
IN SEARCH OF THE OPTIMAL WALSH-HADAMARD TRANSFORM

Jeremy Johnson

Mathematics and Computer Science
Drexel University

Philadelphia, PA 19104
jjohnson@mcs.drexel.edu

Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
pueschel@ece.cmu.edu

ABSTRACT

This paper describes an approach to implementing and
optimizing fast signal transforms. Algorithms for com-
puting signal transforms are expressed by symbolic ex-
pressions, which can be automatically generated and
translated into programs. Optimizing an implemen-
tation involves searching for the fastest program ob-
tained from one of the possible expressions. In this pa-
per we apply this methodology to the implementation
of the Walsh-Hadamard transform. An environment,
accessible from MATLAB, is provided for generating
and timing WHT algorithms. These tools are used
to search for the fastest WHT algorithm. The fastest
algorithm found is substantially faster than standard
approaches to implementing the WHT. The work re-
ported in this paper is part of the SPIRAL project (see
http://www.ece.cmu.edu/∼spiral), an ongoing project
whose goal is to automate the implementation and op-
timization of signal processing algorithms.

1. INTRODUCTION

In this paper we present an approach to implementing
and optimizing fast signal transforms in general and
the Walsh-Hadamard transform (WHT) in particular.
We have chosen the WHT because it simple yet impor-
tant (for applications of the WHT to signal processing
and coding theory see [2] an [8] respectively). Fast al-
gorithms for computing the WHT are similar to the
fast Fourier transform (FFT) and its variants [6]. The
only difference is that there are no twiddle factors and
bit-reversal is not necessary. By removing the extra
complexity of the twiddle factors and bit-reversal we
can concentrate on divide and conquer strategies and
iterative versus recursive algorithms.

Our approach to implementing the WHT is to cre-
ate a flexible software architecture that can be con-
figured to implement many different algorithms. Inter-
nally algorithmic choices are represented in a tree struc-
ture similar to the plan data structure of the FFTW

package [5]. Externally algorithmic choices are described
by a simple grammar which can be parsed to create dif-
ferent algorithms that can be executed and timed. This
is similar to the approach advocated in the design of
TPL, a language for designing and implementing FFT
algorithms, and its predecessors [6, 3, 1].

Our package is written in C; however, the external
interface allows the user to explore algorithmic choices
without writing C code. A MATLAB interface which
allows the user to interact and experiment with our
package is provided.

After reviewing the WHT in Section 2 and describ-
ing our package in Section 3, we summarize empirical
data illustrating performance and optimization of the
WHT. In our approach, optimizing the WHT becomes
a search problem over the space of special class of trees
called partition trees. While the space of trees is too
large to search exhaustively, we can use dynamic pro-
gramming and other techniques to prune the search.
Our data shows that the performance varies dramati-
cally from algorithm to algorithm and from machine to
machine. The search process is similar to what is done
by FFTW; however, we allow a larger search space and
study it more systematically.

2. THE WALSH-HADAMARD
TRANSFORM

The Walsh-Hadamard transform of a signal x, of size
N = 2n, is the matrix-vector productWHTN ·x, where

WHTN =
n⊗

i=1

DFT2 =

n︷ ︸︸ ︷
DFT2⊗ · · ·⊗DFT2 .

The matrix

DFT2 =

[
1 1
1 −1

]
is the 2-point DFT matrix, and ⊗ denotes the tensor or
Kronecker product. The tensor product of two matrices



is obtained by replacing each entry of the first matrix
by that element multiplied by the second matrix. Thus,
for example,

WHT4 =

[
1 1
1 −1

]
⊗
[

1 1
1 −1

]

=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Algorithms for computing the WHT can be derived
using properties of the tensor product [9, 6]. A re-
cursive algorithm for the WHT is obtained from the
factorization

WHT2n = (WHT2⊗I2n−1)(I2⊗WHT2n−1) (1)

This equation corresponds to the divide and conquer
step in a recursive FFT. An iterative algorithm for com-
puting the WHT is obtained from the factorization

WHT2n =
n∏

i=1

(I2i−1⊗WHT2⊗I2n−i), (2)

which corresponds to an iterative FFT. More generally,
let n = n1 + · · ·+ nt, then

WHT2n =
t∏

i=1

(I2n1+···+ni−1⊗WHT2ni⊗I2ni+1+···+nt )

(3)
This equation encompasses both the iterative and re-
cursive algorithm and provides a mechanism for explor-
ing different breakdown strategies and combinations of
recursion and iteration. Alternative algorithms are ob-
tained through different sequences of the application
of Equation 3. Each algorithm obtained this way can
be represented by a tree, called a partition tree. The
root of the partition tree corresponding to an algorithm
for computing WHTN , where N = 2n is labeled with
n. Each application of Equation 3 corresponds to an
expansion of a node into children whose sum equals
the node. Figure 1 shows the trees for a recursive and
iterative algorithm for computing WHT16.

