
Statistical Evaluation of a Self-Tuning Vectorized

Library for the Walsh–Hadamard Transform ⋆

Michael Andrews and Jeremy Johnson

Department of Computer Science, Drexel University, Philadelphia, PA USA

Abstract. Short vector instructions (SIMD) can significantly increase
performance, yet are difficult to use effectively. Recently, several efforts
(ATLAS, FFTW, SPIRAL) have successfully used automated perfor-
mance tuning and search to find good SIMD implementations of high-
performance kernels such as matrix multiplication, the FFT and related
transforms. In this paper, we review techniques, similar to those used
by SPIRAL, for vectorizing sparse matrix factorizations, and incorpo-
rate them into a package for computing the Walsh–Hadamard Trans-
form (WHT). These techniques along with search are used to discover
algorithms with close to theoretical speedup. Not all algorithms provide
the same amount of speedup and it is not the case that the vectorized
version of the best sequential algorithm leads to the best algorithm with
SIMD instructions. The goal of this paper is to better understand the
search space and which algorithms lead to the best speedup and over-
all performance. Several SIMD specific algorithm features are used to
predict speedup and performance. The resulting performance model is
highly correlated with runtime performance and measured speedup, and
can be used to partition the search space and expedite the search for
good vector performance.

1 Vectorizing the Walsh Hadamard Transform

The Walsh–Hadamard transform of a signal x of size N = 2n, is the
matrix–vector product WHTN · x, where

WHTN =
nO

i=1

WHT2 =

n
z }| {

WHT2 ⊗ · · · ⊗WHT2 . (1)

WHT2 =

»
1 1
1 −1

–

(2)

and the ⊗ operator denotes the tensor or Kronecker product. Algorithms
for computing the WHT can be derived by factoring the standard matrix
representation into a product of sparse structured matrices [1]. Let N =
N1 · · ·Nt, where Ni = 2ni , then

WHTN =

tY

i=1

`
IN1···Ni−1

⊗WHTNi
⊗ INi+1···Nt

´
(3)

⋆ This work supported by DARPA through the DOI grant NBCH1050009 and the ARO
grant W911NF0710416, by NSF grant ACI–0325687 and by a grant from Intel.

2 Michael Andrews and Jeremy Johnson

Let xM
b,s denote the vector [xb, xb+s, . . . , xb+(M−1)s]. The evaluation of

WHTN · x using (3) can be expressed as a triply nested loop

R = N ; S = 1;

for i = 1, . . . , t

R = R/Ni;

for j = 0, . . . , R − 1

for k = 0, . . . , S − 1

xNi

jNiS+k,S = WHTNi
· xNi

jNiS+k,S;

S = S ∗ Ni; (4)

where WHTNi
is an algorithm for computing the transform at stride.

The computation of each WHTNi
is computed recursively in a similar

fashion until a base case of the recursion is encountered. Base cases are
smaller transforms where the code is unrolled in order to avoid the over-
head of loops or recursion. This factorization assumes that the algorithm
works in–place and is able to accept stride parameters. Alternative al-
gorithms are obtained through different sequences of the application of
Equation 3. When n1 = · · · = nt = 1 the algorithm is called iterative

since there are no recursive calls. When t = 2 and n1 = 1 and n2 = n−1
the resulting algorithm is called right recursive, and when n1 = n−1 and
n2 = 1 the algorithm is called left recursive. The right recursive and itera-
tive algorithms are the two standard approaches to computing the WHT

and they correspond the standard recursive and radix 2 iterative FFT
algorithms. Vectorized versions of these algorithms are easily obtained
since WHTN ⊗IV naturally corresponds to applying WHTN on vectors
of length V [3]. Vectorization for specific vector lengths is achieved using
rules, which correspond to a textual substitution operation. The alge-
braic manipulations required to derive these rewrite rules are discussed
in depth in [2]. Both rules assume that the vector length V = 2i. A key
element in all following factorizations is the stride permutation matrix
LNP

N [3], which permute the elements of the input vector. For instance if
x = [x0, x1, x2, x3], then L4

2 ·x = [x0, x2, x1, x3]. The first rule describes
how to vectorize a general term in the recursive factorization, e.g. the
second for loop in 3.

