
Staging for Generic Programming in Space and Time
Georg Ofenbeck

Department of Computer Science
ETH Zurich
Switzerland

ofenbeck@inf.ethz.ch

Tiark Rompf
Department of Computer Science

Purdue University
USA

tiark@purdue.edu

Markus Püschel
Department of Computer Science

ETH Zurich
Switzerland

pueschel@inf.ethz.ch

Abstract
Metaprogramming is among the most promising candidates
to solve the abstraction vs performance trade-off that plagues
software engineering through specialization. Metaprogram-
ming has been used to enable low-overhead generic program-
ming for a long time, with C++ templates being one of the
most prominent examples. But often a single, fixed pattern of
specialization is not enough, and more flexibility is needed.
Hence, this paper seeks to apply generic programming tech-
niques to challenges in metaprogramming, in particular to
abstract over the execution stage of individual program ex-
pressions. We thus extend the scope of generic programming
into the dimension of time. The resulting notion of stage
polymorphism enables novel abstractions in the design of
program generators, which we develop and explore in this
paper. We present one possible implementation, in Scala us-
ing the lightweight modular staging (LMS) framework, and
apply it to two important case studies: convolution on images
and the fast Fourier transform (FFT).

CCS Concepts • Software and its engineering→ Poly-
morphism; Source code generation;

Keywords staging, polymorphism, generic programming,
high performance program generation, FFT
ACM Reference Format:
Georg Ofenbeck, Tiark Rompf, and Markus Püschel. 2017. Staging
for Generic Programming in Space and Time. In Proceedings of 16th
ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE’17). ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3136040.3136060

1 Introduction
Generic programming [25] embodies the idea of parameter-
izing algorithms over aspects such as data representations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5524-7/17/10. . . $15.00
https://doi.org/10.1145/3136040.3136060

Table 1. Stage polymorphism, i.e., generic programming in
time, enables fully automatic generation of fixed-size and
general-size libraries with specialized base cases from a sin-
gle high-level specification. Here, we compare our system
(SpiralS) to state-of-the-art FFT implementations.

or subcomputations. A generic sorting algorithm, e.g., might
abstract over the underlying data type, access model, compar-
ison operator, andwhether to sort in ascending or descending
order. Generic programming is widely used, and supported
in all common programming languages through language
facilities (e.g., type classes in Haskell) and libraries. Benefits
include reduced code duplication and better software scala-
bility or maintainability. In many cases, however, abstraction
techniques unfortunately come at the price of performance
due to runtime overheads or because the abstractions hide
optimization opportunities from the compiler.

Staging for generic programming in space. A poten-
tial remedy for the abstraction / performance trade-off is
specialization, which can be achieved in a general way via
metaprogramming techniques such as macros, templates,
or runtime code generation. In all such cases, the generic
computation is divided into (at least) two stages: the runtime
(or target) stage and the meta stage. Hence, we speak of a
staging transformation [19]. The basic idea is to eliminate
the abstraction overhead through computation in the meta
stage, and execute only specialized code in the target stage.

Example: Fast Fourier transform. Specialization typi-
cally consists of precomputation of values and simplification
of the code based on the parameters known at meta-time.
The effect is both improved runtime and smaller code size. A
good case study is the recursive fast Fourier transform (FFT).
If the input size n is known, the recursion strategy (for which
there are degrees of freedom) can be fixed at meta-time and
thus all recursive calls can be inlined to yield one monolithic

https://doi.org/10.1145/3136040.3136060
https://doi.org/10.1145/3136040.3136060

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

function. Further, the needed constants (called twiddle fac-
tors), which depend on n, can be precomputed and included.
Combined with abstractions to capture different data formats
and different unrolling and scalar replacement strategies, one
can build an FFT generator for fixed sizes. But what if n is
not known? In this case, the code has to be recursive and
needs facilities to control the freedom in recursion, twiddle
factors may be computed once and reused or computed on
the fly, and a suite of optimized base cases for small sizes is
needed. The latter are completely unrolled to enable further
simplifications and alleviate the overhead from recursing all
the way [11]. In summary, the impact of knowing n or not
on the resulting code is profound. The question we ask in
this paper is what mechanisms are needed in such situations
to support both cases in one generative framework to enable
“generic programming in time.”

Generic programming in time. Classical staging and
metaprogramming facilities fix the execution stage for each
piece of code, and hence, only support generic program-
ming in space. While there are always ways of also mak-
ing the stage (i.e., the time of computation) generic, e.g., in
C++ by combining preprocessor statements with template
metaprogramming, the goal of this paper is to provide a
more principled solution to generic programming in time,
without requiring external custom tool-chains, and using
only standard generic programming mechanisms to provide
true generic programming in time.
We present a solution, implemented in Scala using the

lightweight modular staging (LMS) framework [32]. We chose
LMS because it encodes staging through types, i.e., opera-
tions to be performed in themeta stage only differ in amarker
type that signals the compiler to redirect the expression to
the staging framework. This is achieved using standard tech-
niques such as operator overloading. These marker types
are regular Scala types; therefore all already existing mecha-
nisms for generic programming on types can be exploited
to abstract over whether a given expression is staged or not,
and hence achieve stage polymorphism.
Contributions. In this paper we present a principled ap-

proach that adds stage polymorphism to the generic pro-
gramming tool set. In particular:
- We give an overview of selected performance transforma-
tions that can be described through stage polymorphism,
such as tiling, precomputation (Section 3.2) and inlining
(Section 3.3)

- We compose genericity in time with genericity in space
(Section 3.4) to enable scalarization of data structures (Sec-
tion 3.5).

- We introduce a mechanism that enables the automated
encapsulation and exposure of target-time constructs from
within meta-time containers using isomorphisms encoded
as type classes (Section 3.6) and we describe how this helps
with loop tiling and in generating function definitions with
flexible signatures (Section 3.7).

- We illustrate how target-stage checks can transform target
information into meta information in a form of bounded
static variation (Section 3.8) that is crucial for specializing
divide-and-conquer algorithms (Section 3.9).

- We combine these mechanisms to specialize recursive func-
tion call graphs ahead of time, similar to procedure cloning
[7], but under full control of the programmer (Section 3.10).

- We demonstrate all introduced techniques on a running
example and two case studies (Section 4): convolution in
image processing and the FFT.

We note that all the above was implemented as a natural
extension of existing generic programming patterns. In [28],
we already used the idea of abstraction over the execution
stage, but only as a means to control the style of the gener-
ated code (e.g., unrolled or scalarized) and support different
data layouts for fixed-size FFTs. In this paper, we fully de-
velop the idea in a more general context. In particular this
allows abstraction in situations were the resulting code is
fundamentally altered as in the case of fixed size vs general
size FFTs mentioned before. This paper is the first to generate
both from a single code base.
The FFT case study (Section 4.2) is particularly signifi-

cant, as it is a well-studied application of program genera-
tion. Table 1 compares our implementation, called SpiralS,
to state-of-the-art systems, which range from fully hand-
written kernels (JTransforms: [46]), over generated codelets,
i.e., fixed-size kernels (FFTW: [11, 12]), to generated kernels
plus library infrastructure (Spiral: [29, 30]). Our system Spi-
ralS is the first to generate both fixed-size and general-size
libraries with specialized base cases from a single high-level
implementation, which takes under 200 lines of code for the
core algorithm, and just about 1200 lines total—an order of
magnitude reduction in complexity and code size compared
to state-of-the-art systems, even if one takes into account
that systems like Spiral provide large amounts of additional
functionality along orthogonal dimensions, e.g., support for
classes of linear transforms other than the FFT, or generation
of FPGA implementations [9], which render a literal LOC
comparison meaningless.
All code presented in this paper, including the case stud-

ies, is available at [27]. We emphasize that we consider in
particular the FFT case study a key part of our contribution.

