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Abstract

We present FGen, a program generator for high performance con-
volution operations (finite-impulse-response filters). The genera-
tor uses an internal mathematical DSL to enable structural opti-
mization at a high level of abstraction. We use FGen as a testbed
to demonstrate how to provide modular and extensible support
for modern SIMD vector architectures in a DSL-based generator.
Specifically, we show how to combine staging and generic pro-
gramming with type classes to abstract over both the data type (real
or complex) and the target architecture (e.g., SSE or AVX) when
mapping DSL expressions to C code with explicit vector intrinsics.
Benchmarks shows that the generated code is highly competitive
with commercial libraries.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program synthesis, Program transformation; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features – Ab-
stract data types; D.3.4 [Programming Languages]: Processors –
Code generation, Optimization, Run-time environments

Keywords Synthesis; Abstraction over Staging; Selective Pre-
computation; Scalar Replacement; Data Representation

1. Introduction

Numerical libraries need to be highly tuned to the platform’s archi-
tecture and microarchitecture to reach highest performance. This
tuning requires expensive programming effort, and conflicts with
portability, since it often has to be repeated for every new processor
generation. Over the last decade, one solution that has emerged to
solve this problem are program generators that use domain-specific
languages (DSLs) to express mathematical algorithms at a high
level of abstraction, which is then compiled into platform-specific
high performance code [2, 5, 7, 8, 15, 16, 22, 23, 27]. In some of
these generators, DSLs are also used internally to perform difficult
optimizations such as loop fusion or vectorization at a high level
of abstraction through rewriting to overcome compiler limitations.
Examples of this idea include Spiral [14] (a generator for linear
transforms) which uses a DSL called Σ-SPL [6], and LGen [22]
which uses an extension called Σ-LL.

These languages can be viewed as a domain-specific extension of
the array programming paradigm, augmented with explicit data
access objects and higher level mathematical operators. Intuitively,
this representation makes it possible to restructure the computation
to achieve the above optimizations.

An orthogonal question, investigated for example in [4, 13] is how
to efficiently build such generators in an effective and maintainable
way using modern programming language features. In particular,
the concept of staging [25] has been proposed to build generators
within a host language [1, 5]. Modern staging frameworks such as

LMS (Lightweight Modular Staging) [17] go beyond primitives for
emitting code and have become popular for implementing gener-
ators based on one or multiple levels of DSLs [13, 18, 19, 24].
However, only few existing generators target SIMD vector archi-
tectures, i.e., emit code that uses the so-called intrinsics interface
to directly and efficiently use vector instructions.

Contributions. The first main contribution of this paper is a new
library generator called FGen for a very narrow but important op-
eration: convolution, or, as it is called in media processing, finite-
impulse-response (FIR) filters. The generator takes as input a math-
ematical convolution expression including the size of two arrays
involved and outputs an optimized library function. Internally a
variant of the above-mentioned DSL Σ-LL is used to structure the
computation and to facilitate the mapping to a vector architecture.

The second main contribution is a generic support layer for tar-
getting vector architectures from DSL-based program generators.
Specifically, we combine staging and generic programming using
type classes to abstract at the DSL level over both the data repre-
sentation (e.g. real or complex numbers) and the vector architec-
ture (e.g., SSE or AVX). Extensions to new data types and new
vector architectures thus become completely modular in the back-
end translation engine. This SIMD support layer is not specific to
convolution but designed to be applicable to a large set of possible
generators built with suitable DSLs.

Finally we show benchmarks comparing our automatically gener-
ated convolution code with commercial high performance libraries
to demonstrate the viability of our approach.

2. Overview

We present FGen, a program generator for performance-optimized
functions implementing convolutions, or FIR filters. FGen follows
[13] in design and implementation but extends the work to include
filters, and to support vector ISAs in a modular way. Figure 1 gives
a high-level overview of the generator. The input to FGen specifies
the desired function to be generated. It consists of

1. the desired convolution, written mathematically as y = h ∗ x
with specified sizes for the vectors x, h, y;

2. the data type and memory layout (e.g., real, interleaved or split
complex); and

3. the vector ISA (e.g., Intel SSE or Intel AVX).

