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ABSTRACT
Over the last decade, the looming power wall has
spurred a flurry of interest in developing heterogeneous
systems with hardware accelerators. The questions,
then, are what and how accelerators should be designed,
and what software support is required. Our acceler-
ator design approach stems from the observation that
many efficient and portable software implementations
rely on high performance software libraries with well-
established application programming interfaces (APIs).
We propose the integration of hardware accelerators on
3D-stacked memory that explicitly targets the memory-
bounded operations within high performance libraries.
The fixed APIs with limited configurability simplify the
design of the accelerators, while ensuring that the ac-
celerators have wide applicability. With our software
support that automatically converts library APIs to ac-
celerator invocations, an additional advantage of our ap-
proach is that library-based legacy code automatically
gains the benefit of memory-side accelerators without
requiring a reimplementation. On average, the legacy
code using our proposed MEmory Accelerated Library
(MEALib) improves performance and energy efficiency
for individual operations in Intel’s Math Kernel Library
(MKL) by 38x and 75x, respectively. For a real-world
signal processing application that employs Intel MKL,
MEALib attains more than 10x better energy efficiency.

Categories and Subject Descriptors
B.7 [INTEGRATED CIRCUITS]: Types and De-
sign Styles - Algorithms implemented in a hardware;
C.1 [PROCESSOR ARCHITECTURES]: Other
Architecture Styles - Heterogeneous (hybrid) systems
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1. INTRODUCTION
The power wall has made hardware accelerators the

topic du jour. Accelerators, varying from application-
specific [1, 2], and domain-specific [3, 4, 5, 6, 7] to gen-
eral purpose [8, 9], have been proposed to improve en-
ergy efficiency. Herein lies a difficult choice an acceler-
ator designer is faced with. On one hand, application-
specific accelerators are highly efficient but have limited
applicability, whereas general purpose accelerators have
greater applicability but may not be efficient. Domain-
specific accelerators tread the middle ground but the
choice of domain(s) to accelerate for wide-spread appli-
cability still remains.

Our approach toward domain-specific accelerator de-
sign is to leverage the fact that high performance soft-
ware is often written in terms of subroutine calls to
highly optimized black-box libraries (e.g., the Basic
Linear Algebra Subprograms (BLAS) [10] and Fastest
Fourier Transforms in the West (FFTW) [11]) with well-
established application programming interfaces (APIs)
that represent commonly used operations in their re-
spective domains. By using these APIs, the resulting
application code is portable across different platforms,
as long as an efficient implementation of the library on
the desired platform exists. To demonstrate the ben-
efits gained through the use of such high performance
libraries, Figure 1 shows performance gains for bench-
marks from R statistical software package [12], PNNL
PERFECT [13], and PARSEC [14]. Compared with the
original code, the library-based code achieves up to 42x
speedup on commodity machines. In a nutshell, the ad-
vantages of designing accelerators to these library APIs
are 1) the fixed APIs restrict the functionality of the ac-
celerators, resulting in a smaller design space that needs
to be explored, 2) as long as widely-used library APIs
are chosen, the accelerators automatically gain wide-
spread applicability, and 3) legacy code that is imple-
mented using the library APIs automatically benefits
from the accelerators.

Although the use of high performance library APIs
significantly reduces the accelerator design space, the
choice of which library routines are the best candi-
date for acceleration remains. Generally, high perfor-
mance library routines can be divided into two sets,
i.e., compute-bounded and memory-bounded opera-
tions. Compute-bounded operations such as matrix-
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Figure 1: Attained performance gains by using high
performance libraries. Intel MKL (Math Kernel Li-
brary) [15] is used for accelerating R benchmarks and
PNNL PERFECT benchmarks. An AVX-based li-
brary [16] is used for accelerating PARSEC benchmarks.
The library-based code is up to 27x, 42x and 24x faster
for R, PERFECT and PARSEC respectively.

matrix multiply are good candidates for acceleration,
as non-computational overheads (e.g., state control and
memory accesses) can be greatly reduced with an ef-
ficient accelerator. However, memory-bounded opera-
tions (e.g., scalar product, general matrix vector multi-
ply, and fast Fourier transform) benefit to a lesser de-
gree on accelerators1. The reason is that the latency of
a memory access is usually an order (or more) of magni-
tude larger than that for a floating point computation.
Hence, the compute primitives are often stalled, waiting
for data to arrive from memory. This is also known as
the “memory wall” problem.

Recent technological breakthroughs of heterogeneous
3D die stacking, such as the Hybrid Memory Cube [17],
offer high memory bandwidth to address the memory
wall. In addition, it allows one to integrate accelerators
into the DRAM. This architecture is ideal for acceler-
ating memory-bounded operations, where time and en-
ergy are spent performing inefficient data transfer and
unnecessary round-trips between the computation units
and the memory. As memory-bounded operations are
directly mapped to 3D-stacked memory-side accelera-
tors that preserve the library APIs, legacy code can au-
tomatically benefit from the increased energy efficiency
as long as the necessary software support exists.

To improve the energy efficiency of memory-bounded
operations within legacy code, we propose a hardware-
software co-design approach. From the hardware per-
spective, we introduce accelerators on the 3D-stacked
memory that address three of the seven domains that
are deemed to be important for science and engineer-
ing [18]. Our choice of accelerators is further restricted
to operations within libraries that are known to be
memory-bounded. Each of these accelerators compute
one of the memory-bounded operations in the chosen
libraries. In addition, by working in tandem with
other accelerators, more complicated memory-bounded

1For a Haswell system with 112 GFLOPS peak performance
(at 3.5 GHz), an integrated“ideal”scalar product accelerator
can only achieve 6.4 GFLOPS, since the system only has 25.6
GB/s memory bandwidth.

operations within the chosen libraries are accelerated.
From the software perspective, we introduce a source-
to-source compiler that converts legacy library calls to
underlying runtime routines that invoke accelerators to
make our vision of library-based legacy code automati-
cally benefiting from 3D-stacked memory-side accelera-
tors a reality.

Contribution. The work in this paper makes the
following contributions:

• Library-driven accelerator design. We present an ac-
celerator design approach targeting memory-bounded
operations in widely used libraries. These accelera-
tors need to be configurable (though in limited) ways
to address flexibility built into the library APIs. In
addition, these accelerators need to have the capabil-
ity of being rewired in different configurations so that
more complicated operations can be accelerated.

