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This paper presents a method for constructing hardware structures that perform a fixed per-
mutation on streaming data. The method applies to permutations that can be represented as

linear mappings on the bit-level representation of the data locations. This subclass includes many
important permutations such as stride permutations (corner turn, perfect shuffle, etc.), the bit
reversal, the Hadamard reordering, and the Gray code reordering.

The datapath for performing the streaming permutation consists of several independent banks

of memory and two interconnection networks. These structures are built for a given streaming
width (i.e., number of inputs and outputs per cycle) and operate at full throughput for this
streaming width.

We provide an algorithm that completely specifies the datapath and control logic given the

desired permutation and streaming width. Further, we provide lower bounds on the achievable
cost of a solution and show that for an important subclass of permutations our solution is optimal.

We apply our algorithm to derive datapaths for several important permutations, including a

detailed example that carefully illustrates each aspect of the design process. Lastly, we compare
our permutation structures to those of [Järvinen et al. 2004], which are specialized for stride
permutations.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design aids—Automatic Synthesis

General Terms: Algorithms, Design, Theory, Performance

Additional Key Words and Phrases: Permutation, RAM, streaming datapath, stride permutation,

matrix transposition, data reordering, linear bit mapping, connection network, switch

1. INTRODUCTION

Streaming architectures are very commonly used in hardware design, particularly
when high throughput is desired. A streaming architecture takes as input a vector
consisting of a fixed number of data words, divided into subvectors of equal length
that enter the system at regular intervals. Similarly, the architecture produces an
output vector of the same length and format. Further, a streaming architecture
is able to start processing the first subvector of a new input vector immediately
after the final portion of the last input vector enters the system. In other words,
a streaming architecture takes input and produces output at a fixed rate, with no
gap between data vectors.

Often, applications implemented with streaming architectures consist of compu-
tation stages separated by data permutations, i.e., re-orderings of data in a pre-
determined manner. Consider an application that processes a vector of length 2n

and consists of a permutation followed by parallel computation blocks. A non-
streaming implementation is shown in Fig. 1(a). All 2n elements of the input vec-
tor enter the system concurrently; hence the permutation is simply a re-ordering in
space using wires.

In contrast, in Fig. 1(b), the input vector is broken into subvectors of size 2k

(called the streaming width), k ≤ n, which enter the datapath in 2n−k consecutive
cycles. This yields a saving in the number of computation blocks needed, but also
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Fig. 1. This figure demonstrates the motivation for this work. On the left is a datapath that

receives all 2n inputs at once, reorders them with a simple hardwired permutation in space, and
performs computations A2m in parallel 2n−m times. On the right, we see a streamed version,
which streams in data 2k per cycle over 2n−k cycles. Now, the data must be permuted in space
and time. Designing this space/time permutation is the problem that we address in this work.

produces a problem. Namely, the initial permutation now requires a reordering in
space (via wires and switches) and in time (by storing and retrieving data from
memory).

When the streaming width (2k) is non-trivial (i.e., greater than 1 or 2), the
difficulty of building a streaming permutation structure greatly increases. Due
to the high cost of multi-port memory, the permutation must be performed over
several independent banks of memory, and partitioned in such a way to guarantee
that the data will be able to be streamed in and out without causing a bank conflict
(the need to read or write more than one word in a given memory bank at the same
time). In these situations, it is unclear how to build the memory, interconnection
networks, and necessary control logic. Except for a few special cases (discussed
below), this is an unsolved problem.

In this paper, we propose an efficient method for performing a large class of
permutations on data with arbitrary streaming width 2k (1 ≤ k ≤ n). The method
applies to any permutation that is a linear transform on the bit representation
of the data addresses. This class includes many important permutations such as
stride permutations (also called matrix transpositions or corner turns) and the bit
reversal. These permutations occur in a wide range of applications such as linear
transform algorithms (e.g., fast Fourier transform, Walsh-Hadamard Transform,
discrete sine and cosine transforms), multi-dimensional separable signal processing,
sorting networks, and Viterbi coding. In Section 6.2, we provide specific examples
(and references) for these applications.

We specify an architectural framework that utilizes dual-port memories (we re-
quire one read port and one write port). Memories of this type are abundant
on modern field-programmable gate arrays (FPGAs), and are straightforward to
implement in an application-specific integrated circuit (ASIC). We view the per-
mutations as linear mappings on the bit representation of the data locations, and
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express the hardware constraints (i.e., memory port constraints) as conditions on
the structure of the mappings. We provide an algorithm that is able to factor each
expressible permutation into terms that fulfill these conditions. In this way, we
provide an algorithm to design the complete datapath for the specified permuta-
tion. We analyze the implementation costs, derive lower bounds, and show that
our algorithm gives optimal solutions for an important subclass of permutations.

Further, for experimental validation, we have written a tool that takes as input a
permutation and a streaming width, and uses the algorithm presented in this paper
to design the hardware structure. The tool outputs this design in synthesizable
Verilog.

Related Work. The stride permutation is a special case of the problem we
address in this paper. In [Takala et al. 2003; Järvinen et al. 2004], streaming
structures for two-power sizes are developed. However, their solutions are based on
different assumptions and are hence different from ours. Additionally, [Gorman and
Wills 1995] considers a limited set of streaming stride permutations in the context
of hardware implementations of the fast Fourier transform.

In other recent work [Milder et al. 2009], we have developed a RAM-based method
that can be used to automatically design a streaming datapath for any given per-
mutation. This method is hence more general than the one we present here, but it is
much more expensive, because it cannot take advantage of the linearity assumption
used in this paper.

In [Parhi 1992], a technique is presented to design data format converters, which
are register-based structures that are synthesized to perform a given streaming
permutation. This technique is applicable to all permutations and all streaming
widths. Designs produced in this way consist of independent registers connected
with wires and multiplexers. A benefit of this approach is that it is optimal in the
amount of storage used for a given permutation. However, this storage is distributed
across many small independent registers, often leading to very complicated control
and routing.

Also of note is [Láng 1976], which gives a scheme to permute n data points at a
stride of n/2 (also known as the perfect shuffle) on an array computer, which consists
of several parallel memories connected by a network of switches. Performing a
permutation on this type of system has several similarities to the streaming problem
we consider.

Lastly, we note that a large amount of work has been done in the area of permu-
tation networks [Benes 1965; Waksman 1968; Lawrie 1975; Pease 1977]. Although
there are connections between this work and ours (discussed later), there is a very
important distinction: these networks take in and permute 2n data points concur-
rently, while our streaming problem receives the 2n data elements at a rate of 2k

per cycle, separated over multiple consecutive cycles. Thus, our structures require
memory to reorder across time boundaries, while permutation networks do not.

In Section 6.2, we present a more thorough discussion of this related work and
evaluate the result of applying our general method to the stride permutation by
comparing with [Järvinen et al. 2004].

Organization. We begin with a description of our notation and present the
necessary linear algebra background in Section 2. In Section 3, we state the exact
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problem and formulate it mathematically including a suitable cost model. We derive
the lower bounds on the implementation costs in Section 4. Section 5 presents
the algorithm for constructing our solutions, identifies the cases in which they are
optimal, and shows a detailed example. In Section 6, we evaluate our streaming
permutations: (a) we provide several examples of important permutations and their
streaming solutions and identify those that are optimal, (b) we compare to related
work, and (c) we discuss applications of streaming permutations. Lastly, we offer
our concluding remarks in Section 7.

2. BACKGROUND AND NOTATION

Permutations and linear bit mappings. In this paper we consider permutations
on 2n points 0, . . . , 2n − 1. For example, the cyclic shift (by 1) is defined by

C2n : 0 7→ 1 7→ 2 7→ . . . 7→ 2n − 1 7→ 0, or i 7→ i + 1 mod 2n.

We equally view permutations as matrices and use the same notation for them.
There are two choices for associating a matrix with a permutation and they are
transposes of each other; we choose the one that makes

C2n =











0 1
1

. . .

1 0











. (1)

The set of all permutations on 2n points is denoted with S2n and it is a group,
called the symmetric group. It has 2n! elements.

We denote the field (also called Galois field) with 2 elements with F2 = {0, 1}
and consider its elements as the two states of a bit. Addition and multiplication in
F2 are equivalent to the “xor” and “and” operations, respectively.1

Permutations on 0, . . . , 2n − 1 can equivalently be seen as permutations on the
corresponding bit representations x ∈ F

n
2 of these numbers. We view these x as

column vectors and assume the least significant bit is on the bottom. For example,
for n = 2, the number 1 is represented as ( 0

1 ).
In some cases a permutation of F

n
2 is a linear mapping on F

n
2 of the form

y = Px, P ∈ GLn(F2),

where GLn(F2) is the group of all invertible n × n bit matrices. Its size is (2n −
1)(2n − 2) · · · (2n − 2n−1). Every bit matrix P ∈ GLn(F2) defines a permutation in
S2n . We formally capture this by the mapping

π : GLn(F2) → S2n , P 7→ π(P ). (2)

We will identify GLn(F2) with its image π(GLn(F2)) in S2n .
Consider a small example:

P =

(

1 1
1

)

1In this paper we only require the ring structure of F2. Hence, our method can be generalized
by replacing F2 with any ring of integers modulo a fixed n. This way, for example, a streaming

datapath for a radix-3 bit reversal can be derived.
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maps ( 0
0 ) 7→ ( 0

0 ), ( 0
1 ) 7→ ( 1

1 ), ( 1
0 ) 7→ ( 1

0 ), ( 1
1 ) 7→ ( 0

1 ), i.e., 0 7→ 0, 1 7→ 3 7→ 1, 2 7→ 2,
which implies

π(P ) =









1
1

1
1









.