2 Background
We present a brief introduction to relevant generic- and
metaprogramming techniques in Scala.

Type parameterization and abstract type members.
Scala supports type parameterization on classes and methods
[1, 26]. The syntax to define both is:
class GenericClass[T](constructor_param: T) {

val member: T = constructor_param

def method[X](param: X): X = param }

Staging for Generic Programming in Space and Time GPCE’17, October 23–24, 2017, Vancouver, Canada

Here, T is the generic type parameter to the class and X is the
type parameter to the method in this example. The syntax
at the instantiation site is
val inst = new GenericClass(3) // inferred [Int]

val inst_explicit = new GenericClass[Long](3)

Alternatively the same behavior can be achieved through
the use of abstract type members:
abstract class GenericClass2 {

type T // abstract type member

val member: T // abstract value member

def method[X](param: X): X = param }

which can be instantiated through refinement:
val inst2 = new GenericClass2 {

type T = Int

val member: T = 3 }

We use both versions in this paper as they offer different
trade-offs in terms of code verbosity.

Type classes and implicits. First introduced in Haskell,
type classes [45] enable a statically typed flavor of ad-hoc
polymorphism. Take, for example a generic method that
doubles a given number:
def generic_method[T:Numeric](p: T) = p + p

This method is generic in the type T, but imposes the restric-
tion that it must be a numeric type. The benefit of type classes
over inheritance is that we can retroactively add functional-
ity to existing data types. For example, we can provide a type
class implementation of Numeric for type Pair[Int,Int].
However since Pair is a generic class, we could not make it
inherit from a numeric base type.
Scala implements type classes using normal classes and

objects, but with the help of implicits. A possible interface
definition for Numeric could look like this:
trait Numeric[T] {

def interface_plus(l: T, r: T): T

class Ops(lhs: T) {

def +(rhs: T) = interface_plus(lhs, rhs) }}

Here we defined a class that specifies the required operations
on the generic type T. In addition, we define a class Ops for
syntactic convenience. As a second component, we provide
an implementation of Numeric for every numeric type:
implicit object IntIsNumeric extends Numeric[Int] {

def interface_plus(l: Int, r: Int): Int = l + r }

implicit object LongIsNumeric extends Numeric[Long] {

def interface_plus(l: Long, r: Long): Long = l + r }

These objects serve as evidence that the types Int and Long

are in fact numeric types. Note that we have used the implicit
keyword, which means that the compiler will automatically
insert a reference to these objects whenever an implicit pa-
rameter of type Numeric[Int] or Numeric[Long] is required
in a method application. The third component is an implicit
conversion method, which will wrap a numeric value in the
corresponding Ops class:

implicit def toOps[T](x: T)(implicit num: Numeric[T]):

num.Ops = new num.Ops(x)

With these facilities in place, we can explain how the original
generic method is desugared by the Scala compiler:
def generic_method[T: Numeric](p: T) = p + p // original

def generic_method_desugar[T] (p: T) // desugared

(implicit ev: Numeric[T]) = toOps(p)(ev).+(p)

Multiple implicits are used to enable the infix syntax of p + p.
Note that with this design one can retroactively add behavior
to a class, which, from a user syntax point of view, looks
like the addition of new methods. We use this design pattern
extensively within the work presented in this paper.

Lightweightmodular staging. LMS [32] is amulti-stage
programming approach implemented in Scala. LMS allows a
programmer to specify parts of the program to be delayed to
a later stage of execution. Compared to related approaches
based on syntactic distinctions like quasiquotes [24], LMS
uses only types to distinguish between present-stage and
future-stage operations. For example, the operation
val (a,b): (Int,Int) = (3,4)

val c: Int = a + b

will execute the operation, while the staged equivalent
val (a,b): (Rep[Int],Rep[Int]) = (3,4)

val c: Rep[Int] = a + b

uses the higher-kinded type Rep[_] as a marker type to redi-
rect the compiler to use an alternative plus implementation
def infix_+(lhs: Rep[Int], rhs: Rep[Int]): Rep[Int]

Instead of executing the arithmetic operation directly, the
staged variant will create a symbolic representation of the
plus operation and return a symbolic identifier as the result.
The details of this symbolic representation, its management
and final unparsing are not relevant for this paper. We focus
on describing the polymorphism between regular code and
its staged counterpart, which relies solely on the ability to
describe polymorphism over T and Rep[T]. The approach
utilized therefore is runtime meta-programming: Scala code
is compiled normally, and when the compiled code is run,
which we call meta-time, it generates specialized code. This
generated code is then compiled and executed offline, which
we call target-time. Code generation at runtime provides
capabilities that are not immediately achieved at compile
time. Examples include specializing code based on data that
becomes only available at meta-time (e.g., data read from a
file on a user’s machine), or generating code for a different
language such as C for performance.

3 Stage Polymorphism
In this section we demonstrate how to extend generic pro-
gramming to incorporate the dimension of time using LMS-
style type-driven staging.We first present a running example
and properties we would like to abstract. The following sub-
sections will then alternate between introducing a concept

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

used to achieve these abstractions and its application on the
running example.

3.1 Running Example and Abstraction Goals
Our running example program does not perform a practically
relevant computation but is designed to combine patterns
that occur in many numeric algorithms of practical rele-
vance, namely divide-and-conquer algorithms over arrays.
The program first scales each array element with an external
given value and then multiplies it by a call to a trigonometric
function whose arguments depend on the position and array
size. Afterwards, each value is added to its neighbour (in
essence a low-pass filter). Finally, it splits the array into two
halves and recurses on them until a base case is reached.
def recurse(a: Array[Double], s: Double): Array[Double] =

if (a.length < 2) a else {

val scaled = scale(a,s)

val sum = sum(scaled)

val (l, r) = split(sum)

recurse(l, s) ++ recurse(r, s) }

def split(a: Array[Double]) = a.splitAt(a.length / 2)

def scale(a: Array[Double], s: Double) =

a.zipWithIndex map { (ele, idx) =>

ele * Math.sin((idx + a.length) % 10) * s }

def sum(a: Array[Double]) =

(0 until a.length - 1).foldLeft(Array.empty[Double]) {

(acc, i) => acc :+ (a(i) + a(i + 1)) }

Abstraction goals. For this simple algorithm we want
to derive a staged, generic implementation that abstracts
over multiple aspects of the code related to when values are
computed and how the code is specialized. In particular:
- The input scaling factor s is provided as a single value. If
the value is known at meta-time we want to specialize for
it. Alternatively, if only known at target-time, perform a
runtime check on the value and depending on the outcome
potentially invoke a specialized version.

- The input array a should either be passed as in the sketched
code above or alternatively be provided as a list of scalar
variables and return the result in the same fashion. The
latter version could, e.g., be required for targeting hardware
descriptions and potentially require the input and output
lists to scale to arbitrary arities.

- The array size reduces with each divide and conquer step
converging towards the base case. The design goal is to per-
form a runtime check on the array size and if it is smaller
then a threshold, invoke a version of the code that is spe-
cialized to the problem size. This size-specialized version
should recurse through other size-specialized versions to-
wards the base case.

- The array data layout. Specializing on the array size as
mentioned above should also scalarize the array, if it is not
already already passed as a list of scalars.

- The loops. For the scaling loop, we want to perform un-
rolling whenever the array size is known statically. This is

the case if the input and output pair are lists of scalars or
if we are within one of the size-specialized variants within
the recursion. For the sum loop we want to employ tiling.

