
Extending the Roofline Model: Bottleneck Analysis
with Microarchitectural Constraints

Victoria Caparrós Cabezas
Department of Computer Science

ETH Zurich, Switzerland
caparrov@inf.ethz.ch

Markus Püschel
Department of Computer Science

ETH Zurich, Switzerland
pueschel@inf.ethz.ch

Abstract—Software, even if carefully optimized, rarely reaches
the peak performance of a processor. Understanding which
hardware resource is the bottleneck is difficult but important
as it can help with both further optimizing the code or deciding
which hardware component to upgrade for higher performance.
If the bottleneck is the memory bandwidth, the roofline model
provides a simple but instructive analysis and visualization. In
this paper, we take the roofline analysis further by including
additional performance-relevant hardware features such as la-
tency, throughput, capacity information for a multilevel cache
hierarchy and out-of-order execution buffers. Two key ideas
underlie our analysis. First, we estimate performance based on
a scheduling of the computation DAG on a high-level model
of a microarchitecture and extract data including utilization
of resources and overlaps from a cycle-by-cycle analysis of
the schedule. Second, we show how to use this data to create
only one plot with multiple rooflines that visualize performance
bottlenecks. We validate our model against performance data
obtained from a real system, and then apply our bottleneck
analysis to a number of floating-point kernels to identify and
interpret bottlenecks.

I. INTRODUCTION

Software performance is determined by the extremely
complex interaction of compiled code and the computing
platform’s microarchitecture. Programs rarely achieve peak
performance, and microarchitectural features such as out-of-
order execution, complex memory hierarchies, and various
forms of parallel processing make it hard to pinpoint the
reason. Understanding possible bottlenecks, however, is useful
for both obtaining hints on how to optimize the code or how to
upgrade a processor to improve the performance. The roofline
model [1] identifies and, equally importantly, visualizes perfor-
mance bottlenecks. Fig. 1 shows an example of a roofline plot.
It depicts the performance of three applications as a function
of their operational intensity (a more detailed introduction
will be provided in Section II). This representation makes it
possible to include bounds on performance due to both the
computational throughput, π, and the memory bandwidth, β, of
the platform, thus making explicit the notions of compute and
memory bound. These bounds can be tightened by considering
specific properties of an application such as the instruction mix
or spatial locality.

The roofline model can clearly identify bottlenecks due
to a throughput resource; for example memory bandwidth
for appA and computational throughput for appC. However,
the original model is inherently blind to other bottlenecks, in
particular non-throughput resources including cache capacity,

operational intensity [flops/byte]!

Performance [flops/cycle]!

4!

2!

1!

1/2!

1/4!

1/4$ 1/2$ 1! 2! 4! 8!

bound based on peak π!

bound if no spatial locality!

appA!

bound based on instruction mix!

bound based on β!

x$
appB!

appC!

x$

x$

Fig. 1. Roofline plot for π = 4 and β = 1.

latency of memory accesses or the functional units, and out-
of-order (OoO) execution buffers. As an example, for appB the
bottleneck is undetermined.

Contributions. The main contribution of this paper is an
extension of the roofline model that provides a more detailed
bottleneck analysis by considering a larger set of performance-
relevant hardware parameters. In particular, this includes pa-
rameters not related to throughput, such as latency, capacity
information for a multilevel cache hierarchy and out-of-order
execution buffers. The result is a generalized roofline plot
that simultaneously identifies associated constraints through
multiple rooflines, thus identifying likely bottlenecks.

To achieve this goal we first present a novel DAG-based
performance analysis technique. This approach schedules the
computation DAG subject to the given hardware parameters
and extracts the performance, utilization, and overlap data that
is needed to create our generalized roofline plots (Sections III
and IV). The design of the plots and the data they are
based on is a main contribution of this paper. We validate
our approach and compare our estimated performance against
measured performance to show that the results are meaningful.
In Section V we use our proposed analysis to perform a
bottleneck study for a number of common numerical floating-
point kernel functions that are relevant in different domains,
such as signal processing or machine learning, and discuss the
results. Finally, in Section VI we present related work, and
conclude with a discussion of possible uses in Section VII.

II. BACKGROUND
We present the background theory that underlies our per-

formance bottleneck analysis. Specifically, we briefly discuss
classical DAG-based performance analyses and present the
previously introduced roofline model.

Throughout this work, we will use uppercase Roman letters
to denote software properties, uppercase Greek letters to denote

CPU	

	

Memory	

Fast Memory	

Throughput π 	

Memory bandwidth β	

Latency µ	

Block size χ	

Capacity γ	

Fig. 2. Simple abstraction of a microarchitecture.

software properties that depend on microarchitectural proper-
ties, and lowercase Greek letters to denote microarchitectural
parameters.

A. DAG-based Performance Analysis
The dynamic executions of programs can be represented

with directed acyclic graphs (DAGs), in which the nodes
represent basic computations and the edges represent data
dependences [2]. In this paper we assume mathematical pro-
grams in which the nodes are floating-point additions and
multiplications. The DAG of a computation depends on its
input size n. The total number of nodes in the DAG is referred
to as work W (n). The length of the longest dependence
chain in the DAG is the depth or span D(n). Computation
DAGs can be used to provide performance estimates based on
different models of computation. The PRAM (Parallel Random
Access Machine) model [3], for example, assumes a CPU with
parallel computational resources and an unbounded external
memory. Basic computations (nodes in the DAG) are executed
in unit time (we say cycle) and memory accesses are free. The
external-memory model [4] extends it to include the I/O cost.
It assumes a fast memory (cache) of size γ with a block size χ,
and a slow memory with latency µ and bandwidth β, as shown
in Fig. 2. These models provide coarse estimates and bounds
on computation and communication time. However, due to
their simplicity they usually fail to capture the real behavior
of code executing on complex modern microarchitectures.