To clearly distinguish matrices P that operate on n bits from permutation matrices
that operate on 2n points, we will bold-face the latter as in (1).

We introduce additional notation for matrices. We denote the direct sum and
the Kronecker or tensor product of matrices P,Q respectively with

P ⊕ Q =

(

P
Q

)

, and P ⊗ Q = (pi,jQ)i,j for P = (pi,j).

Further, In is the n × n identity matrix and Jn is In with the columns in reversed
order. The stride permutation is defined via

L2n,2s : i2n−s + j 7→ j2s + i, 0 ≤ i < 2s, 0 ≤ j < 2n−s.

Equivalently, L2n,2s transposes a 2n−s×2s array stored in row-major order. L2n,2n−1

is also called the perfect shuffle.
The bit-reversal permutation is denoted with R2n .
Now we can state the following well-known properties of π defined in (2). In (4)

below, Cn−k
n is the (n−k)th power of the cyclic shift Cn, i.e., a cyclic shift by n−k

on n points.

Lemma 2.1. Let P,Q ∈ GLn(F2). Then the following holds.

(1 ) π(PQ) = π(P )π(Q) and π(P−1) = π(P )−1 (i.e., π is a group homomorphism).

(2 ) π(P ⊕ Q) = π(P ) ⊗ π(Q).

(3 ) π(In) = I2n

(4 ) π(Cn−k
n ) = L2n,2k

(5 ) π(Jn) = R2n

We will encounter other relevant pairs of P and π(P ) in Section 6.
Linear algebra background. We use a number of basic results from linear

algebra (e.g., [Bernstein 2005]). If P ∈ F
m×n
2 is an m × n bit matrix, then

im(P ) = {Px | x ∈ F
n
2} and ker(P ) = {x ∈ F

n
2 | Px = 0}

are the image and kernel (or nullspace) of the linear mapping defined by the matrix
P . It holds that dim(im(P )) = rank(P ) and dim(ker(P )) + dim(im(P )) = n. Fur-
ther, rank(P + Q) ≤ rank(P ) + rank(Q) and rank(PQ) ≤ min(rank(P ), rank(Q)).

If V ≤ F
n
2 is a vector subspace of dimension dim(V ) = k, then |V | = 2k. If

x ∈ F
n
2 , then any x + V = {x + v | v ∈ V } is called a coset of V in F

n
2 . Its size is

again 2k and there are precisely 2n−k many different cosets that partition F
n
2 .

3. PROBLEM FORMULATION

Given is an invertible linear bit mapping, or bit matrix, P ∈ GLn(F2); π(P ) is
the corresponding permutation on 2n points. We want to design a logic block that
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Fig. 2. The problem considered in this paper: permuting an input vector of length 2n, streamed

with width 2k. The permutation (enclosed by the gray box) is performed in two stages using 2k

available RAMs with write/read port restrictions and suitably designed connection networks.

permutes a vector of 2n data words with π(P ). The vector is streamed with a
streaming width 2k, k ≤ n. This means that in every cycle the logic block takes a
segment of length 2k of the vector as input, and produces a segment of equal length
of the permuted vector as output (see Fig. 1(b)). Further, we assume there are 2k

banks of RAM, each of which can hold at least 2n−k data words of the vector. (If
each available RAM can only hold 2c words, c < n − k, then 2n−k−c RAMs can
be used to simulate a RAM of size 2n−k.) We assume that each of the RAMs is
dual-ported. That is, each memory can concurrently read and write one data word
in each cycle.

The conditions described above capture the situation on current FPGA platforms,
but can also be realized as an ASIC.

The basic idea is to design two connection networks as shown in Fig. 2 and to
permute the data in two stages by writing into the RAMs and reading out from
the RAMs. We call the first stage (input data to RAM) the write-stage and the
second stage (RAM to output data) the read-stage. Each stage has to obey the
port restrictions of the RAMs, i.e., no further buffers are used.

Besides finding a solution, the optimization criterion is to minimize the cost of
the connection network.

To mathematically formulate the situation and problem above, we go through
several steps:

—Address scheme and stages: We assign proper addresses to the input vector and
the RAMs. The problem is then to find a suitable factorization of the bit matrix
P into a matrix product N−1M , one matrix for each stage.2

—Constraint: dual-ported: We formulate this constraint mathematically as a con-
dition on certain submatrices of M and N .

—Optimization criteria: We capture the cost of the connection network through
two metrics: the connectivity of the network and the cost of the control logic.
Both metrics are properties of M and N .

Address scheme and stages. The streamed input vector of length 2n is in-
dexed with addresses x ∈ F

n
2 as shown in Fig. 3(a). The stage number is given by

2We factor P = N−1M and not P = NM for notational convenience later.
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Fig. 3. Addressing used in this paper. The streamed vector contains 2n data words streamed in
2n−k stages; 2k RAMs with space for (at least) 2n−k data words each are available.

the upper n − k bits of x and the location within the stage by the lower k bits,

referred to as x2 and x1, respectively: x =

(

x2

x1

)

.

The 2k RAMs are indexed with addresses z ∈ F
n
2 as shown in Fig. 3(b). The

RAM number z1 is given by the k lower bits of z, and the location z2 in the RAM

by the n − k upper bits: z =

(

z2

z1

)

.

The addressing of the output vector y is analogous to the addressing of the input
vector.

We want to perform P , i.e., y = Px, in two stages, the write-stage z = Mx and
the read-stage y = N−1z, which is equivalent to a factorization

P = N−1M, (3)

where M,N ∈ GLn(F2) are again (necessarily) invertible bit matrices. In words, M
determines how the streaming data is stored into the RAMs (the write-stage), and
N−1 determines how it is read out of the RAMs into the resulting data stream (the
read-stage). The addressing is chosen such that M = I2n or N−1 = I2n makes the
write or read stage trivial, respectively. This means that the connection network
and all address computations vanish.

By partitioning the addresses as explained above, we obtain the following ex-
panded version of the write-stage z = Mx:

where in RAM

RAM number

(

z2

z1

)

=

(

M4 M3

M2 M1

)(

x2

x1

)

stage number

where in stage
(4)

The matrix tiling is compatible with the partitioning of the vectors. For example,
M1 is a k × k matrix.

Analogous to the write-stage, we also expand the read-stage y = N−1z. However,
there is one crucial difference. Namely, the control logic in Fig. 2 determines from
which RAM and where in this RAM to read, given the output stage number and
the output stage location. Thus, we have to consider the inverse equation z = Ny
and partition N as M above:

where in RAM

RAM number

(

z2

z1

)

=

(

N4 N3

N2 N1

) (

y2

y1

)

stage number

where in stage
(5)

Constraint: dual-ported. Since the RAMs are dual-ported, they allow only
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one write (and read) per cycle. Thus, we require that for every stage, each of the
2k data words is mapped into a different RAM. Mathematically, this means that
for any fixed x2 the mapping

z1 = M2x2 + M1x1

is bijective. This is the case if and only if M1 is invertible, i.e., has full rank:
rank(M1) = k. A similar discussion yields the requirement rank(N1) = k.

Connectivity. The major cost factors in Fig. 2 are the two connection networks.
They are determined by the connections required for writing input data into the
RAMs, and for retrieving the output data from the RAMs, collected over all stages.
In the best case, the data words are always written to or read from the same RAM,
which reduces the connection network to a simple wired connection without control
logic. In the worst case, an all-to-all connection has to be supported.

Given M and N , we can measure the required connectivity as follows.

Lemma 3.1. Let M be as in (4) (N as in (5)) and assume that M1 (N1) is
invertible and set rank(M2) = s (rank(N2) = s). Then, the 2k-to-2k connection
network in the write-stage (read-stage) of Fig. 2 decomposes into 2k−s independent
2s-to-2s networks, called blocks.

The input and output index sets of these blocks (subsets of 0, . . . , 2k − 1) are
precisely the cosets

x1 + im(M−1
1 M2) and M1x1 + im(M2)

for the write-stage and are the cosets

y1 + im(N1
−1N2) and N1x1 + im(N2)

for the read-stage.
Further, each block has to support an all-to-all connection and precisely 2s dif-

ferent configurations.