- The trigonometric function. Whenever applicable, we want
to precompute the value of this function.

- The recursion. We want to inline all functions, with the
exception of the recursive function itself, which we only
want to inline if the size is statically known and inlining
therefore terminates.

In the remainder of the section we will alternate between the
concepts needed to achieve these goals and their application
to our example.

3.2 Concept: Abstracting over Precomputation
Meta vs runtime computation.As introduced in Section 2,
LMS uses types to distinguish between meta and target stage
computation. To perform a sine function at the target stage
the code would take the form
def sin_target(x: Rep[Double]): Rep[Double] = ...

To instead perform the computation at the meta stage, and
only at the end move the result to the target stage, we simply
leave out the staging annotation type for the input.
def sin_meta(x: Double): Double = Math.sin(x)

LMS provides an implicit conversion method Const, which
can be used to move a primitive value from the meta to the
target stage. In particular, this conversion enables us to call
sin_target with either a meta or a target value. But calling
the meta version with a target value will yield a type error:
val (s,c): (Rep[Double],Double) = (...,2.0)

sin_target(s)

sin_target(c) // ok, implicit conversion

sin_meta(c)

sin_meta(s) // error: expected Double, not Rep[Double]

This simple example already demonstrates how the type
checking prevents us from mixing meta and target phases in
invalid combinations.

Abstraction over precomputation. The example above
duplicates code between the two implementations of the sine.
But since staging annotations are regular Scala types, we can
exploit all mechanisms for generic programming on types
to abstract over the choice of Rep[Double] and Double. We
can formulate the stage-polymorphic sine function as:
def sin_poly[R[_]: IRep](l: R[Double]): R[Double]

where we use a type class IRep defined as
trait IRep[R[_]] { def sin(lhs: R[Double]): R[Double] }

and two evidence objects defined as
type NR[T] = T

implicit object isRep extends IRep[Rep] { // target

def sin(x: Rep[Double]): Rep[Double] = ... }

implicit object isNoRep extends IRep[NR] { // meta

def sin(x: NR[Double]): NR[Double] = Math.sin(x) }

Staging for Generic Programming in Space and Time GPCE’17, October 23–24, 2017, Vancouver, Canada

Note that we use exactly the same type class design pat-
tern as introduced in Section 2, with only one minor tweak:
Instead of regular parametric types we use higher-kinded
types, since we are abstracting over a type constructor that is
applied to base types. We exploit the fact that we can define a
higher-kinded identity type NR[T] = T to describe the meta
version as can be seen in the evidence object isNoRep. The
instantiations now simplify to
val (s,c): (Rep[Double],Double) = (...,2.0)

sin_poly(s)

sin_poly(c1)

sin_poly[Rep](c1) // explicitly selecting version

We omit the majority of the IRep class, but will encounter
the following pieces throughout the rest of the paper
trait IRep[R[_]] {

//check if a polymorphic value is staged

def isRep(): Boolean

//transform a value to a value of the polymorphic type

def const(x: A): R[A]

//lift a value to the target stage

def toRep(x: R[A]): Rep[A] }

with their corresponding type class implementations
implicit object isRep extends IRep[Rep] {

val isRep = true

def const(x: A): Rep[A] = Const(x)

def toRep[A](x: Rep[A]): Rep[A] = x

... }

implicit object isNoRep extends IRep[NR] {

val isRep = false

def const[A](x: A): NoRep[A] = x

def toRep[A](x: NoRep[A]): Rep[A] = Const(x)

... }

3.3 Application
Loop unrolling. Loop unrolling can be expressed as simple
pre-computation in the running example implemented as
def loop_poly[R[_]](a: Rep[Array[Double]],

l: R[Int], s: Rep[Double]) =

(0 until l).foldLeft(a) { (acc, i) =>

val t = sin(((i + a.length()) % 10).toDouble())

... }

Calling loop_polywith a meta value for the range l, the fold
will actually be executed at meta-time, therefore resulting in
fully unrolled target code. On the other hand, if the function
is called with a target value, a staged loop will be created.
Of course we could also factor out this functionality into a
stage-polymorphic version of foldLeft.
Inlining. Function invocations at the meta level are in-

visible to the target level, e.g.,
val s: Rep[Int] = ...

val metaf: Rep[Int]=>Rep[Int] = (in: Rep[Int]) => in + in

metaf(metaf(s))

will be executed during the meta phase, therefore inlining
meta functions by default, yielding at the target phase
val x = s + s; x + x

If we want to create a function definition at the target level,
we can use an operator fundef:
val target = fundef(metaf) // metaf from above

target(target(s))

The signature of fundef is
def fundef[A,B](f: Rep[A]=>Rep[B]): (Rep[A]=>Rep[B])

i.e., the return value is again a meta-level function which,
when called, will generate a call to the generated function
definition. Hence, functions are not Rep values themselves,
and we have use the Scala type system to ensure that all
generated functions are first order and all call targets are
known. Yet, target functions remain first-class values at the
meta level.

This way of defining fundefwith an identity signature en-
ables automatic stage polymorphism: we can decide whether
to invoke fundef based on any dynamic condition
val mayInline = if shouldInline metaf else fundef(metaf)

mayInline(s)

A key use case in our running example will be the specializa-
tion of recursion patterns, as discussed later in Section 3.10.

3.4 Concept: Combining Axes of Polymorphism
Stage polymorphism uses the same mechanisms as those to
achieve regular data abstraction. Hence, combining stage
polymorphism with existing generic programming design
patterns is straightforward. We implement an abstract data
container
abstract class AC[R[_]: IRep,T] {// AC is short

def apply(i: R[Int]): T // for AbstractContainer

def update(i: R[Int], y: T)

def length(): R[Int] }

with two instantiations
class StagedArray(val data: Rep[Array[Double]])

extends AC[Rep,Rep[Double]] {

def apply(i: Rep[Int]): Rep[Double] = data(i)

def update(i: Rep[Int], y: Rep[Double]) = {data(i) = y}

def length(): Rep[Int] = ... }

class MetaArrayofScalars(val data: Array[Rep[Double]])

extends AC[NR,Rep[Double]] {

def apply(i: Int) = data(i)

def update(i: Int, y: Rep[Double]) = { data(i) = y }

def length(): NoRep[Int] = data.length }

The AC container describesmanagement of data in an abstract
fashion, where indexing into the container is parameterized
with a higher-order type. This allows us to reason simulta-
neously about a staged array and a meta-time list of staged
scalar values. Due to the implicit conversion available from
T to Rep[T] we can index into both constructs with, e.g., a
single meta-time loop variable.

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

3.5 Application
We reformulate our implementation in terms of the abstract
container, e.g., the function header loop_poly in Section 3.3
takes the form
def loop_poly[R[_]](a: AC, s: Rep[Double])

(0 until a.length) ...

Note that we got rid of one parameter and instead use the
length function of the abstract container. Given a meta ar-
ray of scalars this will execute the loop at meta-time and
pass meta-time values to the sine function, thus enabling
unrolling and precomputation if possible.

Scalarization. Using this data abstraction we can for-
mulate scalarization as a conversion operation within the
abstract container as
abstract class AC[R[_]: IRep,T] {

def scalarize(size: Int): MetaArrayofScalars }

with the implementation in the StagedArray subclass
def scalarize(size: Int): MetaArrayofScalars = {

val scalars = new MetaArrayofScalars(

new Array[Rep[Double]](size))

for (i <- 0 until size) scalars(i) = data(Const(i))

scalars }

and a simple identity function in the other subclass. Note
that the typing enforces the intuition that scalarization is
bound to an array size known at meta-time.