We give a short overview on the inner workings next and follow
up with more details in Section 3. In the first step, FGen formally
tiles the computation for better locality using the mathematical
language Σ-LL that slightly extends the aforementioned Σ-SPL
[6] and Σ-LL [22]. In essence, the language consists of vectors,
matrices, and data access objects as operands, as well as linear
algebra operations including addition, multiplication, and different
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Figure 1: FGen Architecture

forms of convolution. The chosen tile size is a search parameter
but is chosen to be a multiple of the desired vector length of the
specified ISA. Σ-LL makes loops and access patterns explicit, thus
enabling loop optimizations like merging in the next step.

After the proper mathematical structure is established, the data type
and memory layout parameters are introduced. The code style (e.g.,
to what degree unrolled) is a search parameter that is also fixed at
this time. These choices are implemented using abstractions as ex-
plained in [13]. Next, the desired vector ISA is introduced and code
is generated in an intermediate representation (IR) for vector code.
The choice of vector ISA and the data type and layout are mutually
dependent. For instance, when dealing with interleaved complex
arrays, we must specialize to suitable shuffles that interleave and
de-interleave complex numbers. Handling the interaction of data
layout and vector ISA in a modular fashion is very complex and a
main contribution of this paper (see Section 3.4).

Finally, the code is unparsed to C including vector intrinsics
for SSE or AVX. The performance is measured and informs a
feedback-driven search to find the best choices for all the parame-
ters and choices mentioned before. The best code found is returned
as final result.

3. Implementation

In this section we explain FGen in Fig. 1 in greater detail, focusing
on the most important components and ideas.

3.1 Input to FGen

The input to FGen is a filter y = x ∗ h (or one of the variants
mentioned below) including the sizes of the arrays. The second
input is the data type (single or double precision, real or complex)
and data layout for complex numbers (interleaved or split). These
are specified through higher-kinded types as explained in [13].
Finally, the desired ISA is specified through a simple identifier. The
interaction of the ISA and the data types is explained in Section 3.4.

MATLAB notation Σ-LL notation

y = x(a:b) y = G(hb−a+1→n
a ) · x

y(a:b) = x y = S(hb−a+1→N
a ) · x

Figure 2: Gathers and Scatters using MATLAB notation

3.2 Tiling

The convolution y = x∗h of two vectors x = (x0, x1, . . . , xn−1)T

and h = (h0, h1, . . . , hk−1)T is defined as1

ym =

k−1∑
i=0

xm+(k−1)−i · hi, m = 0, . . . , n− 1. (1)

We use the language of media processing and call h the filter, k the
number of taps, and the computation finite-impulse-response filter
(FIR). The filter can also be viewed as a matrix vector product:

y = x ∗ h⇐⇒ y = Mn(h) · x, (2)

where Mn(h) is the n× n matrix



hk−1 hk−2 · · · h0

. . .
. . .

. . .
. . .

hk−1 hk−2 · · · h0

hk−1 · · · h1

. . .
...

hk−1


. (3)

To improve locality and thus performance, FGen tiles the initial
filter into a sum of smaller FIR filters. To express this mathematical
we use the language Σ-LL. It includes the convolutions introduced
before, and gather and scatter matrices that represent data accesses.
Gathers and scatters are parameterized by a data access function.
For our purpose we only consider one type of function from domain
{0, 1, . . . , n− 1} to range {0, 1, . . . , N − 1}:

hn→N
b : i 7→ b+ i. (4)

To describe the basic idea of the gathers and scatters, we use
MATLAB-like notation. We assume two vectors x and y, having
sizes n and N respectively, and parameters a and b. Figure 2
shows the MATLAB equivalents of the used gathers and scatters.
Formally, a gather is a wide matrix that has one 1 in every row and
is 0 elsewhere; a scatter is a transposed gather.