Proof. We prove the lemma for the write-stage; the read-stage is handled anal-
ogously.

We set s = rank(M2). Assume x1 is the address of a stage location (i.e., a number
that indicates one of the 2k input ports). We accumulate, over all stages, the RAM
numbers z1 that x1 connects to. This is the set

Ux1
= {M2x2 + M1x1 | x2 ∈ F

n−k
2 } = im(M2) + M1x1. (6)

The size of this set is 2s. Now assume x′

1 is another address within a stage, and
satisfies Ux1

∩ Ux′

1
6= ∅. Then

M1(x1 − x′

1) ∈ im(M2) ⇔ x′

1 ∈ x1 + M−1
1 im(M2) = x1 + im(M−1

1 M2).

The size of this set is also 2s. Conversely, assume x′

1 has the above form, i.e.,
x′

1 = x1 + M−1
1 M2x2 for some x2 ∈ F

n−k
2 . Then, using (6),

Ux′

1
= im(M2) + M1x1 + M2x2 = im(M2) + M1x1 = Ux1

.

In other words, if x1 and x′

1 share one connection target z1, they share all 2s targets,
which proves the block decomposition. The input and output index sets are also
computed as desired.
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The above also shows that each block has to support an all-to-all connection. The
remaining question is the number of control configurations. Assume two stages x2,
x′

2 that connect all x1 equally, i.e., for all x1 ∈ F
k
2 ,

M2x2 + M1x1 = M2x
′

2 + M1x1 ⇔ x′

2 ∈ x2 + ker(M2).

The size of this set is 2n−k−s and we get that the 2n−k stages partition into 2s many
groups of size 2n−k−s each, such that within the groups, all connections are equal.
These groups are the cosets x2 + ker(M2). Between different groups of stages the
connections differ since each x1 has 2s many targets (|Ux1

| = 2s). This completes
the proof.

Lemma 3.1 implies that it is desirable to minimize rank(M2) and rank(N2) in (4)
and (5) to minimize the area cost of the implementation in Fig. 2. It motivates the
following definition.

Definition 3.2 (Connectivity). Given a matrix M in (4) or N in (5), we
call conn(M,k) = 2rank(M2) and conn(N, k) = 2rank(N2) the connectivity of M and
N , respectively, with respect to the streaming width 2k.

In the following we will mostly omit the second argument k since it is clear from
the context. In words, high connectivity implies high switching cost.

Cost of control. The control blocks in Fig. 2 have to compute z given x and z
given y, respectively. This motivates the following cost measure, based upon linear
complexity [Bürgisser et al. 1997].

Definition 3.3 (Control cost). Let M be as in (4) (N as in (5)). Then we
call cost(M) (cost(N)) the control cost of M (N), defined as the linear complexity
of M (N), i.e., the minimum number of (binary) additions to compute z = Mx
(z = Nx).

Formal problem statement. With the above notation and discussion we can
now formally state the problem as follows.

Problem 3.4. Given are an invertible bit matrix P ∈ GLn(F2), partitioned as
in (4), and a streaming width 2k, k ≤ n.

(1) Determine a factorization P = N−1M , such that rank(M1) = rank(N1) =
k. The goal is to minimize rank(M2), rank(N2) and the complexity of M and N .
Necessarily, M,N ∈ GLn(F2).

(2) Design the two connection networks in Fig. 2 from two-port switches. In
Section 4.2 we will see that is equivalent to determining decompositions

M2 = T1 + T2 + · · · + Trank M2
and N2 = T ′

1 + T ′

2 + · · · + T ′

rank N2
,

where all Ti and T ′

i are matrices of rank 1.

Our goal requires the minimization of four different values, listed above. In Sec-
tion 4, we will derive lower bounds for these. Later, we will show that our solutions
always match the lower bounds for two out of the four values (namely rank(N2)
and cost(N)), and, for an important subset of permutations, we achieve complete
optimality for all four values.
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4-to-4

4-to-4

control

control

Fig. 4. M in (7) realized as an 8-to-8 connection network decomposed into two 4-to-4 blocks.

Example. Let M be the matrix representing the write stage of a permutation,
streamed with 23 ports, blocked as in (4):

M =

(

M4 M3

M2 M1

)

=

















. . 1 . . .

. . . 1 . .

. . . . 1 .

. . . . . 1
1 . . 1 . .
. 1 . . 1 .

















. (7)

Since rank(M2) = 2, Lemma 3.1 asserts that the 8-to-8 network decomposes into
two 4-to-4 blocks, i.e.,

conn(M) = 2rank(M2) = 22 = 4.

The input sets for the two blocks are the cosets

x1 + im(M−1
1 M2) = x1 + im









0 1 0
0 0 1
1 0 0



 ·





0 0 0
1 0 0
0 1 0









= x1 + im





1 0 0
0 1 0
0 0 0





= x1 +
{(

0
0
0

)

,
(

0
1
0

)

,
(

1
0
0

)

,
(

1
1
0

)}

,

and the output sets are the cosets

M1x1 + im(M2) =





0 0 1
1 0 0
0 1 0



 x1 +
{(

0
0
0

)

,
(

0
0
1

)

,
(

0
1
0

)

,
(

0
1
1

)}

.

Here, the first block has inputs {0, 2, 4, 6} and the second block has inputs {1, 3, 5, 7}.
The outputs of the first block are {0, 1, 2, 3} and the outputs of the second block
are {4, 5, 6, 7}. This is illustrated in Fig. 4.

Definition 3.3 shows that the control cost, cost(M), is given by the linear com-
plexity of M . Obviously,

cost(M) ≤ 2.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Permuting Streaming Data Using RAMs · 11

Later, we will give a technique to automatically design the 2s-to-2s connection
networks.

4. LOWER BOUNDS AND THE DESIGN OF CONNECTION NETWORKS

4.1 Lower Bounds

Before we provide an explicit method to compute suitable factorizations P =
N−1M , we determine lower bounds on the quality, i.e., the connectivity and the
control cost, of a possible solution. This will allow us later to identify those cases
for which our solutions are optimal.

Similar to M and N in (4) and (5), we also tile P and P−1 as

P =

(

P4 P3

P2 P1

)

and P−1 =

(

P ′

4 P ′

3

P ′

2 P ′

1

)

(8)

for the following discussion.
Connectivity. We derive lower bounds on the connectivity of our interconnec-

tion networks. Later, we will show that we reach this lower bound for an important
subset of permutations.

Theorem 4.1. Assume P = N−1M is a solution of Problem 3.4, then

rank(M2) ≥ k − rank(P ′

1) and rank(N2) ≥ k − rank(P1),

which is equivalent to

conn(M) ≥ 2k−rank(P ′

1
) and conn(N) ≥ 2k−rank(P1).

Proof. Assume a solution P = N−1M , which implies NP = M , i.e., the equa-
tion

(

N4 N3

N2 N1

)(

P4 P3

P2 P1

)

=

(

M4 M3

M2 M1

)

, (9)

and M1 and N1 have full rank k. Further, we set r = rank(P1), which implies
rank(P3) ≥ k − r, since P has full rank. (9) implies M1 = N2P3 + N1P1. We get

k = rank(N2P3 + N1P1)

≤ rank(N2P3) + rank(N1P1)

≤ min(rank(N2), rank(P3)) + r.

As a consequence rank(N2) ≥ k − r or

conn(N) ≥ 2k−r = 2k−rank(P1)

as desired.
The bound on conn(M) is obtained analogously, starting from MP−1 = N .

As shown in Lemma 3.1, our solution requires 2k−s separate 2s-to-2s switching
blocks, which must each be “all-to-all”. That is, each of the 2s input ports must
be capable of being connected to each of the 2s output ports. We design these
networks by decomposing them into arrays of 2-to-2 switches, each of which takes
two elements and either exchanges them or allows them to pass, based upon a
control bit. Later, we will provide a constructive method for assembling these
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networks. Furthermore, we show that for an important subset of permutations, our
technique decomposes the problem into switching networks in an optimal way (i.e.,
the resulting networks have optimal connectivity, as defined in Definition 3.2).

Control cost.

Theorem 4.2. Assume P = N−1M is a solution, then

cost(M) ≥ k − rank(P ′

1) and cost(N) ≥ k − rank(P1).

Proof. In the proof of Theorem 4.1, we asserted that rank(N2) ≥ k− rank(P1).
This implies that N2 contains at least k − rank(P1) non-zero elements. Since
rank(N1) = k, the linear complexity of the matrix (N2 N1), and thus that of
N , is also at least k − rank(P1).

The bound on cost(M) is obtained analogously.

Theorems 4.1 and 4.2 show that the lower bounds for both the connectivity and
the control cost are determined by rank(P1) and rank(P ′

1), respectively. In the
worst case, both ranks are zero.