In this paper we explore all WHT implementations
corresponding to all possible partition trees. The to-
tal number of partition trees of size n is given by the
recurrence

Tn = 1 +
∑

n1+···+nk=n

Tn1 · · ·Tnk
(4)

Table 1 lists the first few values of Tn. The generating
function, T (z), for Tn satisfies the functional equation

T (z) = z/(1− z) + T (z)2/(1− T (z)), (5)

4
���

� @ PPP

1 1 1 1 1
�

1
@

1
�

2
@

1
�

3
@

4

Figure 1: Partition Trees for Iterative and Recursive
WHT Algorithms

n 1 2 3 4 5 6 7 8
Tn 1 2 6 24 112 568 3032 16768

Table 1: Number of Partition Trees for WHT2n

and consequently Tn = Θ(αn/n3/2), where α = 4 +√
8 ≈ 6.828427120. Even if we restrict to binary par-

tition trees, the number of trees is Θ(5n/n3/2). Hence
it is impossible to exhaustively search all possible trees
for the optimal algorithm.

3. DESIGN OF THE WHT PACKAGE

The design of our WHT package is based on the design
of an FFT package from the thesis of Sebastion Egner
[4], and is similar in spirit to the design of FFTW [5].

Algorithm alternatives are represented syntactically
using a grammar for describing the breakdown strategy.

W(n) ::= small[n] |

split[W(n1),...,W(nt)] # n=n1+...+nt

The nonterminal symbol W(n) gets expanded into a
string, called a WHT expression, corresponding to an
algorithm for computingWHT2n . Algorithms are built
up from the symbol small[n], which corresponds to a
sequence of unrolled straight-line code for computing
WHT2n . The string split[W(n1),...,W(nt)] corre-
sponds to an application of Equation 3. For example,
the strings

split[small[1],small[1],small[1],small[1]]

split[small[1],split[small[1],

split[small[1],small[1]]]]

corresponds to the iterative and recursive algorithms
for computing WHT16 depicted in Figure 1.

Let N = N1 · · ·Nt, where Ni = 2ni , and let xM
b,s

denote the vector (x(b), x(b+ s), . . . , x(b+ (M − 1)s)).
Then evaluation of x = WHTN ·x using Equation 3 is
performed using

R = N ; S = 1;



for i = 1, . . . , t

R = R/Ni;

for j = 0, . . . , R− 1

for k = 0, . . . , S − 1

xNi

jNiS+k,S = WHTN · xNi

jNiS+k,S ;

S = S ∗Ni;

This scheme assumes that the algorithm works in-place
and is able to accept stride parameters.

Several code generators are provided for producing
code for small[n]. The resulting functions, similar to
the codelets in FFTW, are straight-line code sequences
without the overhead of loop control or recursion. The
elimination of the control overhead makes them more
efficient for small transform sizes than general purpose
code; however, the size of the instruction cache even-
tually causes straight-line code to become slower.

A parser is provided for reading WHT expressions
and translating them into a data structure called a
WHT tree, which is a partition tree with additional
information and is related to an FFTW plan. Each
algorithm described by a WHT tree can be used to
compute the WHT using an apply function.

Timing and verification programs are provided, which
take as input a WHT expression. The timing pro-
gram can be accessed through MATLAB. MATLAB
programs to generate WHT expressions and analyze
the resulting algorithms are available.

4. THE SEARCH FOR THE OPTIMAL
WHT ALGORITHM

This section summarizes our performance experiments
and outlines our search for the optimal WHT algo-
rithm. The key observations are: (1) There is a wide
distribution of computing times for different algorithms.
(2) The optimal algorithm depends on the computer
and compiler. (3) Substantial performance improve-
ment can be obtained by choosing an appropriate al-
gorithm. (4) By providing an environment to generate
algorithmic choices and intelligently search for the one
with optimal performance it is possible to take advan-
tage of the previous 3 observations.

The WHT package is written in C and is available
for download at [7]. Computer experiments were per-
formed on a 233 MHz Pentium II running Linux and
a 400 MHz UltraSPARC II running Solaris. On the
Pentium gcc version 2.7.2.3 with -O6 was used, and on
the UltraSPARC version 5.0 of Sun’s C compiler with
-fast -xO5 was used. All algorithms operated in-place
on double precision real data.

In our first experiment, we compared the iterative
algorithm from Equation 2 with the recursive algorithm

0 2 4 6 8 10 12 14 16 18 20
0.6

0.8

1

1.2

1.4

1.6

1.8

2
rec/it

Figure 2: Ratio of Recursive/Iterative on Pentium

from Equation 1. From Figure 2 we see that initially
the iterative algorithm is faster, but eventually the
recursive algorithm becomes faster. The switch over
point occurs when the input no longer fits in L2 cache.
The recursive algorithm utilizes cache better, however,
the overhead for recursion seems to be significant for
small sizes.