Using this notation we can now decompose the FIR filter y = x∗h.
First, we observe that in (3), the first n − k + 1 rows form a
“parallelogram” shape matrix, and the last k − 1 rows form an
upper triangular matrix. Correspondingly, we can decompose the
filter into a concatenation (⊕) of two specialized filters that we
call parallelogram shape filter (PFIR) and upper triangular filter
(UTFIR):

x ∗ h = S(hn−k+1→n
0 ) · x ‖ h+ S(hk−1→n

n−k+1 ) · x′ 4 h′, (5)

where x′ = G(hk−1→n
n−k+1 ) · x and h′ = G(hk−1→k

1 ) · h. In
the following these two filters are decomposed separately. Each
decomposition has degrees of freedom which are searched over by
FGen.

PFIR Decomposition We decompose PFIR by tiling in both the
horizontal and vertical direction as shown in Fig. 3a. Let’s assume

1 We note that there are different variants of convolution depending on the
handling of the boundaries.
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Figure 3: FIR Tiling

that n− k+ 1 = bH · tH + sH and k = bV · tV + sV ; tH and tV

define the loop bounds for each tile, and bH and bV define the size
of the tile. The resulting decomposition is

x ‖ h =
∑tH−1

i=0 S(hbH→n−k+1
bH ·i )

∑tV −1
j=0 (x1 ‖ h1)

+
∑tH−1

i=0 S(hbH→n−k+1
bH ·i )(x2 ‖ h2)

+ S(hsH→n−k+1
bH tH

)
∑tV −1

j=0 (x3 ‖ h1)

+ S(hsH→n−k+1
bH tH

)(x4 ‖ h2)

(6)

such that:

x1 = G(hbH+bV −1→n
bH ·i+bV ·j ) · x x4 = G(hsH+sV −1→n

bH tH+bV tV
) · x

x2 = G(hbH+sV −1→n
bV tV +bH ·i ) · x h1 = G(hbV→k

k−bV ·(j+1)) · h
x3 = G(hsH+bV −1→n

bH tH+bV ·j ) · x h2 = G(hsV→k
0 ) · h

Note that the somewhat complicated appearance is due to the spec-
ification of domain and range sizes in the gathers and scatters.

UTFIR Decomposition. We decompose UTFIR by tiling as shown
in Fig. 3b. If k − 1 = b · t + s, this means a decomposition into t
smaller UTFIRs and t−1 PFIRs. These can be further decomposed
recursively.

In Σ-LL this decomposition reads as

x4 h =
∑t−1

i=0 S(hb→k
b·i )

∑t−i−2
j=0 (x1 ‖ h1)

+
∑t−1

i=0 S(hb→k
b·i )(x2 ‖ h2)

+
∑t−1

i=0 S(hb→k
b·i )(x3 4 h3)

+ S(hs→k
b·t,1)(x4 4 h4)

(7)

where:

x1 = G(h2b−1→k
bi+bj ) · x h1 = G(hb→k

k−b(j+1)) · h
x2 = G(hs+b−1→k

b(t−1) ) · x h2 = G(hs→k
b(i+1)) · h

x3 = G(hb→k
k−b ) · x h3 = G(hb→k

b·i ) · h
x4 = G(hs→k

k−s ) · x h4 = G(hs→k
k−s ) · h

ISA Tiling. Equations (6) and (7) include three important parame-
ters for the tiling, namely bH , bV , and b. If a vector ISA and hence
an associated (ISA) vector length ν is specified, we make sure that
the innermost tiling is a multiple of ν for efficient mapping to in-
trinsics.

3.3 Loop Optimizations

Loop optimizations such as loop merging, or loop unrolling are
done at the Σ-LL level using a rewrite system that fuses, for ex-

ample data accesses. As one example,
p−1∑
i=0

S(hN1→N
b )

q−1∑
j=0

S(hn→N1
b′ )

is rewritten into
p−1∑
i=0

q−1∑
j=0

S(hn→N1
b+b′ ).