• Memory accelerated library. Driven by the pro-
posed approach, we integrate various accelerators
into the 3D-stacked DRAM to obtain an energy ef-
ficient MEmory Accelerated Library (MEALib), for
memory-bounded operations. MEALib has the same
interface as the target library operations enabled by
the configurable infrastructure and software support.

• Software support for portability. To seamlessly allow
legacy library-based code to benefit from MEALib,
we provide the required software support for the
translation of the original library calls to hardware
accelerator configuration and control.

Experimental results demonstrate that, on average,
legacy code using MEALib attains 38x and 75x bet-
ter performance and energy efficiency than Intel MKL,
respectively. Moreover, for a real-world signal process-
ing application that is highly parallelized and optimized
with various MKL routines, MEALib attains more than
10x better energy efficiency than the Intel Haswell.

2. THE MEALIB ARCHITECTURE
Vertical 3D die-stacking with short, fast, and dense

Through Silicon Vias (TSVs) allows the stacking of mul-
tiple memory dies directly on top of the logic die to
achieve high memory bandwidth [19, 20, 21]. Several
industrial 3D memory products, including those from
Samsung [22] and Micron [17], have emerged. For in-
stance, in the Micron’s Hybrid Memory Cube (HMC),
multiple DRAM dies are stacked atop a logic base, and
the logic base contains the vault controllers to access
vertical banks (vaults), the link controllers to commu-
nicate with the processor and other stacks, and the in-
terconnect between different controllers. It is advanta-
geous to integrate the computation units (e.g., CPUs,
GPUs, and accelerators) onto the logic base to exploit
the extremely high internal bandwidth, and also reduce
the round-trip data transfers between the computation
units and the memory.

Due to area and power constraints of the logic base,
we introduce a new accelerator layer to the existing
HMC system to exploit the high internal bandwidth for
accelerating memory-bounded library operations. The
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Figure 3: The HMC-like DRAM logic layer with aug-
mented vault/link controllers and data reshape infras-
tructure.

overall hardware architecture of MEALib is illustrated
in Figure 2. The entire system consists of a central host
processor and multiple memory stacks, connected via
high-speed links used in the HMC system. Each mem-
ory stack is comprised of multiple DRAM dies, on top of
a traditional DRAM logic layer (i.e., HMC logic base).
An accelerator layer is attached below the DRAM logic
base, so that it can be easily powered by external power
sources.

2.1 DRAM Logic Layer
The DRAM logic layer of MEALib hardware relies

on the logic base of the HMC system to access exist-
ing infrastructure such as the vault controller, link con-
troller, and interconnect. We augment the vault con-
troller and link controller to incorporate the new accel-
erator layer. A data reshape infrastructure [23] is also
introduced on the DRAM logic layer. Details of the
DRAM logic layer are shown in Figure 3.

Vault controller. The vault controller is a memory
controller for accessing the associated vault. It con-
tains several queues, which are, the address, write and
read queue. For each queue, we add (de)multiplexers to
distinguish data access to/from the data reshape infras-
tructure and the accelerators on the accelerator layer.
The vault controller receives requests from the acceler-
ator layer through TSVs.

Link controller. The link controller arbitrates
ownership of the DRAM between the CPU and the
memory-side accelerators. We assume that the CPU
and memory-side accelerators do not operate on the
DRAM simultaneously. This simplifies both the hard-
ware and software design spaces. Hence, when the data
is processed by accelerators, the accesses from the CPU
are blocked by the link controller.

Data reshape infrastructure. Data reshape in-
frastructure is used for accelerating data layout trans-
forms. Data layout transform (e.g., linear-to-blocked,
row-major to column-major, etc.) is crucial for many

Functions Description Accelerator

cblas_saxpy() vector scaling and add AXPY

cblas_sdot() dot product DOT

cblas_sgemv() general matrix vector multiply GEMV

mkl_scsrgemv() sparse matrix vector multiply SPMV

dfsInterpolate1D() data resampling RESMP

fftwf_execute() fast Fourier transform FFT

mkl_simatcopy() matrix transpose RESHP

Table 1: Illustrative examples on accelerating Intel
MKL’s memory-bounded operations.

accelerators, as high performance accelerators often
have special requirements with regards to the data
layout. For example, the FFT accelerator proposed
in [24] requires blocked data in memory. Many general-
purpose applications also benefit from dynamic data mi-
gration [25, 23]. Since the data reshape infrastructure is
a special accelerator that can be employed by both the
CPU and the accelerators, we place it on the DRAM
logic layer rather than the accelerator layer.

2.2 Accelerator Layer
Hardware accelerators. MEALib focuses on

accelerating memory-bounded operations defined in
widely used libraries. In our implementation, we tar-
get routines within Intel’s Math Kernel Library (MKL).
The accelerated memory-bounded functions are listed in
Table 1. In addition to the Level-1 BLAS2 (e.g., AXPY,
DOT) and Level-2 BLAS (e.g., GEMV) operations, a sparse
BLAS operation, i.e., sparse matrix-vector multiplica-
tion (SPMV), is also accelerated. Data reshape operation
(RESHP) for matrix transpose, data resampling (RESMP),
and fast Fourier transform (FFT), which are three addi-
tional routines in MKL, HPC benchmark suites such as
HPC Challenges [26], and the PERFECT Benchmark
Suite [13], were also selected for acceleration. Such
accelerator cores can be designed manually or gener-
ated automatically. While we have listed our choice
of accelerators, accelerators for other memory-bounded
operations could easily be incorporated using the pro-
posed approach, given available area and power bud-
gets, which are the main determinants of the number of
integrated accelerators.

