. The computation of trlya (Fig. 14c) attains
around 1.7 f /c for the larger sizes, thus being 5× faster than
the libraries and 2× than the compilers. Note that missing a
specialized interface for this function, MKL performs more
than 2× slower than icc. Fig. 14d shows trtri where SLinGen
achieves up to 3.5 f /c , with an average speedup of about
2.5× with respect to MKL and Cl1ck’s most performant im-
plementation. When comparing with the other competitors,
SLinGen is up to 2.3×, 21×, 4.2×, and 4.6× faster than MKL,
ReLAPACK, Eigen, icc and clang/Polly, respectively.

Applications. Figure 15 shows the performance for the cho-
sen applications. For kf, we show two plots. Fig. 15a varies
the state size (i.e., dimension of x and P ) and sets the observa-
tion size (i.e., dimension of z, H , and R) equal to it. SLinGen
generates code which is on average 1.4×, 3×, and 4× faster
than MKL, Eigen, and icc. Note that typical sizes for kf tend
to lie on the left half, where we observe even larger speedups.
Fig. 15b fixes the state size to 28 and varies the size of the
observation size between 4 and 28.
On gpr, our generated code performs similarly to MKL,

while being 1.7× faster than icc and Eigen. Finally, for the
l1a test, SLinGen generated code that is on average 1.6×,
1.3×, and 1.5× faster than MKL, Eigen, and icc, respectively.

To judge the quality of the generated code, we study more
in depth the code synthesized for the HLAC benchmarks.

Bottleneck analysis. We examined SLinGen’s generated
code with ERM [7], a tool that performs a generalized roof-
line analysis to determine hardware bottlenecks. ERM creates
the computation DAG using the LLVM Interpreter [17, 27]
and a number of microarchitectural parameters capturing
throughput and latency information of instructions and the
memory hierarchy. We ran ERM with the parameters descri-
bing our Sandy Bridge target platform to analyze our four
HLAC benchmarks.
Table 4 summarizes for each routine and three sizes the

hardware bottleneck found with ERM. In general we notice
that the generated code is limited by two main factors. For
small sizes it is the cost of divisions/square roots, which on
Sandy Bridge can only be issued every 44 cycles. The fraction
of these is asymptotically small (approximately 1/n2 for potrf,
and 1/n for trsyl, trlya, and trtri) but matters for small sizes
as they are also sequentially dependent. We believe that
this effect plagues our gpr, which suffers from divisions by
Cholesky decomposition and triangular solve.
For larger sizes, the number of loads and stores between

registers and L1 grows mostly due to spills. SLinGen tends
to fuse several innermost loops of several neighbouring
sBLACs, which can result in increased register pressure due
to several intermediate computations. This effect could be
improved by better scheduling strategies based on analytical
models [28].
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Figure 14. Performance plots for the HLAC benchmarks: (a) potrf,
(b) trsyl, (c) trlya, and (d) trtri. On the left column: colored, das-
hed lines without markers indicate different SLinGen-generated
algorithms.
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Figure 15. Performance plots for the application-level programs in
fig 13. kf-28 is based on the same kf program but fixes the number
of state parameters to 28. Inputs z,H , and R have now size k , k × 28,
and k × k , respectively.

Finally, the third column in Table 4 shows the ratio of
issued shuffles and blends to the total number of issued in-
structions, excluding loads and stores. This number can be
considered as an estimate of how much data rearrangement
overhead is introduced by SLinGen’s vectorization strategy.
As estimated by ERM’s bottleneck analysis, the peak per-
formance would almost never be affected by the introduced
shuffles and blends (forth and fifth column).

5 Limitations and Future Work

SLinGen is a research prototype and naturally has limitati-
ons that future work can address.
First, SLinGen is currently restricted to fixed input and

output sizes and expects structured matrices to use a full
storage scheme. Many relevant applications, e.g., in signal
processing, control, and optimization fulfil this constraint.
However, for others a library for general input sizes is still
desirable.
Second, when a linear algebra computation is composed

of many small subcomputations, SLinGen could take advan-
tage of modern multicore systems. The idea is to identify
task parallelism among independent subcomputations and
allocate them to different cores of a processor.
Third, we only consider computations on a single input.

However, SLinGen could be extended to handle batched

Table 4. Summary of bottleneck analysis with ERM. The shuffle/-
blend issue rate is the ratio of shuffle/blend issues to the total issued
instructions (excluding loads and stores). The achievable peak per-
formance when taking shuffles/blends into account is shown in the
last columns.

Computation Sizes Bottleneck
Issue rate Perf limit (f /c )
Shuffles & blends Shuffles Blends

potrf
4 divs/sqrt 50% 6.5 8
76 L1 stores 15% 8 8
124 L1 stores 10% 8 8

trsyl
4 divs 52% 5.2 8
76 divs 35% 8 8
124 L1 loads 35% 8 8

trlya
4 divs 55% 4.5 8
76 divs 40% 6.7 8
124 L1 loads 37% 6.8 8

trtri
4 divs 62% 3.2 8
76 L1 loads 32% 8 8
124 L1 loads 32% 8 8

computations, i.e., a group of independent computations
that can fit into cache together and could be processed by
one single function to better take advantage of data and task
parallelism.
Finally, the generated code is certainly not performance-

optimal. More could be achieved by additional lower level
optimizations that address the issues identified in our bottle-
neck analysis.