3.4 Abstraction over Data Representation, Code Style and
Vectorization

Once an optimized Σ-LL program is reached it is converted to
the I-IR / C-IR DSL. While Σ-LL deals with the representation
of mathematical vectors, C-IR and I-IR facilitate the encoding of
data representations of these vectors. For each data representation
this includes all array operations composed by memory access
functions and numerical computations in their scalar and vectorized
versions respectively. We abstract all of those different possibilities
into a single data abstraction, which provides an interface that is
very similar to its mathematical and conceptual equivalent in Σ-
LL. These abstractions are implemented using staging, type classes
and higher kinded types. All DSLs used in FGen are implemented
through LMS. Translation from one DSL to another is performed
via a staged interpreter approach as described in [13, 18]. While
the implementation details are not relevant for Σ-LL, they are a
key enabler in efficient abstraction at the I-IR and C-IR level. We
give a quick, non self-contained, overview over the main concepts
in the next few paragraphs.

Staging. Multi-stage programming [25] is a technique that allows
to interleave a program generator with parts of the code to be gen-
erated within the same program. Traditionally this is done through
annotations within the code, which requires a specialized compiler
such as MetaOCaml. Lightweight Modular Staging [17] is a frame-
work with the same goal, but instead of annotations it uses types to
distinguish generator code and code for the next stage. Within LMS
the type that defines future-stage expressions is called Rep[T].
Loosely speaking LMS overloads all operations on standard types,
such that for each operation on type T, there exists a staged version
on type Rep[T]. In Pseudo-Code the overload for the Plus operator
on Integers would take the form:
def + (a: Int, b: Int) = a + b
def + (a: Rep[Int], b: Rep[Int]) = {

CreateASTNodePlus(a,b) }

Using this construct the following code
a: Int; b: Int, c: Int
c = a + b
> c: Int = ... // Result of a + b

performs a regular addition while the code
a: Rep[Int]; b: Rep[Int], c: Rep[Int]
c = a + b
> c: Rep[Int] = plus(a, b) // AST Node

is redirected to the overloaded version, which in turn creates an
AST Node representing the computation.

Abstraction over staging decisions. Utilizing the fact that staging
within LMS is controlled through types allows us to use them in
the context of type polymorphic functions and classes. Given a
function f, which is polymorphic in type T, we can instantiate two
versions, by applying arguments of different types:
def f[T](lhs: T, rhs: T) = lhs + rhs
// regular computation
a: Int; b: Int, c: Int
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type T = Double
add[Rep,Real,NoRep,SISD,T]

type T = Double
add[NoRep,Real,Rep,SISD,T]

type T = Double
add[Rep,Real,NoRep,SIMD,T]

type T = Double
add[NoRep,Real,Rep,SIMD,T]

#define T double
#define N 4
void add(T* x, T* y, T* z) {

int i = 0;
for(; i < N; ++i) {

T x1 = x[i];
T y1 = y[i];
T z1 = x1 + y1;
z[i] = z1;

}
}

#define T double
void add(T* x, T* y, T* z) {

T x1 = x[0]; T x2 = x[1];
T x3 = x[2]; T x4 = x[3];
T y1 = y[0]; T y2 = y[1];
T y3 = y[2]; T y4 = y[3];
T z1 = x1 + y1;
T z2 = x2 + y2;
T z3 = x3 + y3;
T z4 = x4 + y4;
z[0] = z1; z[1] = z2;
z[2] = z3; z[3] = z4;

}

#define T double
#define N 1
void add(T* x, T* y, T* z) {

int i = 0;
for(; i < N; ++i) {

__m256d x1, y1, z1;
x1 = _mm256_loadu_pd(x + i);
y1 = _mm256_loadu_pd(y + i);
z1 = _mm256_add_pd(x1, y1);
_mm256_storeu_pd(z + i, y1);

}
}

#define T double
void add(T* x, T* y, T* z) {

__m256d x1, y1, z1;
x1 = _mm256_loadu_pd(x + 0);
y1 = _mm256_loadu_pd(y + 0);
z1 = _mm256_add_pd(x1, y1);
_mm256_storeu_pd(z + 0, y1);