Example. Consider the stride permutation L2n,4 = π(C2
n) streamed with width

2k, 2 ≤ k ≤ n − 2. The corresponding tiling of P = C2
n as in (8) has, independent

of k, the form

C2
n =





































0 0 1
. . .

1
0 1
0 0 1

0 0 1
. . .

1
1 0

1 0





































. (10)

In this case rank(P1) = rank(P ′

1) = k − 2 (using P−1 = PT ). This implies that a
solution P = N−1M that meets the lower bounds satisfies conn(M) = conn(N) =
4, i.e., each connection network decomposes into 2k−2 individual all-to-all networks,
each with 22 = 4 inputs and outputs. Further, cost(M) = cost(N) = 2.

We will later see that such an optimal solution does indeed exist.

4.2 Connection Networks

In Lemma 3.1, we established that the two connection networks in the write and
read stages decompose into blocks with 2s inputs and outputs, where s = rank(M2)
or s = rank(N2), respectively. In the following we explain how to build these
networks from two-port switches.

We consider the write stage given by M partitioned as in (4) and with invertible
M1. The connection network of the write stage, now considered without subsequent
writing into the RAMs, performs a permutation for each stage according to z1 =
M2x2 + M1x1. If we adopt the addressing scheme in Fig. 3(a) for the input and
output data stream of the network, then the network is again represented by a bit
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matrix, namely by

T =

(

In−k

M2 M1

)

. (11)

Conversely, every matrix of this form with invertible M1 defines a connection net-
work that decomposes into 2s-to-2s blocks, where s = rank(M2).

To efficiently implement the network we decompose further. First,

T =

(

In−k

M2 Ik

)(

In−k

M1

)

.

Next, we use that
(

In−k

A Ik

)(

In−k

B Ik

)

=

(

In−k

A + B Ik

)

. (12)

Namely, we write M2 as a sum of s = rank(M2) many matrices Ti of rank one,

M2 = T1 + · · · + Ts. (13)

This is possible constructively, for example, by performing Gaussian elimination,
M2 = QM ′

2, where Q is an invertible lower triangular matrix and M ′

2 is in row
echelon form with s nonzero rows. Each row yields a summand T ′

i :

M ′

2 = T ′

1 + · · · + T ′

s,

and setting Ti = QT ′

i yields the result.
Using (12) we can now factorize T in (11) and hence decompose the connection

network. Analyzing the factors with Lemma 3.1 yields the following theorem.

Theorem 4.3. The connection network of the write stage in Fig. 2 is defined by
the matrix T in (11). With the previous notation, we have the factorization

T =

(

In−k

T1 Ik

)

. . .

(

In−k

Ts−1 Ik

) (

In−k

Ts M1

)

.

This implies that the connection network can be decomposed into a cascade of s
stages. Each stage is a connection network that consists of parallel 2-to-2 connection
networks, or two-port switches, simultaneously controlled by one control bit. The
input and output sets of these blocks are again cosets as determined by Lemma 3.1.
The resulting network has s columns, each consisting of 2s−1 switches, giving a
total of s · 2s−1 switches per network.

A similar statement holds for the connection network of the read stage in Fig. 2.

In (13), the summands can be permuted into any order, which implies that the
stages in Theorem 4.3 can also be permuted.

Each stage in Theorem 4.3 is controlled by one bit. This implies that the entire
network has 2s many possible configurations. This number coincides with the
number stated in Lemma 3.1 as desired. The control bit for each stage is calculated
by Tix2 (or Tiy2 when performing N).

The input and output sets of the first (write) stage are determined by

x1 + im(M−1
1 Ts) and M1x1 + im(Ts).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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For all other stages Ti, where 1 ≤ i < s, both the input and output sets are given
by

x1 + im(Ti).

For the read stage, the same expressions hold, with N1 substituted for M1.
Example. We now continue the example seen in Section 3. As before, let M be

as given in (7). By Theorem 4.3, we decompose the rank 2 matrix M2 into a sum
of rank 1 matrices,

M2 =





0 0 0
1 0 0
0 1 0



 =





0 0 0
1 0 0
0 0 0



 +





0 0 0
0 0 0
0 1 0



 = T1 + T2.

This decomposition results in the following factorization of T :

T =

(

I 0
T1 I

)(

I 0
T2 M1

)

=

















1 . . . . .
. 1 . . . .
. . 1 . . .
. . . 1 . .
1 . . . 1 .
. . . . . 1

































1 . . . . .
. 1 . . . .
. . 1 . . .
. . . . . 1
. . . 1 . .
. 1 . . 1 .

















, (14)

which corresponds to breaking the 4-to-4 connection network into two independent
2-to-2 networks.

Recall that T operates on a vector x of length 6. We write x as (x5, x4, x3,
x2, x1, x0)

T , where x5 indicates the most significant bit, and x0 indicates the least
significant bit. Reading T from right to left allows us to determine the resulting
connection network, shown in Fig. 5.

First, we use the rightmost term to determine the initial permutation and first
switching stage.3 This stage has input sets

(

x2

x1

x0

)

+ im(M−1
1 T2) =

(

x2

x1

x0

)

+ im





0 0 0
0 1 0
0 0 0





=
(

x2

x1

x0

)

+
{(

0
0
0

)

,
(

0
1
0

)}

,

and output sets

M1

(

x2

x1

x0

)

+ im(T2) =
(

x0

x2

x1

)

+
{(

0
0
0

)

,
(

0
0
1

)}

.

So, the input sets are {0, 2}, {1, 3}, {4, 6}, and {5, 7}, and the output sets are
{0, 1}, {2, 3}, {4, 5}, and {6, 7}. This, along with the initial blocking examined in
the Section 3, gives the initial permutation and switching structure seen here.

Next, the second stage’s input and output sets are determined by
(

x2

x1

x0

)

+ im(T1) =
(

x2

x1

x0

)

+
{(

0
0
0

)

,
(

0
1
0

)}

3Theorem 4.3 gives the input and output sets in terms x1, which is the generic description of the

bottom k bits of the address. In this example, we explicitly consider a vector of k = 3 bits.
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in0

in1

in3

in7

in6

in5

in4

in2

x4

x4

x4

x4

x5

x5

x5

x5

out0

out1

out3

out7

out6

out5

out4

out2

Fig. 5. The 8-to-8 connection network corresponding to (14). Each 4-to-4 block is decomposed

into two cascaded stages. The gray boxes highlight the separation between the two independent
4-to-4 blocks. Each column of switches is controlled by a single control value, as shown.

So, both the input and output sets are {0, 2}, {1, 3}, {4, 6}, and {5, 7}. This gives
the criss-crossing pattern seen before and after the switching column in Fig. 5.

As expected, this network has a connectivity of 4 and a control cost of 2.
Relationship to permutation networks. A large amount of work has been

done on switch-based permutation networks, which could be used in place of the
specialized connection networks we construct here. In our related work section
(Section 6.2), we compare the costs of our networks to two classes of permutation
networks from the literature.

5. THE ALGORITHM

Basic idea. To solve Problem 3.4, we make use of helper matrices, denoted as
H ∈ GLn(F2). A helper matrix has the form

H =

(

In−k

H2 Ik

)

(15)

and, due to (12), is always self-inverse:

H = H−1.

Given P and any H, we now get the factorization

P = H · HP. (16)

Setting N−1 = H and M = HP , we observe that N satisfies the rank condition
rank(N2) = k in Problem 3.4. The remaining question is how to design H such
that the rank condition on M is also satisfied and to minimize the connectivity and
control costs.
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Algorithm. Assume P is given tiled as in (8). If M = HP is tiled as in (4),
then

M1 = H2P3 + P1.

In other words, we have to find an H2 such that rank(M1) = k. H2 determines H
in (15) and hence the factorization of P in (16). The following theorem explains
that this is possible.

Theorem 5.1. Let P ∈ GLn(F2) be tiled as in (8) with rank(P1) = r ≤ k. Then
there exists H2 with rank(H2) = k − r and with exactly k − r non-zero entries such
that M1 = H2P3 + P1 has full rank k.

Proof. Before we start, we define E((i1, j1), . . . , (ik, jk)) as the matrix that has
ones at the locations (i1, j1), . . . , (ik, jk) and zeros elsewhere. The size of the matrix
is clear from the context.

Assume we choose H2 = E((i, j)), then H2P3 + P1 is the matrix P1 with the jth
row of P3 added to its ith row. This gives the basic idea: we select k − r suitable
rows of P3 and add them to suitable k − r rows of P1 to correct its rank deficiency.
Intuitively, this is possible since P and thus its submatrix ( P3

P1
) have full rank.

We first consider the special case where P is a permutation, since it is simpler
and important for applications.

P a permutation: P1 contains r base vectors (as rows); the remaining k − r
rows, with row indices i1, . . . , ik−r (in any order), are zero. The missing k − r
base vectors are in P3, say at row indices j1, . . . , jk−r. It follows that H2 =
E((i1, j1), . . . , (ik−r, jk−r)) satisfies the requirements.