6 Related Work

Here we review the existing body of work on the optimi-
zation of linear algebra computations, performed either by
hand or automatically.
Hand-optimized linear algebra libraries. Multiple libra-
ries offer high-performance implementations of BLAS and
LAPACK interfaces. Prominent examples include the com-
mercial Intel MKL [22] and the open-source OpenBLAS [47].
BLIS [44] is a framework for instantiating a superset of the
BLAS operations from a set of microkernels; however, it does
not does cover higher-level operations or entire applications.
ReLAPACK [33] and RECSY [23] provide recursive high-
performance implementations of LAPACK and Sylvester-
type computations, respectively.
Algorithm Synthesis. The Formal Linear Algebra Methods
Environment (FLAME) [19] provides a methodology for auto-
matically deriving algorithms for higher level linear algebra
functions [4] given as mathematical equations. The suppor-
ted functions are mostly those covered by the LAPACK li-
brary and the generated algorithms rely on the availability
of a BLAS library. The methodology is completely automated
by the Cl1ck compiler [9, 10] which we used and extended
in this work.
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Library focus on small computations. Recently, the pro-
blem of efficiently processing small to medium size compu-
tations has attracted the attention of hardware and library
developers. The LIBXSMM library [21] provides an assembly
code generator for small dense and sparse matrix multiplica-
tion, specifically for Intel platforms. Intel MKL has introdu-
ced fast general matrix multiplication (GEMM) kernels on
small matrices, as well as a specific functionality for batches
of matrices with same parameters, such as size and leading
dimensions (GEMM_BATCH). The very recent [15] provides
carefully optimized assembly for small-scale BLAS-like ope-
rations. The techniques used in writing these kernels could
be incorporated into SLinGen.

DSL-based approaches. PHiPAC [5] and ATLAS [46] are
two of the earliest generators, both aiming at high-
performance GEMM by parameter tuning. Higher-level gene-
rators for linear algebra include the CLAK compiler [11, 12],
the DxTer system [29], and BTO [40]. CLAK finds efficient
mappings of matrix equations onto building blocks from
high-performance libraries such as BLAS and LAPACK. SLin-
Gen could benefit from a CLAK-like high-level front-end
to perform mathematical reasoning on more involved ma-
trix computations that require manipulation. DxTer trans-
forms blocked algorithms such as those generated by Cl1ck,
and applies transformations and refinements to output high-
performance distributed-memory implementations. BTO fo-
cuses onmemory bound computations (BLAS 1-2 operations)
and relies on a compiler for vectorization. LINVIEW [30] is
a framework for incremental maintenance of analytical que-
ries expressed in terms of linear algebra programs. The goal
of the system is to propagate within a (large) computation
only the changes caused by (small) variations in the input
matrices.
The MATLAB Coder [43] supports the generation of C

and C++ functions from most of the MATLAB language
but produces only scalar code without explicit vectorization.
Julia [3] is is a high-level dynamic language that targets
scientific computing. Linear algebra operations in Julia are
mapped to BLAS and LAPACK calls.

Also related are expression template-based DSLs like the
Eigen [18] and the uBLAS [45] libraries. In particular, Eigen
provides vectorized code generation, supporting a variety
of functionalities including Cholesky and LU factorizations.
However, libraries based on C++ metaprogramming cannot
take advantage of algorithmic or implementation variants.
Another approach based on metaprogramming is taken by
the Hierarchically Tiled Arrays (HTAs) [20], which offer data
types with the ability to dynamically partition matrices and
vectors, automatically handling situations of overlapping
areas. HTAs priority, however, is to improve programmabi-
lity reducing the amount of code required to handle tiling
and data distribution in parallel programs, leaving any opti-
mization to the programmer (or program generator).

Finally, our approach is in concept related to Spiral, a
generator for the different domain of linear transforms [35,
36] and also uses ideas from the code generation approach
of the LGen compiler [25, 41, 42]. Spiral is a generator for
linear transforms (like FFT, a very different domain) and not
for the computations considered in this paper. There was an
effort to extend it to linear algebra [14] but was shown only
for matrix-matrix multiplication. The connection between
SLinGen and Spiral is in concept: The translation from math
to code and the use of DSLs to apply optimizations at a high
level of abstraction.
Optimizing compilers. In Sec. 4 we compare against
Polly [16], an optimizer for the clang compiler based on
the polyhedral model [13]. This and other techniques res-
chedule computation and data accesses to enhance loca-
lity and expose parallelization and vectorization opportuni-
ties [6, 24]. Multi-platform vectorization techniques such as
those in [31, 32] use abstract SIMD representations making
optimizations such as alignment detection portable across
different architectures. The work in [37] leverages whole-
function vectorization at the C level, differently from other
frameworks that deviate from the core C language, such
as Intel ispc [34]. The scope of these and other optimizing
compilers is more general than that of our generator. On
the other hand, we take advantage of the specific domain to
synthesize vectorized C code of higher performance.

7 Conclusions

This paper pursues the vision that performance-optimized
code for well-defined mathematical computations should
be generated directly from a mathematical representation.
This way a) complete automation is achieved; b) domain
knowledge is available to perform optimizations that are
difficult or impossible for compilers at a high level of ab-
straction; c) porting to new processor architectures may be
simplified. In this paper we proposed a prototype of such a
system, called SLinGen, for small-scale linear algebra as nee-
ded in control, signal processing, and other domains. While
limited in scope, it goes considerably beyond prior work
on automation for linear algebra, which mainly focused on
library functions for BLAS or LAPACK; SLinGen compiles
entire linear algebra programs and still obtains competitive
or superior performance to handwritten code. The methods
we used are a combination of DSLs, program synthesis and
generation, symbolic computation, and compiler techniques.
There is active research on these topics, which should also
provide ever better tools and language support to facilitate
the development of more, and more powerful generators like
SLinGen.
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