3.6 Concept: Isomorphism between Meta and Target
We have shown in Section 3.3 how LMS supports staging
of functions of the form Rep[A] => Rep[R]. The fundef op-
erator is also implemented for multi-parameter functions
such as (Rep[A],Rep[B]) => Rep[R], which is transformed
to Rep[(A,B) => R] (up to 24 parameters). While working
with this construct we hit a nuisance. Assume a meta con-
tainer such as:
case class Complex(re: Rep[Double], im: Rep[Double])

This container type enables us to reason about complex num-
bers on the meta stage, without carrying the overhead to the
target stage, as only the contained doubles will be visible at
this point. Unfortunately, whenever we use this construct
in the context of staging functions, additional boilerplate is
required as function staging is only defined over Rep types.
Therefore boilerplate code for composing and decomposing
each meta container used is required. To remedy the situ-
ation we use another type class to describe types that are
isomorphic to a list of Rep values:
trait ExposeRep[T] {

def fresh: Vector[Rep[_]]

val vec2t: Vector[Rep[_]] => T // compose

val t2vec: T => Vector[Rep[_]] } // decompose

This isomorphism captures the process of composing and
decomposing meta containers. In addition, it carries an inter-
face to create new symbols for all expressions it describes in

Figure 1. Combining the expose type class with regular data
abstraction. For encapsulating and exposing meta objects
the type class redirects to the corresponding implementation
via the abstract base class.
the process. This is used, e.g., at the creation of lambdas to
create symbolic inputs as entry point to the function. Given
this construct we can now define a more general fundef
operator with signature
def fundef[A:ExposeRep, R:ExposeRep](f: A=>R]): A=>R

which only requires that the argument and return types of
the given function are isomorphic to a list of target types.
Usage of this construct takes the form
val complex_val: Complex = ...

def complex_f(c: Complex): Complex = ...

// assume implicit ExposeRep[Complex] in context

val staged_complex_f = fundef(complex_f)

val result: Complex = staged_complex_f(complex_val)

For the price of providing an expose type class, the user is
able to seamlessly work with staged functions over meta
containers. Note that for non-encapsulated target types the
expose type class is provided implicitly. The described tech-
nique is a cruical enabler for the ideas presented in the rest
of this section.

3.7 Application
Dynamic meta values that are lifted to the target stage be-
come static values within it. E.g., the value of i in
(0 until 10).foldLeft(0)((acc,i) => acc + Const(i))

is a dynamic value during meta-time, but will take static
values at target compile time. A consequence of this might be
easily overseen or undervalued, namely the fact that a value
thatmust be static at target-time (e.g., number of parameters
of a function) can be described dynamically at meta-time.

Dynamic arities for functions. A first practical conse-
quence of this are functions with dynamically sized param-
eter lists at meta-time. For our running example this is an
essential requirement. We have been able to abstract over
arrays vs scalars in Section 3.4, yet the function
Array[Rep[Double]] => Array[Rep[Double]]

would not have been expressible so far.

Staging for Generic Programming in Space and Time GPCE’17, October 23–24, 2017, Vancouver, Canada

We combine the abstraction from Section 3.4 and the ex-
pose mechanism from Section 3.6 as sketched in Figure 1.
We define an expose type class for the abstract container
and resolve the composition and decomposition within by
referring to member functions of the AC class. Note that
we are required to provide the expose mechanism with a
sample. This is due to the fact that, e.g., the length of a list
of target-time scalars is only known during meta-time. This
approach allows for easy composition of meta containers.
For example, to describe the expose mechanism of a vec-
tor of complex numbers one can use the previously defined
exposeRep[Complex] type class for each sub-element.
Using this technique also allows us to describe staged

functions in general as only A=>R and encode multiple pa-
rameters and/or return types in the expose type class of A or
R. This eliminates the need to encode all function arities in
the staging framework. For arities that are not supported by
the target language as, e.g., multiple return values or above
22 parameters in the case of Scala, a corresponding transfor-
mation has to be done before unparsing. In the concrete case
of Scala code we simply transform into a right-leaning nested
tuple, which allows us to preserve all type information.

Tiling. Loop tiling is a common program transformation
that is done to expose optimization opportunities for perfor-
mance and change the access pattern of a loop. The following
code expresses tilling in combination with stage polymor-
phism.
def tiling[R[_]: IRep]

(a: Rep[Array[Int]], tiling: R[Int]): Rep[Int] = {

val tiled: Rep[Int] = a.length / toRep(tiling)

(0 until tiled).foldLeft(0) { (acc, idx_staged) =>

(0 until tiling).foldLeft(acc) { (acc2, idx_poly) =>

val idx = idx_staged * tiling + idx_poly

acc2 + a(idx) + poly_sin(idx_poly) } } }

The first loop executes until tiled, a staged value due to its
dependency on the size of the array. This implies that the
loop also can only be performed at target-time. The tiling fac-
tor is stage polymorphic in this example. Given a meta-time
tiling factor, the inner loop will be fully unrolled at target
time. Furthermore we call a stage-polymorphic sine function
within the loop. Given that the inner loop index is known at
meta-time, the sine can actually be precomputed ahead of
time. This yields opportunities for algebraic simplifications.
If we supply a target-time tiling factor to the function, the
inner loop will be visible at target stage and the sine func-
tion computed at target-time. Providing a meta-time tiling
factor unrolls the loop, precomputes values and potentially
saves operations, ideal in a compute-bound situation. On
the other hand, providing a target-time tiling factor will not
unroll the loop, saving code size and compute sine values on
the fly, ideal for a memory-bound situation. We apply the
same technique in a straightforward fashion to the running
example.

3.8 Concept: Information Flow from Target to Meta
All examples we have seen so far only allow information to
flow from the meta stage to the target stage and not vice-
versa. Indeed, it is not immediately apparent how such a
“time travel” could be achieved: a Rep[T] value cannot, in
general, become a T value without executing the generated
code. However, we can achieve something similar in an in-
direct way, based on an observation in certain high perfor-
mance libraries and JIT compilers. Many divide-and-conquer
high performance libraries that work on a dynamic problem
size perform a runtime check on the current problem size
during each recursion step. If the checked value is smaller
than a threshold they invoke a size-specialized variant (note
that usually this is not the algorithmic base case of the re-
cursion). In a similar fashion, JIT compilers observe runtime
values provided to a function and if a value tends to be con-
stant, they might create a specialized version of that function
under guards. A similar patterns is known as binding-time
improvement in partial evaluation under the name bounded
static variation, or simply “The Trick” [10, 18].

3.9 Application
Inspired by this observationwe can pre-initialize our running
example algorithm with a function of the form:
def ini_specialize[R[_]: IRep, S[_]: IRep]

(a: AC[R], s: S[Double]) = // s is the scaling factor

if (s == 1.0) recurse[R,NoRep](a,1.0)

else recurse(a,s)

If s happened to be a meta-time value in the first place, the
conditional will be resolved at meta-time and no runtime
overhead for checking will occur. If it is a target value, the
conditional will be lifted into the target stage as well and
two versions of the divide-and-conquer algorithm will be
generated.