General P : Here we have to do more work to identify the proper row indices.
Since P1 has rank r, we can permute r linear independent columns of P1 into the
first r locations and perform Gaussian elimination on the columns to zero out the
last k − r columns. In other words, there is an invertible upper-triangular matrix
G ∈ GLk(F2) such that Q1 = P1G has the last k− r columns equal to zero. We set
Q3 = P3G and get

(

P3

P1

)

=

(

Q3

Q1

)

G−1.

Now we identify r linear independent rows of Q1 and call the other row indices (in
any order) i1, . . . , ik−r. In each of the rows, the rightmost k − r entries are equal
to zero. Since ( Q3

Q1
) has full rank, there are k − r rows whose subvectors consisting

of the k − r rightmost entries are linear independent. We denote their indices by
j1, . . . , jk−r. We set H2 = E((i1, j1), . . . , (ik−r, jk−r)). It is clear that H2Q3 + Q1

has full rank and so does

(H2Q3 + Q1)G
−1 = M1.

The other requirements are also satisfied by H2.

The proof of Theorem 5.1 is constructive and yields the following algorithm for
solving Problem 3.4.

Algorithm 5.2. Input: P ∈ GLn(F2) and k ≤ n. Output: N,M ∈ GLn(F2)
such that P = N−1M and rank(M1) = rank(N1) = k. We use the previous notation
for the matrix tiles.
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Case 1: P a permutation matrix.

(1 ) Locate the k − r all-zero rows of P1. Denote their indices (in any order) with
i1, . . . , ik−r.

(2 ) Locate the k − r non-zero rows of P3. Denote their indices with j1, . . . , jk−r.

(3 ) Set H2 = E((i1, j1), . . . , (ik−r, jk−r)). Output N−1 = H and M = HP .

Case 2: Arbitrary P .

(1 ) Compute G ∈ GLk(F2) such that Q1 = P1G has the last k − r columns equal
to zero. Set Q3 = P3G.

(2 ) Locate r linear independent rows of Q1. Denote the remaining row indices (in
any order) by i1, . . . , ik−r.

(3 ) Locate k − r rows of Q3 such that their subvectors consisting of the last k − r
entries are linear independent. Denote the row indices with j1, . . . , jk−r.

(4 ) Set H2 = E((i1, j1), . . . , (ik−r, jk−r)). Output N−1 = H and M = HP .

The correctness of Algorithm 5.2 follows from Theorem 5.1. Termination is ob-
vious.

Theorem 5.3. Algorithm 5.2 terminates and is correct.

Optimality. Algorithm 5.2 always produces a “partially” optimal solution (one
stage is optimal). In some important cases the solution is optimal.

Theorem 5.4. For given P and k, Algorithm 5.2 produces a solution in which
the read-stage is optimal with respect to both connectivity and control cost.

If P is a permutation matrix, then also the write-stage is optimal with respect to
both connectivity and control cost.

Proof. We have to compare against the lower bounds in Theorems 4.1 and 4.2.
Read-stage: Theorem 5.1 establishes that in Algorithm 5.2 N2 = H2 has rank

k − r. Thus conn(N) = 2k−rank(P1), which is minimal (Theorem 4.1). Further,
N = H incurs k − r additions, i.e., cost(N) = k − rank(P1), which is minimal
(Theorem 4.2).

Write-stage, P a permutation: M = HP , which implies M2 = H2P4 + P2. Since
rank(P1) = r, rank(P2) = k − r. H2 is constructed to extract the k − r nonzero
rows with indices jℓ from P3. Since P is a permutation, this implies that the jℓth
row of P4 is zero. As a consequence H2P4 is zero and thus M2 = P2. Further,
P−1 = PT and hence P ′

1 = PT
1 . In summary, rank(M2) = k − r = k − rank(P1) =

k − rank(P ′

1), which is minimal (Theorem 4.1). Further, M incurs k − r additions,
i.e., cost(M) = k − rank(P ′

1), which is minimal (Theorem 4.2).

Special properties in the case of bit permutations. For bit permutations
P , our algorithm produces optimal solutions. A few other special properties hold
in this case and are discussed next.

The proof of Theorem 5.4 asserts that if P is a bit permutation, then Algo-
rithm 5.2 yields M2 = P2. In other words, M has the form

M =

(

P4 P3

P2 H2P3 + P1

)

(17)
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and hence differs from P only in the bottom right k × k submatrix. In the general
case, both bottom submatrices M1,M2 differ.

Further, the matrix M1 = H2P3 + P1 is a permutation matrix in this case, since
it has full rank and at most k and thus precisely k nonzero entries.

Finally, the matrix H2 obtained by Algorithm 5.2 contains exactly k − r ones,
which are located in precisely those rows of P1 that are zero. The same holds for P2.
Since rank(P2) = rank(H2) = k − r, we get im(M2) = im(P2) = im(H2) = im(N2).
As a consequence, using Lemma 3.1, both connection networks in Fig. 2 decompose
into blocks equivalently.

Connection networks. The read stage of the solutions produced by Algo-
rithm 5.2 always has the form

N = N−1 =

(

In−k

E((i1, j1), . . . , (ik−r, jk−r)) Ik

)

.

This makes the decomposition of the connection network according to Theorem 4.3
easy by setting

Tℓ = E((iℓ, jℓ)).

Example. As an example, we derive a solution for P = C2
6 streamed with width

23, as shown below. We perform Algorithm 5.2 step by step. P is a permutation;
thus, Case 1 applies.

P =

















. . 1 . . .

. . . 1 . .

. . . . 1 .

. . . . . 1
1 . . . . .
. 1 . . . .

















.

Step 1: P1 has two all-zero rows, namely the last two with indices i1 = 2 and
i2 = 1.

Step 2: P3 has two non-zero rows, namely the last two with indices j1 = 2 and
j2 = 1.

Step 3: We get H2 = E((2, 2), (1, 1)). H2 is a 3 × 3 matrix with two 1 values.
The desired factorization is readily computed through N−1 = H, M = HC2

6 :

C2
6 =

















1 . . . . .
. 1 . . . .
. . 1 . . .
. . . 1 . .
. 1 . . 1 .
. . 1 . . 1

































. . 1 . . .

. . . 1 . .

. . . . 1 .

. . . . . 1
1 . . 1 . .
. 1 . . 1 .

















. (18)

M matches (17) and M1 is a permutation matrix as asserted above. The solu-
tion has to be optimal by Theorem 5.4. Indeed, conn(M) = conn(N) = 4 and
cost(M) = cost(N) = 2, which meets the lower bounds given in Theorems 4.1 and
4.2. Decomposing M2 and N2 as described in Theorem 4.3, we construct switching
networks that require a total of 16 switches.

It is interesting to note that the solution introduces bit arithmetic, namely two
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RAM 0

x4

write address:

{x3, x2, x1}

read address: 

{y5, y4, y3}

x4

x4

x4

x5

x5

x5

x5

RAM 1

RAM 2

RAM 3

RAM 4

RAM 5

RAM 6

RAM 7

y3 y4

y4

y4

y4

y3

y3

y3

out0

out1

out3

out7

out6

out5

out4

out2

in0

in1

in3

in7

in6

in5

in4

in2

Fig. 6. Datapath for P = C2
6 with streaming width 8, based on the decomposition in (18).

additions or xors for each address computation, even though the original P requires
none.

Now, we discuss the complete hardware implementation of this example, seen in
Fig. 6. Note that M corresponds to the matrix M seen in (7), so we will implement
M as in the previous example, seen in Fig. 5.

We consider the input vector of length 64 to be indexed with addresses x ∈ F
6
2,

with the upper 3 bits corresponding to the stage number, and the lower 3 bits
indicating the location within the stage. We write x as (x5, x4, x3, x2, x1, x0)

T ,
with x5 as the most significant bit and x0 as the least significant. Likewise, we
have an output vector indexed with address y ∈ F

6
2 of the same form.

Our factorization of M ’s connection network was previously shown in (14). From
this, we determine the following characteristics for the write stage. As explained in
the example in Section 4.2, the first stage is controlled by x4 and the second stage
is controlled by x5.

As discussed in Section 3, the memory write addresses are calculated directly
from M . The write addresses are given by M4x2 + M3x1. So, this gives memory
write addresses

M4x2 + M3x1 =





0 0 1
0 0 0
0 0 0









x5

x4

x3



 +





0 0 0
1 0 0
0 1 0









x2

x1

x0



 =





x3

x2

x1



 .

We see that the memory address where each word must be written is the three
bit value given by (x3, x2, x1)

T . We determine the input and output connections
of each block from the cosets, as discussed in Lemma 3.1 and demonstrated in
Section 4.2.