To adapt each accelerator to “distributed” vault con-
trollers on the DRAM logic layer, we propose a tiled
architecture where each tile (containing several acceler-
ator cores) is directly connected to the local vault con-
troller. The reasons of placing a group of accelerator
cores to a vault controller are: 1) multiple accelerator
cores may better utilize the high memory bandwidth,
and 2) existing high-performance distributed algorithms
can be utilized for designing accelerators. In Figure 4,
each vault corresponds to one tile, and these tiles are or-
ganized as a traditional mesh network. This network is
different from the interconnect at the logic layer, which
is mainly used for communication between vault con-
trollers and link controllers. In each tile, there are three

2Level-1 BLAS indicates the vector-vector operations, and
Level-2 BLAS indicates matrix-vector operations.
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main components, i.e., Local Memory (LM), Network
Controller (NC), and Processing Elements (PEs). The
LM is shared by accelerators in each tile, and stores
data that are read from the DRAM. The NC is used for
communication between tiles and vaults. The PEs are
a cluster of accelerators (e.g., FFT, DOT, and SPMV etc.)
connected via a switch for configuration purpose.

Configuration infrastructure. Since accelerators
trade generality for efficiency, the flexibility and config-
urability of the accelerator is a critical design consid-
eration. As our accelerators target libraries with well-
defined APIs, the configurability of accelerators is de-
termined by the parameters of APIs, such as, the prob-
lem size, the input/output buffer, and the access stride.
Flexibility is required for the chaining of accelerators
for the computation of more complicated operations.
For instance, a Synthetic Aperture Radar (SAR) image
formation algorithm requires both FFT and RESMP ac-
celerators [27]. Both flexibility and configurability are
offered by a carefully designed configuration infrastruc-
ture. Shown in Figure 4, the configuration infrastruc-
ture consists of distributed switch networks on each tile
and a centralized configuration unit (CU). The CU also
communicates with other tiles through the NC.

The detailed architecture of CU is shown in Figure 5.
It comprises the Fetch Unit (FU), Instruction Mem-
ory (IMEM), and Decode Unit (DU). The host proces-
sor starts by storing the accelerator descriptor (which
is essentially the hardware/software interface and will
be detailed in Section 2.3) in a pre-allocated memory
space. When this happens, the FU transfers the en-
tire descriptor to the IMEM and activates the DU. The
DU parses the descriptor sequentially until the end of a
pass (which contains a series of processing instructions
that describe a datapath representing a complete pro-
cessing operation) is detected. For every instruction in
the pass, the DU activates the corresponding accelera-
tor and appropriately configures the switch logic of each
tile at the input and output ports. When all accelera-
tors in a pass are activated, the DU enables an accel-
erator initialization process during which each accelera-
tor retrieves accelerator-specific configuration data from
the main memory. When all accelerators in the current
pass are configured, the DU initiates the processing for
all tiles. During processing, the first accelerator in the
pass fetches input data from the main memory while
the last accelerator stores the output data back to the

main memory. The DU monitors the status of the last
accelerator in the pass to detect when the pass process-
ing is over in order to proceed with the next pass in the
descriptor.

Fetch
Unit

Instruction
MEM

Decode
Unit

Figure 5: Details of the configuration unit.

2.3 Accelerator Descriptor in DRAM
The accelerator descriptor is a physically contiguous

memory region in DRAM that serves to: 1) control ac-
celerators from software, and 2) configure accelerators
with the required parameters of the targeted library
routine.

The accelerator descriptor is divided into three re-
gions, i.e., Control Region (CR), Instruction Region
(IR), and Parameter Region (PR). The CR mainly con-
tains the control command such as START and the num-
ber of instructions in the IR. Each instruction in the
IR is either an accelerator or a control instruction. The
accelerator instruction corresponds to one accelerator
invocation, while the control instruction is related to
a control flow operation such as LOOP. The accelerator
instruction has three fields, i.e., opcode, parameter size
and address. The opcode specifies which accelerator to
use, while the other two fields determine the size and
starting address of accelerator parameters, which are
determined by the targeted library APIs. All required
parameters of an accelerator are stored in the PR.

3. PROGRAMMING MEALIB
The main objective of MEALib is the acceleration

of memory-bounded libraries, and a key requirement is
that legacy programs written with well-defined libraries
and OpenMP directives directly improve performance
and energy efficiency without a reimplementation.

3.1 Legacy Code using MEALib
Listing 1 shows a code section from the STAP (Space-

Time Adaptive Processing) program [28], an impor-
tant application in radar systems, that uses Intel’s
MKL and OpenMP directives to achieve high per-
formance and energy efficiency. This example con-
tains four main parts, i.e., data allocation (e.g., mal-
loc), data copy with FFTW guru interface (e.g.,
fftwf_plan_guru_dft), a batched FFT operation (i.e.,
multiple parallel FFTs), and multiple MKL library calls
(e.g., cblas_cdotc_sub) within for loops annotated
with OpenMP directive. To execute this code using
MEALib, the following challenges must be addressed.

1. A shared memory between the CPU and accelerators
must be supported, to avoid costly data transfer be-
tween CPU and accelerators. In this program, both
the CPU and accelerators (more precisely, libraries)
should access datacube directly without any explicit
data copy.

2. Requirements on data allocations imposed by the
accelerators must be hidden from the programmer.



For instance, our FFT accelerator requires data to
be stored in a physically contiguous region. This
means that datacube_pulse_major_padded should
be placed into a special region that the FFT acceler-
ator can efficiently process.

3. An efficient mapping from library routine to accel-
erator is necessary, as more complicated library rou-
tines may require the use of more than one acceler-
ator. In this program, although both the data copy
and FFT operations use the same library call (e.g.,
fftwf_plan_guru_dft), they should be mapped to
two different accelerators (RESHP and FFT).

4. Multiple parallel library calls (typically with
OpenMP directives) must be mapped efficiently into
a small number of accelerator descriptors to reduce
the cost of accelerator invocations. In this example,
there are in total 16M independent function calls of
cblas_cdotc_sub. Dedicating an individual descrip-
tor to a library call would result in a tremendous ac-
celerator invocation cost, diminishing the benefits of
accelerator execution.