}

(a) Staged SISD Array (b) SISD Array of Staged Doubles (c) Staged SIMD Array (d) SIMD Array of Staged Doubles

Figure 4: Different Data Type Instantiations result with different code style (assuming arrays of size 4 and AVX as an ISA)

c = f(a,b)
// staged computation
a: Rep[Int]; b: Rep[Int], c: Rep[Int]
c = f(a,b)

This also applies to Scala for comprehensions which Scala treats
as regular functions, with a parameter of type Range that can be
overloaded in a similar fashion:
for (range: Range ) { body } // Regular loop
for (range: Rep[Range]) { body } // AST loop node

The first version executes the body expression, and the second
version creates an AST node representing a loop that includes the
body expression.

Encapsulating staging decisions. FGen heavily utilizes this mech-
anism to abstract over staging decisions as described in full detail
in [13]. For this work, these abstraction have been extend further
to also include vectorization. Within I-IR the operands of our DSL
are highly polymorphic classes that take the shape:
class CVector[V[_], E[_], R[_], P[_], T](...) {

type Element = E[R[P[T]]]
def size (): V[Int]
def apply (i: V[Int]) : Element
def update (i: V[Int], v: Element)

}

For simplicity the code above omits the type classes that are im-
plicitly passed together with each type parameter. Within each of
the type parameters provided to the CVector class we encode part
of the abstraction, by providing abstract composable interfaces that
are implemented through those type classes.

• T describes the underlying array primitive (double, float, etc).

• P[_] describes whether we deal with SIMD or SISD instruc-
tions. It is accompanied by a type class that abstracts SIMD
specific operators such as shuffle, hadd, vadd etc., and SISD
specific operations such as addition, multiplication etc.

• R[_] describes whether we stage the elements of the array.
The accompanying type class abstracts numerical operations for
both staged and non-staged version.

• E[_] describes the the structure of one array element. E.g. it
can be complex numbers consisting of two primitves or directly
primitves. E[_]. Abstractions for numerical operations relative
to the element such as addition, multiplications, complex num-
ber interleaving are implemented in the accompanied type class.

• V[_] encodes whether array accesses will be visible in the
target code element operations.

A concrete choice of a data layout, code style and the vectorization
is done through instantiating the CVector class accordingly, e.g.,
class Scalar_SISD_Double_Vecor extends
CVector[NoRep, Real, Rep, SISD, Double] ...

where the type NoRep is a higher order type defined as

type NoRep[T] = T

In the translation process from Σ-LL to I-IR, this enables us to
define the target translations in terms of the type polymorphic base
class CVector as e.g.
def add[V[_], E[_], R[_], P[_], T] (

(x, y, z) : Tuple3[CVector[V,E,R,P,T]]
) = for ( i <- 0 until x.size() ) {

z(i) = x(i) + y(i)
}

Concrete implementations can be picked by passing corresponding
instantiations of the base class to the function. Figure 4 illustrates
this for four variants that could be passed to the add functions.

Staging decisions are of crucial importance to FGen. When tiling
is performed to fit the SIMD vector length, SIMD instantiations are
performed to generate the vectorized part of the code; the leftover
computation is instantiated as unvectorized SISD code. When tiling
for registers, data structures are properly instantiated to generate the
unrolled version of the code. Data abstraction and staging decisions
are used to provide a single codebase that will fit all generated code
versions.

3.5 ISA Abstraction

Once data types are fixed, the next step is to replace each Σ-LL
expression with one or several I-IR expressions. The Intrinsics IR
is ISA independent and it only specializes to a particular ISA, once
this argument is fixed in the generator. The specialization to a par-
ticular ISA is inter-dependent on the data abstraction. We observe
this in the case of Interleaved Complex Array. Real and imagi-
nary parts must be interleaved when data is loaded or stored. To
achieve this, the ISA abstraction calls the corresponding shuffle,
unpackhi and unpacklo instructions, to perform the desired in-
terleaving.