3.10 Concept: Specializing Recursion Schemes
We combine the previously introduced concepts to give the
recurse function from the running example its final form:
def recurse[R[_]: IRep](stat: Stat[R]): Dyn[R]=>AC[R] = {

implicit val (exparg,expret):

(ExposeRep[Dyn[R]], ExposeRep[AC[R]])=(expDyn(stat),...

def fun(dyn: Dyn[R]): AC[R] = {

val mix = Mix[R](stat, dyn)

mix.scaling = } // body

val function_signature = stat.genSig()

if (stat.inline) fun else fundef(fun,sig) }

Instead of passing multiple parameters, we rely on a single
input meta container and single meta output container as
introduced in Section 3.6. Their corresponding expose type
classes are defined in the first line of the function. We for-
mulate the actual computation within the body of an inner
function fun. This function is optionally staged in the last
line using the construct from Section 3.3. The snippet above

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

we utilizes the meta containers Stat[R], Dyn[R] and Mix[R].
They are in an inheritance relationship with a common super
class1

class Base[R[_]: IRep](a: AC[R], scaling: ST[Double])

We use the three subclasses to give a view on either only the
meta-time components, only the target-time components or
their combination. This separation proved useful to avoid
errors that can occur when mixing meta- and target-time
components incorrectly. Within the body of the function we
combine the Stat[R] and Dyn[R] aspect to create Mix[R],
which can be safely used within. To allow for a dynamically
sized arity within the recursion, we use the target-time static
aspects encoded in Stat[R] to create the corresponding ex-
pose type class for Dyn[R] from it. As we are in a recursive
function, we need to provide LMS with the means of detect-
ing that we are in such a context. This is required as it will
otherwise try to unfold the recursion during meta-time. The
separation into meta- and target-time components assists us
in this task, as in the pattern above, the target-time layout is
purely defined by meta-time values defined within Stat[R].
This is utilized in the second to last line, where we create
a signature of the function based on the meta-time values
used to create it. If we encountered the signature already we
withhold the creation of a new function at target-time and
instead pass the exiting one. This full construct allows the
recurse function to call itself, changing its function signa-
ture on the fly, thereby specializing itself. E.g, to scalarization
within the recursion would take the following form within
the body of the function
val sc = a.scalarize(size) // scalarize

val (nstat, ndyn) = mix.cpy(a = sc, inline=true).split()

val rf = recurse(nstat) // create or lookup the function

val result_scalars = rf(ndyn) //call the function

where we create new Stat[R] and Dyn[R] objects. These
are used to request a corresponding function from within
recurse. In the case that the function signature defined by
Stat[R] has been seen already, an existing generated target
function will be returned.

Recursion step closure. The generalized version of the
implementation above can specialize functions on their sig-
nature and the target-time constant values it receives. The
implementation automatically finds the call graph composed
of the specialized functions that describes the computation.
Assume two functions f(a,b,c) and b(x,y) that have their
parameter lists encoded in the style of this section. Further-
more assume the first parameter of f encodes either an array
or a list of scalars in an abstract fashion as introduced in
Section 3.7. Using the two function encoded in a generic

1In this particular case we encoded the polymorphism of scaling through
abstract type members. While this makes the implementation less noisy in
the signature of functions using it, as can be seen in the recurse code, it
requires more boilerplate while working with it directly.

Figure 2. A potential unfolding of the call graph when call-
ing f(a,b,c) with dynamic values. Function names such as
f_bis0 signify the original function specialized for a con-
stant value of the parameter b. Parameters types that are
described abstractly can unfold into different shapes such as
an array vs. a list of scalar

fashion and invoking f as f(a: Array, b,c) might yield a
call graph as depicted in Figure 2.

3.11 Application
Size specialization under a threshold. In our example we
wish to specialize the recursion on the size, once it is smaller
than a given threshold. Ideally we want this to take the form
of (pseudocode)
if (size.isRep && size < threshold) size match {

case n => recurse(size: NR[Int]=n, inline=true)

case (n-1)=> recurse(size: NR[Int]=n-1,inline=true)

... }

We want to perform the check only on target-time values,
and, if the check succeeds, call a scalarized size-specialized
version. Implementing this on the running example takes
the form
def sizecheck[R[_] : IRep](stat: Stat[R]):

Dyn[R] => AC[R] = {

def fun(dyn: Dyn[R]): AC[R] = {

val mix = Mix[R](stat, dyn)//check if target value

if (ev.isRep && a.length() < size_threshold)

binsearch(mix, toRep(a.length()), 0, 64)

else ... // call regular recurse }

val function_signature = stat.genSig()

if (stat.inline) fun else fundef(fun,sig) }

Binsearch is a size check done in a binary-search-style fash-
ion to minimize the cost of the comparisons. Note that
binsearch and its recursive calls will be inlined within
sizecheck at target-time.

3.12 The Final Generic Implementation
Figure 3 gives a high-level overview over the connection
of all components introduced within this section that form
the final generic implementation of our algorithm fulfilling
all requirements given in 3.1. The input can be given as an
arbitary sized list of scalars or as an array. The enabling
ideas are given in Sections 3.7 and 3.4. In addition, a scaling
factor is supplied that can be optionally a target-time con-
stant (Section 3.2). Adopting the function header at target
time on any given parameter list variation is done with the
technique in Section 3.7. We perform a runtime check if the
scaling factor is not constant already (Section 3.8. We enter
the recursion loop in checksize, which, given a dynamically

Staging for Generic Programming in Space and Time GPCE’17, October 23–24, 2017, Vancouver, Canada

Figure 3. All components introduced over the course of this
section. Square brackets are degrees of freedoms introduced.
The components within the three functions are labeled with
references of the degrees of freedom impacting them

sized array, checks the length and potentially specializes on
it. It uses a binary search as introduced in Sections 3.10 and
3.11. In the process it will proliferate the call graph with
many calls into specialized versions, a task that is automated
through the technique in Section 3.10. In addition it also
introduces the new degrees of freedom of potentially in-
lining (Section 3.3) and transforming an array to a list of
scalars (Section 3.10). With this it proceeds into the main
body, the recurse function. This function scales the input
and performs the summation operation, where it, if possible,
unrolls and pre-computes, and for the summation also tiles
(Sections 3.3, 3.2 and 3.7). Thereafter it recurses back into
checksize and among return concatenates the result. This
might require an undoing of scalarization. It is worth noting
that this highly generic piece of code takes less then 200
lines of Scala code. This is after factoring out the abstraction
containers, type classes, etc., leaving the pure algorithm logic
as depicted in Figure 3.

4 Case Studies: Convolution and FFT
The previous section introduced various abstraction mecha-
nisms enabled by stage polymorphism. It used a synthetic
running example to illustrate these techniques. In this sec-
tion we apply these techniques to two important algorithms:
convolution and FFT. We show how the introduced mech-
anisms yield generic implementations that abstract over a
large implementation space for the algorithms in question.
Even though the abstractions are motivated by performance
optimizations, we would like to emphasize that the focus is
on the abstractions needed and not on producing the fastest
code possible.

4.1 Convolution
Convolution is one of the most common operations in im-
age processing. Examples include Gaussian blurring, edge
detection, and sharpening, and performance is often crucial.
To provide optimized code, two approaches are common:
1) An optimized library that supports a generic convolution
but that cannot provide all conceivable specialized variants
(e.g., OpenCV [4]). 2) A program generator that produces
the specialized version needed. An example of this approach

is Halide [31], which uses a library-based DSL to steer the
automated construction.

To illustrate our generic approch, we implemented a small
box filter, utilizing the techniques in Section 3, that convolves
an image with a 3 × 3 matrix. In essence this convolution
replaces every value in the image by a linear combination
(with coefficients specified by the filter) of its eight neigh-
bours and itself. Our generic implementation could serve as
both a user-facing library or as a program generator.

Code specification.Our generic implementation abstracts
over various optimizations that specialize the code at both
code generation time and run time. At code generation time
the user can specify the following shape defining properties
of the algorithm:

- Block size. It is common practice to perform operations
over the image in a blocked fashion as this yields better
cache utilization.