// data allocation
datacube =

malloc(sizeof(complex) * num_datacube_elements );

datacube_pulse_major_padded =
malloc(sizeof(complex) *
num_datacube_pulse_major_padded_elements );

... ...
// data copy
plan_ct = fftwf_plan_guru_dft (0, NULL ,

3, howmany_dims_ct ,
datacube ,
datacube_pulse_major_padded ,
FFTW_FORWARD , FFTW_WISDOM_ONLY );

// FFT operation
plan_fft = fftwf_plan_guru_dft (1, dims ,

2, howmany_dims ,
datacube_pulse_major_padded ,
datacube_doppler_major ,
FFTW_FORWARD , FFTW_WISDOM_ONLY );

fftwf_execute(plan_ct );
fftwf_execute(plan_fft );
... ...
// multiple parallel inner products
#pragma omp parallel for num_threads (4)
private(dop , block , sv, cell)
for (dop = 0; dop < N_DOP; ++dop)

for (block = 0; block < N_BLOCKS; ++block)
for (sv = 0; sv < N_STEERING; ++sv)

for (cell = 0; cell < TBS; ++cell)
cblas_cdotc_sub(TDOF*N_CHAN ,

&adaptive_weights[dop][block][sv][0], 1,
&snapshots[dop][block][cell], TBS ,
&prods[dop][block][sv][cell ]);

Listing 1: Code from the STAP program.

3.2 The Underlying Support
The first challenge can be partially addressed by a

unified address space between the CPU and accelera-
tors. Moreover, a shared memory management mech-
anism is provided to allow the CPU to directly access
data processed by accelerators. For the second chal-
lenge, we designed memory management runtime rou-
tines for memory allocation/free in a physically con-
tiguous memory region, to substitute the standard allo-
cation/free functions. To support automatic substitu-
tion, a source-to-source compiler is implemented. The

compiler is also used to parse the library calls and con-
vert them to the appropriate accelerator control runtime
routines. The compiler, along with the accelerator con-
trol runtime routines, also address the third and the
fourth challenges as mentioned.

The overview of our solution is shown in Figure 6.
The library calls (possibly with OpenMP directives) are
first identified with our source-to-source compiler. The
compiler translates them to the corresponding acceler-
ator control runtime routines for generating the accel-
erator descriptor. After identifying the library calls,
the declaration of their input/output data, and thus
the related allocation/free functions can also be identi-
fied by the compiler. The compiler translates them to
the corresponding memory management runtime rou-
tines. The entire runtime routines, including the mem-
ory management and accelerator control routines, are
built on a shared memory management mechanism.

Data declaration
+

malloc()/free()

Library calls
+/‐

OpenMP directives

A source‐to‐source compiler

Memory management
runtime routines

Accelerator control
Runtime routines

Accelerator
descriptor

Memory
management

Figure 6: The overview of underlying software support
to enable MEALib portability.

3.3 Shared Memory Management
Recall that our memory-side accelerators are directly

integrated into the memory stack. This implies that
the accelerators share the same memory with the host
processor. Therefore, it is natural that both accelera-
tors and the processor share the same memory address
space, i.e., a unified physical address space.

To simplify hardware design and avoid non-trivial
performance penalty for supporting virtual memory, our
accelerators do not include the memory management
unit (MMU), which means that accelerators only access
memory via physical addressing. Moreover, accelerators
may also require physically contiguous space for effi-
cient processing. In contrast, legacy applications have
been implemented using virtual addressing and are not
aware of the physical memory layout. In order to al-
low legacy code to automatically benefit from the pro-
posed system, this requires us to bridge this difference
in memory adressing. We achieved this by mapping the
reserved physically contiguous memory, which is man-
aged by the memory management runtime routines, to
virtual address space. As a result, the memory region
can be either accessed by the accelerators via physical
addressing or by the processor via virtual addressing.

For a given accelerator, the memory stack on which
it is integrated, is viewed as the Local Memory Stack
(LMS), while the remaining memory stacks are consid-
ered as Remote Memory Stacks (RMS). The data pro-
cessed by the accelerator should reside in its LMS to



better utilize bandwidth. As the physical space of LMS
is the natural interface between the CPU and acceler-
ators for communication, we further divide the LMS
into a command space and a data space. The com-
mand space primarily stores the accelerator descriptor
as introduced in Section 2.3. The CR (i.e., Control Re-
gion) in the command space is monitored by the hard-
ware. Once the START command is written to the CR,
the configuration infrastructure is invoked to process in-
structions in the IR (i.e., Instruction Region). It also
retrieves the parameters of each instruction that are
stored in the PR (i.e., Parameter Region).

Address translation. On the CPU side, we imple-
ment a device driver to allow manipulation of the phys-
ical space. Once the device driver is installed, the com-
mand space is allocated in the physical space, and then
it is mapped to the virtual space via the mmap system
call. Thus, the associated accelerators can be directly
controlled and configured by writing the accelerator de-
scriptor to the mapped virtual space. The data space is
also allocated/freed through the device driver. Specifi-
cally, the device driver provides the ioctl system call to
process memory allocation/free requests from the run-
time routines. Then, customized mmap is implemented
in the device driver to map the allocated contiguous
physical memory to virtual memory space. As accelera-
tors use physical addresses as inputs, the CPU performs
the virtual-to-physical translation when specifying the
input/output addresses for each accelerator.

Figure 7 shows details of the shared memory manage-
ment. After allocating memory from the mapped vir-
tual space, the CPU initializes the allocated region with
user provided data (Step 1). Hereafter, the CPU pre-
pares the accelerator descriptor with translated physical
addresses, and stores it to the mapped command space
(Step 2). Finally, the accelerator accesses the data from
the specified region and start processing (Step 3).

3.4 Source-to-Source Compiler
A source-to-source compiler is crucial for portable en-

ergy efficiency using MEALib. It is built to recognize
library calls (possibly annotated with OpenMP direc-
tives) that can be accelerated using our memory-side
accelerators. The associated memory allocation/free
functions are also translated into MEALib runtime rou-
tines. At the heart of the translation is a Task Descrip-
tion Language, which is used to describe sequences of
accelerator invocations and their configurations.

Task description language. The accelerator de-
scriptor is a high level description of the computation
to be performed by the accelerators, and is described
in our so-called Task Description Language (TDL). The
TDL consists of three basic blocks, i.e., COMP, PASS, and
LOOP. The COMP block corresponds to the invocation of
a single accelerator. It describes the accelerator to be
invoked, and the location (file) where the parameters
of the accelerator can be found. Multiple COMP blocks
compose a PASS block, and each PASS block has its own
input and output data buffers. The LOOP block indi-
cates that the included PASS block(s) can be executed

Virtual Space

Physical SpaceCMD

ACC
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… …

… …

2

DATA

CPU
Allocated
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Figure 7: The unified physical address space, where the
CPU uses the virtual address and the accelerators use
the physical address.

multiple times. In MEALib, the TDL string and the
related parameter files are automatically generated by
our compiler.