We perform the same process for N . Note that N−1 = N. Following Theorem 4.3,
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we decompose N to

N =

















1 . . . . .
. 1 . . . .
. . 1 . . .
. . . 1 . .
. 1 . . 1 .
. . 1 . . 1

















=

















1 . . . . .
. 1 . . . .
. . 1 . . .
. . . 1 . .
. 1 . . 1 .
. . . . . 1

































1 . . . . .
. 1 . . . .
. . 1 . . .
. . . 1 . .
. . . . 1 .
. . 1 . . 1

















.

The first stage has input sets

(

x2

x1

x0

)

+ im(N−1
1 T2) =

(

x2

x1

x0

)

+ im





0 0 0
0 0 0
0 0 1



 =
(

x2

x1

x0

)

+
{(

0
0
0

)

,
(

0
0
1

)}

and output sets given by

N1

(

x2

x1

x0

)

+ im(T2) =
(

x2

x1

x0

)

+ im





0 0 0
0 0 0
0 0 1



 =
(

x2

x1

x0

)

+
{(

0
0
0

)

,
(

0
0
1

)}

.

The second stage has input and output sets given by

(

x2

x1

x0

)

+ im(T1) =
(

x2

x1

x0

)

+ im





0 0 0
0 1 0
0 0 0



 =
(

x2

x1

x0

)

+
{(

0
0
0

)

,
(

0
1
0

)}

.

So, the first stage has input and output sets {0, 1}, {2, 3}, {4, 5}, and {6, 7}. The
second stage has input and output sets {0, 2}, {1, 3}, {4, 6}, and {5, 7}. Using the
technique described in Section 4.2, we see that the first stage is controlled by y3,
and the second by y4. We determine the memory read addresses from

N4y2 + N3y1 =





1 0 0
0 1 0
0 0 1









y5

y4

y3



 +





0 0 0
0 0 0
0 0 0









y2

y1

y0



 =





y5

y4

y3



 .

So, the memory read addresses are given by the three bit value (y5, y4, y3)
T . The

resulting implementation is visualized in Fig. 6.
We consider more examples in the next section.

6. EXAMPLES AND APPLICATIONS

In this section, we provide more examples and discuss relevant applications of
streaming permutations. First, we examine several important permutations and
present the solutions obtained using Algorithm 5.2. For each example, we give
the exact specification of the solution as well as the solution’s costs. Of particular
interest is the stride permutation L, which is given in Example 5 below. Later, we
discuss related work and compare our solutions against those found in the literature.

6.1 Decomposition examples

We present several example classes of permutations and derive their implementa-
tions for arbitrary streaming width. In addition to an exact specification, we use a
visual representation of the solution matrices to show the form of the matrix under
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general conditions. In these pictures, each box represents a matrix P , N , or M .
The dashed lines show the divisions between the submatrices, and the solid black
lines indicate segments with value 1 in the matrix. Gray boxes are used to indicate
portions of the matrix that are unknown or not specified in the problem. Lastly, the
blank areas of the box indicate portions of the matrix equal to zero. For example,
the matrix C2

n given in (10) would be represented as

A summary of the results from this section is shown later in Table I.
Example 1: P with full rank(P1). If the bottom-right matrix P1 has full

rank (i.e., rank(P1) = k), then P fulfills the restrictions by itself. So, a solution of
P = N−1 ·M is given by P = I ·IP . This factorization can be visualized as follows:

= ·P P

The cost incurred by N is given by:

conn(N) = 1 and cost(N) = 0.

The cost of M , cost(M) is equal to the linear complexity of P , and the connectivity
is given by conn(M) = rank(P2).

Example 2: π(Q) ⊗ I. Given π(P ) = π(Q) ⊗ I2ℓ , Lemma 2.1 shows that

P = Q ⊕ Iℓ.

Case 1: ℓ ≥ k. Under this condition, P1 has full rank and the problem is solved
as in Example 1. This produces the following solution:

= ·
Q Q

Case 2: ℓ < k. If ℓ < k, we first use Algorithm 5.2 on Q, with streaming width of
k − ℓ. This results in the factorization Q = N−1

0 · M0. Once this solution is found,
the values for N and M are found according to:

N−1 = N−1
0 ⊕ Iℓ, M = M0 ⊕ Iℓ.

This solution has the following form:
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= ·Q N0 M0

The arithmetic and connection costs of N and M are identical to the costs for
N0 and M0 (respectively).

Example 3: I ⊗ π(Q). Given π(P ) = I2ℓ ⊗ π(Qm),

P = Iℓ ⊕ Qm.

Case 1: m ≤ k. If m ≤ k, then P1 has full rank, so the factorization is trivial.
Using the “full-rank” solution seen in Example 1, we obtain the following solution:

= ·

Q Q

Case 2: m > k. In this case, we first use Algorithm 5.2 on Q, with streaming
width k. This results in the factorization Q = N−1

0 ·M0. Then, N and M are found
according to:

N−1 = Ik−m ⊕ N−1
0 , M = Ik−m ⊕ M0.

The resulting solution will have the costs

conn(N) = conn(N0), cost(N) = cost(N0),

conn(M) = conn(M0), cost(M) = cost(M0).

The solution has the following form:

= ·
Q N0 M0

Example 4: I ⊗ π(Q) ⊗ I. If π(P ) = I2ℓ ⊗ π(Qm) ⊗ I2h , then

P = Iℓ ⊕ Qm ⊕ Ih.

If k ≤ h, then P1 has full rank, so the solution follows Example 1 above. If k > h,
P can be regrouped as P = Iℓ ⊕ (Qm ⊕ Ih), and the solution can be found as in the
I ⊗ π(Q) case, Example 3.

Example 5: Stride permutation L. We derive a solution for stride permu-
tations π(P ) = L2n,2s , streamed with width 2k, 1 ≤ k ≤ n − 1. Using Lemma 2.1,
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P = Cn−s
n . Let r = rank(P1). Then,

r =



















0, k ≤ s and k ≤ n − s

k − s, s < k ≤ n − s

k − (n − s), n − s < k ≤ s

2k − n, k > n − s and k > s

. (19)

Applying Algorithm 5.2, we obtain H2:

H2 = E((min(k, n − s) − ℓ, n − max(s, k) − ℓ) | ℓ = 1, . . . , k − r). (20)

Thus,

H =

(

In−k

H2 Ik

)

(21)

allows us to easily compute the final factorization according to N−1 = H, M =
HCn−s

n . This factorization yields cost(M) = cost(N) = k − r and conn(N) =
conn(M) = 2k−r.

Case 1: k ≤ s and k ≤ n− s. Under these conditions, P = Cn−s
n = N−1 ·M has

the form:

= ·

Case 2: s < k ≤ n − s. In this case, P1 has one or more non-zero rows, which
occur at the top of the matrix. P = Cn−s

n = N−1 · M has the form:

= ·

Case 3: n − s < k ≤ s. In this case, P1 has one or more non-zero rows, which
occur at the bottom of the matrix. P = Cn−s

n = N−1 · M has the form:

= ·

Case 4: k > n − s and k > s. In this case, P1 has one or more non-zero rows,
which occur at the top and bottom of the matrix. P = Cn−s

n = N−1 · M has the
form:
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= ·

Example 6: Bit reversal R. If π(P ) = R2n , then we see from Lemma 2.1
that

P = Jn.

Let r = rank(P1) = 2 · max(0, k − n/2). Applying Algorithm 5.2, we obtain H2:

H2 = E((r + i, i) | i = 0, . . . , k − r). (22)

Then, using P = N−1 · M = H · HP , we produce a solution with the following
costs:

conn(M) = conn(N) = 2k−r, cost(M) = cost(N) = k − r.

Case 1: k ≤ n/2. If k ≤ n/2, then this solution has the following form:

= ·

Case 2: k > n/2. In this situation, the solution has this form:

= ·

Example 7: Hadamard reordering. The Hadamard reordering [Astola and
Akopian 1999] permutes the 2n-element data vector X = (x0, x1, . . . , x2n−1)

T to the
vector Y = (xh2n (0), xh2n (1), . . . , xh2n (2n−1))

T , where h2n(·) is recursively generated
according to:

h1(0) = 0

h2K(2i) = hK(i)

h2K(2i + 1) = 2K − 1 − hK(i), i = 0, 1, . . . ,K − 1.

This permutation is represented as the matrix Z2n . If π(P ) = Z2n , then P = Sn,
defined as

Sn =













1 1

. .
.

. .
.

1 . .
.

1













. (23)
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P π(P ) solution conn(M) conn(N) cost(M) cost(N) optimal

Cn−s
n L2n,2s (21)
Case 1: k < min(s, n − s), 2k 2k k k yes
Case 2: s ≤ k ≤ n − s, 2s 2s s s yes
Case 3: n − s < k < s, 2n−s 2n−s n − s n − s yes

Case 4: k > max(n − s, s), 2n−k 2n−k n − k n − k yes

Jn R2n (22)

Case 1: k ≤ n/2, 2k 2k k k yes
Case 2: k > n/2, 2n−k 2n−k n − k n − k yes

Sn Z2n (24)

Case 1: k ≤ n/2, 2k 2k k n − 1 + 2k ?
Case 2: n/2 < k < n/2 + 1, 2k−1 2k−1 k − 1 n − 3 + 2k ?
Case 3: k ≥ n/2 + 1, 2n−k 2n−k n − k 3n − 2k − 1 ?