- Unrolling factor. Each block is further tiled where the sub-
loop is fully unrolled. This avoids loading the same data
multiple times from the input as, e.g., for a full 3 × 3 filter
each pixel of the original image is touched nine times.

- Symmetry of the filter matrix. The user may specify com-
mon symmetries (symmetric, antisymmetric) within the
filter matrix, which reduce the operations count.

- Constant values of filter elements. Some or all of the fil-
ter values can be known at code generation time, which
enables specialization and possibly simplification (if the
values include 0, 1, -1, or duplicates).

- Decomposability of the filter. If the convolution is separable
it can be split into two one-dimensional filters, possibly
increasing locality. If the filter is not known at meta-time,
these are passed to the function.

In addition to the above choices that enable optimizations at
code generation time, the implementation includes a runtime
check for the following properties.

- Check if filter values are zero. For filter values specified at
runtime, we can check if they are to zero and, if so, invoke
a specialized version of the algorithm to reduce operations.

- Check if the filter has symmetry. For filter values that are not
known at meta-time, the symmetry will be automatically
checked and exploited.

- Check if the filter is separable. If the filter is not known at
meta-time, the user can choose to check separability to
invoke a specialized version.

Following Section 3.12 the generic filter implementation
takes the form shown in Fig. 4. It differs from Fig. 3 in that
it only optionally uses a recursion in the case of utilized
runtime checks. The main computation is done without re-
cursion, composed of tiling and the convolution core. Tiling
is influenced by the meta-time choice of tiling and unrolling
factor and is not shown. We discuss the convolution core
and the runtime checks in the following.

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

Figure 4. High level overview of the filter implementation.

Figure 5. Runtime specialization.

Exploiting symmetries in the convolution core. Sym-
metries in the filter matrix enable a reduction of the opera-
tions count. To achieve this, we add all input values that get
scaled by the same value from the matrix; then we apply the
now unique scalings to each corresponding such sum.
Given that we know the symmetry patterns statically

within a function we can describe the reduction as follows:
// valuesym: Map[Int,Vector[Int]] is given as meta value

val symsum = valuesym.map { p =>

val (scaleval,inputpos) = p

inputpos.map(_ => getPixels()).reduce(_ => sum(_)) }

// summed all input values that use the same scale

val scaled = symsum.map(p => p._1 * p._2)

// and finally reduce across scales

val sumtotal = scaled.foldLeft(Pixel(0))(_ + _)

Note that this implementation automatically covers filter-
matrix elements known at meta-time as they will seamlessly
combine with target-time values. For the special case of zero
values, we rely on smart constructors within LMS to optimize
the arithmetic operations during code construction.

Runtime specialization. It is worth noting that all pre-
vious optimizations are in principle also possible in vanilla
LMS as they are done at code generation time and do not
extend over lambdas. Runtime specialization, with ahead-of-
time creation of the specialized cases, on the other hand, is
only possible with the technique described in Section 3.10.
We show a code snippet that performs the runtime check on
each matrix element and specializes for zero values. Within

an initialization function convolution_ini we perform spe-
cialization conditionally on a flag. 2

if (specialize && specialize_count < nr_entries)

checkandreplace(specialize_count,mix,0)

else convolution_core(stat)(dyn) // actual computation

The specialization takes the form:
def checkreplace(pos: Int, mix: Mix, check: Int) = {

val inc_count = pmix.copy(spezialize_count += 1)

if (entry(pos) == check) { // position becomes static

val new_mix = pos match {

case 0 => inc_count.cpy(a = 0)//set matrix(0,0) 0

case 1 => inc_count.cpy(b = 0)//set matrix(0,1) 0

... }

val (new_stat, new_dyn) = new_mix.split()

convolution_ini(new_stat)(new_dyn)

} else { // position stays dynamic

val (old_stat, old_dyn) = inc_count.split()

convolution_ini(old_stat)(old_dyn) }}

During unparsing this will yield functions branching in a
tree fashion during each element specialization as depicted in
Fig. 5. Each leaf of the tree is a specialized version of the code.
Since there are 9 filter elements, there are 29 code variants,
i.e., the overall code size becomes rather large. Doing so,
we effectively trade code size with the time it would take
to invoke a code generator (including a JIT) at runtime to
produce a specialized variant.

4.2 Fast Fourier Transform (FFT)
The FFT is a particular challenging algorithm to optimize
as a number of complex transformations are needed. Prior
generative work include FFTW [11, 12] and Spiral [29, 30].
FFTW generates the needed base cases (called codelets) for
small sizes inside a hand-written general size library. Spi-
ral can generate either code that is specialized to the input
or a general-size library [44]. However, both cases use dif-
ferent generation pipelines because the differences in the
generated code are much more profound than in the con-
volution example as explained already in the introduction.
We show that using our abstraction this genericity in time
is also achievable for the FFT, resulting in a single unified
generation pipeline (Table 1) with the code available at [27].

Background: Recursive FFT. A minimal recursive FFT
implementation takes the form (pseudocode)
def fft(n: Int, in: Array[Double], out: Array[Double]) =

if (n == 2) fft2(in,out) else {

val k = choose_factor(n)

for (i <- 0 until k) fft(n/k,in,out)

for (i <- 0 until n) out(i) = twiddle(i) * out(i)

for (i <- 0 until n/k) fft_strided(k,out,out,stride(n))

}

2We use the same skeleton as used in Section 3.10, e.g., Mix is the combined
meta and target info

Staging for Generic Programming in Space and Time GPCE’17, October 23–24, 2017, Vancouver, Canada

Figure 6. Target-time call graph for the FFT for generic sizes using fully specialized fixed size code for cases n <= 16

Figure 7. A potential DFT breakdown

Here, in and out specify the input and output stride at which
the data is read and written, respectively. If the input size n is
known at meta-time, many specializations become possible
including fixing the recursion strategy (choice of k at each
step), precomputing the twiddle factors, unrolling and inlin-
ing the occuring small FFTs, which in turn enables further
simplifications. The result is a sequence of nested loops. If n
is not known, fast code is fundamentally different. The recur-
sion stays generic and thus needs search at runtime, twiddles
are precomputed once at runtime, or one the fly during com-
putation, and to benefit from fast basic blocks, an entire suite
of unrolled codelets (all small sizes and for both variants fft
and fft_strided) needs to be included. Vectorization and
parallelization further complicates the requirements.
An example divide-and-conquer breakdown of an FFT is

given in Fig. 7, either determined at meta-time (if n = 1024
is known) or dynamically obtained by recursing within a
general-size library. As said above, in both, the recursion is
not followed until n = 2 but instead a specialized unrolled
FFT of a larger size (called codelet) is called once the size is
below a threshold (here: 64). This codelet is also computed
recursively, but with the recursion unrolled and inlined.

Code specification.Our generic implementation abstracts
over various optimizations that specialize the code at meta
time or runtime. Most important is the abstraction related to
the input size due to the deep impact on the other optimiza-
tions and the resulting code (see above). The resulting code
has about 200 LOC, and about 1200 LOC when including all
class definitions.
- Input size which is known at meta or target-time, causing
deep consequences for the optimizations below.

- Codelet size specifies the threshold below which FFT sizes
should be unrolled.

Figure 8. Comparing the performance of JTransforms with
two versions of our generated code for input sizes 2n .

- Computation of twiddle factors. The choices are precompu-
tation or computation on the fly in the code.

- Data type. The FFT operates on complex numbers. Our
implementation supports interleaved or C99 format.