FIR intrinsics. Once the ISA is fixed, we perform the conversion
of Σ-LL expressions to I-IR. FGen implements translation of Σ-LL
to I-IR in a single codebase and uses staging decisions to generate
different code versions. The actual SIMD conversion of the PFIR
filter is given below:
class SigmaLL2CIRTrasnlator[E[_], R[_], P[_], T] {
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type Element = E[R[P[T]]]
def sum (in: List[Element]) =

if (in.length == 1) in(0) else {
val (m, e) = (in.length / 2, in.length)
sum(in.slice(0, m)) + sum(in.slice(m, e))

}
def translate(stm: Stm) = stm match {

case TP(y, PFIR(x, h)) =>
val xV = List.tabulate(k)(i => x.apply(i))
val hV = List.tabulate(k)

(i => h.vset1(h.apply(k-i-1)))
val tV = (xV, hV).zipped map (_*_)
y.update(y(0), sum(tV))

}
}

Note that if ISA is not specified, the code snippet will result with a
construction of SISD C-IR code.

3.6 Code Level Optimizations

Code level optimizations are done on the C-IR DSL. Most of
these are already provided by LMS. Those include common sub-
expression elimination, dead code removal and code motion.

4. Experimental Results

In this section we show performance benchmarks with FGen gen-
erated code against current commercial libraries.

Experimental setup. We benchmarked on two machines, Intel(R)
Xeon(R) CPU E5-2643 3.3 GHz supporting AVX, running Ubuntu
13.10, kernel v3.11.0-12-generic, and Intel(R) Core(TM)2 Duo
CPU L7500 1.6GHz supporting SSSE3, running Debian 7, kernel
v3.2.0-4-686-pae. Intel’s Hyper-Threading, Turbo Boost (Xeon)
and Intel Dynamic Acceleration (Core2) were disabled on both ma-
chines during the tests. We compare against convolutions from In-
tel IPP v8.0.1 and Intel MKL v11.1.1. Note that in both, the vec-
tor lengths are parameters in contrast to our generated specialized
code. As base line we also include a straightforward implementa-
tion of convolution: a double loop corresponding to (1) with fixed
array sizes.

All code is compiled using the Intel C++ Composer 2013.SP1.1.106,
with flags -std=c99 -O3 -xHost.

We only consider double precision code (4-way on AVX and 2-
way on SSSE3). The input sizes, related to the input vector of
the convolution expression, are powers of two in the form of n =
512 · 2i for i = 1, . . . , 16 to ensure a sampling of all cache levels
for both machines. For each machine we perform two types of tests:

(a) All vectors are arrays of real numbers, and the filter size is 8 or
20;

(b) All vectors are arrays of interleaved complex numbers, and the
filter size is 8 or 20 (complex numbers).

Time is measured under warm-cache conditions, using a two loops
measuring strategy. The inner loop measures time as the mean of
sufficently many iteration; the outer loop returns the median of
several such runs.

Figure 5 gives an overview of the results. All plots show the size
of the input vector on the x-axis and the performance in flops
per cycle (f/c) on the y-axis. The theoretical peak performance
of the platform is represented with a horizontal line in each plot.
We discuss real (left four plots) and complex (right four plots)
convolutions separately.

Real convolution.. FGen-generated code outperforms the other im-
plementations, except IPP for small sizes and 20 taps. The reason
is not clear as the code is distributed as binary, which prevents in-
spection. In some cases MKL performs worse than the base imple-
mentation. Apparently, icc can efficiently optimize and vectorize
the simple double loop with fixed bounds.

Complex convolution.. For large sizes FGen-generated code is
faster (AVX) or roughly competitive (SSSE3) with the next best
IPP. Again, MKL performs worse than the straightline code with a
similar possible explanation as above. We note that in FGen there
is further room for improvement in the shuffling needed to work
on interleaved data. We believe that the gains for larger sizes on
AVX are due to a more thorough exploration of the possible tiling
strategies in FGen.