The compiler works in two passes. In the first pass, it
identifies the library calls, determines their input/out-
put data, and builds a high level description of the ac-
celerator descriptor, using the TDL. In the second pass,
the related allocation/free functions are identified and
translated to runtime routines, which will be discussed
subsequently.

Pass 1: Library call identification. Library calls
are translated to accelerator control runtime routines.
The TDL string that describes the desired configuration
for each invocation of the accelerator(s) is also gener-
ated during this pass. Moreover, the information of the
input and output buffers is also identified by the com-
piler. The rest of the API parameters are stored into a
parameter file, which is a part of the TDL string. An
optimization is performed when an accelerated library
call is immediately followed by another accelerated li-
brary call such that the input of the second is the out-
put of the first. These two library calls are then chained
together, and their TDL strings are then merged into
one. In Listing 1, data copy and FFT operations can be
chained. The two pairs of fftwf_plan_guru_dft and
fftwf_execute are translated to a single TDL string
with a single PASS block containing the RESHP and FFT
accelerator invocation details. The parameters of the
accelerators are stored in two files, reshape.para and
fft.para, corresponding to the two invocations respec-
tively.

Multiple library calls within the OpenMP for loop
are handled by the compiler. The compiler recognizes
the initial values, the end conditions, and the steps of
each loop, to determine the total number of loop it-
erations, input stride, and output stride. Based on
these information, the compiler generates a TDL string
with a LOOP block, which translates to a single acceler-
ator descriptor. Compared with multiple TDL strings,
each of which contains only one PASS block, the LOOP-
based TDL string can significantly reduce the cost of
accelerator invocation. In this concrete example, more
than 16M function calls of cblas_cdotc_sub are finally
translated into only one accelerator invocation.

Pass 2: Memory allocation/free transforma-
tion. Recall that the data that are processed by the
accelerator need to be in physically contiguous space
for efficient processing. This implies that there is a need
to identify the memory region used by the accelerators,



and to allocate them in a contiguous physical space.
During this pass, malloc and free calls, with no guar-
antees that physical space is contiguous, are replaced
with our customized memory management runtime rou-
tines, which provides such guarantees.

3.5 Runtime Routines
MEALib has two kinds of runtime routines, memory

management runtime and accelerator control runtime,
to operate on the data and command space, respec-
tively. The program using MEALib should be linked
with this runtime library to gain acceleration.

Memory management routines. The memory
management routines of MEALib are used for al-
locating (i.e., mealib_mem_alloc) and freeing (i.e.,
mealib_mem_free) data in the data space. The mem-
ory stack used for allocation can also be explicitly spec-
ified during memory allocation. Since our compiler au-
tomatically replaces standard allocation/free functions
in the program with MEALib routines, this additional
parameter is determined by the compiler as well.

// generate the accelerator descriptor
acc_plan mealib_acc_plan(const char *tdl ,

void *in_addr , long in_size ,
void *out_addr , long out_size );

// invoke accelerators
void mealib_acc_execute(acc_plan p);
// destroy the accelerator descriptor
void mealib_acc_destroy(acc_plan p);

Listing 2: Accelerator control routines.

Accelerator control routines. The accelerator
control routines are used for configuring and control-
ling accelerators with the accelerator descriptor. As
shown in Listing 2, the routine mealib_acc_plan takes
the TDL string, the input/output buffer addresses and
sizes as inputs, to generate the acc_plan data structure,
which is essentially the accelerator descriptor. The ac-
celerator descriptor can be reused to invoke the same ac-
celerator(s) with the same configuration multiple times
through mealib_acc_execute. Finally, the accelerator
descriptor is destroyed using mealib_acc_destroy.

In mealib_acc_execute, prior to invoking the ac-
celerators, the host CPU guarantees that input data
of memory-side accelerators is up-to-date. In con-
trast to using nontemporal instructions to operate on
uncachable regions as in [29], the entire memory in
MEALib can still use the traditional hardware cache
coherence, and the data coherence is enforced by us-
ing the wbinvd instruction to write back the modified
cache lines to main memory before invoking the accel-
erators. Moreover, as the CPU and accelerators do not
operate on the same memory region simultaneously, it
is not necessary to modify existing memory consistency
protocols.

4. EVALUATION METHODOLOGY
We propose a hybrid evaluation methodology that

combines native execution and simulation to obtain an
accurate approximation of the end-to-end execution on
the proposed system. We evaluate MEALib by running

programs written with MKL APIs on a multicore sys-
tem (e.g., Intel Haswell). The multicore CPU is treated
as the central host, while one memory DIMM is used
for mimicking the 3D memory stack with accelerators.
The behavior of this stack is simulated and modeled
by several tools. The performance and power of the re-
maining DIMMs and the central processor are measured
through actual execution. When the processor calls
the library with aforementioned accelerator descriptor,
the simulation is triggered to get the power and perfor-
mance estimation of the invoked accelerators. The over-
all performance and power are estimated by aggregating
the simulated and the measured results. As shown in
Figure 8, the evaluated system is used to characterize
a multicore system that consists of both conventional
DDR and 3D-stacked DRAM, similar to Intel Knights
Landing’s flat addressing mode having both “near” and
“far” memory [30].
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Figure 8: Overview of the evaluation methodology.

4.1 System Configuration and Measurement
A key challenge of using the DIMM to simulate a

memory stack is that the channel-interleaving mode,
where one physical page is equally distributed across
different channels in cache-block granularity, is auto-
matically enabled on modern systems. Thus, the sys-
tem cannot guarantee that physical address is contigu-
ous within one DIMM. For simulation purposes, we re-
move DIMM2 in Figure 8 from the motherboard to con-
vert the channel-interleaving mode to the asymmetric
mode [31], where the memory zone with high address
is in single-channel mode. This disables the memory
channel interleaving on DIMM3. In our experimental
set-up, the address spaces of DIMM0 and DIMM1 are
still interleaved, while the address space of DIMM3 is
separate from others. Hence, DIMM3 is used to simu-
late the local memory stack of all accelerators.