R1P,V (IM ⊗WHTN⊗IPV) → IM ⊗(LNP
N ⊗IV)(IP ⊗WHTN⊗IV)(LNP

P ⊗IV)
(5)

Where R1P,V is a parameterized textual substitution operator, resulting
in an easily vectorized expression. The operator is not applied unless
the right identity has size greater than or equal to PV . This allows
applying R1 with fixed V and varying P resulting in different interleaving
strategies. The application of R1 can be viewed as code transformation
that tiles the innermost for loop by a factor of V ,

for k = 0, . . . , M − 1
for i = 0, . . . , P − 1

for j = 0, . . . , V − 1
xN

iV +j,PV = WHTN · xN
iV +j,PV

(6)

Statistical Evaluation of a Self-Tuning Vectorized Library for the WHT 3

The rest of the code transformation is realized by unrolling the loop by
P , interleaving the loop iterations, vectorizing the arithmetic operations
with vector operations of length V . For example, suppose that N = 2
and V = 2, then we may vectorize the innermost for loops in 5 as follows,

Unroll Interleave
for i = 0, . . . , P − 1

x2i = x2i + x2i+2P

x2i+2P = x2i − x2i+2P

x2i+1 = x2i+1 + x2i+2P+1

x2i+2P+1 = x2i+1 − x2i+2P+1

→

for i = 0, . . . , P − 1
x2i = x2i + x2i+2P

x2i+1 = x2i+1 + x2i+2P+1

x2i+2P = x2i − x2i+2P

x2i+2P+1 = x2i+1 − x2i+2P+1

→

Vectorize
for i = 0, . . . , P − 1

x2i,1 = x2i,1 + x2i+2P,1

x2i+2P,1 = x2i,1 − x2i+2P,1

In this example the stride parameter is 1, though in general this is not
always the case. Many SIMD architectures only support loads from con-
tiguous data address, e.g non strided loads. We resolve this issue by using
contiguous loads in conjunction with intra register shuffling instructions
to simulate a contiguous load. Such non contiguous loads introduce the
overhead of register shuffling as well as negating the effect of cache line
prefetching, and incur more cache miss penalties. We also vectorize base
case codelets using the recursive rule

R2V (WHTN) →


(WHT2 ⊗ IN/2)(I2 ⊗R2(WHTN/2)) N > 2V

Qt
i=1 (WHT2 ⊗ IV) L2V

2 otherwise
(7)

The stride permutations in the base case are achieved using intra register
shuffle operations.

2 The WHT Package

The original WHT package [1] was extended to support vectorization and
other architectural paradigms. Algorithm alternatives in the package,
corresponding to different formulas, are described by a tree like plan
which is denoted by the grammar

W(n) := small (params) [n]

| split (params) [W(n1), ... ,W(nt)]

Nodes in the tree compute the WHT when applied to an input vector.
The split nodes correspond to the recursive factorization in (3), and
compute the WHT by iterating over a series of smaller WHTs. The small
leaf nodes correspond to the base case of the recursion and compute the
WHT in place using straight line code. Alternative factorizations, such as
(5) and (7) are specified by substituting the identifier (small or split)
with an alternative identifier.

4 Michael Andrews and Jeremy Johnson

For instance, smallv(2)[4] represents a base case unrolled codelet of size
24 with SIMD instructions of length 2. New factorization rules can easily
be added to the package via a lookup table.

3 Performance Distribution and Model

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
8

0

10

20

30

40

50

60

70

C
ou

nt

Performance

Fig. 1. Runtime distribution for random single precision WHTs of size 218 on Intel
Xeon.

0 2 4 6 8 10 12 14 16 18

x 10
7

0

2

4

6

8

10

12

14

16

18
x 10

7

Cycles (Vectorized)

C
yc

le
s

(S
eq

ue
nt

ia
l)

(a) Runtimes after vectorizing sequential
algorithms.

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18
x 10

7

Speedup Factor

C
yc

le
s

(b) Speedup after vectorizing sequential
algorithms.

Fig. 2. Effect of vectorizing random sequential single precision WHTs of size 218 on
Intel Xeon.