B. The Roofline Model
The roofline model [1] visualizes performance bottlenecks

for a given program running on a processor arising from both
its computational throughput π, and its memory bandwidth β.
The program run on a given input is abstracted by its work
W , and the memory traffic Q it causes, measured in bytes.
The roofline model then plots on a log-log scale the measured
performance against its operational intensity defined as

I =
W

Q
, (1)

as shown in Fig. 1 for three examples (and associated inputs).
If the computation time is larger than the memory time, i.e.,
Tcomp ≥ Tmem, the maximum performance P achievable by
the application is bounded by the computational throughput
π of the platform and the application is compute bound. If
Tmem dominates (memory bound), then Tmem ≥ Q/β implies
P ≤ Iβ. Thus,

P ≤ min(Iβ, π), (2)

which defines the roof (solid black lines) in Fig. 1. The
horizontal bound can be refined (gray lines), e.g., if the
program has imperfect balance of additions and multiplications
or no instruction-level parallelism (ILP); the diagonal bound

Execution through the	

LLVM Interpreter	

Microarchitectural	

 parameters	

(π, λ, β, μ, γ, …)	

Scheduled DAG	

Extension to the LLVM

Interpreter to schedule the DAG	

int	
 main(){	

…	

int	
 n	
 =	
 10000;	

…	

}	

+

Fig. 3. Overview of our performance analysis.

can be refined if the program has no spatial locality. Roofline
plots can be created for every level of the memory hierarchy.

Roofline plots are a valuable tool in understanding bottle-
necks, in particular for software with low operational intensity.
However, most programs do not reach the bounds provided by
the model, meaning that other bottlenecks exist. The goal of
our work is to extend these plots to include a larger set of
bottlenecks using a more detailed abstraction (meaning more
parameters than those in Fig. 2) of the microarchitecture. The
main challenge in achieving this goal are hardware resources
that are not throughputs (e.g., latencies or cache capacities) to
which the roofline model seems inherently limited.

III. DAG-BASED PERFORMANCE MODEL
To design our generalized roofline model, we propose a

novel DAG-based analysis that uses a more detailed abstraction
of a microarchitecture; specifically, it will use a much larger
set of parameters than those in Fig. 2 to capture a multi-level
memory hierarchy and out-of-order execution.

We implemented the model as a tool that first creates and
schedules the computation DAG for a given program and input;
then it extracts all the performance and utilization data needed
for our generalized roofline model. In particular, our model
needs data that requires a cycle-by-cycle analysis of the the
computation DAG. This analysis cannot easily (or at all) be
performed by measurement (on a processor) or by a simulator,
thus our use of a DAG-based analysis.

Fig. 3 sketches the execution flow of our analysis tool. The
input is an application source code with its input, and a set
of parameters that describe microarchitectural resources. The
code is then compiled to the LLVM intermediate representation
(IR) [5], a virtual architecture that captures the key operations
of traditional computing systems, but avoids machine-specific
constraints such as physical registers, address calculation, or
low-level calling conventions. The nodes of the computation
DAG are the instructions of the LLVM IR that are either com-
putations (additions or multiplications) or memory instructions
(loads or stores). The IR of the application is then executed in
the LLVM interpreter, which we extended to build a schedule
of the nodes in the computation DAG. This schedule obeys the
input microarchitectural constraints and yields a performance
estimate without running the code on an actual processor.
Further analysis of the DAG yields all the data needed for
our generalized roofline model.

We now describe the main components of our approach in
greater detail.

A. Microarchitecture Model
Our approach uses the abstraction of the microarchitecture

shown in Fig. 4. We separate floating-point additions (A) and
multiplications (M), and consider throughput and latency for
both. Further, we consider a multi-level memory hierarchy

SB	

L2	

mem	

Memory	

 L1	

RS	

ROB	

CPU	

M	

LFB	

LB	

A	

Microarchitectural Parameter
Parameters

Throughput
Computation πA, πM ,
Memory bandwidth βmem, βLi
Instruction fetch
bandwidth ϕ

Latency
Computation λA, λM ,
Memory µmem, µLi

Capacity
Cache γLi
Cache block χ
OoO Buffer γbuf

Fig. 4. Overview of our microarchitecture model and parameters that define
it; i = 1, 2, 3 and buf ∈{ROB, RS, SB, LB, LFB}.

1	

 2	

4	

5	

3	

 6	

 7	

 9	

8	

int	
 main(){	

	

int	
 n	
 =	
 1000;	

A=(double*)malloc(…);	

...	

	

for(int	
 i=0;	
 i<n;	
 i++)	

	
 for(int	
 j=0;	
 j<n;	
 j++)	

	
 	
 for(int	
 k=0;	
 k<n;	
 k++)	

	
 	
 	
 	
 C[i][j]+=A[i][k]B[k][j];	

...	

	

}	

(a) Computation DAG.

1	

6	

0	

1	

2	

3	

4	

5	

	

 	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

7	

4	

A

A

M

M

L1
L1 L1

L2

L2

3	

8	

5	

9	

2	

7	

Execution 	

Cycle	

ROB	
 	

stall	

(b) Scheduled DAG.

Fig. 5. DAG scheduled according to the parameters in Table I.

(caches L1, L2, . . . , and the main memory mem), and latency,
bandwidth, and capacity for each. In this paper, we always
use three levels of caches. Finally, we model the execution
engine of the CPU via the instruction fetch bandwidth and five
out-of-order (OoO) execution buffers: reorder buffer (ROB),
reservation station (RS), load/store buffer (LB/SB) and line
fill buffer (LFB) [6], [7]. Every parameter in the model can
be set to zero or infinity to effectively remove the associated
hardware feature.

B. Scheduling the DAG Based on a Microarchitecture Model
The computation DAG is scheduled by simulating its

execution on a microarchitecture defined by the parameters
listed in Fig. 4. The schedule is obtained using Tomasulo’s
greedy algorithm [8] for out-of-order execution, but extended
to incorporate the additional OoO execution buffers mentioned
above and also to obey the additional constraints on the
memory reordering imposed by the platform’s memory model.
In this paper we only consider the x86 memory model [7].
Every level of the memory hierarchy is modeled as a fully-
associative cache, and we use reuse distance analysis [9] to
determine the level of the memory hierarchy to which an access
hits.

C. Scheduled DAG: Properties and Performance Estimation
We use the scheduled DAG to extract the estimated per-

formance and other data relevant for our bottleneck analysis
(Section IV).