We use PAPI [32] to read the hardware performance
counters for execution time, and Running Average
Power Limit (RAPL) [33] for the power consumption of
the processor and DRAM. The measurement excludes
the pure simulation process, but includes the overhead
of memory management such as memory allocation, ac-
celerator control, and cache flushing.

4.2 Simulation and Modeling Methodology
A single simulation or modeling tool is not able to

obtain the performance/power/area of the accelerated
DRAM stack. As shown in Figure 8, we first generate
memory traces from accelerators, and treat them as in-



Functions Data Set Accelerator

cblas_saxpy() 256M vector (1GB) AXPY

cblas_sdot() 256M vector (1GB) DOT

cblas_sgemv() 16384 × 16384 matrix (1GB) GEMV

mkl_scsrgemv() rgg 20 from UF SMC [36] SPMV

dfsInterpolate1D() 16384 blocks RESMP

fftwf_execute() 8192 × 8192 matrix (512MB) FFT

mkl_simatcopy() 16384 × 16384 matrix (1GB) RESHP

Table 2: Data sets of the accelerated functions.

Platforms Cores Bandwidth

Haswell i7-4770K 4-core @ 3.5 GHz 25.6 GB/s

Xeon Phi 5110P 60-core @ 1.0 GHz 320 GB/s

PSAS - 25.6 GB/s

MSAS - 102.4 GB/s

MEALib hardware 4-core @ 3.5 GHz 510 GB/s

Table 3: Hardware platforms for comparison.

puts for an in-house cycle-accurate 3D-stacked DRAM
simulator (where the basic parameters of 3D-stacked
DRAM are obtained from CACTI-3DD [34]) to obtain
the achieved memory bandwidth and power. Mean-
while, we use Synopsis Design Compiler with 32nm
library for synthesized power and area of logic and
floating-point units. The results from the above tools
and algorithmic parameters (e.g., problem size and tile
size) are used as inputs for customized analytical models
for each accelerator to produce the related performance,
power, and area. Using analytical models facilitates fast
design space exploration over a large number of param-
eters, and is inspired by the work in [35, 27, 24]. The
total energy and execution time of the host processor
and accelerators are accumulated to compute the over-
all power consumption.

4.3 Benchmarks, Platforms, and Baseline
To evaluate the efficiency of MEALib, we wrote syn-

thesized programs with standard Intel MKL 11.2 APIs,
and the related input data sets of evaluated functions
are shown in Table 2. We ran the same code on different
platforms, i.e., the Intel i7-4770k 4-core processor, the
Intel Xeon Phi 60-core coprocessor, and our MEALib
architecture to demonstrate the portability of our ap-
proach. In addition, we compare our MEALib archi-
tecture with other acceleration alternatives, including
the Processor-Side Accelerated System (PSAS), where
the accelerators share the same memory hierarchy with
the central processor, and the 2D Memory-Side Acceler-
ated System (MSAS), where the accelerators sit atop the
conventional DRAM [29]. The configurations of these
platforms are shown in Table 3.

In addition to evaluating individual library functions,
we compared the performance of a real-world applica-
tion, i.e., STAP (Space Time Adaptive Processing) from
the PNNL PERFECT suite [13], on our MEALib archi-
tecture, with its execution on the Intel i7-4770k proces-
sor. To improve the quality of our baseline, the STAP
code is highly optimized with MKL library and multi-
threading technique with OpenMP, and the involved 5

Functions Purpose Type

fftwf_execute() data copy, FFT memory-bounded

cblas_cherk() rank-k matrix update compute-bounded

cblas_ctrsm() triangular matrix solver compute-bounded

cblas_cdotc_sub() inner production memory-bounded

cblas_saxpy() vector scaling memory-bounded

Table 4: Library functions used in STAP.

library functions (in order) are listed in Table 4. Com-
pared with its original implementation, the optimized
baseline is 42x and 787x better in terms of performance
and energy-delay product (EDP) [37], respectively.

5. EXPERIMENTAL RESULTS
We first present overall efficiency, power, and area of

MEALib. Then, we study the design space of two accel-
erators. After that, we evaluate efficiency of proposed
configuration infrastructure. Finally, we use MEALib
to accelerate the STAP application.

5.1 Overall Efficiency
Performance. We compared the performance and

energy efficiency of MEALib with the other four plat-
forms, i.e., Haswell, Xeon Phi, PSAS, and MSAS. Fig-
ure 9 shows the comparison on performance in terms
of GFLOPS (giga floating-point operations per sec-
ond)3, where all performance results are normalized to
MKL performance on the Haswell. The first observa-
tion is that, with the evaluated version of MKL, Xeon
Phi (with 32 threads) cannot significantly outperform
Haswell (with 4 threads). For AXPY, Xeon Phi achieves
the best improvement over Haswell, i.e., 2.23x, while for
RESHP, the performance of Xeon Phi is only 2.4% of that
of the Haswell. A possible reason is that the data sets
might not be large enough to exploit a large number of
hardware threads. The second observation is that on av-
erage PSAS and MSAS are 2.51x and 10.32x better than
the Haswell, respectively, which demonstrates the effec-
tiveness of specialized accelerators. Finally, MEALib
achieves the best performance on all the evaluated oper-
ations, and the improvements range from 11x (SPMV) to
88x (RESHP). On average, MEALib achieves 38x, 15x,
and 3.7x better performance over the Haswell, PSAS,
and MSAS, respectively.

Energy efficiency. As energy efficiency is an im-
portant design concern of computer systems, we further
compare the energy efficiency in terms of GFLOPS/W
in Figure 10. The first observation is that the energy ef-
ficiency of Xeon Phi further decreases when comparing
with the Haswell. The reason is that the power con-
sumption of Xeon Phi is typically larger than that of
Haswell (e.g., 130W vs. 48W for the FFT operation).
The second observation is that the energy efficiency
gains of MEALib are much larger than the performance
gains shown in Figure 9, since the MEALib has rela-
tively smaller power consumption compared with other
platforms. For example, when computing FFT, the

3Note that for RESHP, there is no floating point operation,
and here the performance is measured by GB/s.
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Figure 9: Performance improvement over the standard
MKL on the Haswell machine.
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Figure 10: Energy efficiency improvement over the stan-
dard MKL on the Haswell machine.

power consumption of MEALib is only 19W, while the
power consumptions of Haswell, Xeon Phi, and MSAS
are 48W, 130W, and 41W, respectively. On average,
MEALib achieves 75x, 7x, and 5x energy efficiency
gains over the Haswell, PSAS, and MSAS, respectively.