In [4] it is shown that approximately O(7n) different algorithms can be
obtained from (3). Figures 1 and 3 shows the distribution of possible

Statistical Evaluation of a Self-Tuning Vectorized Library for the WHT 5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
8

0

10

20

30

40

50

60

70

80

C
ou

nt

Performance

Fig. 3. Runtime distribution for random double precision WHTs of size 218 on Intel
Xeon.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

8

Cycles (Vectorized)

C
yc

le
s

(S
eq

ue
nt

ia
l)

(a) Runtimes after vectorizing sequential
algorithms.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15
x 10

7

Speedup Factor

C
yc

le
s

(b) Speedup after vectorizing sequential al-
gorithms.

Fig. 4. Effect of vectorizing random sequential double precision WHTs of size 218 on
Intel Xeon.

sequential runtimes from a sample of 1,000 random WHT algorithms of
size 218 using single and double precision respectively. Runtimes were
collected on an Intel Xeon processor (E5335) running at 2.0 GHz with a
32 Kb L1 data cache and 4 Mb L2 unified cache. Performance measure-
ments were taken with PAPI 3.5.0. Code was compiled with the Gnu C
Compiler version 4.1.3 (gcc), using standard optimization flags -02. and
-msse for single precision transforms and -msse2 for double precision
transforms. Figures 2(a) and 4(a) show the relationship between sequen-
tial and vectorized runtimes for single and double precision respectively.
Vectorization in this context was achieved using R18,4 ◦R14,4 ◦R24 and
R18,2 ◦R14,2 ◦R22. Figures 2(b) and 4(b) show the speedup obtained by
vectorizing using these rules. Observe that with both vector lengths the
absolute performance is not linearly correlated with speedup.

6 Michael Andrews and Jeremy Johnson

4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log(Input size)

P
su

ed
o

G
F

lo
ps

Default
Default w/ SSE
Search w/ SSE

(a) Best single precision WHTs

4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log(Input size)

P
su

ed
o

G
F

lo
ps

Default
Default w/ SSE2
Search w/ SSE2

(b) Best double precision WHTs

Fig. 5. Pseudo GFlops of best sequential and vectorized WHTs determined by dynamic
programming.

This suggests that searching over all possible sequential WHT algo-
rithms, and then applying our vectorization rules will not achieve optimal
performance. To verify this hypothesis and benchmark the performance

Remark Sizes max-child max-cache α ρ m

Fits in L1 [1, 11] 4 4 0.5 % 0.1 % 50
Fits in L2 [12, 15] 4 3 0.5 % 0.1 % 10
Fits in L2 [16, 18] 3 3 0.5 % 0.1 % 10
Fits in RAM [19, 24] 2 2 5.0 % 1.0 % 5

Fig. 6. Parameters to Dynamic Programming.

of generated code, we performed a modified version of dynamic program-
ming to search for optimal sequential and vectorized WHT We achieve
close to the theoretical performance improvement with vectors of length
4 and better than theoretical performance improvement with vectors of
length 2. Figures 5(a) and 5(b) show the result of this experiment. Our
hypothesis is validated in that there is clear performance discrepancy
between searching for the optimal sequential algorithm and then vector-
izing as opposed to searching the optimal vectorized algorithm. For both
vector sizes, the the first drop in performance corresponds to the switch
from using unrolled codelets to a recursive factorization. The second drop
in performance corresponds to the L2 cache boundary. Our modified dy-
namic programming search was configured with the following parame-
ters: the maximum number of children in an integer composition tree
(max-child), the maximum number of sub–problems to reference when
determining the optimal problem (max-cache), and parameters which
determine the statistical significance for each problem sample. Statisti-
cal significance is determined using a Z–Score test and is parameterized

Statistical Evaluation of a Self-Tuning Vectorized Library for the WHT 7

with 1 − α % confidence that the sampled mean is within ρ % of the
true mean using m initial samples. To efficiently navigate the exponen-
tial search space, many of the parameters need to be tweaked in order
to have a tractable solution. Listed in Table 6, are search parameters
associated with the transform size interval.

4 Performance Model

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

Model

A
ct

ua
l

(a) Single precision model.

2 3 4 5 6 7 8 9 10 11 12
2

4

6

8

10

12

14

16

Model
A

ct
ua

l

(b) Double precision model.