Further improvement can be obtained by using larger
unrolled code sequences. We generated straight-line
code for small transform sizes and observed improve-
ment over the iterative algorithm up to size 28 on both
platforms. Code generators based on a recursive algo-
rithm were superior (due to better register utilization)
optimization flags The amount of improvement, up to a
factor of 7.4, depended on the compiler. We observed
that Sun’s C compiler performed significantly better
than gcc.

The first two experiments suggest a recursive design
that switches to an iterative algorithm inside the cache
boundary which in turn is built from straight-line code
for transforms up to size 256. However, performance
can be highly unpredictable and consequently the best
thing to do is systematically search all possible imple-
mentations to determine the optimal combination of
straight-line code, iteration, and recursion.

Since it is infeasible to do an exhaustive search we
used dynamic programming to search for an optimal
algorithm. We assumed that the optimal algorithm for
a given transform size is independent of the context in
which it is being called. Under this assumption, we
can search for the optimal algorithm for a given size
by considering all possible applications of Equation 3
with the previously determined best algorithms used



0 500 1000 1500 2000 2500
1

1.5

2

2.5

3

3.5
relative runtime of splits of 12

ru
nt

im
e 

re
la

tiv
e 

to
 b

es
t

Figure 3: Distribution of all Split Times on Pentium

for recursive evaluations. The number of cases for size
n is equal to 2n−1, the number of ordered partitions
of n. Figure 3 shows the times compared to the best
time for all possible splits for n = 12. The same exper-
iment run on the Sun produces a figure with different
characteristics.

When n > 12 examing all possible splits becomes
too expensive. Thus we restricted dynamic program-
ming to binary splits (there are only n(n− 1)/2 binary
splits). Up to size 12 there was no penalty for this re-
striction; however, we expect additional improvements
when considering non-binary trees for larger sizes. The
optimal binary split on the Sun for n = 20 was

split[split[split[small[5],small[5]],

small[5]],small[5]]

and the resulting computing time was 1.4875e-01 sec-
onds, while the optimal split on the Pentium was

split[small[2],split[small[2],split[small[2],

split[small[2],split[small[2],split[small[5],

small[5]]]]]]]

with computing time equal to 6.4500e-01. Compared to
the iterative algorithm the improvement was a factor of
10.4 on the Sun. Observe that for the Sun the tree has
a leftmost expansion, while the tree for the Pentium
has a rightmost expansion.

On both machines small[n] was optimal up to size
n = 7 (small[8] was not optimal despite being faster
than the iterative algorithm). Despite this, the large
values of small were not utilized when building larger
transforms. On the Pentium all leftmost factors in the
optimal formulas were equal to 2 when the size of the
input no longer fit in L1 cache. When comparing the

Pentium to the Sun we see that the ratio of the run-
times of the optimal formulas is much larger than the
ratios in CPU speed.

Finally we remark that the dynamic programming
assumption is not always true. We observed that the
runtimes of small[n] depend upon the stride at which
they are applied. Nevertheless, so far we have been un-
able to find substantially better algorithms than those
determined by dynamic programming. Additional ex-
perimental results and details are available from [7].

5. REFERENCES

[1] L. Auslander, J. R. Johnson, and R. W. John-
son. Automatic implementation of FFT al-
gorithms. Technical report, Department of
Mathematics and Computer Science, Drexel
University, Philadelphia, PA, June 1996.
http://www.ece.cmu.edu/∼spiral/tpl.html.

[2] K.G. Beauchamp. Applications of Walsh and re-
lated functions. Academic Press, 1984.

[3] D. L. Dai, S. K. S. Gupta, S. D. Kaushik, J. H.
Lu, R. V. Singh, C.-H. Huang, P. Sadayappan, and
R. W. Johnson. EXTENT: A portable program-
ming environment for designing and implementing
high-performance block recursive algorithms. In Su-
percomputing 1994, pages 49–58, 1994.

[4] S. Egner. Zur Algorithmischen Zerlegungstheorie
Linearer Transformationen mit Symmetrie. PhD
thesis, Univ. Karlsruhe, Informatik, 1997.

[5] Matteo Frigo and Steven G. Johnson. FFTW: An
adaptive software architecture for the FFT. In
ICASSP ’98, volume 3, pages 1381–1384, 1998.
http://www.fftw.org.

[6] J. R. Johnson, R. W. Johnson, D. Rodriguez, and
R. Tolimieri. A methodology for designing, mod-
ifying, and implementing Fourier transform algo-
rithms on various architectures. Circuits, Systems,
and Signal Processing, 9(4):449–500, 1990.

[7] J. R. Johnson and Markus Püschel.
WHT: An adaptable library for comput-
ing the Walsh-Hadamard transform, 1999.
http://www.ece.cmu.edu/∼spiral/wht.html.

[8] F.J. MacWilliams and N.J. Sloane. The theory of
error-correcting codes. North-Holl. Publ. Co., 1992.

[9] C. Van Loan. Computational Frameworks for the
Fast Fourier Transform, volume 10 of Frontiers in
Applied Mathematics. Society for Industrial and
Applied Mathematics, Philadelphia, 1992.