Remarks.. We note for longer sizes of the filter h, both IPP and
MKL outperform FGen due to the use of FFTs, which reduces
the asymptotic runtime from O(nk) to O(n log k). FGen does not
support FFT-based convolution at this time.

5. Related Work

The array programming paradigm favors computing on collections
of data as a whole over element-at-a-time processing. Besides a
higher-level programming style, the key benefit of going from
scalar values to vectors of data as core computational units is that
array computation is implicitly parallel, and easy to map to SIMD
instructions by a compiler. Starting with a stylized mathematical
array notation that lead to APL [9] and its successors, J [3] or
K [11], array languages have focused on user-facing constructs
that enable programmers to abstract over the rank, dimension or
in general shape of the data. The same holds for Sisal [12] or,
more recently, SAC [20], which has also inspired embedded DSLs
[10, 26]. Compilers for all these languages attempt to generate
SIMD intrinsics to varying degrees, e.g., by using type inference
in the case of SAC [21], but in general do not expose this fact to
the programmer in any way. Our focus in this paper has been on
using an array-style language, Σ-LL, as an intermediate language
in a program generator stack. As opposed to other array languages,
Σ-LL models only single-dimensional arrays, i.e., does not provide
shape polymorphism in the usual sense. The translation from Σ-LL
to I-IR/C-IR and optimized C code, however, is highly parametric
in data layout, vector ISA, and other parameters. This is again in
contrast to user-facing languages, where the low-level part of the
compilation is hidden from the programmers. We believe that our
Σ-LL / I-IR combination offers a sweet spot in the design space
between fully opaque array languages (which do not offer fine
grained control about vectorization) and ISA specific intrinsics as
provided by C compilers (which provide full control but are too
low-level and cumbersome to use).

References
[1] B. Aktemur, Y. Kameyama, O. Kiselyov, and C.-c. Shan. Shonan

challenge for generative programming: short position paper. In Proc.
Partial evaluation and program manipulation (PEPM), pages 147–
154, 2013.

[2] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. Quintana-Orti, and
R. van de Geijn. The science of deriving dense linear algebra algo-
rithms. ACM Trans. on Mathematical Software, 31(1):1–26, 2005.

[3] C. Burke and R. Hui. J for the APL programmer. SIGAPL APL Quote
Quad, 27(1):11–17, Sept. 1996.

[4] A. Cohen, S. Donadio, M. jesus Garzaran, C. Herrmann, and D. Padua.
In search of a program generator to implement generic transformations

5 2014/4/29



Intel(R) Xeon(R) CPU E5-2643 3.3 GHz, AVX, Ubuntu 13.10

● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ●

2

4

6

8

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(a) 8 Taps, Real Numbers

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

2

4

6

8

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(b) 20 Taps, Real Numbers

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

2

4

6

8

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(c) 8 Taps, Interleaved Complex

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

2

4

6

8

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(d) 20 Taps, Interleaved Complex

Intel(R) Core(TM) 2 Duo CPU L7500 1.6 GHz, SSSE3, Debian 7

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

1

2

3

4

5

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(e) 8 Taps, Real Numbers

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

1

2

3

4

5

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(f) 20 Taps, Real Numbers

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

1

2

3

4

5

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(g) 8 Taps, Interleaved Complex

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

1

2

3

4

5

2^10 2^13 2^16 2^19 2^22 2^25
Input size

Performance [f/c]

(h) 20 Taps, Interleaved Complex

●Base IPP v8.0.1 MKL v11.1.1 FGen

Figure 5: FGen Performance compared to IPP, MKL and Base implementation

for high-performance computing. In 1 st MetaOCaml Workshop (as-
sociated with GPCE, pages 166771–7, 2004.

[5] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra:
A multi-stage language for high-performance computing. SIGPLAN
Not., 48(6):105–116, June 2013.

[6] F. Franchetti, Y. Voronenko, and M. Püschel. Formal loop merging for
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Spiral in Scala: Towards the systematic construction of generators for
performance libraries. In International Conference on Generative Pro-
gramming: Concepts & Experiences (GPCE), pages 125–134, 2013.
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