5.2 Power and Area Analysis
Table 5 lists the power consumption and area of main

components (including accelerators, NoC, and TSVs)
on the accelerator layer. For primitive accelerators, the
power consumption includes both the accelerator and
the 3D DRAM power (where the power of TSVs is also
included). Since the accelerators are designed to max-
imally exploit the available memory bandwidth (i.e.,
510GB/s), multiple primitive accelerators cannot be ac-
tivated simultaneously. As the configuration infrastruc-
ture is only used before the deployment of accelerators,
it does not factor in when the total power consumption
is computed. We only need to consider the primitive
accelerator with highest power consumption (i.e., GEMV
with 23.75W power) and the NoC power, leading to to-
tal power consumption as 23.85W. We assume that the
total area of the accelerator layer is 68mm2, the same
as the DRAM area reported for HMC 2011 [17]. The
entire area of all these components is 41.77mm2, 61%
of the available area of the accelerator layer. Compared
with modern server chips that are always more than
400mm2 in size [38], the total area of proposed hard-
ware in MEALib is relatively small, and more domain-
specific, memory-bounded libraries can be accelerated
with more area budget. It is notable that RESHP lies on

Component Power(W) Area(mm2) Area(%)

AXPY 23.56 1.38 (2.03%)

DOT 23.49 1.81 (2.66%)

GEMV 23.75 2.45 (3.60%)

SPMV 15.44 14.17 (20.84%)

RESMP 8.19 2.64 (3.88%)

FFT 18.89 16.13 (23.72%)

RESHP 22.70 - -

NoC (router + link) 0.095 1.44 (2.12%)

TSVs - 1.75 (2.57%)

Total 23.85 41.77 (61.43%)

Table 5: Estimated power and area (32nm) for compo-
nents on the accelerator layer.
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Figure 11: Design space analysis of the FFT and SPMV
accelerator. The performance and energy efficiency also
depend on the architectural design of accelerators.

the DRAM logic layer, and the reported power is for
a matrix transpose operation that already includes the
DRAM power.

The additional logic at the DRAM logic layer mainly
contains the MUX and data reshape unit. The total
power of these components is 0.25W, and the total area
is 0.45mm2, which is only 0.66% of the entire logic layer.

5.3 Design Space Analysis
The energy efficiency gain of MEALib is highly de-

pendent on the available bandwidth, and the architec-
tural design of accelerators. Power constraints may
cause changes to the available bandwidth, which may
result in different accelerator designs.

We illustrate the design space analysis with two ac-
celerators, i.e., FFT and SPMV. Given a memory band-
width of 510GB/s, we explored various design param-
eters, such as accelerator frequency, row buffer size,
number of accelerator cores, and block size. Figure 11
shows the performance (GFLOPS) and power (W) of
these accelerators in the explored design space. For the
FFT accelerator, energy efficiency varies from 10 to 56
GFLOPS/W, depending on power constraints. For the
SPMV accelerator, the energy efficiency difference is even
larger for different design options, varying from 0.18 to
1.76 GFLOPS/W.

5.4 Configuration Efficiency
We use accelerator chaining and accelerator loop to

demonstrate the configuration efficiency offered by the
proposed configuration infrastructure. For accelerator
chaining, we compare the chaining of RESMP and FFT ac-
celerators (hardware-based chaining) for the SAR (Syn-
thetic Aperture Radar) application [27] against sepa-



rate invocations (software-based chaining). The com-
parison results for different problem sizes are shown in
Figure 12a. Given an input image of 256 × 256 pixels,
hardware-based chaining reduces the execution time by
a factor of 2.5x. As the input size increases, the perfor-
mance gap between software-based and hardware-based
chaining decreases. However, as there are many images
to process in real-world scenarios, the aggregated per-
formance gain of hardware-based accelerator chaining
is expected to be significant.

For accelerator loop, we compare using the LOOP block
of TDL to invoke the FFT accelerator for 128 times
within one accelerator descriptor (hardware-loop) with
a FFT invocation embedded within a for loop with
128 iterations (software-loop). The results are shown
in Figure 12b. Hardware-based loop reduces the exe-
cution time by a factor of 9.5x for a problem size of
256×256. Although the performance gain over software-
based loop decreases along with the increasing problem
size, common applications (e.g., STAP) with intensive
loops still greatly benefit from the hardware-based loop.
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Figure 12: Efficiency of the proposed configura-
tion infrastructure. (a) Comparison of software- and
hardware-based accelerator chaining. (b) Comparison
of software- and hardware-based accelerator loop.

5.5 Accelerating STAP
For the STAP application, as shown in Table 4, the

compute-bounded functions (i.e., cherk and ctrsm) are
executed by the central multicore processor, while the
rest memory-bounded functions (i.e., fftwf_execute,
cdotc, and saxpy) are executed by accelerators. After
compiling the code with our source-to-source compiler,
the translated code is linked with MEALib runtime
routines, and eventually related accelerators including
RESHP, FFT, DOT, and AXPY are invoked.
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Figure 13: Achieved (a) performance and (b) energy
efficiency gains of STAP using MEALib over its execu-
tion on the Haswell. Three different data sets are used
for evaluation.

Figure 13 shows the performance and energy effi-
ciency (energy-delay product [37]) gains of MEAlib
over the Haswell on different data sets (small, medium,
and large). We can see that compared against the op-
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Figure 14: The execution time and energy breakdown of
the host, accelerators, and invocations. (a) The break-
down of the host and accelerators. (b) The breakdown
of different accelerators and invocations.

timized library-based multi-threaded STAP, MEALib
improves the performance by a factor of 2.0x, 2.3x, and
3.2x for small, medium, and large data set, respectively.
Regarding the energy efficiency, MEALib improves the
EDP by a factor of 4.5x, 9.0x, and 10.2x for small,
medium, and large data set, respectively. It is expected
that the benefit of MEALib is more significant as the
data set size continues to increase.