TABLE I. PARAMETERS TO MODEL AN INTEL XEON E5-2680;
i = 1, 2, 3 AND BUF ∈{ROB, RS, SB, LB, LFB}.

Microarchitectural Units Value
Parameters

Throughput
πA, πM flops/cycle 1,1
βmem, βLi

doubles/cycle 1, 4, 4, 2
ϕ instructions/cycle 4

Latency
λA, λM cycles 3, 5
µmem, µLi

cycles 100, 4, 12, 30

Capacity
γLi

bytes 32K, 256K, 20M
χ bytes 64
γbuf # slots 168, 54, 36, 64, 10

Example and node types. As an example, consider Fig. 5,
which shows in (a) a piece of a larger computation multiplying
two matrices, the corresponding computation DAG, and in
(b) the result of scheduling the DAG with our tool using the
microarchitecture model in Table I. The numbers in the nodes
denote the order in the dynamic instruction trace. We assume
all the loads hit the L1 and L2 caches as shown in the labels.
The computation is delayed due to the load latency. Further, we
assume prior computation has filled the ROB, so the execution
of node 5 has to be delayed one cycle.

In general, the scheduled DAG has six different types
of nodes: computations (additions and multiplications), and
memory nodes (L1, L2, L3, and mem). For each of these, we
define in Table II some general properties, e.g., the number of
nodes of the corresponding type (N), or how many nodes can
be scheduled at most in one execution cycle (Π). Note that
the first two properties in Table II are determined by the table
in Fig. 4; the others depend on the DAG. Depending on the
type of node, a property such as throughput may have different
symbols as shown in Table III.

Each of these properties is given or can be measured for
each node type. We discuss their relationships next and then
continue the example in Fig. 5.

Execution time of a node type. The total execution time
of a node type x is a combination of the issue, latency, and
stall times (see Table II), and depends on the scheduling of
the DAG:

Tx = f(T issue
x , T lat

x , T
stall
x). (3)

Cycles in T lat and those in T issue, by definition, will never
overlap. However, stall and latency cycles as well as stall
and issue cycles may overlap. For example, floating-point
operations can be issued even if there is an LB stall; hence,
in general, Tx 6= T issue

x + T lat
x + T stall

x . The stall time T stall can
be further broken down into stalls due to the respective OoO
buffers:

T stall = g(T stall
RS , T stall

ROB, T
stall
SB , T stall

LB , T stall
LFB). (4)

Again, g depends on the scheduling of the DAG.
Total execution time. The total execution time T of the

scheduled DAG is a function of the execution times of all node
types Tx. It is bound as

max
x

(Tx) ≤ T ≤
∑

node type x

Tx. (5)

TABLE II. PROPERTIES OF NODE TYPE x IN THE SCHEDULED DAG.

Property Description

Π (Throughput) Maximum number of nodes issued per cycle
Λ (Latency) Length of the node in cycles
N Number of nodes in DAG
T issue Number of cycles (#cycles) in which nodes are issued
T lat #cycles in which nodes are executed, but not issued
T stall #cycles in which OoO buffers are full
T o #cycles in which execution overlaps with a different type
Tx Total span of the node type x, including stall cycles

Overlap. Overlap cycles, T o, can be defined for every set
of node types. In this paper we only consider overlap of pairs
of node types {x, y}. The total execution time of such a pair
can then be expressed as a function of the individual times and
the overlap cycles for this pair:

T{x,y} = Tx + Ty − T o{x,y}, (6)

where T o{x,y} ≤ min(Tx, Ty). We define the overlap α as the
following ratio:

α = α{x,y} =
T o{x,y}

min(Tx, Ty)
. (7)

If α = 0 there is no overlap and the total execution time is
the sum T{x,y} = Tx + Ty; if α = 1, the overlap is maximal
and hence T{x,y} = max(Tx, Ty).

Performance estimation. The performance of the sched-
uled DAG is given as

P =
W

T
, (8)

and is an estimate of the actual performance when run on a
platform with the given microarchitectural parameters.

Continued example. In the scheduled DAG in Fig. 5(b)
there are four types of nodes: Additions, multiplications, L1
and L2 accesses. W = 4 flops, QL1 = 3 memory operations,
and QL2 = 2. According to the definition in Table II, T issue

L2 = 2
and T lat

L2 = 12 cycles. The span of the L2 nodes is 14 cycles
but, since execution time includes the stall cycles, the total
execution time for L2 nodes is TL2 = 19 cycles. For L1
accesses, T issue

L1 = 2 cycles, T lat
L1 = 3 cycles, and TL1 = 10

cycles. For both additions and multiplications, T issue is 2
cycles, and the latency cycles are 2 and 4 cycles, respectively.
T stall = T stall

ROB = 5 cycles for all the node types. Note that
for multiplications, latency cycles and stall cycles overlap.
TA = 11 cycles, and TM = 8 cycles. The total execution time
of the scheduled DAG is T = 26 cycles, and the estimated
performance is 0.15 flops/cycle.

Validation of the model. The proposed model estimates
performance based exclusively on the nodes of the computation
DAG and the set of 22 microarchitectural parameters that
constrain the execution of the DAG. Many features including
cache structure or branch predictors are not considered. To
validate that despite its simplicity the model provides reason-
able estimates, and to show possible limitations, we compare
the performance measured from running applications on a real
system against the performance estimated by (8) from the
corresponding scheduled DAG.

As validation platform we use an Intel Xeon E5-2680
with a Sandy Bridge microarchitecture, characterized by the

TABLE III. SPECIFIC NAMES OF THE PROPERTIES DEPENDING ON
NODE TYPE.