We note that compared to FFTWand Spiral we do not support
SIMD vectorization, which requires unparsing to C code, and
only support two-power sizes.
Figure 6 shows a full target-time call graph for a DFT

accepting general size input, and utilizing fully specialized
base cases for sizes up to 16. We highlighted the separation
into infrastructure code (grey boxes), where the input size is
unknown, and the calls into size specialized codelets (white
boxes). Inspecting the graph, one can see that each base case
exists multiple times, with varying parameter sets. This is
the Cartesian product of the parameter sets and the input
sizes we want to have base cases for. The call graph is exactly
equal to the base case generation of the original Spiral system,
but without invoking a second generator. This example is a
strong motivation for a generative approach, as the number
of required functions scales with the product of possible
statically known parameters (e.g., number of static sizes for
the base cases times the possible static input strides).

Runtime comparison. Our generic implementation out-
puts Java code. Fig. 8 compares its performance to JTrans-
forms [46], an optimized Java library for the FFT on an Intel
Core i7-4770K and the JVM Java HotSpot 64-Bit Server VM
(build 25.112-b15, mixed mode). We observe that the pro-
duced code has reasonable performance and the benefit of

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

specialization. The difference to JTransform lies in a num-
ber of lower-level optimizations (e.g., [11]) that we did not
include as they are outside the scope of the paper.

5 Related Work
Generic programming.One of the earliest mentions of the
term “generic programming” as design methodology is by
Musser and Stepanov [25]. A nice overview on the adaption
of the concepts can be found in [13]. A similar review that
is more recent can be found here [3]. Popular instantiations
of data-type generic programming are “Data types à la carte”
[42] and “Scrap your Boilerplate” (SYB) [22, 23].

Metaprogramming.One of the earlywell-known libraries
that utilizes metaprogramming is Boost [38]. It utilizes tem-
plate meta programming in C++, a technique that can be
very challenging to utilize. Concepts [15] try to fix many of
these challenges imposed including more compiler checks.
More principled support for metaprogramming support is
found across many other languages, such as Template Meta-
Programming forHaskell [37],MetaOCaml [20],MetaML [43]
and Macros for Scala [5], to name a few. Most of these lan-
guages or systems (with the exception of C++ templates)
provide a version of syntactic annotations, brackets, escape,
and (sometimes) run, which together provide a syntactic
quasi-quotation facility similar to that found in Lisp but often
extended with some static scoping and typing guarantees.

Staging based on types. Another line of metaprogram-
ming approaches is based on embedded DSLs, leveraging the
type system of the host language to distinguish meta-level
from target-level terms. Lightweight Modular Staging (LMS)
[32] is one instance of this approach. Immediately related
work includes that of [6] and [17]. LMS draws inspiration
from earlier work such as TaskGraph [2], a C++ framework
for program generation and optimization.

Combining generic programming andmetaprogram-
ming. Staging and metaprogramming have been used in
many ways to reduce the overhead of generic programming
abstractions. The first explicit treatment, an implementation
of SYB based on MetaOCaml, was presented by Yallop [47].
Earlier metaprogramming techniques that were inspired by
generic programming approaches include polytypic staging
[39] and isomorphic specialization [40], as well as work on
combining deep and shallow embeddings of DSLs [41]. All
of these were inspirational for our work.

Pre-computation and function specialization. Proce-
dure cloning as an optimization step within a compiler was
proposed by [8]. With the rise of just in time (JIT) compilers
over the last decade, runtime specialization through JIT’s has
become mainstream. Recent research [34] proposes value
specialization in the context of a JavaScript JIT. In its Sec-
tion 5, this work gives a nice overview over various code
specialization flavors including static variants.

Stage polymorphism. The idea to explicitly abstract
over staging decisions in a controlled and fine-grained way
was first introduced in our previous work [28] which mainly
focuses on the mapping of a DSL based generator into Scala.
It overlaps with current work in that it already sketched the
idea of abstracting over precomputation shown in Section 3.2
and combining it with standard generic programming shown
in Section 3.4. We extend both techniques by the concepts
shown within Sections 3.6 to 3.8 and restated them such
that they compose with the extensions. The previous work
was only capable of producing fixed size code, similar to
e.g., FFTW. The new concepts not only allow us to produce
general size libraries similar to e.g., [44], but also enable us
to provide a fixed and a general size FFT generator through
stage polymorphism.

Partial evaluation. Partial evaluation [18] is a program
specialization technique that automatically splits programs
into static/meta and dynamic/target computations. Some
notable systems include DyC [14] for C, JSpec/Tempo [35],
the JSC Java Supercompiler [21], and Civet [36] for Java.
Lancet [33] is a partial evaluator for Java bytecode built
on top of LMS. Bounded static variation (“The Trick”) is
discussed in the book by Jones, Gomard, and Sestoft [18], and
has been related to Eta-expansion by Danvy et, Malmkjær,
and Palsberg [10].

Partial evaluation and stage polymorphism. In one
sense, a partial evaluator treats source expressions as poly-
morphic in their binding time. Notably the work by [16]
explores polyvariancy in the context of partial evaluation.
But experience suggests that it is not easy to generate exactly
the desired specialization with fully automatic approaches,
or to debug the outcome if something goes wrong. We view
our approach to stage polymorphism as a promising mid-
dle ground between automatic partial evaluation and fully
manual staging, which retains the benefit of code reuse, but
makes the specialization fully programmable.

6 Conclusion
This paper presents one possible design of generic program-
ming that abstracts over temporal aspects of code generation.
The approach allows the composition of statically special-
ized and unspecialized code generation, even across function
boundaries, within a single abstract generator. The presented
techniques therefore enable a drastic reduction in code size
for program generators. One application domain is the gen-
eration of high performance code as we demonstrated with
the first generator that produces both fixed and general-size
FFTs in a single pipeline.

Acknowledgments
This research was supported under NSF awards 1553471 and
1564207, and DOE award DE-SC0018050.

Staging for Generic Programming in Space and Time GPCE’17, October 23–24, 2017, Vancouver, Canada

References
[1] Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of

path-dependent types. In OOPSLA. ACM, 233–249.
[2] Olav Beckmann, Alastair Houghton, Michael R. Mellor, and Paul H. J.

Kelly. 2003. Runtime Code Generation in C++ as a Foundation for
Domain-Specific Optimisation. In Domain-Specific Program Generation.
291–306.

[3] Julia Belyakova. 2016. Language Support for Generic Programming in
Object-Oriented Languages: Peculiarities, Drawbacks, Ways of Improve-
ment. Springer, Cham, 1–15.

[4] G. Bradski. 2000. Dr. Dobb’s Journal of Software Tools (2000).
[5] Eugene Burmako. 2013. Scala macros: let our powers combine!: on

how rich syntax and static types work with metaprogramming. In
Proc. Workshop on Scala.

[6] Jacques Carette, Oleg Kiselyov, and Chung Chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program. 19, 5 (2009), 509–543.

[7] K. D. Cooper, M. W. Hall, and K. Kennedy. 1992. Procedure cloning. In
Proc. Computer Languages. 96–105.

[8] Keith D Cooper, MaryWHall, and Ken Kennedy. 1993. A Methodology
for Procedure Cloning. Proc. Comput. Lang. 19, 2 (April 1993), 105–117.

[9] Paolo D’Alberto, Peter A. Milder, Aliaksei Sandryhaila, Franz
Franchetti, James C. Hoe, José M. F. Moura, Markus Püschel, and
Jeremy Johnson. 2007. Generating FPGA Accelerated DFT Libraries.
In Proc. IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM). 173–184.

[10] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. 1996. Eta-
Expansion Does The Trick. Proc. Programming Languages and Systems
(TOPLAS) 18, 6 (1996), 730–751.