Table I. Summary of example bit matrices and their solutions.

Let r = rank(P1). Then, r = max(0, 2k−n). Applying Algorithm 5.2, we obtain
H2:

H2 = E((k − 1 − i, k − r − 1 − i) | i = 0, . . . , k − r − 1). (24)

Case 1: k ≤ n/2. The solution P = N−1 · M = H · HP has the following form
in this case:

= ·

Case 2: n/2 < k < n/2 + 1. In this case, the solution has this form:

= ·

Case 3: k ≥ n/2 + 1. In this case, the solution has the following form:

= ·

These solutions have the following costs:

conn(M) = conn(N) = 2k−r, cost(M) = n − 1 + 2(k − r), cost(N) = k − r.

Table I presents a summary of results from the examples shown in this section.
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6.2 Related work

Stride Permutation Networks for Array Processors. Although there is
very little in the literature on RAM-based general streaming permutations, some
work has been published on the stride permutation L. One solution is presented
in [Järvinen et al. 2004]. Like our solution, this method applies to any L2n,2s with
2k ports, and a specific network is built for each given (n, s, k).

Instead of using a few large memories, this solution utilizes many smaller FIFO
(first-in first-out) memories with interconnection networks between them. This
technique requires the minimal amount of total memory usage, which ranges be-
tween 2n−1 and 2n memory words (for a permutation on 2n points). However,
there are drawbacks to this approach. In many cases, it is preferable to have larger,
centralized memory structures, rather than the large amount of small structures
needed here (e.g., FPGA implementation, where the platform contains many built-
in RAMs of a particular size).

Now, we quantitatively compare the two implementations in terms of interconnect
cost, total memory storage, and memory distribution. We evaluate interconnection
cost by counting the number of 2-to-1 multiplexers needed in the final implemen-
tation. Each 2-to-2 switch counts as two 2-to-1 muxes. Memory usage is given in
the number of data words stored. Memory distribution is analyzed in terms of the
total number of memories needed and their sizes.

First we consider our implementations of the permutation L2n,2s , streamed with
2k ports. We can express the number of multiplexers used in our RAM-based
method as

MRAM =



















k · 2k, k < s and k < n − s

s · 2k, s ≤ k ≤ n − s

(n − s)2k, n − s < j < s

(n − k)2k, k > n − s and k > s

,

and the total number of memory words as

DRAM = 2n+1.

This storage requirement is distributed evenly over 2k RAMs; each must hold
2n−k+1 words.

These metrics are computed for the FIFO-based method described by Järvinen
et al. in the following way. Let r = min(s, n − s). The number of multiplexers
required is given by

MFIFO =











2k+2n−k

, k > n − r

2k+2r

+ 2k · MS(n − k, r), r ≤ k ≤ n − r

2k(MS(r, r − k) + 22k

+ MS(n − k, r)), k ≤ n − r and k < r

,

MS(n, s) =

{

2s, n = 2s

2s(n − s), n 6= 2s
.

The total amount of memory needed, given in terms of the total number of words
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Fig. 7. Comparison of the interconnection cost (measured in 2:1 multiplexers) between our solution
and that given by Järvinen et al. Plots demonstrate the trend as the streaming width 2k increases.

stored, is

DFIFO =











2n − 2k, k > n − r

2n − 2n−r, r ≤ k ≤ n − r

2n − 2r − 2n−r + 2k, k ≤ n − r and k < r

.

In order to quantify the distribution of memory structures, let Fi represent a FIFO
memory that is i elements deep. We can then calculate the total FIFO usage by

FFIFO =















2k ·
∑n−k−1

i=0 Fi, k > n − r

2k
(

∑r−1
i=0 Fi + FSPN(n − k, r)

)

, r ≤ k ≤ n − r

2k
(

FSPN(r, r − q) +
∑k−1

i=0 Fi + FSPN(n − q, r)
)

, k < n − r and k < r

,

FSPN(n, s) =

{

∑s−1
i=0 F(2s−1)2i , n = 2s

∑n−s−1
i=0

∑s−1
j=0 Fi+j , n 6= 2s

.

Using these characterizations, we can compare the two implementations of stream-
ing stride permutations. First, we compare interconnect cost, measured in the num-
ber of 2:1 multiplexers. Fig. 7 demonstrates two typical permutations. Note that
the irregular pattern seen in the Järvinen line is caused by the different regions in
the expression for MFIFO; discontinuities occur at the boundaries.

These graphs demonstrate that for a small number of ports, our proposed per-
mutations have a lower interconnection cost. As the size of the permutation (i.e.,
n) grows, the crossover point occurs at a larger value of k (i.e., a larger streaming
width). For example, we see that for L4096,8, our proposed permutation will only
have a higher interconnection cost when the number of ports grows to 29 = 512.

Next, we evaluate the total amount of memory used in the two methods. Our
proposed implementations use a constant amount of memory: 2n+1 data words,
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Fig. 8. Comparison of the total amount of memory needed (top) and total number of memories
of size ≥ 8 (bottom) for the proposed implementation of L4096,s , 2k = 2, against the method
given by Järvinen et al. Our solutions require between 2× and 4× more memory, but only require

2k independent memories. Järvinen’s implementations require less total storage, but need many
more independent memories. We show an example of the breakdown of the memories grouped by
size in Fig. 9.

where 2n is the size of the permutation. In contrast, we see that Järvinen et al. use
between 2n−1 and 2n data words. Fig. 8 (top) demonstrates the memory usage of
our proposed implementations versus Järvinen’s. In this example, we show L4096,s,
with s from 1 to 11, and with stream width 2k = 2. Across all s, our permutations
require 8192 words of storage, while Järvinen’s implementations range between 2048
and 3970.

Although Järvinen’s FIFO-based design requires significantly less storage than
the method we propose, the small number of distinct memory structures used in
our method make it better suited for many implementations. In Fig. 8 (bottom),
we show the total number of memories (of size ≥ 8 data words) for the same set
of implementations. Although our designs require more total storage, they only
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memory size
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[independent RAMs]

Fig. 9. Illustration of the number of memories needed to implement L4096,2 with 2k = 2 ports.
The dark bars indicate the memory structures needed for Järvinen’s implementation, while the
light bars demonstrate the memories needed for ours. We see that the design given by Järvinen

et al. requires a total of 54 memory structures, many small. Our proposed design requires 2 large
memory structures.

require 2k distinct memories, while Järvinen’s require many more.
In Fig. 9, we show the number of memory structures needed and their capacities

for both implementations of L4096,8 with two ports (2k = 2). Here, the x-axis shows
the size of the memory considered, and the y-axis shows the number of memories
of that size needed. We see that our implementation uses two memories, each of
size 4096. The implementation by Järvinen uses two memories of size 512, four
memories of size 256, and six each of 128, 64, . . . , 1. We see that the Järvinen
method requires a very large amount of small memory structures, each capable
of reading and writing once per clock cycle. In contrast, we see that our design
requires only a small number of large memories.

Other work related to stride permutation. Due to the importance of the
stride permutation L in the fast Fourier transform, there have been other studies
of streaming L implementations.

In [Takala et al. 2003], a memory-based structure is developed that is capable of
performing L2n,2s on streaming data. This implementation is able to permute data
of multiple vector lengths (i.e., values of n) with the same hardware. This solution
has a coarse-grained architecture that is similar to our implementations, but there
are a few notable distinctions.

In this work, the authors present a memory access scheme that reduces the mem-
ory cost from 2n+1 data words (as used by our solutions) to 2n. This optimization
is specific to the stride permutation; it relies on the strided reads and writes seen
with L. Lastly, we note that the generality given (i.e., the ability to perform mul-
tiple permutations with the same structure) leads to more complicated address
generation and interconnection than is used in our solution.

In [Gorman and Wills 1995], a class of pipelined implementations of the fast
Fourier transform is considered. Here, streaming stride permutations L2n,2s with
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minimum streaming with 2n−s (i.e., k ≥ n − s) are constructed. Similar to our
work, each structure is built to perform one specific permutation. Again, the coarse-
grained architecture of this solution space is similar to ours: data passes through
an interconnection network, is written into memory, then is read out in a different
order and streamed through a last network. Also like our implementations, the
storage requirement of this solution is 2n+1 data words. If k ≤ s, then

conn(N) = conn(M) = 2n−s and cost(N) = cost(M) = n − s

for both implementations. However, if k > s, then our implementations have

conn(N) = conn(M) = 2n−k and cost(N) = cost(M) = n − k,

while those in [Gorman and Wills 1995] have higher costs

conn(N) = conn(M) = 2n−s and cost(N) = cost(M) = n − s.