N Π Λ Tx

Node type (x) # nodes Throughput Latency Time

Computation W π Tcomp

A WA πA λA TA

M WM πM λM TM

Memory Q

L1 QL1 βL1 µL1 TL1

L2 QL2 βL2 µL2 TL2

L3 QL3 βL3 µL3 TL3

mem Qmem βmem µmem Tmem

parameters in Table I, which are used for our model and
analysis. We consider eight numerical kernels operating on
double precision data that span the domains of signal process-
ing (fast Fourier transform (FFT) from [10] and iterative and
recursive Walsh-Hadamard transform (WHT) from [11]), linear
algebra (a double loop matrix-vector multiplication (MVM),
a triple loop and six-fold loop matrix-matrix multiplication
(MMM)), scientific computing (3D 7-point stencil computation
from [12]) and machine learning (a serial implementation of
k-means clustering [13]). All the results shown correspond to
a warm cache execution. Fig. 6 shows the comparison for
these kernels. Each plot contains the measured performance
of the code compiled with icc v13.1.3 with optimization flags
-O3 -no-vec -no-simd1, the measured performance of the code
compiled with clang v3.4 and optimization flags -O3 -fno-
vectorize -fno-slp-vectorize, and the performance estimated by
the model. We include the performance of the icc-compiled
code for reference, but the most meaningful comparison is
between the latter two since the clang-compiled machine code
is generated from the same IR used in the interpreter to
generate the scheduled DAG.

For the FFT, MVM and MMM triple loop, the proposed
model accurately estimates performance and performance
trends. For the other computations, however, the difference is
more significant. In the case of WHT, for example, the likely
reason is the memory access pattern, which uses large power-
of-two strides and thus suffers from conflict misses, which are
not modeled by our approach. Hence in this case the estimated
performance is higher than the measured performance. The
performance can also be overestimated because we ignore
all address calculations and control instructions, which may
decrease performance for control-intensive applications like k-
means. For the stencil computation, the predicted performance
is lower than the measured. The likely reason is that it benefits
from hardware stream prefetchers, which are not yet included
in our model.

Note that none of the applications reaches the maxi-
mal possible 2 flops/cycle on this platform. The question is
which hardware resources are responsible. In the following
we present a methodology to provide insight into why this is
the case. For example, we will see later in Fig. 10 that likely
bottlenecks for the FFT of sizes 210 and 220 in Fig. 6(a) are
the combination of L1 and computation latencies, and ROB
stalls, respectively.

1We do not yet model SIMD vector architectures

24 26 28 210 212 214 216 218 220

Size

model

clang-compiled

icc-compiled

1.5

1.0

2.0

0.5

0

Performance f/c

(a) FFT

28 210 212 214 216 218 220 222

1.5

1.0

2.0

0.5

0

Size

model

clang-compiled

icc-compiled

Performance f/c

(b) WHT iterative

28 210 212 214 216 218 220 222

1.5

1.0

2.0

0.5

0

Performance f/c

model

clang-compiled
icc-compiled

Size

(c) WHT recursive
Size

Performance f/c

25001300 1700 2100

model

clang-compiled

icc-compiled

500 900

1.5

1.0

2.0

0.5

0

(d) MVM double loop

Performance f/c

1.5

1.0

2.0

0.5

0
100 200 300 400 500

Size

model
clang-compiled

icc-compiled

(e) MMM triple loop

Performance f/c

1.5

1.0

2.0

0.5

0
100 200 300 400 500

Size

model

clang-compiled

icc-compiled

(f) MMM six-fold loop

Performance f/c

1.5

1.0

2.0

0.5

0
1000 3000 5000 7000 9000

Performance f/c

model

clang-compiled

icc-compiled

Size

(g) k-means

1503010 50 70 90 110 130

Performance f/c

Size

icc-compiled

clang-compiled

model

1.5

1.0

2.0

0.5

0

(h) Stencil

Fig. 6. Comparison of performance estimated by the model and performance on a real system.

IV. BOTTLENECK MODELING AND GENERALIZED
ROOFLINE PLOTS

In this section we present the main contribution of this
paper: We use the hardware platform properties (Fig. 4) and
the performance data (Table III) obtained in the DAG analysis
for modeling bottlenecks. The result is a generalization of
the roofline model from Section II-B. As explained there, the
original proposal of roofline plots [1] only captures bottlenecks
due to throughput resources, and the performance bounds
are tight only if the corresponding resource is fully utilized
and computation and communication perfectly overlap. To
illustrate these shortcomings, Figs. 7(a) and (b) show the
roofline plots for the computation in Fig. 5(b) for both L1
and L2 cache. In both cases, the peak is not reached. As
mentioned before, one of the reasons is that computation and
L2 memory nodes only overlap in cycles 12–13, and in the
ROB stall cycles, which are included in both types of nodes.
Another reason is that the throughput resources are not fully
utilized. Although in every cycle one multiplication and one
addition can be executed, in cycles 12, 14, 20 and 23, only one
operation is issued. Similarly, in cycles 21–22 and 24–25 no
instructions are issued because of the latency of the floating-
point additions, and in cycles 15–19, the execution is stalled
due to the ROB capacity. In this section we present a model
that turns these inefficiencies into performance bottlenecks that
can be included in a roofline plot.

For a concise visualization, we first explain how to merge
roofline plots associated with different levels of the memory
hierarchy into one plot.

A. Merging Roofline Plots
In the original roofline model, the notion of operational

intensity is specific to a chosen level of the memory hierar-
chy. To consider different levels simultaneously, we redefine
operational intensity as flops per byte transferred to all levels
of the memory hierarchy:

I =
W

Q
=

W

QL1 +QL2 +QL3 +Qmem
. (9)

The operational intensity for a given level, say x, can then be
computed as Ix = IQ/Qx.

Note that with this definition, every access contributes to
exactly one of the four summands in (9) and is thus counted
exactly once.

The performance bound obtained for a specific level of the
hierarchy, given by (2), now becomes:

P ≤ min(Ixβx, π) = min(I
Q

Qx
βx, π). (10)

Using the redefined operational intensity and (10) we now
create one roofline plot for all levels of the memory hierarchy.
Fig. 7(c) shows the result for our running example. Note that
there is one fundamental difference to the original roofline plot.
Because of the factor Q/Qx, the memory bounds in Fig. 7(c)
now depend on program and input.

We note that the prior merging approach in [14] uses (9)
but not (10). As a result the bounds are program independent
but are only valid if all accesses hit one level of the hierarchy.

Note that at this point we can create roofline plots whose
roofs correspond one-to-one to the types of nodes in our DAG
(see Table III): compute nodes2 yield horizontal roofs, memory
nodes yield diagonal roofs. In the following, these roofs are
always drawn as solid lines.