[11] M. Frigo. 1999. A Fast Fourier Transform Compiler. In Proc. Program-
ming Language Design and Implementation (PLDI). 169–180.

[12] Matteo Frigo and Steven G. Johnson. 2005. The design and implemen-
tation of FFTW3. Proceedings of the IEEE, special issue on "Program
Generation, Optimization, and Adaptation” 93, 2 (2005), 216–231.

[13] Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy G. Siek, and
Jeremiah Willcock. 2003. A Comparative Study of Language Sup-
port for Generic Programming. In Proc. Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA). 115–134.

[14] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and
Susan J. Eggers. 2000. DyC: an expressive annotation-directed dynamic
compiler for C. Theor. Comput. Sci. 248, 1-2 (2000), 147–199.

[15] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel
Dos Reis, and Andrew Lumsdaine. 2006. Concepts: Linguistic Support
for Generic Programming in C++. In Proc. Object-oriented Programming
Systems, Languages, and Applications (OOPSLA). 291–310.

[16] Fritz Henglein and Christian Mossin. 1994. Polymorphic binding-
time analysis. In Proc. European Symposium on Programming Edinburg.
287–301.

[17] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. 2008. Polymorphic embedding of DSLs. In Proc. Generative
Programming: Concepts & Experiences (GPCE). 137–148.

[18] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial
evaluation and automatic program generation. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[19] Ulrik Jørring and William L. Scherlis. 1986. Compilers and Staging
Transformations. In Proc. Symposium on Principles of Programming
Languages (POPL). 86–96.

[20] Oleg Kiselyov. 2014. The design and implementation of BER MetaO-
Caml. In Proc. Symposium on Functional and Logic Programming (ICFP).
86–102.

[21] Andrei V. Klimov. 2009. A Java Supercompiler and Its Application to
Verification of Cache-Coherence Protocols. In Proc. Ershov Memorial
Conference. 185–192.

[22] Ralf Lämmel and Simon L. Peyton Jones. 2003. Scrap your boilerplate:
a practical design pattern for generic programming. In Proc. Workshop
on Types in languages design and implementation (TLDI). 26–37.

[23] Ralf Lämmel and Simon L. Peyton Jones. 2005. Scrap your boiler-
plate with class: extensible generic functions. In Proc. on Functional
Programming (ICFP). 204–215.

[24] Geoffrey Mainland. 2007. Why It’s Nice to Be Quoted: Quasiquoting
for Haskell. In Proc. Workshop on Haskell Workshop. 73–82.

[25] David R. Musser and Alexander A. Stepanov. 1988. Generic Program-
ming. In Proc. ISSAC (Lecture Notes in Computer Science), Vol. 358.
Springer, 13–25.

[26] Martin Odersky and Tiark Rompf. 2014. Unifying functional and
object-oriented programming with Scala. Commun. ACM 57, 4 (2014),
76–86.

[27] GeorgOfenbeck. [n. d.]. https://github.com/GeorgOfenbeck/SpaceTime.
([n. d.]). https://github.com/GeorgOfenbeck/SpaceTime

[28] Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and
Markus Püschel. 2013. Spiral in Scala: Towards the Systematic Con-
struction of Generators for Performance Libraries. In Proc. Generative
Programming: Concepts & Experiences (GPCE). 125–134.

[29] Markus Püschel, Franz Franchetti, and Yevgen Voronenko. 2011. Ency-
clopedia of Parallel Computing. Springer, Chapter Spiral.

[30] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca
Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and
Nicholas Rizzolo. 2005. SPIRAL: Code Generation for DSP Trans-
forms. Proceedings of the IEEE, special issue on "Program Generation,
Optimization, and Adaptation” 93, 2 (2005), 232– 275.

[31] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. In Proc. Programming Language
Design and Implementation (PLDI). ACM, 519–530.

[32] Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
Commun. ACM 55, 6 (2012), 121–130.

[33] Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Has-
san Chafi, and Kunle Olukotun. 2014. Surgical precision JIT compilers.
In Proc. Programming Language Design and Implementation (PLDI).

[34] Henrique Nazare Santos, Pericles Alves, Igor Costa, and Fer-
nando Magno Quintao Pereira. 2013. Just-in-time Value Specialization.
In Proc. Symposium on Code Generation and Optimization (CGO). 11.

[35] Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. 2003. Automatic
Program Specialization for Java. ACM Trans. Program. Lang. Syst. 25,
4 (July 2003), 452–499.

[36] Amin Shali and William R. Cook. 2011. Hybrid partial evaluation. In
Proc. Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA).

[37] Tim Sheard and Simon Peyton Jones. 2002. Template meta-
programming for Haskell. In Proc. Workshop on Haskell. 1–16.

[38] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. 2002. The Boost
Graph Library - User Guide and Reference Manual. Pearson / Prentice
Hall.

[39] Alexander Slesarenko. 2012. Lightweight Polytypic Staging: a new
approach to an implementation of Nested Data Parallelism in Scala.
In Proc. Workshop on Scala (SCALA ’13). ACM, New York, NY, USA,
Article 3, 10 pages.

[40] Alexander Slesarenko, Alexander Filippov, and Alexey Romanov. 2014.
First-class Isomorphic Specialization by Staged Evaluation. In Proc.
Workshop on Generic Programming (WGP ’14). ACM, New York, NY,
USA, 35–46.

[41] Josef Svenningsson and Emil Axelsson. 2015. Combining deep and
shallow embedding of domain-specific languages. Proc. Computer
Languages, Systems & Structures 44 (2015), 143–165.

https://github.com/GeorgOfenbeck/SpaceTime

GPCE’17, October 23–24, 2017, Vancouver, Canada Georg Ofenbeck, Tiark Rompf, and Markus Püschel

[42] Wouter Swierstra. 2008. Data types à la carte. Journal of Functional
Programming 18, 4 (2008), 423–436.

[43] Walid Taha. 1999. Multi-stage programming: Its theory and applica-
tions. Ph.D. Dissertation. Oregon Graduate Institute of Science and
Technology.

[44] Yevgen Voronenko, Frédéric de Mesmay, and Markus Püschel. 2009.
Computer Generation of General Size Linear Transform Libraries. In
Proc. Symposium on Code Generation and Optimization (CGO). 102–113.

[45] P. Wadler and S. Blott. 1989. How to Make Ad-hoc Polymorphism Less
Ad Hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’89). ACM, New York,
NY, USA, 60–76.

[46] Piotr Wendykier. 2016. JTransform. (2016). https://sites.google.com/
site/piotrwendykier/software/jtransforms

[47] Jeremy Yallop. 2016. Staging Generic Programming. In Proc. Workshop
on Partial Evaluation and Program Manipulation (PEPM ’16). ACM,
New York, NY, USA, 85–96.

https://sites.google.com/site/piotrwendykier/software/jtransforms
https://sites.google.com/site/piotrwendykier/software/jtransforms

	Abstract
	1 Introduction
	2 Background
	3 Stage Polymorphism
	3.1 Running Example and Abstraction Goals
	3.2 Concept: Abstracting over Precomputation
	3.3 Application
	3.4 Concept: Combining Axes of Polymorphism
	3.5 Application
	3.6 Concept: Isomorphism between Meta and Target
	3.7 Application
	3.8 Concept: Information Flow from Target to Meta
	3.9 Application
	3.10 Concept: Specializing Recursion Schemes
	3.11 Application
	3.12 The Final Generic Implementation

	4 Case Studies: Convolution and FFT
	4.1 Convolution
	4.2 Fast Fourier Transform (FFT)

	5 Related Work
	6 Conclusion
	References