Fig. 7. Modeled runtime versus actual runtime using the combined model in 8.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

Relative Error

C
ou

nt

(a) Single precision model error.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70

80

Relative Error

C
ou

nt

(b) Double precision model error.

Fig. 8. Distribution of error term ǫ in 8.

The goal of the performance model should be two fold– to speed–up the
search process, and to mathematically quantify the performance gains

8 Michael Andrews and Jeremy Johnson

achieved by vectorization. Previously, [4–6] a linear combination of in-
structions and cache misses was used to predict performance and prune
the search space.

ĈYC = αINS + βMISSES + ǫ (8)

The instruction counts and cache misses are computed analytically from
recurrence relations, and the factor loadings are computed using multiple
linear regression from training data. The evaluation of the model on
vectors of length 2 and 4 is shown in Figs. 7(a) and 7(b). The distribution
of the error term in the model is shown in 8(a) and 8(b). Our model
was trained using a sample of 600 random WHT trees with random
applications of R1 and R2 with fixed V and varying P . The random
sample was across WHT trees from size 213 to 219 inclusively. Clearly,
vectorization introduces some runtime behavior that is not effectively
captured by our model. To remedy this situation we derived an auxiliary
model in 9 which captures the speedup due to vectorization used in
conjunction with the previous model.

ĈYC′

CYC
=

ωP (INS′)

INS
+ ǫ (9)

P (INS′) =


SIMD ADD, SIMD LOAD,
SIMD SHUF, NON SIMD

ff

(10)

The speedup model achieves a tighter fit by partitioning the instruction
counts into classes of instructions and assigning weights to these instruc-
tion. Since we could not natively count SSE and SSE2 instruction on this
architecture using PAPI, the instruction count model from [4] was used.
The evaluation of this new speedup model on vectors of length 2 and 4

0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

Model

A
ct

ua
l

(a) Single precision speedup model.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.5

1

1.5

2

2.5

3

Model

A
ct

ua
l

(b) Double precision speedup model.

Fig. 9. Modeled speedup versus actual speedup using the model in 9.

is shown in Figs. 9(a) and 9(b). The distribution of the error term in the
new speedup model is shown in 10(a) and 10(b).

Statistical Evaluation of a Self-Tuning Vectorized Library for the WHT 9

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

Relative Error

C
ou

nt

(a) Single precision model error.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

Relative Error

C
ou

nt

(b) Double precision model error.

Fig. 10. Distribution of error term ǫ in 9.

– TODO: Try to fit speedup model with ratio of cache misses to get
better fit for SSE2. This makes sense as per the discussion above, in
which varying P results in different memory access patterns.

– TODO: Display and discuss sanity of coefficients in models.
– TODO: Combine both model to achieve tighter model for predicted

runtime due to vectorization.

References

1. Johnson, J., Püschel, M.: In search of the optimal Walsh–Hadamard
transform. In: Proceedings ICASSP. Volume IV. (2000) 3347–3350

2. Franchetti, F., Püschel, M.: A SIMD vectorizing compiler for digi-
tal signal processing algorithms. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS). (2002) 20–26

3. Johnson, J., Johnson, R., Rodriguez, D., Tolimieri, R.: A Methodol-
ogy for Designing, Modifying, and Implementing Fourier Transform
Algorithms on Various Architectures. Circuits, Systems, and Signal
Processing 9 (1990) 449–500

4. Pawel Hitczenko and Jeremy Johnson and Hung–Jen Huang: Distri-
bution of a Class of Divide and Conquer Recurrences Arising from the
Computation of the Walsh–Hadamard Transform. Theoret. Comput.
Sci. 352 (March 2006) 8–30

5. Furis, M., Hitczenko, P., Johnson, J.: Cache miss analysis of WHT
algorithms. In Mart́ınez, C., ed.: 2005 International Conference on
Analysis of Algorithms. Volume AD of DMTCS Proceedings., Discrete
Mathematics and Theoretical Computer Science (2005) 115–124

6. Andrews, M., Johnson, J.: Performance Analysis of a Family of WHT
Algorithms. Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International (26-30 March 2007) 1–8