B. Modeling Bottlenecks From the Scheduled DAG
Our approach to modeling bottlenecks is based on one

observation: In the standard roofline model, if a program is,
e.g., L1-bound, it will hit the performance roof from the
L1 bandwidth if and only if the bandwidth is 100% utilized
throughout the program. In general, this is not the case as the
L1 cache is utilized only in part of the program. By quantifying
this utilization we create additional and tighter roofs to identify
potential bottlenecks. They are drawn as dashed lines in the
plots. In the following, we first quantify utilization and then
derive these additional bottlenecks.

Utilization. The utilization of the throughput of a node type
is defined as the ratio of the number of the nodes executed to

2For simplicity, additions and multiplications are from now on collected in
a single computation node type. The total number of nodes for this type is
W =WA +WB, and the throughput is π = πA + πB.

operational intensity 	

[flops/byte to L1]	

performance���
[flops/cycle]	

1/128	

 1/32	

 1/8	

bound based on π	

bound based on βL1	

x	

1/2	

1/8	

2	

1	

1/2	

1/4	

(a) Roofline plot for L1.

operational intensity 	

[flops/byte to L2]	

1/128	

 1/32	

 1/8	

bound based on π	

bound based on βL2	

x	

1/2	

performance���
[flops/cycle]	

1/8	

2	

1	

1/2	

1/4	

(b) Roofline plot for L2.

operational intensity 	

[flops/byte]	

1/128	

 1/32	

 1/8	

bound based on π	

bound based on βL2	

x	

1/2	

performance���
[flops/cycle]	

1/8	

2	

1	

1/2	

1/4	

bound based on βL1	

(c) Roofline plot for L1 and L2 cache.

Fig. 7. Merging roofline plots of different levels of the memory hierarchy:
Example for the code in Fig. 5(b).

the number of nodes that could have been executed at full
throughput:

U =
N

TΠ
, (11)

where N , Π and T are defined in Table III. For example, the
utilization of the L1 node type is UL1 = QL1/(TL1βL1).

Once the utilization Ux for a node type x is computed,
the roof associated with x can be multiplied by Ux, which
effectively makes the bound tighter. However, we do not do
this since this definition of utilization (if suboptimal) does
not distinguish between issue bottlenecks and stalls due to
latencies or reorder buffers. To separate these into more
specific bottlenecks, and thus create even tighter roofs, we
define more specific forms of utilization in the following. Each
will yield a roofline parallel to the original one. After that, we
explain how the inclusion of overlap information may yield
even tighter rooflines.

Issue bottlenecks. The issue bottleneck quantifies the
throughput utilization considering only the issue cycles (see
Table II):

U issue =
N

T issueΠ
. (12)

Issue bottlenecks show an inherent lack of ILP, or that data
dependences prevent the program to run at full throughput.

For the scheduled DAG in Fig. 5(b), none of the throughput
resources has an issue utilization of 1. For the L1 nodes, out of
the 4 memory operations that could have been executed, only
3 are executed (T issue

L1 = 2, βL1 = 2, QL1 = 3). The utilization
is hence U issue

L1 = 3/4. A similar analysis for the computation
nodes yields U issue

Comp = 1/2, and for L2 nodes, U issue
L2 = 1/4.

Fig. 8 shows the extension of the roofline plot of Fig. 7,
which now includes the three (compute, L1, L2) additional
roofs due to issue bottlenecks. Note how the computation
bound is lowered to 1 flop/cycle. In this case, the reason is not
an inherent lack of ILP, but is a consequence of the scheduling
of the DAG with the given microarchitectural constraints.

operational intensity 	

[flops/byte]	

1/128	

 1/32	

 1/8	

bound based on βL2	

bound based on π	

x	

1/2	

performance���
[flops/cycle]	

1/8	

2	

1	

1/2	

1/4	

bound based on βL1	

Issue	

L1
/L2

 Is
su

e	

Latency	

L1
 la

ten
cy
	

L2
 la

ten
cy
	

Stall	

L1/L2 stall	

Comp/L2 overlap	

Fig. 8. Roofline plot for the scheduled DAG in Fig. 5(b) with additional
bottlenecks.

The stall, latency, and overlap bottlenecks in Fig. 8 are
explained in the following.

Latency bottlenecks. The latency bottleneck quantifies the
performance loss due to latency cycles, i.e., cycles in which
instructions are not being issued because of dependences with
long latency operations and lack of ILP to hide its effect. This
bottleneck is calculated by modifying (12) to include latency
cycles:

U lat =
N

(T issue + T lat)Π
. (13)

If the latency of a node type is 1, T lat = 0, and U lat = U issue.
In Fig. 8, all three roofs (compute, L1, L2) have an

associated tighter latency bottleneck. The latency utilizations
are U lat

L1 = 3/10, U lat
L2 = 1/28, and U lat

Comp = 2/13. This
means that the achievable performance is 15% of the issue
performance bound. Note that in this case, if latency cycles
were removed, the maximum attainable performance would
still be only 50% of the peak because of the issue bottleneck.

Stall bottleneck. The stall bottleneck quantifies loss of
performance due to stall cycles caused by filled OoO buffers.
Note that in this definition we have to take into account overlap
with issue cycles to avoid counting cycles twice:

U stall =
N

(T issue + T stall − T o{issue,stall})Π
. (14)

As shown in (4), the stall cycles combine all the cycles spent
in the OoO buffers. We actually do a more fine-grained stall
bottleneck analysis by considering individual stall times and
utilizations.

Fig. 8 shows the stall bottlenecks (only ROB stalls occur)
for each roof. Note that for the computation nodes, latency and
stall cycles overlap. This means that removing the stall cycles
may not remove the bottleneck because the latency penalty
could remain. This and other limitations of the proposed
bottleneck analysis will be discussed at the end of this section.