We further show the execution time and energy
breakdown of MEALib in Figure 14. In Figure 14a,
we can see that the execution on the host multicore
processor is about 75% of the entire execution time,
while the energy consumption is about 90% of the total
energy, which also demonstrates the energy efficiency
of deployed accelerators. Figure 14b further shows the
breakdown of deployed accelerators, where the DOT ac-
celerator is the dominated one. The execution time and
energy of DOT are about 60% and 76% of the total time
and energy, respectively. The AXPY accelerator con-
sumes the least time and energy, which are only 3.1%
and 3.8% of the total time and energy, respectively.

We also show the cost of accelerator invocation, which
mainly includes the costs of cache flushing and data
copy of the accelerator descriptor. Thanks to the pro-
posed configuration infrastructure, we are able to com-
pact in total about 17M library calls (cf. Listing 1) into
only 3 accelerator descriptors. The resulting accelera-
tor invocations only consume 3.3% and 7.1% of the total
accelerator time and energy, respectively.

6. RELATED WORK
Portable libraries. There exists many efficient,

portable software libraries for various computing do-
mains. In addition to the well-known MKL, Intel also
develops another library, Integrated Performance Primi-
tives (IPP), for multimedia and data processing applica-
tions [39]. Open source portable libraries are also very
active in different domains. GotoBLAS [40] is widely
used in high performance computing. SPARSITY [41]
is for sparse matrix computation, libFLAME [42] is
for dense linear algebra, and Gunrock [43] is for graph
processing. GPU-accelerated libraries, e.g., cuDNN for
deep neural network and cuFFT for FFT [44], also exist.

Hardware accelerators. Hardware accelerators
have been extensively studied in many research propos-
als. Conservation Cores [1] and QsCores [2], which
are conceptually application-specific hardware acceler-
ators, are proposed to reduce the energy consumption
for a wide range of applications. Since several applica-



tions, such as signal processing, data mining, and pat-
tern recognition, can tolerate inexact results, a neural
processing unit (NPU) [45, 46] is proposed to acceler-
ate general-purpose codes at the cost of reducing accu-
racy. For data-intensive applications, Lim et al. [47] de-
signed SoC accelerators to efficiently process a widely-
used key-value store system as Memcached. Kocberber
et al. [48] introduced an on-chip specialized accelerator
for hash index lookups of in-memory databases. Wu et
al. [5] proposed HARP accelerator for data partitioning.

Researchers are also aware of the importance of
domain-specific accelerators. Milder et al. [4] proposed
to automatically generate highly efficient FFT cores.
Perdram et al. [3] proposed linear algebra accelerators
for Level-3 BLAS. Wu et al. [6] built heterogeneous ac-
celerators for improving energy efficiency of database
querying. Madhavan et al. [49] proposed the Race Logic
for accelerating dynamic programming algorithms. Liu
et al. [7] designed a polyvalent accelerator for various
machine learning algorithms.

Programming heterogeneous systems. Direc-
tive-based programming models such as OpenACC [50]
are proposed to ease the programming burden of spe-
cialized accelerators. Another source of heterogene-
ity is graphics coprocessors (GPUs). Well known pro-
gramming models for GPUs include CUDA [51] and
OpenCL [52]. Memory management is the key deter-
minant of GPU programming model. Originally, the
CPU and GPU have their own virtual memory spaces,
as separate memory space, leading to tedious efforts to
maintain two data copies. Unified Virtual Addressing
(UVA) [53] is proposed to enable shared virtual space
between the CPU and the GPU. Recently, shared vir-
tual address space [54, 55] is proposed to allow the pro-
grammer to simply use the standard memory allocation
functions such as malloc and new.

3D-stacked near-DRAM computing. There are
a few literatures on integrating programmable compu-
tation logic to the logic layer of 3D-stacked DRAM.
Pugsley et al. [38] integrated energy-efficient processor
cores to the logic die of 3D-stacked DRAM for MapRe-
duce workloads, and compared the advantages of var-
ious near-data computing approaches for in-memory
MapReduce [56]. Zhang et al. [57] proposed to inte-
grate programmable GPUs to 3D-stacked DRAM to of-
fer high throughput. Guo et al. [58] built a 3D-stacked
memory-side accelerated system with sufficient software
support for programming. Azarkhish et al. [59] showed
the Smart Memory Cube that employs AXI-based inter-
connect to link a processor-in-memory with vault con-
trollers on the logic die of HMC. Nair et al. [9] proposed
the Active Memory Cube that integrates SIMD-like pro-
cessing elements to the logic layer of HMC to balance
the programmability and energy efficiency. Farmahini-
Farahani proposed a near-DRAM acceleration archi-
tecture (NDA) to stack accelerator logics atop con-
ventional 2D DRAM [29]. In contrast to these work,
MEAlib focuses on accelerating memory-bounded op-
erations that are well-defined by portable library APIs.
Hence, MEALib can inherently resolve the program-

ming dilemma for such accelerated systems to achieve
portable energy efficiency. Moreover, as such library
operations are widely used in many domains, MEALib
is applicable for many applications.

7. CONCLUSIONS

High performance libraries are pervasively used in a
broad range of applications and computation domains.
Hence, we proposed to design accelerators that instanti-
ate the APIs of these commonly used libraries in hard-
ware. In particular, a hardware-software co-design ap-
proach is used to target memory-bounded operations
within commonly used high performance libraries (e.g.,
BLAS and FFTW) for portable energy efficiency. The
end result is Memory Accelerated Library (MEALib).

From the hardware perspective, accelerators target-
ing memory-bounded operations are integrated onto the
3D stacked DRAM with extremely high internal band-
width. This allows us to overcome the memory limita-
tion between memory and computation units. A con-
figuration infrastructure is built to expand the appli-
cation scope of MEALib. This allows accelerators to
be chained in sequence to compute more complicated
operations, while reducing the need to design individ-
ual accelerators for each library routine. A source-to-
source compiler is used to translate the original library
calls to MEAlib runtime routines for accelerator con-
trol and configuration. This allows legacy code to use
memory-side accelerators without reimplementation. A
shared memory management is also implemented to
ease the design of such runtime routines. Experimen-
tal results show that, on average, legacy code using
MEALib improves performance and energy efficiency
by 38x and 75x, respectively, for individual operations
in Intel MKL. Finally, MEALib attains more than 10x
better energy efficiency over a highly optimized real-
world application using conventional software libraries.
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