In [Láng 1976], implementations of the perfect shuffle (L2n,2n−1) over 2k memory
modules are considered. In this work, Láng assumes that a full 2k-to-2k intercon-
nection network connects the memory’s outputs back to its inputs. Additionally,
this method requires that storage for 2n+1 data words be provided (the permuta-
tion is performed out of place). Given these assumptions, the author determines
a partitioning of the permutation that enables the data to be read and written 2k

words at a time over 2n−k time periods. Compared to our implementation, this so-
lution has equal memory cost and a much higher connectivity cost. In our method,
conn(M) = conn(N) = 2 for all permutations considered by Láng. Our solution de-
composes both networks into 2k−1 independent 2-to-2 blocks, a significant savings
over a full 2k-to-2k network.

Other related work. In other recent work [Milder et al. 2009], we have devel-
oped a generalized technique for generating a streaming permutation structure for
an arbitrary permutation and streaming width. This method also bases the dat-
apath on simple parallel RAMs, but it requires twice as much storage (and twice
the number of independent memories) as the method proposed in this paper. Fur-
ther, [Milder et al. 2009] uses one full w to w switching network (where w is the
streaming width) that is not specialized or optimized for the given problem. Lastly,
the technique requires a more complicated method to determine memory addresses
and switch settings; these values are pre-computed at design time and stored in
lookup ROMs.

[Parhi 1992] describes a method for synthesizing register-based data format con-
verter given a permutation and input/output specifications. This technique can
produce designs that perform permutations as well as bit-level format conversion
of data words. Designs produced by this method consist of independent registers
connected with wires and switches or multiplexers. This technique is more gen-
eral than the one we present in this paper: it applies to any permutation and any
streaming width. Furthermore, the designs produced are guaranteed to use the
minimal number of registers for the problem.

However, a large drawback of [Parhi 1992] is that its memory consists solely of
distributed registers (instead of larger condensed RAMs). This can add considerable
cost and complexity to the design, especially on modern FPGAs, where it is more
efficient to use the platform’s dedicated memory structures.
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Permutation networks. In the architecture we describe, we employ specialized
permutation networks before and after the RAMs. These networks are spatial; they
do not permute across time boundaries. Each network connects 2k inputs to 2k

outputs (although in most cases we decompose to smaller sub-networks). In the
literature, a large amount of work exists on permutation networks of this sort. Here,
we discuss the applicability and costs of using these networks in place of our own.
Recall, our permutation networks are s stages wide, with each stage containing
2k−1 2-to-2 switches, where s = rank(M2) ≤ k.

First, we consider a class of 2k − 1 stage networks [Benes 1965; Waksman 1968;
Lee 1985]. These networks consist of 2k− 1 stages, each with 2k−1 2-to-2 switches.
Networks in this class are capable of performing all 2k! possible permutations on 2k

points. So, with pre-computation of the switch settings, one of these networks could
easily be used as a drop-in replacement for our network. However, the generality
of the network adds cost; it is more than twice the size of our worst-case network.

Next, we examine a class of k stage networks [Lawrie 1975; Pease 1977; Parker
1980]. These networks are capable of performing many possible permutations in one
pass, but some important permutations (e.g., Example 7 above) are not covered. In
some cases, networks in this class could be used to replace our networks. However,
even in these cases, the network’s cost is equal to our worst-case cost.

Potentially, networks in either class could be greatly simplified by specialization,
i.e., restricting the set of permutations the network may perform. This would lower
the implementation cost by allowing unneeded switches to be removed. However,
our constructive bottom-up solution is easily automated, and it builds a network
precisely specialized for the set of permutations needed for our problem.

6.3 Applications

The streaming permutations considered in this paper have a wide range of appli-
cations. In this section, we list and briefly discuss some of the most important.

Transforms. Permutations are extremely important in fast computation of
linear transforms. The Cooley-Tukey fast Fourier transform (FFT) and its vari-
ants [Van Loan 1992] use stride permutations L and the bit reversal R. A similar
Cooley-Tukey-like fast algorithm for the Walsh-Hadamard transform [Beauchamp
1984] also uses the stride permutation L.

Streaming permutations are applicable to fast algorithms for the discrete co-
sine transform (DCT) and discrete sine transform (DST). In [Püschel and Moura
2008], fast Cooley-Tukey type algorithms for these transforms are derived. These
algorithms use the stride permutation, as well as the permutation K2n,2m , defined

K2n,2m = (I2m−1 ⊗ (I2n−m ⊕ J2n−m))L2n,2m .

Inspection shows that I2n−m ⊕ J2n−m = π(Q) for

Q =











1
1 1
...

. . .

1 1











.
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Hence, K2n,2m = π(P ) for

P = (Im−1 ⊕ Q)Cm
n .

The K permutation can be represented as a linear transformation on the bit rep-
resentation, so it can be implemented by Algorithm 5.2.

In addition to Cooley-Tukey type algorithms, fast regularized (or constant ge-
ometry) algorithms for computing the DCT and DST exist [Astola and Akopian
1999]. These algorithms require the stride permutation L as well as the Hadamard
reordering, Z2n , seen in Example 7 in Section 6.1.

Some versions of the Walsh transform utilize Gray code reordering [Beauchamp
1984]. If we let this permutation be represented by π(Q), then Q is a lower-left
triangular matrix of ones.

Q =















1
1 1
1 1 1
...

...
...

. . .

1 1 1 . . . 1















.

For any streaming width, the bottom right submatrix Q1 will have full rank, so Q
will be factorized as in Example 1, above.

Additionally, some optimizations in the transform domain can be simply imple-
mented using our method. For example, [Duhamel 1990] shows how the bit reversal
and matrix transposition needed in the 2-D FFT can be performed together at a
reduced cost. In our framework, this optimization is easily realized as

π(P ) = (I2n ⊗ R2n)L22n,2n and P = (In ⊕ Jn) · Cn
2n.

Lastly, we note that the initial impetus for this work came from the transform
domain. In particular, we were motivated by flexible hardware implementations of
the FFT. In [Milder et al. 2008], we use the permutations described in this paper
to generate FFT implementations for FPGAs. In Fig. 10 (taken from [Milder et al.
2008]), we demonstrate a large range of tradeoffs between cost (in FPGA area) and
throughput (in million samples per second). Additionally, we compare the designs
to previous work [Nordin et al. 2005], which uses similar generation techniques,
but less efficient permutation structures, and to the commercially-available Xilinx
LogiCore library cores, which exhibit limited scalability. The flexible nature of the
permutations proposed in this work should enable a similar space of highly flexible
hardware designs for other transforms and applications.

Transposition. Permutations can be important applications themselves. For
example, the transposition (or corner turn) of an n× n matrix is simply the stride
permutation Ln2,n. Transposition is a very important application; it is commonly
used in multi-dimensional separable signal processing (e.g., multi-dimensional DFT,
image processing, etc.). This permutation is easily implemented with our method.

Other. Other possible applications for this work occur in a variety of domains.
For example, sorting networks [Bilardi 1989] and Viterbi coding [Viterbi 1967] both
access data in a stride permutation pattern. Our technique can be used in streaming
implementations of these applications.
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Fig. 10. FPGA cores for the fast Fourier transform, using the streaming permutations proposed
in this paper. This figure is taken from [Milder et al. 2008].

7. CONCLUSIONS

Many applications (such as linear signal processing transforms) can benefit from
hardware acceleration, but data permutations can be a difficult barrier preventing
high performance streaming architectures. The difficulty lies in trying to map the
permutation to 2k independent memory banks without causing conflicts.

In this paper, we described an architecture that uses dual-ported memory and
simple interconnection networks. We showed how to mathematically represent the
problem and its restrictions. We gave an algorithm that uses matrix manipulations
to reach a solution, given a permutation and a streaming width.

If the permutation can be expressed as a permutation on the bits, the solution
obtained is provably optimal with regard to network connectivity and control cost.
Furthermore, the algorithm and hardware generation are easily automated; we
have written a tool that takes a permutation and streaming width, and produces a
synthesizable Verilog description.

We provided several example permutations as well as the corresponding solutions
produced by the algorithm. We compared our method with relevant related work,
and examined prior work on permutation networks and their applicability to our
solution. Lastly, we discussed several applications for this method.

Extension. In this paper, we examined the case where a RAM-based datap-
ath is constructed for a specific permutation P . However, some applications re-
quire or would benefit from the ability to perform several different permutations
P(0), P(1), . . . , P(m−1) with one datapath. This structure would take in streaming
data as well as additional control bits to specify which of the m permutations to
perform.
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Our proposed approach could be adapted to this problem. In some cases, it may
only be necessary to extend the control logic (but leave the memories and switching
networks intact). In others, the switching networks must be augmented to support
different sets of connections. By extending our approach, it may be possible to
reduce costs by factoring the permutations in a way to facilitate the sharing of
control and switching elements across the different permutations.
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