Overlap bottleneck. The maximum performance cannot
be reached if compute and memory nodes do not overlap
completely in time. The overlap bottleneck quantifies the loss
of performance due to imperfect overlap. In contrast to the
previous bottlenecks, it is defined for pairs of node types
including pairs of memory nodes. For a compute node and
a memory node x with overlap α from (7), the associated
performance roof is

P ≤ IQ/Qx

(IQ
UCompπQx

+ 1
Uxβ − αmin(1

Uxβx
, IQ
UCompπQx

))
. (15)

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

Issue

Latency/RS

L1
 Is

su
e

L1
 la

te
nc

y

L1
 R

S

m
em

 R
S

Peak (2 f/c)

m
em

 ß
 (8

.0
b/

c)
L1

 L
oa

d
ß

(1
6.

0
b/

c) α mem- FP computation

m
em

 la
te

nc
y Bottlenecks:

FP latency/RS
mem latency
α mem-FP computation

(a) Original parameters in Table I.

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

RS

Latency

Issue

L1
 R

S

m
em

 la
te

nc
ym
em

 R
S

L1
 la

te
nc

y

L1
 Is

su
e

L1
 L

oa
d

ß
(1

6.
0

b/
c)

m
em

 ß
 (8

.0
b/

c)

overlap
L1- FP comp

Peak � (2 f/c)

Bottlenecks:
RS
α L1-FP computation

(b) Decrease γRS to 20.

Fig. 9. Generalized roofline plot for an iterative sum reduction, N = 5× 106, cold cache scenario.

If α = 1, (15) is equivalent to (10), except that utilization is
already taken into account. If α 6= 1, then (15) yields a curved
roof as shown in Fig. 8 for our running example. This roof
now is tight, i.e., hits the performance point, which shows that
the main bottleneck is the lack of overlap between computation
and accesses to L2 (as one can confirm by inspecting Fig. 5(b)).

Second, the overlap bound for two memory type nodes x
and y, where x has smaller execution time is given by

P ≤ UxβxU
yβyIQ

Uxβy(1− α)Qy + UyβyQy
. (16)

C. Bottleneck properties and limitations of the analysis
As already mentioned, the various roofs that we derive

become specific to program and input. Thus, each such plot
can contain only one performance point. However, the major
benefit is the integration of various roofs into only one plot
that shows all bottlenecks.

Another limitation is that all bottleneck lines are inter-
dependent. Modifying only one microarchitectural parameter
implies a rescheduling of the entire computation DAG, and the
rooflines may change unpredictably. There is no guarantee that
a roof that hits the performance point is actually a bottleneck
(the code could fully use the resource precisely).

We are working on the integration of SIMD vector in-
structions, which is relatively straightforward, but support for
parallel code requires more research.

Finally, we want to emphasize that our notion of utilization
enables the handling of code with different phases (e.g., parts
dominated by memory operations, parts by computation). The
distance of roofs to the performance point are an indicator of
the relevance of the respective microarchitectural parameter.

V. RESULTS
We apply our bottleneck analysis to a number of numerical

kernels: first to an iterative vector sum reduction for basic vali-
dation, then to five of the kernels already used in Section III-C.

Experimental setup. Table I shows the microarchitectural
parameters that we use in all our experiments; it models a
recent Intel Xeon. In the roofline plots shown, the original
performance bounds are shown as solid lines, our added issue,
latency and stall bottlenecks as dashed lines, and overlap
bottlenecks as gray solid lines. Due to the high (≥ 0.95)
measured overlaps, the latter loose their curved shape.

Basic validation: Reduction. Fig. 9(a) shows our general-
ized roofline plot for a large iterative sum reduction of a vector
of doubles, run with cold cache. The operational intensity is
1/8 (1 addition per 1 double). The performance is 1/λA due
to the sequential dependence of the reduction. As expected,
the plot identifies the floating-point latency as a bottleneck.
However, the performance point hits two additional bottleneck
lines, the memory bandwidth and the RS stall bottleneck. The
first can be expected in a cold cache scenario, but the RS
stall bottleneck may not be so obvious. The reason is that the
instruction fetch rate (see Table I) is higher than the instruction
execution rate, so the RS fills and becomes a bottleneck.

To show that the RS can indeed be a bottleneck, we
reschedule the DAG by further reducing the RS size from 54
to 20 and obtain Fig. 9(b): the performance drops by 40% and
the RS is the only bottleneck.

The reader may wonder why the performance point ends
up on an intersection in both cases. In the original roofline plot
this can happen only for Tcomp = Tmem, and for the same reason
it happens here (approximately). Namely, if buffer stalls and
latencies are included, most cycles contribute to both Tcomp and
Tmem and thus they are roughly equal. What our analysis does
is to remove from this count, in steps, cycles due to latencies
and due to stalls. This tightens the roofs until the performance
point is reached. If Tcomp and Tmem have low overlap, then the
performance will sit on the (curved) overlap line (e.g., Fig. 8).

Increasing size. Bottlenecks may also change with the
input size. Fig. 10 shows our analysis for FFTs of sizes 210

and 220. For the small size, L1 latency and bandwidth is
the limiting resource and the peak is not reached because of
latency effects. For larger sizes, more bottleneck lines appear
because the application accesses more levels of the memory
hierarchy, and new execution stalls due to OoO buffers appear,
being the ROB stalls the one that contribute the most to
execution time. Actually, all the possible bottleneck lines
appear, which means that all buffers create execution stalls.

Different implementations of the same application. We
compare how bottlenecks change across different implementa-
tions of matrix-matrix multiplication (MMM) of square matri-
ces of size 500. Fig. 11 shows the generalized roofline plots for
(a) a triple loop implementation and (b) a six-fold loop version,
which is known to have better locality and, hence, better

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

Peak � (2 f/c)

L1
 L

oa
d

ß
(1

6.
0

b/
c)

overlap
L1-FP computations

L1 latency

L1 ROB

L1 LFB

L1 LB

L1 RS

L1 issue

All others
Latency

Bottlenecks:
FP latency
L1 lantecy
α L1-FP computation

(a) Roofline plot for FFT, size 1024, warm cache.

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Peak � (2 f/c)

ROB

Latency

Issue/others

L1 ROB

mem ROB
LLC ROB

L2 ROB

LLC latency
mem latency

LL
C

 ß
 (3

2.
0

b/
c)

L1
 L

oa
d

ß
(1

6.
0

b/
c)

m
em

 ß
 (8

.0
b/

c)

L2
 ß

 (3
2.

0
b/

c)

Performance [Flops/Cycle]

overlap
L1-FP computation

Bottlenecks:
ROB
α L1-FP computation

(b) Roofline plot for FFT, size 1048576, warm cache.

Fig. 10. Generalized roofline plot for FFT, warm cache.

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

Peak � (2 f/c)

Latency/ROB

Issue/ Others

L1 ROB
L1 latency

L2 ROB
L2 latency

L1
 L

oa
d

ß
(1

6.
0

b/
c)

L2
 ß

 (3
2.

0
b/

c)

LL
C

 ß
 (3

2.
0

b/
c)

LL
C

 la
te

nc
y L1 LFB

LLC LFB
L1 RS

L2 LFB

LLC ROB

overlap
L1- FP computation

Bottlenecks:
FP latency
L1 lantecy
ROB stalls

(a) MMM triple loop.

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

Peak � (2 f/c)

Latency/ROB

Issue

L1
 la

te
nc

y/
L1

 R
O

B

L1
 is

su
e

L2
 R

O
B/

 L
LC

 R
O

BL1
 L

oa
d

ß
(1

6.
0

b/
c)

LL
C

 la
te

nc
y

L2
 la

te
nc

y

overlap L1- FP computation

Bottlenecks:
FP latency
L1 lantecy
ROB stalls

(b) MMM six-fold loops, block size 50 (chosen to fit in the L1 cache)

Fig. 11. Generalized roofline plot for different implementations of MMM of size 500, warm cache.

performance as shown in the figure. In both implementations,
execution stall cycles due to the ROB occupancy and floating-
point latency cycles are important contributors to the execution
time, and the associated bottleneck lines hit the performance
point. While in the blocked implementation only the L1 latency
appears as a bottleneck, in the triple loop implementation, the
L2 latency limits performance as much as the L1 latency. In
none of the cases the memory-related (mem) bottlenecks show
up because the three matrices fit within the last-level cache.
Note that although blocking is an optimization that targets
improving locality, it also reduces the floating-point latency
bottleneck.

Other applications: Stencil and k-means. Finally, we
analyze the bottlenecks of a 3D 7-point stencil computation
and k-means in Figs. 12 and 13, respectively. The stencil is
calculated on a grid of 104 points, across 5 sweeps. Due to
its access pattern, which exhibits poor spatial and temporal
locality, the memory bandwidth is one of the main bottlenecks.
Associated to these long-latency memory accesses, ROB stalls
appear as an important bottleneck. In the case of the k-means
kernel, again it is the latency of the floating-point computations
and L1 accesses the main inhibitors of performance. It is
interesting to see that across most of the kernels analyzed,
these two hardware resources appear as the main bottlenecks,

which suggests that improving them could have a direct impact
on the performance of the applications.

Analysis time. In all benchmarks, the time for the anal-
ysis was about a factor 104 slower than the non-interpreted
execution of the benchmark. Without the overlap analysis, the
analysis time is about 5 times faster.

VI. RELATED WORK

We give a brief overview of relevant work on performance
and bottleneck analysis techniques.

Performance modeling and evaluation. Performance
analysis techniques range from analytic models of computation
to sophisticated software tools that measure performance on
modern computing systems. In Section II we discussed basic
analytic models of performance including work-span [15],
and the external memory model used in the balance prin-
ciples of computation [16]. There exist also semi-empirical
and empirical modeling techniques that predict asymptotically
tight bounds in performance by curve fitting [17] or machine
learning techniques [18]. These models can also be used to
predict hardware trends [19]. Our approach is analytic in that
it quantifies performance properties from a (scheduled) DAG
and does not include any measurements on an actual platform.

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

ROB

RS

Issue

Peak (2 f/c)

L1 ROB

mem ROB

LLC ROB

LL
C

 la
te

nc
y

L1
 la

te
nc

y

L1
 R

S

L1
 Is

su
e

m
em

 R
S

L2
 ß

 (3
2.

0
b/

c)

L1
 L

oa
d

ß
(1

6.
0

b/
c)

m
em

 ß
 (8

.0
b/

c)

Latency

mem latency

overlap
mem-FP computations

Bottlenecks:
FP latency
mem latency
α mem-FP computation

Fig. 12. Generalized roofline plot for 3D 7-point stencil, 104 elements.

In contrast to prior work many more hardware features are
included in the analysis to obtain more realistic results.

On the other end of the spectrum of performance eval-
uation techniques are cycle-accurate microarchitectural sim-
ulators [20]. They model and mimic all the components of
a microarchitecture, and report accurate performance predic-
tions. Finally, performance and other properties can be mea-
sured using the performance counter infrastructure available
in most modern computing systems. Tools like VTune [21] or
PAPI [22] provide interfaces to access performance counters
and report extensive statistics including cache misses or re-
source stalls cycles. As we argue next, our kind of bottleneck
analysis cannot be easily be performed with either simulators
or performance counters.

Bottleneck modeling and evaluation. VTune includes
specific analyses to extract bottleneck information from the
data collected from the performance counters [23]. These anal-
yses classify and break down execution stalls until they identify
a unique bottleneck. However, the bottleneck is specific to
the processor the code is run on, the data does not take into
account program phases with different characteristics, and does
not provide overlap information. For this reason, it cannot be
used to generate our roofline plots.

Other techniques to analyze bottlenecks consist of obtain-
ing CPI stacks [24], or using dynamic binary instrumenta-
tion [25].

Cycle-accurate simulators can also provide bottleneck in-
formation by progressively modifying hardware parameters.
Again they consider a completely specified microarchitecture,
and the measurements do not extract program phases nor over-
lap information. Thus, our roofline plots cannot be generated
with that data. Also, the simulation time may be considerably
larger than the one needed by our tool.

In contrast to cycle-accurate simulators, our work also
simulates the code but on a much higher level model that
consists of a set of microarchitectural parameters that is
common to many computing systems but is independent of
any specific one. This may reduce accuracy but allows for
faster design space exploration of platforms including those for
which microarchitectural details are unknown. Moreover, our
cycle-by-cycle analysis and utilization-based methodology can
identify bottlenecks with a single execution of the application.
We also emphasize again that our analysis is designed to

0.001 0.01 0.1 1
Operational Intensity [Flops/Byte]

0.1

1

Performance [Flops/Cycle]

Peak � (2 f/c)

Latency
ROB
Issue

L1 latency
L1 ROB

L1 issue

L1
 L

oa
d

ß
(1

6.
0

b/
c)

L2
/L

LC
 la

te
nc

y

L2
 ß

 (3
2.

0
b/

c)

LL
C

 is
su

e

L2
 R

O
B

L2
 is

su
e overlap

L1- FP computation

Bottlenecks:
FP latency
L1 latency
α L1-FP computation

Fig. 13. Generalized roofline plot for k-means on 104 points, 1000 clusters.

produce the data needed to produce the generalized roofline
plots that we introduced.

Roofline model. As mentioned at the end of Section IV-A,
[14] merges roofs for different levels of the memory hierarchy
but does not include roofs for non-throughput resources. [26]
proposed a roofline model of energy but is not closely related
to our work.

VII. CONCLUSIONS

In this paper we proposed an extension of the roofline
model that includes an extended set of hardware-related bottle-
necks including throughput, latency, and capacity information
of a multi-level memory hierarchy and out-of-order execution
buffers. Associated with the model we presented a novel
generalization of the roofline plot that integrates all derived
bottlenecks as bounds into one viewgraph that shows their
relative importance.

At the core of our approach is a detailed DAG-based
analysis done by a tool that we implemented. The tool, in
a sense, simulates the execution of the DAG on a high-level
model of a microarchitecture specified by a set of parameters
relevant for the above bottlenecks. The key idea behind our tool
is a cycle-by-cycle analysis to extract utilization and overlap
data that is needed to create generalized roofline plots. This
data is hard to extract from alternative techniques like cycle-
accurate simulators or performance counters, which motivates
our use of DAG-based analysis.

We validated our performance modeling technique against
actual executions on a real system and showed reasonable
results. Then we applied our bottleneck analysis to a number
of important numerical kernel routines showing that it provides
and visualizes tight bounds on performance, where execution
cycles are spent, how they are distributed across resources, and
their contribution to the application’s performance. Although
throughout the paper we used the modern Intel Sandy Bridge
platform to both validate our models and experiments, other
microarchitectures, for example the in-order Atom micropro-
cessor, can be model with minor changes in the configuration
parameters.

Possible uses of our work are in guiding manual code
optimization or in deciding which processor components to
upgrade to improve performance. The main current limitations

of our approach include not modeling prefetchers, and vector-
ized and threaded code. Also, the roofline plots are specific to
the program input. Addressing these issues is future work.

In this paper we focused on developing the theory and
approach; thus we could only provide a cursory experimental
evaluation on a few kernels to show that we get meaningful
results. However, even this simple evaluation and our visual-
ization provided interesting insights into the interplay between
different microarchitectural components and the associated
bottlenecks. We believe we have only scratched the surface
in developing our approach and interpreting the results.

The source code of the LLVM-based tool to obtain the
performance bottleneck data is available at [27].

ACKNOWLEDGMENTS

The authors would like to thank Phillip Stanley-Marbell
for his valuable feedback and helpful discussions.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, pp. 65–76, 2009.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to algorithms,” 2009.

[3] W. J. Savitch and M. J. Stimson, “Time bounded random access
machines with parallel processing,” Journal of the ACM, vol. 26, no. 1,
pp. 103–118, 1979.

[4] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, no. 9, pp. 1116–
1127, 1988.

[5] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Code Generation and
Optimization (CGO), 2004.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th ed. Morgan Kaufmann Publishers Inc., 2006.

[7] Intel 64 and IA-32 Architectures Software Developer’s Manual, 2013.
[8] R. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arith-

metic Units,” IBM Journal of Research and Development, vol. 11, pp.
25–33, 1967.

[9] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis,” in Programming Language Design and Im-
plementation (PLDI), 2003, pp. 245–257.

[10] W. H. Press, B. P. Flannery, T. S. A., and V. W. T., Numerical Recipes
in C: The Art of Scientific Computing, 2nd ed., 1992.

[11] J. Johnson and M. Püschel, “In search of the optimal Walsh-Hadamard
transform,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2000, pp. 3347–3350.

[12] “S. Kamil, Stencil probe, 2012,” http://people.csail.mit.edu/skamil/
projects/stencilprobe/.

[13] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system,” in International
Symposium on Workload Characterization (IISWC), 2009, pp. 198–207.

[14] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrad-
ing the loft,” IEEE Computer Architecture Letters, vol. 99, 2013.

[15] G. E. Blelloch, “Programming parallel algorithms,” Commun. ACM,
vol. 39, pp. 85–97, 1996.

[16] K. Czechowski, C. Battaglino, C. McClanahan, A. Chandramowlish-
waran, and R. Vuduc, “Balance principles for algorithm-architecture
co-design,” in Hot topic in parallelism (HotPar), 2011, pp. 9–9.

[17] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling
for systematic performance tuning,” in Supercomputing (SC), 2011, pp.
6:1–6:12.

[18] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability prediction,”
in International Conference on Supercomputing (ICS), 2008.

[19] K. Czechowski and R. Vuduc, “A theoretical framework for algorithm-
architecture co-design,” International Parallel and Distributed Process-
ing Symposium (IPDPS), pp. 791–802, 2013.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A full system simulation platform,” Computer, vol. 35, pp.
50–58, 2002.

[21] “Intel R©VTuneTMAmplifier XE 2013.”
[22] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface

to hardware performance counters,” in In Proceedings of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7–10.

[23] A. Yasin, “A top down method for performance analysis and counters
architecture,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2014.

[24] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeckhout,
“Using cycle stacks to understand scaling bottlenecks in multi-threaded
workloads,” in International Symposium on Workload Characterization
(IISWC), 2011, pp. 38–49.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Programming
Languages Design and Implementation (PLDI), 2005, pp. 190–200.

[26] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” International Parallel and Distributed Processing Symposium
(IPDPS), pp. 661–672, 2013.

[27] “Source code for the tool,” http://www.spiral.net/software/
extended-roofline.html.

